Nick Lewycky | 43d273d | 2009-10-28 07:03:15 +0000 | [diff] [blame^] | 1 | //===------- ABCD.cpp - Removes redundant conditional branches ------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass removes redundant branch instructions. This algorithm was |
| 11 | // described by Rastislav Bodik, Rajiv Gupta and Vivek Sarkar in their paper |
| 12 | // "ABCD: Eliminating Array Bounds Checks on Demand (2000)". The original |
| 13 | // Algorithm was created to remove array bound checks for strongly typed |
| 14 | // languages. This implementation expands the idea and removes any conditional |
| 15 | // branches that can be proved redundant, not only those used in array bound |
| 16 | // checks. With the SSI representation, each variable has a |
| 17 | // constraint. By analyzing these constraints we can proof that a branch is |
| 18 | // redundant. When a branch is proved redundant it means that |
| 19 | // one direction will always be taken; thus, we can change this branch into an |
| 20 | // unconditional jump. |
| 21 | // It is advisable to run SimplifyCFG and Aggressive Dead Code Elimination |
| 22 | // after ABCD to clean up the code. |
| 23 | // This implementation was created based on the implementation of the ABCD |
| 24 | // algorithm implemented for the compiler Jitrino. |
| 25 | // |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | #define DEBUG_TYPE "abcd" |
| 29 | #include "llvm/ADT/DenseMap.h" |
| 30 | #include "llvm/ADT/SmallPtrSet.h" |
| 31 | #include "llvm/ADT/Statistic.h" |
| 32 | #include "llvm/Constants.h" |
| 33 | #include "llvm/Function.h" |
| 34 | #include "llvm/Instructions.h" |
| 35 | #include "llvm/Pass.h" |
| 36 | #include "llvm/Support/raw_ostream.h" |
| 37 | #include "llvm/Support/Debug.h" |
| 38 | #include "llvm/Transforms/Scalar.h" |
| 39 | #include "llvm/Transforms/Utils/SSI.h" |
| 40 | |
| 41 | using namespace llvm; |
| 42 | |
| 43 | STATISTIC(NumBranchTested, "Number of conditional branches analyzed"); |
| 44 | STATISTIC(NumBranchRemoved, "Number of conditional branches removed"); |
| 45 | |
| 46 | //namespace { |
| 47 | |
| 48 | class ABCD : public FunctionPass { |
| 49 | public: |
| 50 | static char ID; // Pass identification, replacement for typeid. |
| 51 | ABCD() : FunctionPass(&ID) {} |
| 52 | |
| 53 | void getAnalysisUsage(AnalysisUsage &AU) const { |
| 54 | AU.addRequired<SSI>(); |
| 55 | } |
| 56 | |
| 57 | bool runOnFunction(Function &F); |
| 58 | |
| 59 | private: |
| 60 | bool modified; |
| 61 | |
| 62 | enum ProveResult { |
| 63 | False = 0, |
| 64 | Reduced = 1, |
| 65 | True = 2 |
| 66 | }; |
| 67 | |
| 68 | typedef ProveResult (*meet_function)(ProveResult, ProveResult); |
| 69 | static ProveResult max(ProveResult res1, ProveResult res2) { |
| 70 | return (ProveResult) std::max(res1, res2); |
| 71 | } |
| 72 | static ProveResult min(ProveResult res1, ProveResult res2) { |
| 73 | return (ProveResult) std::min(res1, res2); |
| 74 | } |
| 75 | |
| 76 | class Bound { |
| 77 | public: |
| 78 | Bound(APInt v, bool upper) : value(v), upper_bound(upper) {} |
| 79 | Bound(const Bound *b, int cnst) |
| 80 | : value(b->value - cnst), upper_bound(b->upper_bound) {} |
| 81 | Bound(const Bound *b, const APInt &cnst) |
| 82 | : value(b->value - cnst), upper_bound(b->upper_bound) {} |
| 83 | |
| 84 | /// Test if Bound is an upper bound |
| 85 | bool isUpperBound() const { return upper_bound; } |
| 86 | |
| 87 | /// Get the bitwidth of this bound |
| 88 | int32_t getBitWidth() const { return value.getBitWidth(); } |
| 89 | |
| 90 | /// Creates a Bound incrementing the one received |
| 91 | static Bound *createIncrement(const Bound *b) { |
| 92 | return new Bound(b->isUpperBound() ? b->value+1 : b->value-1, |
| 93 | b->upper_bound); |
| 94 | } |
| 95 | |
| 96 | /// Creates a Bound decrementing the one received |
