blob: dba0e69a35523cb181fc0e9422473d26cd9bc1f3 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Support/CallSite.h"
24using namespace llvm;
25
26bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
27 return InlineFunction(CallSite(CI), CG, TD);
28}
29bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
30 return InlineFunction(CallSite(II), CG, TD);
31}
32
33/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
34/// in the body of the inlined function into invokes and turn unwind
35/// instructions into branches to the invoke unwind dest.
36///
37/// II is the invoke instruction begin inlined. FirstNewBlock is the first
38/// block of the inlined code (the last block is the end of the function),
39/// and InlineCodeInfo is information about the code that got inlined.
40static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
41 ClonedCodeInfo &InlinedCodeInfo) {
42 BasicBlock *InvokeDest = II->getUnwindDest();
43 std::vector<Value*> InvokeDestPHIValues;
44
45 // If there are PHI nodes in the unwind destination block, we need to
46 // keep track of which values came into them from this invoke, then remove
47 // the entry for this block.
48 BasicBlock *InvokeBlock = II->getParent();
49 for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
50 PHINode *PN = cast<PHINode>(I);
51 // Save the value to use for this edge.
52 InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
53 }
54
55 Function *Caller = FirstNewBlock->getParent();
56
57 // The inlined code is currently at the end of the function, scan from the
58 // start of the inlined code to its end, checking for stuff we need to
59 // rewrite.
60 if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
61 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
62 BB != E; ++BB) {
63 if (InlinedCodeInfo.ContainsCalls) {
64 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
65 Instruction *I = BBI++;
66
67 // We only need to check for function calls: inlined invoke
68 // instructions require no special handling.
69 if (!isa<CallInst>(I)) continue;
70 CallInst *CI = cast<CallInst>(I);
71
Duncan Sands1c5526c2007-12-17 18:08:19 +000072 // If this call cannot unwind, don't convert it to an invoke.
Duncan Sands7dc19d42007-12-18 09:59:50 +000073 if (CI->doesNotThrow())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 continue;
Duncan Sands79d28872007-12-03 20:06:50 +000075
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 // Convert this function call into an invoke instruction.
77 // First, split the basic block.
78 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
79
80 // Next, create the new invoke instruction, inserting it at the end
81 // of the old basic block.
82 SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
83 InvokeInst *II =
84 new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
David Greene8278ef52007-08-27 19:04:21 +000085 InvokeArgs.begin(), InvokeArgs.end(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 CI->getName(), BB->getTerminator());
87 II->setCallingConv(CI->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +000088 II->setParamAttrs(CI->getParamAttrs());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000089
90 // Make sure that anything using the call now uses the invoke!
91 CI->replaceAllUsesWith(II);
92
93 // Delete the unconditional branch inserted by splitBasicBlock
94 BB->getInstList().pop_back();
95 Split->getInstList().pop_front(); // Delete the original call
96
97 // Update any PHI nodes in the exceptional block to indicate that
98 // there is now a new entry in them.
99 unsigned i = 0;
100 for (BasicBlock::iterator I = InvokeDest->begin();
101 isa<PHINode>(I); ++I, ++i) {
102 PHINode *PN = cast<PHINode>(I);
103 PN->addIncoming(InvokeDestPHIValues[i], BB);
104 }
105
106 // This basic block is now complete, start scanning the next one.
107 break;
108 }
109 }
110
111 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
112 // An UnwindInst requires special handling when it gets inlined into an
113 // invoke site. Once this happens, we know that the unwind would cause
114 // a control transfer to the invoke exception destination, so we can
115 // transform it into a direct branch to the exception destination.
116 new BranchInst(InvokeDest, UI);
117
118 // Delete the unwind instruction!
119 UI->getParent()->getInstList().pop_back();
120
121 // Update any PHI nodes in the exceptional block to indicate that
122 // there is now a new entry in them.
123 unsigned i = 0;
124 for (BasicBlock::iterator I = InvokeDest->begin();
125 isa<PHINode>(I); ++I, ++i) {
126 PHINode *PN = cast<PHINode>(I);
127 PN->addIncoming(InvokeDestPHIValues[i], BB);
128 }
129 }
130 }
131 }
132
133 // Now that everything is happy, we have one final detail. The PHI nodes in
134 // the exception destination block still have entries due to the original
135 // invoke instruction. Eliminate these entries (which might even delete the
136 // PHI node) now.
