Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements sparse conditional constant propagation and merging: |
| 11 | // |
| 12 | // Specifically, this: |
| 13 | // * Assumes values are constant unless proven otherwise |
| 14 | // * Assumes BasicBlocks are dead unless proven otherwise |
| 15 | // * Proves values to be constant, and replaces them with constants |
| 16 | // * Proves conditional branches to be unconditional |
| 17 | // |
| 18 | // Notice that: |
| 19 | // * This pass has a habit of making definitions be dead. It is a good idea |
| 20 | // to to run a DCE pass sometime after running this pass. |
| 21 | // |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | |
| 24 | #define DEBUG_TYPE "sccp" |
| 25 | #include "llvm/Transforms/Scalar.h" |
| 26 | #include "llvm/Transforms/IPO.h" |
| 27 | #include "llvm/Constants.h" |
| 28 | #include "llvm/DerivedTypes.h" |
| 29 | #include "llvm/Instructions.h" |
| 30 | #include "llvm/Pass.h" |
| 31 | #include "llvm/Analysis/ConstantFolding.h" |
| 32 | #include "llvm/Transforms/Utils/Local.h" |
| 33 | #include "llvm/Support/CallSite.h" |
| 34 | #include "llvm/Support/Compiler.h" |
| 35 | #include "llvm/Support/Debug.h" |
| 36 | #include "llvm/Support/InstVisitor.h" |
| 37 | #include "llvm/ADT/DenseMap.h" |
| 38 | #include "llvm/ADT/SmallSet.h" |
| 39 | #include "llvm/ADT/SmallVector.h" |
| 40 | #include "llvm/ADT/Statistic.h" |
| 41 | #include "llvm/ADT/STLExtras.h" |
| 42 | #include <algorithm> |
| 43 | using namespace llvm; |
| 44 | |
| 45 | STATISTIC(NumInstRemoved, "Number of instructions removed"); |
| 46 | STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); |
| 47 | |
| 48 | STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP"); |
| 49 | STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP"); |
| 50 | STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); |
| 51 | STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); |
| 52 | |
| 53 | namespace { |
| 54 | /// LatticeVal class - This class represents the different lattice values that |
| 55 | /// an LLVM value may occupy. It is a simple class with value semantics. |
| 56 | /// |
| 57 | class VISIBILITY_HIDDEN LatticeVal { |
| 58 | enum { |
| 59 | /// undefined - This LLVM Value has no known value yet. |
| 60 | undefined, |
| 61 | |
| 62 | /// constant - This LLVM Value has a specific constant value. |
| 63 | constant, |
| 64 | |
| 65 | /// forcedconstant - This LLVM Value was thought to be undef until |
| 66 | /// ResolvedUndefsIn. This is treated just like 'constant', but if merged |
| 67 | /// with another (different) constant, it goes to overdefined, instead of |
| 68 | /// asserting. |
| 69 | forcedconstant, |
| 70 | |
| 71 | /// overdefined - This instruction is not known to be constant, and we know |
| 72 | /// it has a value. |
| 73 | overdefined |
| 74 | } LatticeValue; // The current lattice position |
| 75 | |
| 76 | Constant *ConstantVal; // If Constant value, the current value |
| 77 | public: |
| 78 | inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {} |
| 79 | |
| 80 | // markOverdefined - Return true if this is a new status to be in... |
| 81 | inline bool markOverdefined() { |
| 82 | if (LatticeValue != overdefined) { |
| 83 | LatticeValue = overdefined; |
| 84 | return true; |
| 85 | } |
| 86 | return false; |
| 87 | } |
| 88 | |
| 89 | // markConstant - Return true if this is a new status for us. |
| 90 | inline bool markConstant(Constant *V) { |
| 91 | if (LatticeValue != constant) { |
| 92 | if (LatticeValue == undefined) { |
| 93 | LatticeValue = constant; |
| 94 | assert(V && "Marking constant with NULL"); |
| 95 | ConstantVal = V; |
| 96 | } else { |
| 97 | assert(LatticeValue == forcedconstant && |
| 98 | "Cannot move from overdefined to constant!"); |
| 99 | // Stay at forcedconstant if the constant is the same. |
| 100 | if (V == ConstantVal) return false; |
| 101 | |
| 102 | // Otherwise, we go to overdefined. Assumptions made based on the |
| 103 | // forced value are possibly wrong. Assuming this is another constant |
| 104 | // could expose a contradiction. |
| 105 | LatticeValue = overdefined; |
| 106 | } |
| 107 | return true; |
| 108 | } else { |
| 109 | assert(ConstantVal == V && "Marking constant with different value"); |
| 110 | } |
| 111 | return false; |
| 112 | } |
| 113 | |
| 114 | inline void markForcedConstant(Constant *V) { |
| 115 | assert(LatticeValue == undefined && "Can't force a defined value!"); |
| 116 | LatticeValue = forcedconstant; |
| 117 | ConstantVal = V; |
| 118 | } |
| 119 | |
| 120 | inline bool isUndefined() const { return LatticeValue == undefined; } |
| 121 | inline bool isConstant() const { |
| 122 | return LatticeValue == constant || LatticeValue == forcedconstant; |
| 123 | } |
| 124 | inline bool isOverdefined() const { return LatticeValue == overdefined; } |
| 125 | |
| 126 | inline Constant *getConstant() const { |
| 127 | assert(isConstant() && "Cannot get the constant of a non-constant!"); |
| 128 | return ConstantVal; |
| 129 | } |
| 130 | }; |
| 131 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 132 | //===----------------------------------------------------------------------===// |
| 133 | // |
| 134 | /// SCCPSolver - This class is a general purpose solver for Sparse Conditional |
| 135 | /// Constant Propagation. |
| 136 | /// |
| 137 | class SCCPSolver : public InstVisitor<SCCPSolver> { |
| 138 | SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable |
| 139 | std::map<Value*, LatticeVal> ValueState; // The state each value is in. |
| 140 | |
| 141 | /// GlobalValue - If we are tracking any values for the contents of a global |
| 142 | /// variable, we keep a mapping from the constant accessor to the element of |
| 143 | /// the global, to the currently known value. If the value becomes |
| 144 | /// overdefined, it's entry is simply removed from this map. |
| 145 | DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; |
| 146 | |
| 147 | /// TrackedFunctionRetVals - If we are tracking arguments into and the return |
| 148 | /// value out of a function, it will have an entry in this map, indicating |
| 149 | /// what the known return value for the function is. |
| 150 | DenseMap<Function*, LatticeVal> TrackedFunctionRetVals; |
| 151 | |
| 152 | // The reason for two worklists is that overdefined is the lowest state |
| 153 | // on the lattice, and moving things to overdefined as fast as possible |
| 154 | // makes SCCP converge much faster. |
| 155 | // By having a separate worklist, we accomplish this because everything |
| 156 | // possibly overdefined will become overdefined at the soonest possible |
| 157 | // point. |
| 158 | std::vector<Value*> OverdefinedInstWorkList; |
| 159 | std::vector<Value*> InstWorkList; |
| 160 | |
| 161 | |
| 162 | std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list |
| 163 | |
| 164 | /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not |
| 165 | /// overdefined, despite the fact that the PHI node is overdefined. |
| 166 | std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; |
| 167 | |
| 168 | /// KnownFeasibleEdges - Entries in this set are edges which have already had |
| 169 | /// PHI nodes retriggered. |
| 170 | typedef std::pair<BasicBlock*,BasicBlock*> Edge; |
| 171 | std::set<Edge> KnownFeasibleEdges; |
| 172 | public: |
| 173 | |
| 174 | /// MarkBlockExecutable - This method can be used by clients to mark all of |
| 175 | /// the blocks that are known to be intrinsically live in the processed unit. |
| 176 | void MarkBlockExecutable(BasicBlock *BB) { |
| 177 | DOUT << "Marking Block Executable: " << BB->getName() << "\n"; |
| 178 | BBExecutable.insert(BB); // Basic block is executable! |
| 179 | BBWorkList.push_back(BB); // Add the block to the work list! |
| 180 | } |
| 181 | |
| 182 | /// TrackValueOfGlobalVariable - Clients can use this method to |
| 183 | /// inform the SCCPSolver that it should track loads and stores to the |
| 184 | /// specified global variable if it can. This is only legal to call if |
| 185 | /// performing Interprocedural SCCP. |
| 186 | void TrackValueOfGlobalVariable(GlobalVariable *GV) { |
| 187 | const Type *ElTy = GV->getType()->getElementType(); |
| 188 | if (ElTy->isFirstClassType()) { |
| 189 | LatticeVal &IV = TrackedGlobals[GV]; |
| 190 | if (!isa<UndefValue>(GV->getInitializer())) |
| 191 | IV.markConstant(GV->getInitializer()); |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | /// AddTrackedFunction - If the SCCP solver is supposed to track calls into |
| 196 | /// and out of the specified function (which cannot have its address taken), |
| 197 | /// this method must be called. |
| 198 | void AddTrackedFunction(Function *F) { |
| 199 | assert(F->hasInternalLinkage() && "Can only track internal functions!"); |
| 200 | // Add an entry, F -> undef. |
| 201 | TrackedFunctionRetVals[F]; |
| 202 | } |
| 203 | |
| 204 | /// Solve - Solve for constants and executable blocks. |
| 205 | /// |
| 206 | void Solve(); |
| 207 | |