| 97 | static Bound *createDecrement(const Bound *b) { |
| 98 | return new Bound(b->isUpperBound() ? b->value-1 : b->value+1, |
| 99 | b->upper_bound); |
| 100 | } |
| 101 | |
| 102 | /// Test if two bounds are equal |
| 103 | static bool eq(const Bound *a, const Bound *b) { |
| 104 | if (!a || !b) return false; |
| 105 | |
| 106 | assert(a->isUpperBound() == b->isUpperBound()); |
| 107 | return a->value == b->value; |
| 108 | } |
| 109 | |
| 110 | /// Test if val is less than or equal to Bound b |
| 111 | static bool leq(APInt val, const Bound *b) { |
| 112 | if (!b) return false; |
| 113 | return b->isUpperBound() ? val.sle(b->value) : val.sge(b->value); |
| 114 | } |
| 115 | |
| 116 | /// Test if Bound a is less then or equal to Bound |
| 117 | static bool leq(const Bound *a, const Bound *b) { |
| 118 | if (!a || !b) return false; |
| 119 | |
| 120 | assert(a->isUpperBound() == b->isUpperBound()); |
| 121 | return a->isUpperBound() ? a->value.sle(b->value) : |
| 122 | a->value.sge(b->value); |
| 123 | } |
| 124 | |
| 125 | /// Test if Bound a is less then Bound b |
| 126 | static bool lt(const Bound *a, const Bound *b) { |
| 127 | if (!a || !b) return false; |
| 128 | |
| 129 | assert(a->isUpperBound() == b->isUpperBound()); |
| 130 | return a->isUpperBound() ? a->value.slt(b->value) : |
| 131 | a->value.sgt(b->value); |
| 132 | } |
| 133 | |
| 134 | /// Test if Bound b is greater then or equal val |
| 135 | static bool geq(const Bound *b, APInt val) { |
| 136 | return leq(val, b); |
| 137 | } |
| 138 | |
| 139 | /// Test if Bound a is greater then or equal Bound b |
| 140 | static bool geq(const Bound *a, const Bound *b) { |
| 141 | return leq(b, a); |
| 142 | } |
| 143 | |
| 144 | private: |
| 145 | APInt value; |
| 146 | bool upper_bound; |
| 147 | }; |
| 148 | |
| 149 | /// This class is used to store results some parts of the graph, |
| 150 | /// so information does not need to be recalculated. The maximum false, |
| 151 | /// minimum true and minimum reduced results are stored |
| 152 | class MemoizedResultChart { |
| 153 | public: |
| 154 | MemoizedResultChart() : max_false(NULL), min_true(NULL), |
| 155 | min_reduced(NULL) {} |
| 156 | |
| 157 | /// Returns the max false |
| 158 | Bound *getFalse() const { return max_false; } |
| 159 | |
| 160 | /// Returns the min true |
| 161 | Bound *getTrue() const { return min_true; } |
| 162 | |
| 163 | /// Returns the min reduced |
| 164 | Bound *getReduced() const { return min_reduced; } |
| 165 | |
| 166 | /// Return the stored result for this bound |
| 167 | ProveResult getResult(const Bound *bound) const; |
| 168 | |
| 169 | /// Stores a false found |
| 170 | void addFalse(Bound *bound); |
| 171 | |
| 172 | /// Stores a true found |
| 173 | void addTrue(Bound *bound); |
| 174 | |
| 175 | /// Stores a Reduced found |
| 176 | void addReduced(Bound *bound); |
| 177 | |
| 178 | /// Clears redundant reduced |
| 179 | /// If a min_true is smaller than a min_reduced then the min_reduced |
| 180 | /// is unnecessary and then removed. It also works for min_reduced |
| 181 | /// begin smaller than max_false. |
| 182 | void clearRedundantReduced(); |
| 183 | |
| 184 | void clear() { |
| 185 | delete max_false; |
| 186 | delete min_true; |
| 187 | delete min_reduced; |
| 188 | } |
| 189 | |
| 190 | private: |
| 191 | Bound *max_false, *min_true, *min_reduced; |
| 192 | }; |
| 193 | |
| 194 | /// This class stores the result found for a node of the graph, |
| 195 | /// so these results do not need to be recalculate and only searched for. |
| 196 | class MemoizedResult { |
| 197 | public: |
| 198 | /// Test if there is true result stored from b to a |
| 199 | /// that is less then the bound |
| 200 | bool hasTrue(Value *b, const Bound *bound) const { |