137 InvokeDest->removePredecessor(II->getParent());
138}
139
140/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
141/// into the caller, update the specified callgraph to reflect the changes we
142/// made. Note that it's possible that not all code was copied over, so only
143/// some edges of the callgraph will be remain.
144static void UpdateCallGraphAfterInlining(const Function *Caller,
145 const Function *Callee,
146 Function::iterator FirstNewBlock,
147 DenseMap<const Value*, Value*> &ValueMap,
148 CallGraph &CG) {
149 // Update the call graph by deleting the edge from Callee to Caller
150 CallGraphNode *CalleeNode = CG[Callee];
151 CallGraphNode *CallerNode = CG[Caller];
152 CallerNode->removeCallEdgeTo(CalleeNode);
153
154 // Since we inlined some uninlined call sites in the callee into the caller,
155 // add edges from the caller to all of the callees of the callee.
156 for (CallGraphNode::iterator I = CalleeNode->begin(),
157 E = CalleeNode->end(); I != E; ++I) {
158 const Instruction *OrigCall = I->first.getInstruction();
159
160 DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
161 // Only copy the edge if the call was inlined!
162 if (VMI != ValueMap.end() && VMI->second) {
163 // If the call was inlined, but then constant folded, there is no edge to
164 // add. Check for this case.
165 if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
166 CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
167 }
168 }
169}
170
171
172// InlineFunction - This function inlines the called function into the basic
173// block of the caller. This returns false if it is not possible to inline this
174// call. The program is still in a well defined state if this occurs though.
175//
176// Note that this only does one level of inlining. For example, if the
177// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
178// exists in the instruction stream. Similiarly this will inline a recursive
179// function by one level.
180//
181bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
182 Instruction *TheCall = CS.getInstruction();
183 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
184 "Instruction not in function!");
185
186 const Function *CalledFunc = CS.getCalledFunction();
187 if (CalledFunc == 0 || // Can't inline external function or indirect
188 CalledFunc->isDeclaration() || // call, or call to a vararg function!
189 CalledFunc->getFunctionType()->isVarArg()) return false;
190
191
192 // If the call to the callee is a non-tail call, we must clear the 'tail'
193 // flags on any calls that we inline.
194 bool MustClearTailCallFlags =
195 isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
196
Duncan Sands2937e352007-12-19 21:13:37 +0000197 // If the call to the callee cannot throw, set the 'nounwind' flag on any
198 // calls that we inline.
199 bool MarkNoUnwind = CS.doesNotThrow();
200
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 BasicBlock *OrigBB = TheCall->getParent();
202 Function *Caller = OrigBB->getParent();
203
204 // Get an iterator to the last basic block in the function, which will have
205 // the new function inlined after it.
206 //
207 Function::iterator LastBlock = &Caller->back();
208
209 // Make sure to capture all of the return instructions from the cloned
210 // function.
211 std::vector<ReturnInst*> Returns;
212 ClonedCodeInfo InlinedFunctionInfo;
213 Function::iterator FirstNewBlock;
Duncan Sands2937e352007-12-19 21:13:37 +0000214
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 { // Scope to destroy ValueMap after cloning.
216 DenseMap<const Value*, Value*> ValueMap;
217
218 // Calculate the vector of arguments to pass into the function cloner, which
219 // matches up the formal to the actual argument values.
220 assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
221 std::distance(CS.arg_begin(), CS.arg_end()) &&
222 "No varargs calls can be inlined!");
223 CallSite::arg_iterator AI = CS.arg_begin();
224 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
225 E = CalledFunc->arg_end(); I != E; ++I, ++AI)
226 ValueMap[I] = *AI;
227
228 // We want the inliner to prune the code as it copies. We would LOVE to
229 // have no dead or constant instructions leftover after inlining occurs
230 // (which can happen, e.g., because an argument was constant), but we'll be
231 // happy with whatever the cloner can do.
232 CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
233 &InlinedFunctionInfo, TD);
234
235 // Remember the first block that is newly cloned over.
236 FirstNewBlock = LastBlock; ++FirstNewBlock;
237
238 // Update the callgraph if requested.
239 if (CG)
240 UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
241 *CG);
242 }
243
244 // If there are any alloca instructions in the block that used to be the entry
245 // block for the callee, move them to the entry block of the caller. First
246 // calculate which instruction they should be inserted before. We insert the
247 // instructions at the end of the current alloca list.