| 208 | /// ResolvedUndefsIn - While solving the dataflow for a function, we assume |
| 209 | /// that branches on undef values cannot reach any of their successors. |
| 210 | /// However, this is not a safe assumption. After we solve dataflow, this |
| 211 | /// method should be use to handle this. If this returns true, the solver |
| 212 | /// should be rerun. |
| 213 | bool ResolvedUndefsIn(Function &F); |
| 214 | |
| 215 | /// getExecutableBlocks - Once we have solved for constants, return the set of |
| 216 | /// blocks that is known to be executable. |
| 217 | SmallSet<BasicBlock*, 16> &getExecutableBlocks() { |
| 218 | return BBExecutable; |
| 219 | } |
| 220 | |
| 221 | /// getValueMapping - Once we have solved for constants, return the mapping of |
| 222 | /// LLVM values to LatticeVals. |
| 223 | std::map<Value*, LatticeVal> &getValueMapping() { |
| 224 | return ValueState; |
| 225 | } |
| 226 | |
| 227 | /// getTrackedFunctionRetVals - Get the inferred return value map. |
| 228 | /// |
| 229 | const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() { |
| 230 | return TrackedFunctionRetVals; |
| 231 | } |
| 232 | |
| 233 | /// getTrackedGlobals - Get and return the set of inferred initializers for |
| 234 | /// global variables. |
| 235 | const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { |
| 236 | return TrackedGlobals; |
| 237 | } |
| 238 | |
| 239 | inline void markOverdefined(Value *V) { |
| 240 | markOverdefined(ValueState[V], V); |
| 241 | } |
| 242 | |
| 243 | private: |
| 244 | // markConstant - Make a value be marked as "constant". If the value |
| 245 | // is not already a constant, add it to the instruction work list so that |
| 246 | // the users of the instruction are updated later. |
| 247 | // |
| 248 | inline void markConstant(LatticeVal &IV, Value *V, Constant *C) { |
| 249 | if (IV.markConstant(C)) { |
| 250 | DOUT << "markConstant: " << *C << ": " << *V; |
| 251 | InstWorkList.push_back(V); |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) { |
| 256 | IV.markForcedConstant(C); |
| 257 | DOUT << "markForcedConstant: " << *C << ": " << *V; |
| 258 | InstWorkList.push_back(V); |
| 259 | } |
| 260 | |
| 261 | inline void markConstant(Value *V, Constant *C) { |
| 262 | markConstant(ValueState[V], V, C); |
| 263 | } |
| 264 | |
| 265 | // markOverdefined - Make a value be marked as "overdefined". If the |
| 266 | // value is not already overdefined, add it to the overdefined instruction |
| 267 | // work list so that the users of the instruction are updated later. |
| 268 | |
| 269 | inline void markOverdefined(LatticeVal &IV, Value *V) { |
| 270 | if (IV.markOverdefined()) { |
| 271 | DEBUG(DOUT << "markOverdefined: "; |
| 272 | if (Function *F = dyn_cast<Function>(V)) |
| 273 | DOUT << "Function '" << F->getName() << "'\n"; |
| 274 | else |
| 275 | DOUT << *V); |
| 276 | // Only instructions go on the work list |
| 277 | OverdefinedInstWorkList.push_back(V); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) { |
| 282 | if (IV.isOverdefined() || MergeWithV.isUndefined()) |
| 283 | return; // Noop. |
| 284 | if (MergeWithV.isOverdefined()) |
| 285 | markOverdefined(IV, V); |
| 286 | else if (IV.isUndefined()) |
| 287 | markConstant(IV, V, MergeWithV.getConstant()); |
| 288 | else if (IV.getConstant() != MergeWithV.getConstant()) |
| 289 | markOverdefined(IV, V); |
| 290 | } |
| 291 | |
| 292 | inline void mergeInValue(Value *V, LatticeVal &MergeWithV) { |
| 293 | return mergeInValue(ValueState[V], V, MergeWithV); |
| 294 | } |
| 295 | |
| 296 | |
| 297 | // getValueState - Return the LatticeVal object that corresponds to the value. |
| 298 | // This function is necessary because not all values should start out in the |
| 299 | // underdefined state... Argument's should be overdefined, and |
| 300 | // constants should be marked as constants. If a value is not known to be an |
| 301 | // Instruction object, then use this accessor to get its value from the map. |
| 302 | // |
| 303 | inline LatticeVal &getValueState(Value *V) { |
| 304 | std::map<Value*, LatticeVal>::iterator I = ValueState.find(V); |
| 305 | if (I != ValueState.end()) return I->second; // Common case, in the map |
| 306 | |
| 307 | if (Constant *C = dyn_cast<Constant>(V)) { |
| 308 | if (isa<UndefValue>(V)) { |
| 309 | // Nothing to do, remain undefined. |
| 310 | } else { |
| 311 | LatticeVal &LV = ValueState[C]; |
| 312 | LV.markConstant(C); // Constants are constant |
| 313 | return LV; |
| 314 | } |
| 315 | } |
| 316 | // All others are underdefined by default... |
| 317 | return ValueState[V]; |
| 318 | } |
| 319 | |
| 320 | // markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| 321 | // work list if it is not already executable... |
| 322 | // |
| 323 | void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { |
| 324 | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
| 325 | return; // This edge is already known to be executable! |
| 326 | |
| 327 | if (BBExecutable.count(Dest)) { |
| 328 | DOUT << "Marking Edge Executable: " << Source->getName() |
| 329 | << " -> " << Dest->getName() << "\n"; |
| 330 | |
| 331 | // The destination is already executable, but we just made an edge |
| 332 | // feasible that wasn't before. Revisit the PHI nodes in the block |
| 333 | // because they have potentially new operands. |
| 334 | for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) |
| 335 | visitPHINode(*cast<PHINode>(I)); |
| 336 | |
| 337 | } else { |
| 338 | MarkBlockExecutable(Dest); |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| 343 | // successors are reachable from a given terminator instruction. |
| 344 | // |
| 345 | void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); |
| 346 | |
| 347 | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| 348 | // block to the 'To' basic block is currently feasible... |
| 349 | // |
| 350 | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); |
| 351 | |
| 352 | // OperandChangedState - This method is invoked on all of the users of an |
| 353 | // instruction that was just changed state somehow.... Based on this |
| 354 | // information, we need to update the specified user of this instruction. |
| 355 | // |
| 356 | void OperandChangedState(User *U) { |
| 357 | // Only instructions use other variable values! |
| 358 | Instruction &I = cast<Instruction>(*U); |
| 359 | if (BBExecutable.count(I.getParent())) // Inst is executable? |
| 360 | visit(I); |
| 361 | } |
| 362 | |
| 363 | private: |
| 364 | friend class InstVisitor<SCCPSolver>; |
| 365 | |
| 366 | // visit implementations - Something changed in this instruction... Either an |
| 367 | // operand made a transition, or the instruction is newly executable. Change |
| 368 | // the value type of I to reflect these changes if appropriate. |
| 369 | // |
| 370 | void visitPHINode(PHINode &I); |
| 371 | |
| 372 | // Terminators |
| 373 | void visitReturnInst(ReturnInst &I); |
| 374 | void visitTerminatorInst(TerminatorInst &TI); |
| 375 | |
| 376 | void visitCastInst(CastInst &I); |
| 377 | void visitSelectInst(SelectInst &I); |
| 378 | void visitBinaryOperator(Instruction &I); |
| 379 | void visitCmpInst(CmpInst &I); |
| 380 | void visitExtractElementInst(ExtractElementInst &I); |
| 381 | void visitInsertElementInst(InsertElementInst &I); |
| 382 | void visitShuffleVectorInst(ShuffleVectorInst &I); |
| 383 | |
| 384 | // Instructions that cannot be folded away... |
| 385 | void visitStoreInst (Instruction &I); |
| 386 | void visitLoadInst (LoadInst &I); |
| 387 | void visitGetElementPtrInst(GetElementPtrInst &I); |
| 388 | void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); } |
| 389 | void visitInvokeInst (InvokeInst &II) { |
| 390 | visitCallSite(CallSite::get(&II)); |
| 391 | visitTerminatorInst(II); |
| 392 | } |
| 393 | void visitCallSite (CallSite CS); |
| 394 | void visitUnwindInst (TerminatorInst &I) { /*returns void*/ } |
| 395 | void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } |
| 396 | void visitAllocationInst(Instruction &I) { markOverdefined(&I); } |
| 397 | void visitVANextInst (Instruction &I) { markOverdefined(&I); } |
| 398 | void visitVAArgInst (Instruction &I) { markOverdefined(&I); } |
| 399 | void visitFreeInst (Instruction &I) { /*returns void*/ } |
| 400 | |
| 401 | void visitInstruction(Instruction &I) { |
| 402 | // If a new instruction is added to LLVM that we don't handle... |
| 403 | cerr << "SCCP: Don't know how to handle: " << I; |
| 404 | markOverdefined(&I); // Just in case |
| 405 | } |
| 406 | }; |
| 407 | |
Duncan Sands | 40f6797 | 2007-07-20 08:56:21 +0000 | [diff] [blame] | 408 | } // end anonymous namespace |
| 409 | |
| 410 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 411 | // getFeasibleSuccessors - Return a vector of booleans to indicate which |
| 412 | // successors are reachable from a given terminator instruction. |
| 413 | // |
| 414 | void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, |
| 415 | SmallVector<bool, 16> &Succs) { |
| 416 | Succs.resize(TI.getNumSuccessors()); |