| 201 | Bound *trueBound = map.lookup(b).getTrue(); |
| 202 | return trueBound && Bound::leq(trueBound, bound); |
| 203 | } |
| 204 | |
| 205 | /// Test if there is false result stored from b to a |
| 206 | /// that is less then the bound |
| 207 | bool hasFalse(Value *b, const Bound *bound) const { |
| 208 | Bound *falseBound = map.lookup(b).getFalse(); |
| 209 | return falseBound && Bound::leq(falseBound, bound); |
| 210 | } |
| 211 | |
| 212 | /// Test if there is reduced result stored from b to a |
| 213 | /// that is less then the bound |
| 214 | bool hasReduced(Value *b, const Bound *bound) const { |
| 215 | Bound *reducedBound = map.lookup(b).getReduced(); |
| 216 | return reducedBound && Bound::leq(reducedBound, bound); |
| 217 | } |
| 218 | |
| 219 | /// Returns the stored bound for b |
| 220 | ProveResult getBoundResult(Value *b, Bound *bound) { |
| 221 | return map[b].getResult(bound); |
| 222 | } |
| 223 | |
| 224 | /// Clears the map |
| 225 | void clear() { |
| 226 | DenseMapIterator<Value*, MemoizedResultChart> begin = map.begin(); |
| 227 | DenseMapIterator<Value*, MemoizedResultChart> end = map.end(); |
| 228 | for (; begin != end; ++begin) { |
| 229 | begin->second.clear(); |
| 230 | } |
| 231 | map.clear(); |
| 232 | } |
| 233 | |
| 234 | /// Stores the bound found |
| 235 | void updateBound(Value *b, Bound *bound, const ProveResult res); |
| 236 | |
| 237 | private: |
| 238 | // Maps a nod in the graph with its results found. |
| 239 | DenseMap<Value*, MemoizedResultChart> map; |
| 240 | }; |
| 241 | |
| 242 | /// This class represents an edge in the inequality graph used by the |
| 243 | /// ABCD algorithm. An edge connects node v to node u with a value c if |
| 244 | /// we could infer a constraint v <= u + c in the source program. |
| 245 | class Edge { |
| 246 | public: |
| 247 | Edge(Value *V, APInt val, bool upper) : vertex(V), value(val), |
| 248 | upper_bound(upper) |
| 249 | {} |
| 250 | |
| 251 | Value *getVertex() const { return vertex; } |
| 252 | const APInt &getValue() const { return value; } |
| 253 | bool isUpperBound() const { return upper_bound; } |
| 254 | |
| 255 | private: |
| 256 | Value *vertex; |
| 257 | APInt value; |
| 258 | bool upper_bound; |
| 259 | }; |
| 260 | |
| 261 | /// Weighted and Directed graph to represent constraints. |
| 262 | /// There is one type of constraint, a <= b + X, which will generate an |
| 263 | /// edge from b to a with weight X. |
| 264 | class InequalityGraph { |
| 265 | public: |
| 266 | |
| 267 | /// Adds an edge from V_from to V_to with weight value |
| 268 | void addEdge(Value *V_from, Value *V_to, APInt value, bool upper); |
| 269 | |
| 270 | /// Test if there is a node V |
| 271 | bool hasNode(Value *V) const { return graph.count(V); } |
| 272 | |
| 273 | /// Test if there is any edge from V in the upper direction |
| 274 | bool hasEdge(Value *V, bool upper) const; |
| 275 | |
| 276 | /// Returns all edges pointed by vertex V |
| 277 | SmallPtrSet<Edge *, 16> getEdges(Value *V) const { |
| 278 | return graph.lookup(V); |
| 279 | } |
| 280 | |
| 281 | /// Prints the graph in dot format. |
| 282 | /// Blue edges represent upper bound and Red lower bound. |
| 283 | void printGraph(raw_ostream &OS, Function &F) const { |
| 284 | printHeader(OS, F); |
| 285 | printBody(OS); |
| 286 | printFooter(OS); |
| 287 | } |
| 288 | |
| 289 | /// Clear the graph |
| 290 | void clear() { |
| 291 | graph.clear(); |
| 292 | } |
| 293 | |
| 294 | private: |
| 295 | DenseMap<Value *, SmallPtrSet<Edge *, 16> > graph; |
| 296 | |
| 297 | /// Adds a Node to the graph. |
| 298 | DenseMap<Value *, SmallPtrSet<Edge *, 16> >::iterator addNode(Value *V) { |
| 299 | SmallPtrSet<Edge *, 16> p; |
| 300 | return graph.insert(std::make_pair(V, p)).first; |
| 301 | } |
| 302 | |