248 //
249 {
250 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
251 for (BasicBlock::iterator I = FirstNewBlock->begin(),
252 E = FirstNewBlock->end(); I != E; )
253 if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
254 // If the alloca is now dead, remove it. This often occurs due to code
255 // specialization.
256 if (AI->use_empty()) {
257 AI->eraseFromParent();
258 continue;
259 }
260
261 if (isa<Constant>(AI->getArraySize())) {
262 // Scan for the block of allocas that we can move over, and move them
263 // all at once.
264 while (isa<AllocaInst>(I) &&
265 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
266 ++I;
267
268 // Transfer all of the allocas over in a block. Using splice means
269 // that the instructions aren't removed from the symbol table, then
270 // reinserted.
271 Caller->getEntryBlock().getInstList().splice(
272 InsertPoint,
273 FirstNewBlock->getInstList(),
274 AI, I);
275 }
276 }
277 }
278
279 // If the inlined code contained dynamic alloca instructions, wrap the inlined
280 // code with llvm.stacksave/llvm.stackrestore intrinsics.
281 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
282 Module *M = Caller->getParent();
Christopher Lambbb2f2222007-12-17 01:12:55 +0000283 const Type *BytePtr = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000284 // Get the two intrinsics we care about.
285 Constant *StackSave, *StackRestore;
286 StackSave = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL);
287 StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
288 BytePtr, NULL);
289
290 // If we are preserving the callgraph, add edges to the stacksave/restore
291 // functions for the calls we insert.
292 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
293 if (CG) {
294 // We know that StackSave/StackRestore are Function*'s, because they are
295 // intrinsics which must have the right types.
296 StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave));
297 StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
298 CallerNode = (*CG)[Caller];
299 }
300
301 // Insert the llvm.stacksave.
302 CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
303 FirstNewBlock->begin());
304 if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
305
306 // Insert a call to llvm.stackrestore before any return instructions in the
307 // inlined function.
308 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
309 CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
310 if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
311 }
312
313 // Count the number of StackRestore calls we insert.
314 unsigned NumStackRestores = Returns.size();
315
316 // If we are inlining an invoke instruction, insert restores before each
317 // unwind. These unwinds will be rewritten into branches later.
318 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
319 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
320 BB != E; ++BB)
321 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
322 new CallInst(StackRestore, SavedPtr, "", UI);
323 ++NumStackRestores;
324 }
325 }
326 }
327
328 // If we are inlining tail call instruction through a call site that isn't
329 // marked 'tail', we must remove the tail marker for any calls in the inlined
Duncan Sands2937e352007-12-19 21:13:37 +0000330 // code. Also, calls inlined through a 'nounwind' call site should be marked
331 // 'nounwind'.
332 if (InlinedFunctionInfo.ContainsCalls &&
333 (MustClearTailCallFlags || MarkNoUnwind)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000334 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
335 BB != E; ++BB)
336 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Duncan Sands2937e352007-12-19 21:13:37 +0000337 if (CallInst *CI = dyn_cast<CallInst>(I)) {
338 if (MustClearTailCallFlags)
339 CI->setTailCall(false);
340 if (MarkNoUnwind)
341 CI->setDoesNotThrow();
342 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343 }
344
Duncan Sands2937e352007-12-19 21:13:37 +0000345 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
346 // instructions are unreachable.
347 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
348 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
349 BB != E; ++BB) {
350 TerminatorInst *Term = BB->getTerminator();
351 if (isa<UnwindInst>(Term)) {
352 new UnreachableInst(Term);
353 BB->getInstList().erase(Term);
354 }
355 }
356
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000357 // If we are inlining for an invoke instruction, we must make sure to rewrite
358 // any inlined 'unwind' instructions into branches to the invoke exception
359 // destination, and call instructions into invoke instructions.
360 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
361 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
362
363 // If we cloned in _exactly one_ basic block, and if that block ends in a
364 // return instruction, we splice the body of the inlined callee directly into
365 // the calling basic block.
366 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
367 // Move all of the instructions right before the call.
368 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
369 FirstNewBlock->begin(), FirstNewBlock->end());
370 // Remove the cloned basic block.
371 Caller->getBasicBlockList().pop_back();
372
373 // If the call site was an invoke instruction, add a branch to the normal
374 // destination.
375 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
376 new BranchInst(II->getNormalDest(), TheCall);
377
378 // If the return instruction returned a value, replace uses of the call with
379 // uses of the returned value.
380 if (!TheCall->use_empty())
381 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
382
383 // Since we are now done with the Call/Invoke, we can delete it.