| 417 | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
| 418 | if (BI->isUnconditional()) { |
| 419 | Succs[0] = true; |
| 420 | } else { |
| 421 | LatticeVal &BCValue = getValueState(BI->getCondition()); |
| 422 | if (BCValue.isOverdefined() || |
| 423 | (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) { |
| 424 | // Overdefined condition variables, and branches on unfoldable constant |
| 425 | // conditions, mean the branch could go either way. |
| 426 | Succs[0] = Succs[1] = true; |
| 427 | } else if (BCValue.isConstant()) { |
| 428 | // Constant condition variables mean the branch can only go a single way |
| 429 | Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true; |
| 430 | } |
| 431 | } |
| 432 | } else if (isa<InvokeInst>(&TI)) { |
| 433 | // Invoke instructions successors are always executable. |
| 434 | Succs[0] = Succs[1] = true; |
| 435 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { |
| 436 | LatticeVal &SCValue = getValueState(SI->getCondition()); |
| 437 | if (SCValue.isOverdefined() || // Overdefined condition? |
| 438 | (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) { |
| 439 | // All destinations are executable! |
| 440 | Succs.assign(TI.getNumSuccessors(), true); |
| 441 | } else if (SCValue.isConstant()) { |
| 442 | Constant *CPV = SCValue.getConstant(); |
| 443 | // Make sure to skip the "default value" which isn't a value |
| 444 | for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) { |
| 445 | if (SI->getSuccessorValue(i) == CPV) {// Found the right branch... |
| 446 | Succs[i] = true; |
| 447 | return; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | // Constant value not equal to any of the branches... must execute |
| 452 | // default branch then... |
| 453 | Succs[0] = true; |
| 454 | } |
| 455 | } else { |
| 456 | assert(0 && "SCCP: Don't know how to handle this terminator!"); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | |
| 461 | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic |
| 462 | // block to the 'To' basic block is currently feasible... |
| 463 | // |
| 464 | bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { |
| 465 | assert(BBExecutable.count(To) && "Dest should always be alive!"); |
| 466 | |
| 467 | // Make sure the source basic block is executable!! |
| 468 | if (!BBExecutable.count(From)) return false; |
| 469 | |
| 470 | // Check to make sure this edge itself is actually feasible now... |
| 471 | TerminatorInst *TI = From->getTerminator(); |
| 472 | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| 473 | if (BI->isUnconditional()) |
| 474 | return true; |
| 475 | else { |
| 476 | LatticeVal &BCValue = getValueState(BI->getCondition()); |
| 477 | if (BCValue.isOverdefined()) { |
| 478 | // Overdefined condition variables mean the branch could go either way. |
| 479 | return true; |
| 480 | } else if (BCValue.isConstant()) { |
| 481 | // Not branching on an evaluatable constant? |
| 482 | if (!isa<ConstantInt>(BCValue.getConstant())) return true; |
| 483 | |
| 484 | // Constant condition variables mean the branch can only go a single way |
| 485 | return BI->getSuccessor(BCValue.getConstant() == |
| 486 | ConstantInt::getFalse()) == To; |
| 487 | } |
| 488 | return false; |
| 489 | } |
| 490 | } else if (isa<InvokeInst>(TI)) { |
| 491 | // Invoke instructions successors are always executable. |
| 492 | return true; |
| 493 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| 494 | LatticeVal &SCValue = getValueState(SI->getCondition()); |
| 495 | if (SCValue.isOverdefined()) { // Overdefined condition? |
| 496 | // All destinations are executable! |
| 497 | return true; |
| 498 | } else if (SCValue.isConstant()) { |
| 499 | Constant *CPV = SCValue.getConstant(); |
| 500 | if (!isa<ConstantInt>(CPV)) |
| 501 | return true; // not a foldable constant? |
| 502 | |
| 503 | // Make sure to skip the "default value" which isn't a value |
| 504 | for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) |
| 505 | if (SI->getSuccessorValue(i) == CPV) // Found the taken branch... |
| 506 | return SI->getSuccessor(i) == To; |
| 507 | |
| 508 | // Constant value not equal to any of the branches... must execute |
| 509 | // default branch then... |
| 510 | return SI->getDefaultDest() == To; |
| 511 | } |
| 512 | return false; |
| 513 | } else { |
| 514 | cerr << "Unknown terminator instruction: " << *TI; |
| 515 | abort(); |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | // visit Implementations - Something changed in this instruction... Either an |
| 520 | // operand made a transition, or the instruction is newly executable. Change |
| 521 | // the value type of I to reflect these changes if appropriate. This method |
| 522 | // makes sure to do the following actions: |
| 523 | // |
| 524 | // 1. If a phi node merges two constants in, and has conflicting value coming |
| 525 | // from different branches, or if the PHI node merges in an overdefined |
| 526 | // value, then the PHI node becomes overdefined. |
| 527 | // 2. If a phi node merges only constants in, and they all agree on value, the |
| 528 | // PHI node becomes a constant value equal to that. |
| 529 | // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant |
| 530 | // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined |
| 531 | // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined |
| 532 | // 6. If a conditional branch has a value that is constant, make the selected |
| 533 | // destination executable |
| 534 | // 7. If a conditional branch has a value that is overdefined, make all |
| 535 | // successors executable. |
| 536 | // |
| 537 | void SCCPSolver::visitPHINode(PHINode &PN) { |
| 538 | LatticeVal &PNIV = getValueState(&PN); |
| 539 | if (PNIV.isOverdefined()) { |
| 540 | // There may be instructions using this PHI node that are not overdefined |
| 541 | // themselves. If so, make sure that they know that the PHI node operand |
| 542 | // changed. |
| 543 | std::multimap<PHINode*, Instruction*>::iterator I, E; |
| 544 | tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); |
| 545 | if (I != E) { |
| 546 | SmallVector<Instruction*, 16> Users; |
| 547 | for (; I != E; ++I) Users.push_back(I->second); |
| 548 | while (!Users.empty()) { |
| 549 | visit(Users.back()); |
| 550 | Users.pop_back(); |
| 551 | } |
| 552 | } |
| 553 | return; // Quick exit |
| 554 | } |
| 555 | |
| 556 | // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, |
| 557 | // and slow us down a lot. Just mark them overdefined. |
| 558 | if (PN.getNumIncomingValues() > 64) { |
| 559 | markOverdefined(PNIV, &PN); |
| 560 | return; |
| 561 | } |
| 562 | |
| 563 | // Look at all of the executable operands of the PHI node. If any of them |
| 564 | // are overdefined, the PHI becomes overdefined as well. If they are all |
| 565 | // constant, and they agree with each other, the PHI becomes the identical |
| 566 | // constant. If they are constant and don't agree, the PHI is overdefined. |
| 567 | // If there are no executable operands, the PHI remains undefined. |
| 568 | // |
| 569 | Constant *OperandVal = 0; |
| 570 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| 571 | LatticeVal &IV = getValueState(PN.getIncomingValue(i)); |
| 572 | if (IV.isUndefined()) continue; // Doesn't influence PHI node. |
| 573 | |
| 574 | if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) { |
| 575 | if (IV.isOverdefined()) { // PHI node becomes overdefined! |
| 576 | markOverdefined(PNIV, &PN); |
| 577 | return; |
| 578 | } |
| 579 | |
| 580 | if (OperandVal == 0) { // Grab the first value... |
| 581 | OperandVal = IV.getConstant(); |
| 582 | } else { // Another value is being merged in! |
| 583 | // There is already a reachable operand. If we conflict with it, |
| 584 | // then the PHI node becomes overdefined. If we agree with it, we |
| 585 | // can continue on. |
| 586 | |
| 587 | // Check to see if there are two different constants merging... |
| 588 | if (IV.getConstant() != OperandVal) { |
| 589 | // Yes there is. This means the PHI node is not constant. |
| 590 | // You must be overdefined poor PHI. |
| 591 | // |
| 592 | markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined |
| 593 | return; // I'm done analyzing you |
| 594 | } |
| 595 | } |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | // If we exited the loop, this means that the PHI node only has constant |
| 600 | // arguments that agree with each other(and OperandVal is the constant) or |
| 601 | // OperandVal is null because there are no defined incoming arguments. If |
| 602 | // this is the case, the PHI remains undefined. |
| 603 | // |
| 604 | if (OperandVal) |
| 605 | markConstant(PNIV, &PN, OperandVal); // Acquire operand value |
| 606 | } |
| 607 | |
| 608 | void SCCPSolver::visitReturnInst(ReturnInst &I) { |
| 609 | if (I.getNumOperands() == 0) return; // Ret void |
| 610 | |
| 611 | // If we are tracking the return value of this function, merge it in. |
| 612 | Function *F = I.getParent()->getParent(); |