| 303 | /// Prints the header of the dot file |
| 304 | void printHeader(raw_ostream &OS, Function &F) const; |
| 305 | |
| 306 | /// Prints the footer of the dot file |
| 307 | void printFooter(raw_ostream &OS) const { |
| 308 | OS << "}\n"; |
| 309 | } |
| 310 | |
| 311 | /// Prints the body of the dot file |
| 312 | void printBody(raw_ostream &OS) const; |
| 313 | |
| 314 | /// Prints vertex source to the dot file |
| 315 | void printVertex(raw_ostream &OS, Value *source) const; |
| 316 | |
| 317 | /// Prints the edge to the dot file |
| 318 | void printEdge(raw_ostream &OS, Value *source, Edge *edge) const; |
| 319 | |
| 320 | void printName(raw_ostream &OS, Value *info) const; |
| 321 | }; |
| 322 | |
| 323 | /// Iterates through all BasicBlocks, if the Terminator Instruction |
| 324 | /// uses an Comparator Instruction, all operands of this comparator |
| 325 | /// are sent to be transformed to SSI. Only Instruction operands are |
| 326 | /// transformed. |
| 327 | void createSSI(Function &F); |
| 328 | |
| 329 | /// Creates the graphs for this function. |
| 330 | /// It will look for all comparators used in branches, and create them. |
| 331 | /// These comparators will create constraints for any instruction as an |
| 332 | /// operand. |
| 333 | void executeABCD(Function &F); |
| 334 | |
| 335 | /// Seeks redundancies in the comparator instruction CI. |
| 336 | /// If the ABCD algorithm can prove that the comparator CI always |
| 337 | /// takes one way, then the Terminator Instruction TI is substituted from |
| 338 | /// a conditional branch to a unconditional one. |
| 339 | /// This code basically receives a comparator, and verifies which kind of |
| 340 | /// instruction it is. Depending on the kind of instruction, we use different |
| 341 | /// strategies to prove its redundancy. |
| 342 | void seekRedundancy(ICmpInst *ICI, TerminatorInst *TI); |
| 343 | |
| 344 | /// Substitutes Terminator Instruction TI, that is a conditional branch, |
| 345 | /// with one unconditional branch. Succ_edge determines if the new |
| 346 | /// unconditional edge will be the first or second edge of the former TI |
| 347 | /// instruction. |
| 348 | void removeRedundancy(TerminatorInst *TI, bool Succ_edge); |
| 349 | |
| 350 | /// When an conditional branch is removed, the BasicBlock that is no longer |
| 351 | /// reachable will have problems in phi functions. This method fixes these |
| 352 | /// phis removing the former BasicBlock from the list of incoming BasicBlocks |
| 353 | /// of all phis. In case the phi remains with no predecessor it will be |
| 354 | /// marked to be removed later. |
| 355 | void fixPhi(BasicBlock *BB, BasicBlock *Succ); |
| 356 | |
| 357 | /// Removes phis that have no predecessor |
| 358 | void removePhis(); |
| 359 | |
| 360 | /// Creates constraints for Instructions. |
| 361 | /// If the constraint for this instruction has already been created |
| 362 | /// nothing is done. |
| 363 | void createConstraintInstruction(Instruction *I); |
| 364 | |
| 365 | /// Creates constraints for Binary Operators. |
| 366 | /// It will create constraints only for addition and subtraction, |
| 367 | /// the other binary operations are not treated by ABCD. |
| 368 | /// For additions in the form a = b + X and a = X + b, where X is a constant, |
| 369 | /// the constraint a <= b + X can be obtained. For this constraint, an edge |
| 370 | /// a->b with weight X is added to the lower bound graph, and an edge |
| 371 | /// b->a with weight -X is added to the upper bound graph. |
| 372 | /// Only subtractions in the format a = b - X is used by ABCD. |
| 373 | /// Edges are created using the same semantic as addition. |
| 374 | void createConstraintBinaryOperator(BinaryOperator *BO); |
| 375 | |
| 376 | /// Creates constraints for Comparator Instructions. |