384 TheCall->getParent()->getInstList().erase(TheCall);
385
386 // Since we are now done with the return instruction, delete it also.
387 Returns[0]->getParent()->getInstList().erase(Returns[0]);
388
389 // We are now done with the inlining.
390 return true;
391 }
392
393 // Otherwise, we have the normal case, of more than one block to inline or
394 // multiple return sites.
395
396 // We want to clone the entire callee function into the hole between the
397 // "starter" and "ender" blocks. How we accomplish this depends on whether
398 // this is an invoke instruction or a call instruction.
399 BasicBlock *AfterCallBB;
400 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
401
402 // Add an unconditional branch to make this look like the CallInst case...
403 BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
404
405 // Split the basic block. This guarantees that no PHI nodes will have to be
406 // updated due to new incoming edges, and make the invoke case more
407 // symmetric to the call case.
408 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
409 CalledFunc->getName()+".exit");
410
411 } else { // It's a call
412 // If this is a call instruction, we need to split the basic block that
413 // the call lives in.
414 //
415 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
416 CalledFunc->getName()+".exit");
417 }
418
419 // Change the branch that used to go to AfterCallBB to branch to the first
420 // basic block of the inlined function.
421 //
422 TerminatorInst *Br = OrigBB->getTerminator();
423 assert(Br && Br->getOpcode() == Instruction::Br &&
424 "splitBasicBlock broken!");
425 Br->setOperand(0, FirstNewBlock);
426
427
428 // Now that the function is correct, make it a little bit nicer. In
429 // particular, move the basic blocks inserted from the end of the function
430 // into the space made by splitting the source basic block.
431 //
432 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
433 FirstNewBlock, Caller->end());
434
435 // Handle all of the return instructions that we just cloned in, and eliminate
436 // any users of the original call/invoke instruction.
437 if (Returns.size() > 1) {
438 // The PHI node should go at the front of the new basic block to merge all
439 // possible incoming values.
440 //
441 PHINode *PHI = 0;
442 if (!TheCall->use_empty()) {
443 PHI = new PHINode(CalledFunc->getReturnType(),
444 TheCall->getName(), AfterCallBB->begin());
445
446 // Anything that used the result of the function call should now use the
447 // PHI node as their operand.
448 //
449 TheCall->replaceAllUsesWith(PHI);
450 }
451
452 // Loop over all of the return instructions, turning them into unconditional
453 // branches to the merge point now, and adding entries to the PHI node as
454 // appropriate.
455 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
456 ReturnInst *RI = Returns[i];
457
458 if (PHI) {
459 assert(RI->getReturnValue() && "Ret should have value!");
460 assert(RI->getReturnValue()->getType() == PHI->getType() &&
461 "Ret value not consistent in function!");
462 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
463 }
464
465 // Add a branch to the merge point where the PHI node lives if it exists.
466 new BranchInst(AfterCallBB, RI);
467
468 // Delete the return instruction now
469 RI->getParent()->getInstList().erase(RI);
470 }
471
472 } else if (!Returns.empty()) {
473 // Otherwise, if there is exactly one return value, just replace anything
474 // using the return value of the call with the computed value.
475 if (!TheCall->use_empty())
476 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
477
478 // Splice the code from the return block into the block that it will return
479 // to, which contains the code that was after the call.
480 BasicBlock *ReturnBB = Returns[0]->getParent();
481 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
482 ReturnBB->getInstList());
483
484 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
485 ReturnBB->replaceAllUsesWith(AfterCallBB);
486
487 // Delete the return instruction now and empty ReturnBB now.
488 Returns[0]->eraseFromParent();
489 ReturnBB->eraseFromParent();
490 } else if (!TheCall->use_empty()) {
491 // No returns, but something is using the return value of the call. Just
492 // nuke the result.
493 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
494 }
495
496 // Since we are now done with the Call/Invoke, we can delete it.
497 TheCall->eraseFromParent();
498
499 // We should always be able to fold the entry block of the function into the
500 // single predecessor of the block...
501 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
502 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
503
504 // Splice the code entry block into calling block, right before the
505 // unconditional branch.
506 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
507 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
508
509 // Remove the unconditional branch.
510 OrigBB->getInstList().erase(Br);
511
512 // Now we can remove the CalleeEntry block, which is now empty.
513 Caller->getBasicBlockList().erase(CalleeEntry);
514
515 return true;
516}