| 613 | if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) { |
| 614 | DenseMap<Function*, LatticeVal>::iterator TFRVI = |
| 615 | TrackedFunctionRetVals.find(F); |
| 616 | if (TFRVI != TrackedFunctionRetVals.end() && |
| 617 | !TFRVI->second.isOverdefined()) { |
| 618 | LatticeVal &IV = getValueState(I.getOperand(0)); |
| 619 | mergeInValue(TFRVI->second, F, IV); |
| 620 | } |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | |
| 625 | void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { |
| 626 | SmallVector<bool, 16> SuccFeasible; |
| 627 | getFeasibleSuccessors(TI, SuccFeasible); |
| 628 | |
| 629 | BasicBlock *BB = TI.getParent(); |
| 630 | |
| 631 | // Mark all feasible successors executable... |
| 632 | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| 633 | if (SuccFeasible[i]) |
| 634 | markEdgeExecutable(BB, TI.getSuccessor(i)); |
| 635 | } |
| 636 | |
| 637 | void SCCPSolver::visitCastInst(CastInst &I) { |
| 638 | Value *V = I.getOperand(0); |
| 639 | LatticeVal &VState = getValueState(V); |
| 640 | if (VState.isOverdefined()) // Inherit overdefinedness of operand |
| 641 | markOverdefined(&I); |
| 642 | else if (VState.isConstant()) // Propagate constant value |
| 643 | markConstant(&I, ConstantExpr::getCast(I.getOpcode(), |
| 644 | VState.getConstant(), I.getType())); |
| 645 | } |
| 646 | |
| 647 | void SCCPSolver::visitSelectInst(SelectInst &I) { |
| 648 | LatticeVal &CondValue = getValueState(I.getCondition()); |
| 649 | if (CondValue.isUndefined()) |
| 650 | return; |
| 651 | if (CondValue.isConstant()) { |
| 652 | if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){ |
| 653 | mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue() |
| 654 | : I.getFalseValue())); |
| 655 | return; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | // Otherwise, the condition is overdefined or a constant we can't evaluate. |
| 660 | // See if we can produce something better than overdefined based on the T/F |
| 661 | // value. |
| 662 | LatticeVal &TVal = getValueState(I.getTrueValue()); |
| 663 | LatticeVal &FVal = getValueState(I.getFalseValue()); |
| 664 | |
| 665 | // select ?, C, C -> C. |
| 666 | if (TVal.isConstant() && FVal.isConstant() && |
| 667 | TVal.getConstant() == FVal.getConstant()) { |
| 668 | markConstant(&I, FVal.getConstant()); |
| 669 | return; |
| 670 | } |
| 671 | |
| 672 | if (TVal.isUndefined()) { // select ?, undef, X -> X. |
| 673 | mergeInValue(&I, FVal); |
| 674 | } else if (FVal.isUndefined()) { // select ?, X, undef -> X. |
| 675 | mergeInValue(&I, TVal); |
| 676 | } else { |
| 677 | markOverdefined(&I); |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | // Handle BinaryOperators and Shift Instructions... |
| 682 | void SCCPSolver::visitBinaryOperator(Instruction &I) { |
| 683 | LatticeVal &IV = ValueState[&I]; |
| 684 | if (IV.isOverdefined()) return; |
| 685 | |
| 686 | LatticeVal &V1State = getValueState(I.getOperand(0)); |
| 687 | LatticeVal &V2State = getValueState(I.getOperand(1)); |
| 688 | |
| 689 | if (V1State.isOverdefined() || V2State.isOverdefined()) { |
| 690 | // If this is an AND or OR with 0 or -1, it doesn't matter that the other |
| 691 | // operand is overdefined. |
| 692 | if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { |
| 693 | LatticeVal *NonOverdefVal = 0; |
| 694 | if (!V1State.isOverdefined()) { |
| 695 | NonOverdefVal = &V1State; |
| 696 | } else if (!V2State.isOverdefined()) { |
| 697 | NonOverdefVal = &V2State; |
| 698 | } |
| 699 | |
| 700 | if (NonOverdefVal) { |
| 701 | if (NonOverdefVal->isUndefined()) { |
| 702 | // Could annihilate value. |
| 703 | if (I.getOpcode() == Instruction::And) |
| 704 | markConstant(IV, &I, Constant::getNullValue(I.getType())); |
| 705 | else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) |
| 706 | markConstant(IV, &I, ConstantVector::getAllOnesValue(PT)); |
| 707 | else |
| 708 | markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType())); |
| 709 | return; |
| 710 | } else { |
| 711 | if (I.getOpcode() == Instruction::And) { |
| 712 | if (NonOverdefVal->getConstant()->isNullValue()) { |
| 713 | markConstant(IV, &I, NonOverdefVal->getConstant()); |
| 714 | return; // X and 0 = 0 |
| 715 | } |
| 716 | } else { |
| 717 | if (ConstantInt *CI = |
| 718 | dyn_cast<ConstantInt>(NonOverdefVal->getConstant())) |
| 719 | if (CI->isAllOnesValue()) { |
| 720 | markConstant(IV, &I, NonOverdefVal->getConstant()); |
| 721 | return; // X or -1 = -1 |
| 722 | } |
| 723 | } |
| 724 | } |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | |
| 729 | // If both operands are PHI nodes, it is possible that this instruction has |
| 730 | // a constant value, despite the fact that the PHI node doesn't. Check for |
| 731 | // this condition now. |
| 732 | if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) |
| 733 | if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) |
| 734 | if (PN1->getParent() == PN2->getParent()) { |
| 735 | // Since the two PHI nodes are in the same basic block, they must have |
| 736 | // entries for the same predecessors. Walk the predecessor list, and |
| 737 | // if all of the incoming values are constants, and the result of |
| 738 | // evaluating this expression with all incoming value pairs is the |
| 739 | // same, then this expression is a constant even though the PHI node |
| 740 | // is not a constant! |
| 741 | LatticeVal Result; |
| 742 | for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { |
| 743 | LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); |
| 744 | BasicBlock *InBlock = PN1->getIncomingBlock(i); |
| 745 | LatticeVal &In2 = |
| 746 | getValueState(PN2->getIncomingValueForBlock(InBlock)); |
| 747 | |
| 748 | if (In1.isOverdefined() || In2.isOverdefined()) { |
| 749 | Result.markOverdefined(); |
| 750 | break; // Cannot fold this operation over the PHI nodes! |
| 751 | } else if (In1.isConstant() && In2.isConstant()) { |
| 752 | Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), |
| 753 | In2.getConstant()); |
| 754 | if (Result.isUndefined()) |
| 755 | Result.markConstant(V); |
| 756 | else if (Result.isConstant() && Result.getConstant() != V) { |
| 757 | Result.markOverdefined(); |
| 758 | break; |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | // If we found a constant value here, then we know the instruction is |
| 764 | // constant despite the fact that the PHI nodes are overdefined. |
| 765 | if (Result.isConstant()) { |
| 766 | markConstant(IV, &I, Result.getConstant()); |
| 767 | // Remember that this instruction is virtually using the PHI node |
| 768 | // operands. |
| 769 | UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); |
| 770 | UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); |
| 771 | return; |
| 772 | } else if (Result.isUndefined()) { |
| 773 | return; |
| 774 | } |
| 775 | |
| 776 | // Okay, this really is overdefined now. Since we might have |
| 777 | // speculatively thought that this was not overdefined before, and |
| 778 | // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, |
| 779 | // make sure to clean out any entries that we put there, for |
| 780 | // efficiency. |
| 781 | std::multimap<PHINode*, Instruction*>::iterator It, E; |
| 782 | tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); |
| 783 | while (It != E) { |
| 784 | if (It->second == &I) { |
| 785 | UsersOfOverdefinedPHIs.erase(It++); |
| 786 | } else |
| 787 | ++It; |
| 788 | } |
| 789 | tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); |
| 790 | while (It != E) { |
| 791 | if (It->second == &I) { |
| 792 | UsersOfOverdefinedPHIs.erase(It++); |
| 793 | } else |
| 794 | ++It; |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | markOverdefined(IV, &I); |
| 799 | } else if (V1State.isConstant() && V2State.isConstant()) { |
| 800 | markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), |
| 801 | V2State.getConstant())); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | // Handle ICmpInst instruction... |
| 806 | void SCCPSolver::visitCmpInst(CmpInst &I) { |
| 807 | LatticeVal &IV = ValueState[&I]; |
| 808 | if (IV.isOverdefined()) return; |
| 809 | |
| 810 | LatticeVal &V1State = getValueState(I.getOperand(0)); |
| 811 | LatticeVal &V2State = getValueState(I.getOperand(1)); |
| 812 | |
| 813 | if (V1State.isOverdefined() || V2State.isOverdefined()) { |
| 814 | // If both operands are PHI nodes, it is possible that this instruction has |
| 815 | // a constant value, despite the fact that the PHI node doesn't. Check for |
| 816 | // this condition now. |
| 817 | if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) |
| 818 | if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) |
| 819 | if (PN1->getParent() == PN2->getParent()) { |
| 820 | // Since the two PHI nodes are in the same basic block, they must have |
| 821 | // entries for the same predecessors. Walk the predecessor list, and |
| 822 | // if all of the incoming values are constants, and the result of |
| 823 | // evaluating this expression with all incoming value pairs is the |
| 824 | // same, then this expression is a constant even though the PHI node |
| 825 | // is not a constant! |
| 826 | LatticeVal Result; |
| 827 | for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { |
| 828 | LatticeVal &In1 = getValueState(PN1->getIncomingValue(i)); |
| 829 | BasicBlock *InBlock = PN1->getIncomingBlock(i); |
| 830 | LatticeVal &In2 = |
| 831 | getValueState(PN2->getIncomingValueForBlock(InBlock)); |
| 832 | |
| 833 | if (In1.isOverdefined() || In2.isOverdefined()) { |
| 834 | Result.markOverdefined(); |
| 835 | break; // Cannot fold this operation over the PHI nodes! |
| 836 | } else if (In1.isConstant() && In2.isConstant()) { |
| 837 | Constant *V = ConstantExpr::getCompare(I.getPredicate(), |
| 838 | In1.getConstant(), |
| 839 | In2.getConstant()); |
| 840 | if (Result.isUndefined()) |
| 841 | Result.markConstant(V); |
| 842 | else if (Result.isConstant() && Result.getConstant() != V) { |
| 843 | Result.markOverdefined(); |
| 844 | break; |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | // If we found a constant value here, then we know the instruction is |
| 850 | // constant despite the fact that the PHI nodes are overdefined. |
| 851 | if (Result.isConstant()) { |
| 852 | markConstant(IV, &I, Result.getConstant()); |
| 853 | // Remember that this instruction is virtually using the PHI node |
| 854 | // operands. |
| 855 | UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); |
| 856 | UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); |
| 857 | return; |
| 858 | } else if (Result.isUndefined()) { |
| 859 | return; |
| 860 | } |
| 861 | |
| 862 | // Okay, this really is overdefined now. Since we might have |
| 863 | // speculatively thought that this was not overdefined before, and |
| 864 | // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, |
| 865 | // make sure to clean out any entries that we put there, for |
| 866 | // efficiency. |
| 867 | std::multimap<PHINode*, Instruction*>::iterator It, E; |
| 868 | tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1); |
| 869 | while (It != E) { |
| 870 | if (It->second == &I) { |
| 871 | UsersOfOverdefinedPHIs.erase(It++); |
| 872 | } else |
| 873 | ++It; |
| 874 | } |
| 875 | tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2); |
| 876 | while (It != E) { |
| 877 | if (It->second == &I) { |
| 878 | UsersOfOverdefinedPHIs.erase(It++); |
| 879 | } else |
| 880 | ++It; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | markOverdefined(IV, &I); |
| 885 | } else if (V1State.isConstant() && V2State.isConstant()) { |
| 886 | markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), |
| 887 | V1State.getConstant(), |
| 888 | V2State.getConstant())); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { |
| 893 | // FIXME : SCCP does not handle vectors properly. |
| 894 | markOverdefined(&I); |
| 895 | return; |
| 896 | |
| 897 | #if 0 |
| 898 | LatticeVal &ValState = getValueState(I.getOperand(0)); |
| 899 | LatticeVal &IdxState = getValueState(I.getOperand(1)); |
| 900 | |
| 901 | if (ValState.isOverdefined() || IdxState.isOverdefined()) |
| 902 | markOverdefined(&I); |
| 903 | else if(ValState.isConstant() && IdxState.isConstant()) |
| 904 | markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), |
| 905 | IdxState.getConstant())); |
| 906 | #endif |
| 907 | } |
| 908 | |
| 909 | void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { |
| 910 | // FIXME : SCCP does not handle vectors properly. |
| 911 | markOverdefined(&I); |
| 912 | return; |
| 913 | #if 0 |
| 914 | LatticeVal &ValState = getValueState(I.getOperand(0)); |
| 915 | LatticeVal &EltState = getValueState(I.getOperand(1)); |
| 916 | LatticeVal &IdxState = getValueState(I.getOperand(2)); |
| 917 | |
| 918 | if (ValState.isOverdefined() || EltState.isOverdefined() || |
| 919 | IdxState.isOverdefined()) |
| 920 | markOverdefined(&I); |
| 921 | else if(ValState.isConstant() && EltState.isConstant() && |
| 922 | IdxState.isConstant()) |
| 923 | markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), |
| 924 | EltState.getConstant(), |
| 925 | IdxState.getConstant())); |
| 926 | else if (ValState.isUndefined() && EltState.isConstant() && |
| 927 | IdxState.isConstant()) |
| 928 | markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), |
| 929 | EltState.getConstant(), |
| 930 | IdxState.getConstant())); |
| 931 | #endif |
| 932 | } |
| 933 | |
| 934 | void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { |
| 935 | // FIXME : SCCP does not handle vectors properly. |
| 936 | markOverdefined(&I); |
| 937 | return; |
| 938 | #if 0 |
| 939 | LatticeVal &V1State = getValueState(I.getOperand(0)); |
| 940 | LatticeVal &V2State = getValueState(I.getOperand(1)); |
| 941 | LatticeVal &MaskState = getValueState(I.getOperand(2)); |
| 942 | |
| 943 | if (MaskState.isUndefined() || |
| 944 | (V1State.isUndefined() && V2State.isUndefined())) |
| 945 | return; // Undefined output if mask or both inputs undefined. |
| 946 | |
| 947 | if (V1State.isOverdefined() || V2State.isOverdefined() || |
| 948 | MaskState.isOverdefined()) { |
| 949 | markOverdefined(&I); |
| 950 | } else { |
| 951 | // A mix of constant/undef inputs. |
| 952 | Constant *V1 = V1State.isConstant() ? |
| 953 | V1State.getConstant() : UndefValue::get(I.getType()); |
| 954 | Constant *V2 = V2State.isConstant() ? |
| 955 | V2State.getConstant() : UndefValue::get(I.getType()); |
| 956 | Constant *Mask = MaskState.isConstant() ? |
| 957 | MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); |
| 958 | markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); |
| 959 | } |
| 960 | #endif |
| 961 | } |
| 962 | |
| 963 | // Handle getelementptr instructions... if all operands are constants then we |
| 964 | // can turn this into a getelementptr ConstantExpr. |
| 965 | // |
| 966 | void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { |
| 967 | LatticeVal &IV = ValueState[&I]; |
| 968 | if (IV.isOverdefined()) return; |
| 969 | |
| 970 | SmallVector<Constant*, 8> Operands; |
| 971 | Operands.reserve(I.getNumOperands()); |
| 972 | |
| 973 | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| 974 | LatticeVal &State = getValueState(I.getOperand(i)); |
| 975 | if (State.isUndefined()) |
| 976 | return; // Operands are not resolved yet... |
| 977 | else if (State.isOverdefined()) { |
| 978 | markOverdefined(IV, &I); |
| 979 | return; |
| 980 | } |
| 981 | assert(State.isConstant() && "Unknown state!"); |
| 982 | Operands.push_back(State.getConstant()); |
| 983 | } |
| 984 | |
| 985 | Constant *Ptr = Operands[0]; |
| 986 | Operands.erase(Operands.begin()); // Erase the pointer from idx list... |
| 987 | |
| 988 | markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0], |
| 989 | Operands.size())); |
| 990 | } |
| 991 | |
| 992 | void SCCPSolver::visitStoreInst(Instruction &SI) { |
| 993 | if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) |
| 994 | return; |
| 995 | GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); |
| 996 | DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); |
| 997 | if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; |
| 998 | |
| 999 | // Get the value we are storing into the global. |
| 1000 | LatticeVal &PtrVal = getValueState(SI.getOperand(0)); |
| 1001 | |
| 1002 | mergeInValue(I->second, GV, PtrVal); |
| 1003 | if (I->second.isOverdefined()) |
| 1004 | TrackedGlobals.erase(I); // No need to keep tracking this! |
| 1005 | } |
| 1006 | |
| 1007 | |
| 1008 | // Handle load instructions. If the operand is a constant pointer to a constant |
| 1009 | // global, we can replace the load with the loaded constant value! |
| 1010 | void SCCPSolver::visitLoadInst(LoadInst &I) { |
| 1011 | LatticeVal &IV = ValueState[&I]; |
| 1012 | if (IV.isOverdefined()) return; |
| 1013 | |
| 1014 | LatticeVal &PtrVal = getValueState(I.getOperand(0)); |
| 1015 | if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! |
| 1016 | if (PtrVal.isConstant() && !I.isVolatile()) { |
| 1017 | Value *Ptr = PtrVal.getConstant(); |
| 1018 | if (isa<ConstantPointerNull>(Ptr)) { |
| 1019 | // load null -> null |
| 1020 | markConstant(IV, &I, Constant::getNullValue(I.getType())); |
| 1021 | return; |
| 1022 | } |
| 1023 | |
| 1024 | // Transform load (constant global) into the value loaded. |
| 1025 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { |
| 1026 | if (GV->isConstant()) { |
| 1027 | if (!GV->isDeclaration()) { |
| 1028 | markConstant(IV, &I, GV->getInitializer()); |
| 1029 | return; |
| 1030 | } |
| 1031 | } else if (!TrackedGlobals.empty()) { |
| 1032 | // If we are tracking this global, merge in the known value for it. |
| 1033 | DenseMap<GlobalVariable*, LatticeVal>::iterator It = |
| 1034 | TrackedGlobals.find(GV); |
| 1035 | if (It != TrackedGlobals.end()) { |
| 1036 | mergeInValue(IV, &I, It->second); |
| 1037 | return; |
| 1038 | } |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | // Transform load (constantexpr_GEP global, 0, ...) into the value loaded. |
| 1043 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) |
| 1044 | if (CE->getOpcode() == Instruction::GetElementPtr) |
| 1045 | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) |
| 1046 | if (GV->isConstant() && !GV->isDeclaration()) |
| 1047 | if (Constant *V = |
| 1048 | ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) { |
| 1049 | markConstant(IV, &I, V); |
| 1050 | return; |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | // Otherwise we cannot say for certain what value this load will produce. |
| 1055 | // Bail out. |
| 1056 | markOverdefined(IV, &I); |
| 1057 | } |
| 1058 | |
| 1059 | void SCCPSolver::visitCallSite(CallSite CS) { |
| 1060 | Function *F = CS.getCalledFunction(); |
| 1061 | |
| 1062 | // If we are tracking this function, we must make sure to bind arguments as |
| 1063 | // appropriate. |
| 1064 | DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end(); |
| 1065 | if (F && F->hasInternalLinkage()) |
| 1066 | TFRVI = TrackedFunctionRetVals.find(F); |
| 1067 | |
| 1068 | if (TFRVI != TrackedFunctionRetVals.end()) { |
| 1069 | // If this is the first call to the function hit, mark its entry block |
| 1070 | // executable. |
| 1071 | if (!BBExecutable.count(F->begin())) |
| 1072 | MarkBlockExecutable(F->begin()); |
| 1073 | |
| 1074 | CallSite::arg_iterator CAI = CS.arg_begin(); |
| 1075 | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| 1076 | AI != E; ++AI, ++CAI) { |
| 1077 | LatticeVal &IV = ValueState[AI]; |
| 1078 | if (!IV.isOverdefined()) |
| 1079 | mergeInValue(IV, AI, getValueState(*CAI)); |
| 1080 | } |
| 1081 | } |
| 1082 | Instruction *I = CS.getInstruction(); |
| 1083 | if (I->getType() == Type::VoidTy) return; |
| 1084 | |
| 1085 | LatticeVal &IV = ValueState[I]; |
| 1086 | if (IV.isOverdefined()) return; |
| 1087 | |
| 1088 | // Propagate the return value of the function to the value of the instruction. |
| 1089 | if (TFRVI != TrackedFunctionRetVals.end()) { |
| 1090 | mergeInValue(IV, I, TFRVI->second); |
| 1091 | return; |
| 1092 | } |
| 1093 | |
| 1094 | if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) { |
| 1095 | markOverdefined(IV, I); |
| 1096 | return; |
| 1097 | } |
| 1098 | |
| 1099 | SmallVector<Constant*, 8> Operands; |
| 1100 | Operands.reserve(I->getNumOperands()-1); |
| 1101 | |
| 1102 | for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); |
| 1103 | AI != E; ++AI) { |
| 1104 | LatticeVal &State = getValueState(*AI); |
| 1105 | if (State.isUndefined()) |
| 1106 | return; // Operands are not resolved yet... |
| 1107 | else if (State.isOverdefined()) { |
| 1108 | markOverdefined(IV, I); |
| 1109 | return; |
| 1110 | } |
| 1111 | assert(State.isConstant() && "Unknown state!"); |
| 1112 | Operands.push_back(State.getConstant()); |
| 1113 | } |
| 1114 | |
| 1115 | if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) |
| 1116 | markConstant(IV, I, C); |
| 1117 | else |
| 1118 | markOverdefined(IV, I); |
| 1119 | } |
| 1120 | |
| 1121 | |
| 1122 | void SCCPSolver::Solve() { |
| 1123 | // Process the work lists until they are empty! |
| 1124 | while (!BBWorkList.empty() || !InstWorkList.empty() || |
| 1125 | !OverdefinedInstWorkList.empty()) { |
| 1126 | // Process the instruction work list... |
| 1127 | while (!OverdefinedInstWorkList.empty()) { |
| 1128 | Value *I = OverdefinedInstWorkList.back(); |
| 1129 | OverdefinedInstWorkList.pop_back(); |
| 1130 | |
| 1131 | DOUT << "\nPopped off OI-WL: " << *I; |
| 1132 | |
| 1133 | // "I" got into the work list because it either made the transition from |
| 1134 | // bottom to constant |
| 1135 | // |
| 1136 | // Anything on this worklist that is overdefined need not be visited |
| 1137 | // since all of its users will have already been marked as overdefined |
| 1138 | // Update all of the users of this instruction's value... |
| 1139 | // |
| 1140 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| 1141 | UI != E; ++UI) |
| 1142 | OperandChangedState(*UI); |
| 1143 | } |
| 1144 | // Process the instruction work list... |
| 1145 | while (!InstWorkList.empty()) { |
| 1146 | Value *I = InstWorkList.back(); |
| 1147 | InstWorkList.pop_back(); |
| 1148 | |
| 1149 | DOUT << "\nPopped off I-WL: " << *I; |
| 1150 | |
| 1151 | // "I" got into the work list because it either made the transition from |
| 1152 | // bottom to constant |
| 1153 | // |
| 1154 | // Anything on this worklist that is overdefined need not be visited |
| 1155 | // since all of its users will have already been marked as overdefined. |
| 1156 | // Update all of the users of this instruction's value... |
| 1157 | // |
| 1158 | if (!getValueState(I).isOverdefined()) |
| 1159 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); |
| 1160 | UI != E; ++UI) |
| 1161 | OperandChangedState(*UI); |
| 1162 | } |
| 1163 | |
| 1164 | // Process the basic block work list... |
| 1165 | while (!BBWorkList.empty()) { |
| 1166 | BasicBlock *BB = BBWorkList.back(); |
| 1167 | BBWorkList.pop_back(); |
| 1168 | |
| 1169 | DOUT << "\nPopped off BBWL: " << *BB; |
| 1170 | |
| 1171 | // Notify all instructions in this basic block that they are newly |
| 1172 | // executable. |
| 1173 | visit(BB); |
| 1174 | } |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | /// ResolvedUndefsIn - While solving the dataflow for a function, we assume |
| 1179 | /// that branches on undef values cannot reach any of their successors. |
| 1180 | /// However, this is not a safe assumption. After we solve dataflow, this |
| 1181 | /// method should be use to handle this. If this returns true, the solver |
| 1182 | /// should be rerun. |
| 1183 | /// |
| 1184 | /// This method handles this by finding an unresolved branch and marking it one |
| 1185 | /// of the edges from the block as being feasible, even though the condition |
| 1186 | /// doesn't say it would otherwise be. This allows SCCP to find the rest of the |
| 1187 | /// CFG and only slightly pessimizes the analysis results (by marking one, |
| 1188 | /// potentially infeasible, edge feasible). This cannot usefully modify the |
| 1189 | /// constraints on the condition of the branch, as that would impact other users |
| 1190 | /// of the value. |
| 1191 | /// |
| 1192 | /// This scan also checks for values that use undefs, whose results are actually |
| 1193 | /// defined. For example, 'zext i8 undef to i32' should produce all zeros |
| 1194 | /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, |
| 1195 | /// even if X isn't defined. |
| 1196 | bool SCCPSolver::ResolvedUndefsIn(Function &F) { |
| 1197 | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| 1198 | if (!BBExecutable.count(BB)) |
| 1199 | continue; |
| 1200 | |
| 1201 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { |
| 1202 | // Look for instructions which produce undef values. |
| 1203 | if (I->getType() == Type::VoidTy) continue; |
| 1204 | |
| 1205 | LatticeVal &LV = getValueState(I); |
| 1206 | if (!LV.isUndefined()) continue; |
| 1207 | |
| 1208 | // Get the lattice values of the first two operands for use below. |
| 1209 | LatticeVal &Op0LV = getValueState(I->getOperand(0)); |
| 1210 | LatticeVal Op1LV; |
| 1211 | if (I->getNumOperands() == 2) { |
| 1212 | // If this is a two-operand instruction, and if both operands are |
| 1213 | // undefs, the result stays undef. |
| 1214 | Op1LV = getValueState(I->getOperand(1)); |
| 1215 | if (Op0LV.isUndefined() && Op1LV.isUndefined()) |
| 1216 | continue; |
| 1217 | } |
| 1218 | |
| 1219 | // If this is an instructions whose result is defined even if the input is |
| 1220 | // not fully defined, propagate the information. |
| 1221 | const Type *ITy = I->getType(); |
| 1222 | switch (I->getOpcode()) { |
| 1223 | default: break; // Leave the instruction as an undef. |
| 1224 | case Instruction::ZExt: |
| 1225 | // After a zero extend, we know the top part is zero. SExt doesn't have |
| 1226 | // to be handled here, because we don't know whether the top part is 1's |
| 1227 | // or 0's. |
| 1228 | assert(Op0LV.isUndefined()); |
| 1229 | markForcedConstant(LV, I, Constant::getNullValue(ITy)); |
| 1230 | return true; |
| 1231 | case Instruction::Mul: |
| 1232 | case Instruction::And: |
| 1233 | // undef * X -> 0. X could be zero. |
| 1234 | // undef & X -> 0. X could be zero. |
| 1235 | markForcedConstant(LV, I, Constant::getNullValue(ITy)); |
| 1236 | return true; |
| 1237 | |
| 1238 | case Instruction::Or: |
| 1239 | // undef | X -> -1. X could be -1. |
| 1240 | if (const VectorType *PTy = dyn_cast<VectorType>(ITy)) |
| 1241 | markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy)); |
| 1242 | else |
| 1243 | markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy)); |
| 1244 | return true; |
| 1245 | |
| 1246 | case Instruction::SDiv: |
| 1247 | case Instruction::UDiv: |
| 1248 | case Instruction::SRem: |
| 1249 | case Instruction::URem: |
| 1250 | // X / undef -> undef. No change. |
| 1251 | // X % undef -> undef. No change. |
| 1252 | if (Op1LV.isUndefined()) break; |
| 1253 | |
| 1254 | // undef / X -> 0. X could be maxint. |
| 1255 | // undef % X -> 0. X could be 1. |
| 1256 | markForcedConstant(LV, I, Constant::getNullValue(ITy)); |
| 1257 | return true; |
| 1258 | |
| 1259 | case Instruction::AShr: |
| 1260 | // undef >>s X -> undef. No change. |
| 1261 | if (Op0LV.isUndefined()) break; |
| 1262 | |
| 1263 | // X >>s undef -> X. X could be 0, X could have the high-bit known set. |
| 1264 | if (Op0LV.isConstant()) |
| 1265 | markForcedConstant(LV, I, Op0LV.getConstant()); |
| 1266 | else |
| 1267 | markOverdefined(LV, I); |
| 1268 | return true; |
| 1269 | case Instruction::LShr: |
| 1270 | case Instruction::Shl: |
| 1271 | // undef >> X -> undef. No change. |
| 1272 | // undef << X -> undef. No change. |
| 1273 | if (Op0LV.isUndefined()) break; |
| 1274 | |
| 1275 | // X >> undef -> 0. X could be 0. |
| 1276 | // X << undef -> 0. X could be 0. |
| 1277 | markForcedConstant(LV, I, Constant::getNullValue(ITy)); |
| 1278 | return true; |
| 1279 | case Instruction::Select: |
| 1280 | // undef ? X : Y -> X or Y. There could be commonality between X/Y. |
| 1281 | if (Op0LV.isUndefined()) { |
| 1282 | if (!Op1LV.isConstant()) // Pick the constant one if there is any. |
| 1283 | Op1LV = getValueState(I->getOperand(2)); |
| 1284 | } else if (Op1LV.isUndefined()) { |
| 1285 | // c ? undef : undef -> undef. No change. |
| 1286 | Op1LV = getValueState(I->getOperand(2)); |
| 1287 | if (Op1LV.isUndefined()) |
| 1288 | break; |
| 1289 | // Otherwise, c ? undef : x -> x. |
| 1290 | } else { |
| 1291 | // Leave Op1LV as Operand(1)'s LatticeValue. |
| 1292 | } |
| 1293 | |
| 1294 | if (Op1LV.isConstant()) |
| 1295 | markForcedConstant(LV, I, Op1LV.getConstant()); |
| 1296 | else |
| 1297 | markOverdefined(LV, I); |
| 1298 | return true; |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | TerminatorInst *TI = BB->getTerminator(); |
| 1303 | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| 1304 | if (!BI->isConditional()) continue; |
| 1305 | if (!getValueState(BI->getCondition()).isUndefined()) |
| 1306 | continue; |
| 1307 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| 1308 | if (!getValueState(SI->getCondition()).isUndefined()) |
| 1309 | continue; |
| 1310 | } else { |
| 1311 | continue; |
| 1312 | } |
| 1313 | |
| 1314 | // If the edge to the first successor isn't thought to be feasible yet, mark |
| 1315 | // it so now. |
| 1316 | if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(0)))) |
| 1317 | continue; |
| 1318 | |
| 1319 | // Otherwise, it isn't already thought to be feasible. Mark it as such now |
| 1320 | // and return. This will make other blocks reachable, which will allow new |
| 1321 | // values to be discovered and existing ones to be moved in the lattice. |
| 1322 | markEdgeExecutable(BB, TI->getSuccessor(0)); |
| 1323 | return true; |
| 1324 | } |
| 1325 | |
| 1326 | return false; |
| 1327 | } |
| 1328 | |
| 1329 | |
| 1330 | namespace { |
| 1331 | //===--------------------------------------------------------------------===// |
| 1332 | // |
| 1333 | /// SCCP Class - This class uses the SCCPSolver to implement a per-function |
| 1334 | /// Sparse Conditional Constant Propagator. |
| 1335 | /// |
| 1336 | struct VISIBILITY_HIDDEN SCCP : public FunctionPass { |
| 1337 | static char ID; // Pass identification, replacement for typeid |
| 1338 | SCCP() : FunctionPass((intptr_t)&ID) {} |
| 1339 | |
| 1340 | // runOnFunction - Run the Sparse Conditional Constant Propagation |
| 1341 | // algorithm, and return true if the function was modified. |
| 1342 | // |
| 1343 | bool runOnFunction(Function &F); |
| 1344 | |
| 1345 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 1346 | AU.setPreservesCFG(); |
| 1347 | } |
| 1348 | }; |
| 1349 | |
| 1350 | char SCCP::ID = 0; |
| 1351 | RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation"); |
| 1352 | } // end anonymous namespace |
| 1353 | |
| 1354 | |
| 1355 | // createSCCPPass - This is the public interface to this file... |
| 1356 | FunctionPass *llvm::createSCCPPass() { |
| 1357 | return new SCCP(); |
| 1358 | } |
| 1359 | |
| 1360 | |
| 1361 | // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, |
| 1362 | // and return true if the function was modified. |
| 1363 | // |
| 1364 | bool SCCP::runOnFunction(Function &F) { |
| 1365 | DOUT << "SCCP on function '" << F.getName() << "'\n"; |
| 1366 | SCCPSolver Solver; |
| 1367 | |
| 1368 | // Mark the first block of the function as being executable. |
| 1369 | Solver.MarkBlockExecutable(F.begin()); |
| 1370 | |
| 1371 | // Mark all arguments to the function as being overdefined. |
| 1372 | for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) |
| 1373 | Solver.markOverdefined(AI); |
| 1374 | |
| 1375 | // Solve for constants. |
| 1376 | bool ResolvedUndefs = true; |
| 1377 | while (ResolvedUndefs) { |
| 1378 | Solver.Solve(); |
| 1379 | DOUT << "RESOLVING UNDEFs\n"; |
| 1380 | ResolvedUndefs = Solver.ResolvedUndefsIn(F); |
| 1381 | } |
| 1382 | |
| 1383 | bool MadeChanges = false; |
| 1384 | |
| 1385 | // If we decided that there are basic blocks that are dead in this function, |
| 1386 | // delete their contents now. Note that we cannot actually delete the blocks, |
| 1387 | // as we cannot modify the CFG of the function. |
| 1388 | // |
| 1389 | SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); |
| 1390 | SmallVector<Instruction*, 32> Insts; |
| 1391 | std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); |
| 1392 | |
| 1393 | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| 1394 | if (!ExecutableBBs.count(BB)) { |
| 1395 | DOUT << " BasicBlock Dead:" << *BB; |
| 1396 | ++NumDeadBlocks; |
| 1397 | |
| 1398 | // Delete the instructions backwards, as it has a reduced likelihood of |
| 1399 | // having to update as many def-use and use-def chains. |
| 1400 | for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator(); |
| 1401 | I != E; ++I) |
| 1402 | Insts.push_back(I); |
| 1403 | while (!Insts.empty()) { |
| 1404 | Instruction *I = Insts.back(); |
| 1405 | Insts.pop_back(); |
| 1406 | if (!I->use_empty()) |
| 1407 | I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| 1408 | BB->getInstList().erase(I); |
| 1409 | MadeChanges = true; |
| 1410 | ++NumInstRemoved; |
| 1411 | } |
| 1412 | } else { |
| 1413 | // Iterate over all of the instructions in a function, replacing them with |
| 1414 | // constants if we have found them to be of constant values. |
| 1415 | // |
| 1416 | for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { |
| 1417 | Instruction *Inst = BI++; |
| 1418 | if (Inst->getType() != Type::VoidTy) { |
| 1419 | LatticeVal &IV = Values[Inst]; |
| 1420 | if ((IV.isConstant() || IV.isUndefined()) && |
| 1421 | !isa<TerminatorInst>(Inst)) { |
| 1422 | Constant *Const = IV.isConstant() |
| 1423 | ? IV.getConstant() : UndefValue::get(Inst->getType()); |
| 1424 | DOUT << " Constant: " << *Const << " = " << *Inst; |
| 1425 | |
| 1426 | // Replaces all of the uses of a variable with uses of the constant. |
| 1427 | Inst->replaceAllUsesWith(Const); |
| 1428 | |
| 1429 | // Delete the instruction. |
| 1430 | BB->getInstList().erase(Inst); |
| 1431 | |
| 1432 | // Hey, we just changed something! |
| 1433 | MadeChanges = true; |
| 1434 | ++NumInstRemoved; |
| 1435 | } |
| 1436 | } |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | return MadeChanges; |
| 1441 | } |
| 1442 | |
| 1443 | namespace { |
| 1444 | //===--------------------------------------------------------------------===// |
| 1445 | // |
| 1446 | /// IPSCCP Class - This class implements interprocedural Sparse Conditional |
| 1447 | /// Constant Propagation. |
| 1448 | /// |
| 1449 | struct VISIBILITY_HIDDEN IPSCCP : public ModulePass { |
| 1450 | static char ID; |
| 1451 | IPSCCP() : ModulePass((intptr_t)&ID) {} |
| 1452 | bool runOnModule(Module &M); |
| 1453 | }; |
| 1454 | |
| 1455 | char IPSCCP::ID = 0; |
| 1456 | RegisterPass<IPSCCP> |
| 1457 | Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); |
| 1458 | } // end anonymous namespace |
| 1459 | |
| 1460 | // createIPSCCPPass - This is the public interface to this file... |
| 1461 | ModulePass *llvm::createIPSCCPPass() { |
| 1462 | return new IPSCCP(); |
| 1463 | } |
| 1464 | |
| 1465 | |
| 1466 | static bool AddressIsTaken(GlobalValue *GV) { |
| 1467 | // Delete any dead constantexpr klingons. |
| 1468 | GV->removeDeadConstantUsers(); |
| 1469 | |
| 1470 | for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); |
| 1471 | UI != E; ++UI) |
| 1472 | if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { |
| 1473 | if (SI->getOperand(0) == GV || SI->isVolatile()) |
| 1474 | return true; // Storing addr of GV. |
| 1475 | } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) { |
| 1476 | // Make sure we are calling the function, not passing the address. |
| 1477 | CallSite CS = CallSite::get(cast<Instruction>(*UI)); |
| 1478 | for (CallSite::arg_iterator AI = CS.arg_begin(), |
| 1479 | E = CS.arg_end(); AI != E; ++AI) |
| 1480 | if (*AI == GV) |
| 1481 | return true; |
| 1482 | } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { |
| 1483 | if (LI->isVolatile()) |
| 1484 | return true; |
| 1485 | } else { |
| 1486 | return true; |
| 1487 | } |
| 1488 | return false; |
| 1489 | } |
| 1490 | |
| 1491 | bool IPSCCP::runOnModule(Module &M) { |
| 1492 | SCCPSolver Solver; |
| 1493 | |
| 1494 | // Loop over all functions, marking arguments to those with their addresses |
| 1495 | // taken or that are external as overdefined. |
| 1496 | // |
| 1497 | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) |
| 1498 | if (!F->hasInternalLinkage() || AddressIsTaken(F)) { |
| 1499 | if (!F->isDeclaration()) |
| 1500 | Solver.MarkBlockExecutable(F->begin()); |
| 1501 | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| 1502 | AI != E; ++AI) |
| 1503 | Solver.markOverdefined(AI); |
| 1504 | } else { |
| 1505 | Solver.AddTrackedFunction(F); |
| 1506 | } |
| 1507 | |
| 1508 | // Loop over global variables. We inform the solver about any internal global |
| 1509 | // variables that do not have their 'addresses taken'. If they don't have |
| 1510 | // their addresses taken, we can propagate constants through them. |
| 1511 | for (Module::global_iterator G = M.global_begin(), E = M.global_end(); |
| 1512 | G != E; ++G) |
| 1513 | if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G)) |
| 1514 | Solver.TrackValueOfGlobalVariable(G); |
| 1515 | |
| 1516 | // Solve for constants. |
| 1517 | bool ResolvedUndefs = true; |
| 1518 | while (ResolvedUndefs) { |
| 1519 | Solver.Solve(); |
| 1520 | |
| 1521 | DOUT << "RESOLVING UNDEFS\n"; |
| 1522 | ResolvedUndefs = false; |
| 1523 | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) |
| 1524 | ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); |
| 1525 | } |
| 1526 | |
| 1527 | bool MadeChanges = false; |
| 1528 | |
| 1529 | // Iterate over all of the instructions in the module, replacing them with |
| 1530 | // constants if we have found them to be of constant values. |
| 1531 | // |
| 1532 | SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks(); |
| 1533 | SmallVector<Instruction*, 32> Insts; |
| 1534 | SmallVector<BasicBlock*, 32> BlocksToErase; |
| 1535 | std::map<Value*, LatticeVal> &Values = Solver.getValueMapping(); |
| 1536 | |
| 1537 | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { |
| 1538 | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); |
| 1539 | AI != E; ++AI) |
| 1540 | if (!AI->use_empty()) { |
| 1541 | LatticeVal &IV = Values[AI]; |
| 1542 | if (IV.isConstant() || IV.isUndefined()) { |
| 1543 | Constant *CST = IV.isConstant() ? |
| 1544 | IV.getConstant() : UndefValue::get(AI->getType()); |
| 1545 | DOUT << "*** Arg " << *AI << " = " << *CST <<"\n"; |
| 1546 | |
| 1547 | // Replaces all of the uses of a variable with uses of the |
| 1548 | // constant. |
| 1549 | AI->replaceAllUsesWith(CST); |
| 1550 | ++IPNumArgsElimed; |
| 1551 | } |
| 1552 | } |
| 1553 | |
| 1554 | for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| 1555 | if (!ExecutableBBs.count(BB)) { |
| 1556 | DOUT << " BasicBlock Dead:" << *BB; |
| 1557 | ++IPNumDeadBlocks; |
| 1558 | |
| 1559 | // Delete the instructions backwards, as it has a reduced likelihood of |
| 1560 | // having to update as many def-use and use-def chains. |
| 1561 | TerminatorInst *TI = BB->getTerminator(); |
| 1562 | for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I) |
| 1563 | Insts.push_back(I); |
| 1564 | |
| 1565 | while (!Insts.empty()) { |
| 1566 | Instruction *I = Insts.back(); |
| 1567 | Insts.pop_back(); |
| 1568 | if (!I->use_empty()) |
| 1569 | I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| 1570 | BB->getInstList().erase(I); |
| 1571 | MadeChanges = true; |
| 1572 | ++IPNumInstRemoved; |
| 1573 | } |
| 1574 | |
| 1575 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { |
| 1576 | BasicBlock *Succ = TI->getSuccessor(i); |
Dan Gohman | 3f7d94b | 2007-10-03 19:26:29 +0000 | [diff] [blame^] | 1577 | if (!Succ->empty() && isa<PHINode>(Succ->begin())) |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1578 | TI->getSuccessor(i)->removePredecessor(BB); |
| 1579 | } |
| 1580 | if (!TI->use_empty()) |
| 1581 | TI->replaceAllUsesWith(UndefValue::get(TI->getType())); |
| 1582 | BB->getInstList().erase(TI); |
| 1583 | |
| 1584 | if (&*BB != &F->front()) |
| 1585 | BlocksToErase.push_back(BB); |
| 1586 | else |
| 1587 | new UnreachableInst(BB); |
| 1588 | |
| 1589 | } else { |
| 1590 | for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { |
| 1591 | Instruction *Inst = BI++; |
| 1592 | if (Inst->getType() != Type::VoidTy) { |
| 1593 | LatticeVal &IV = Values[Inst]; |
| 1594 | if (IV.isConstant() || IV.isUndefined() && |
| 1595 | !isa<TerminatorInst>(Inst)) { |
| 1596 | Constant *Const = IV.isConstant() |
| 1597 | ? IV.getConstant() : UndefValue::get(Inst->getType()); |
| 1598 | DOUT << " Constant: " << *Const << " = " << *Inst; |
| 1599 | |
| 1600 | // Replaces all of the uses of a variable with uses of the |
| 1601 | // constant. |
| 1602 | Inst->replaceAllUsesWith(Const); |
| 1603 | |
| 1604 | // Delete the instruction. |
| 1605 | if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst)) |
| 1606 | BB->getInstList().erase(Inst); |
| 1607 | |
| 1608 | // Hey, we just changed something! |
| 1609 | MadeChanges = true; |
| 1610 | ++IPNumInstRemoved; |
| 1611 | } |
| 1612 | } |
| 1613 | } |
| 1614 | } |
| 1615 | |
| 1616 | // Now that all instructions in the function are constant folded, erase dead |
| 1617 | // blocks, because we can now use ConstantFoldTerminator to get rid of |
| 1618 | // in-edges. |
| 1619 | for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { |
| 1620 | // If there are any PHI nodes in this successor, drop entries for BB now. |
| 1621 | BasicBlock *DeadBB = BlocksToErase[i]; |
| 1622 | while (!DeadBB->use_empty()) { |
| 1623 | Instruction *I = cast<Instruction>(DeadBB->use_back()); |
| 1624 | bool Folded = ConstantFoldTerminator(I->getParent()); |
| 1625 | if (!Folded) { |
| 1626 | // The constant folder may not have been able to fold the terminator |
| 1627 | // if this is a branch or switch on undef. Fold it manually as a |
| 1628 | // branch to the first successor. |
| 1629 | if (BranchInst *BI = dyn_cast<BranchInst>(I)) { |
| 1630 | assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && |
| 1631 | "Branch should be foldable!"); |
| 1632 | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { |
| 1633 | assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); |
| 1634 | } else { |
| 1635 | assert(0 && "Didn't fold away reference to block!"); |
| 1636 | } |
| 1637 | |
| 1638 | // Make this an uncond branch to the first successor. |
| 1639 | TerminatorInst *TI = I->getParent()->getTerminator(); |
| 1640 | new BranchInst(TI->getSuccessor(0), TI); |
| 1641 | |
| 1642 | // Remove entries in successor phi nodes to remove edges. |
| 1643 | for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) |
| 1644 | TI->getSuccessor(i)->removePredecessor(TI->getParent()); |
| 1645 | |
| 1646 | // Remove the old terminator. |
| 1647 | TI->eraseFromParent(); |
| 1648 | } |
| 1649 | } |
| 1650 | |
| 1651 | // Finally, delete the basic block. |
| 1652 | F->getBasicBlockList().erase(DeadBB); |
| 1653 | } |
| 1654 | BlocksToErase.clear(); |
| 1655 | } |
| 1656 | |
| 1657 | // If we inferred constant or undef return values for a function, we replaced |
| 1658 | // all call uses with the inferred value. This means we don't need to bother |
| 1659 | // actually returning anything from the function. Replace all return |
| 1660 | // instructions with return undef. |
| 1661 | const DenseMap<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals(); |
| 1662 | for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), |
| 1663 | E = RV.end(); I != E; ++I) |
| 1664 | if (!I->second.isOverdefined() && |
| 1665 | I->first->getReturnType() != Type::VoidTy) { |
| 1666 | Function *F = I->first; |
| 1667 | for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| 1668 | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) |
| 1669 | if (!isa<UndefValue>(RI->getOperand(0))) |
| 1670 | RI->setOperand(0, UndefValue::get(F->getReturnType())); |
| 1671 | } |
| 1672 | |
| 1673 | // If we infered constant or undef values for globals variables, we can delete |
| 1674 | // the global and any stores that remain to it. |
| 1675 | const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); |
| 1676 | for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), |
| 1677 | E = TG.end(); I != E; ++I) { |
| 1678 | GlobalVariable *GV = I->first; |
| 1679 | assert(!I->second.isOverdefined() && |
| 1680 | "Overdefined values should have been taken out of the map!"); |
| 1681 | DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n"; |
| 1682 | while (!GV->use_empty()) { |
| 1683 | StoreInst *SI = cast<StoreInst>(GV->use_back()); |
| 1684 | SI->eraseFromParent(); |
| 1685 | } |
| 1686 | M.getGlobalList().erase(GV); |
| 1687 | ++IPNumGlobalConst; |
| 1688 | } |
| 1689 | |
| 1690 | return MadeChanges; |
| 1691 | } |