| 377 | /// Only comparators that have any of the following operators |
| 378 | /// are used to create constraints: >=, >, <=, <. And only if |
| 379 | /// at least one operand is an Instruction. In a Comparator Instruction |
| 380 | /// a op b, there will be 4 sigma functions a_t, a_f, b_t and b_f. Where |
| 381 | /// t and f represent sigma for operands in true and false branches. The |
| 382 | /// following constraints can be obtained. a_t <= a, a_f <= a, b_t <= b and |
| 383 | /// b_f <= b. There are two more constraints that depend on the operator. |
| 384 | /// For the operator <= : a_t <= b_t and b_f <= a_f-1 |
| 385 | /// For the operator < : a_t <= b_t-1 and b_f <= a_f |
| 386 | /// For the operator >= : b_t <= a_t and a_f <= b_f-1 |
| 387 | /// For the operator > : b_t <= a_t-1 and a_f <= b_f |
| 388 | void createConstraintCmpInst(ICmpInst *ICI, TerminatorInst *TI); |
| 389 | |
| 390 | /// Creates constraints for PHI nodes. |
| 391 | /// In a PHI node a = phi(b,c) we can create the constraint |
| 392 | /// a<= max(b,c). With this constraint there will be the edges, |
| 393 | /// b->a and c->a with weight 0 in the lower bound graph, and the edges |
| 394 | /// a->b and a->c with weight 0 in the upper bound graph. |
| 395 | void createConstraintPHINode(PHINode *PN); |
| 396 | |
| 397 | /// Given a binary operator, we are only interest in the case |
| 398 | /// that one operand is an Instruction and the other is a ConstantInt. In |
| 399 | /// this case the method returns true, otherwise false. It also obtains the |
| 400 | /// Instruction and ConstantInt from the BinaryOperator and returns it. |
| 401 | bool createBinaryOperatorInfo(BinaryOperator *BO, Instruction **I1, |
| 402 | Instruction **I2, ConstantInt **C1, |
| 403 | ConstantInt **C2); |
| 404 | |
| 405 | /// This method creates a constraint between a Sigma and an Instruction. |
| 406 | /// These constraints are created as soon as we find a comparator that uses a |
| 407 | /// SSI variable. |
| 408 | void createConstraintSigInst(Instruction *I_op, BasicBlock *BB_succ_t, |
| 409 | BasicBlock *BB_succ_f, PHINode **SIG_op_t, |
| 410 | PHINode **SIG_op_f); |
| 411 | |
| 412 | /// If PN_op1 and PN_o2 are different from NULL, create a constraint |
| 413 | /// PN_op2 -> PN_op1 with value. In case any of them is NULL, replace |
| 414 | /// with the respective V_op#, if V_op# is a ConstantInt. |
| 415 | void createConstraintSigSig(PHINode *SIG_op1, PHINode *SIG_op2, APInt value); |
| 416 | |
| 417 | /// Returns the sigma representing the Instruction I in BasicBlock BB. |
| 418 | /// Returns NULL in case there is no sigma for this Instruction in this |
| 419 | /// Basic Block. This methods assume that sigmas are the first instructions |
| 420 | /// in a block, and that there can be only two sigmas in a block. So it will |
| 421 | /// only look on the first two instructions of BasicBlock BB. |
| 422 | PHINode *findSigma(BasicBlock *BB, Instruction *I); |
| 423 | |
| 424 | /// Original ABCD algorithm to prove redundant checks. |
| 425 | /// This implementation works on any kind of inequality branch. |
| 426 | bool demandProve(Value *a, Value *b, int c, bool upper_bound); |
| 427 | |
| 428 | /// Prove that distance between b and a is <= bound |
| 429 | ProveResult prove(Value *a, Value *b, Bound *bound, unsigned level); |
| 430 | |
| 431 | /// Updates the distance value for a and b |
| 432 | void updateMemDistance(Value *a, Value *b, Bound *bound, unsigned level, |
| 433 | meet_function meet); |
| 434 | |
| 435 | InequalityGraph inequality_graph; |
| 436 | MemoizedResult mem_result; |
| 437 | DenseMap<Value*, Bound*> active; |
| 438 | SmallPtrSet<Value*, 16> created; |
| 439 | SmallVector<PHINode *, 16> phis_to_remove; |
| 440 | }; |
| 441 | |
| 442 | //} // end anonymous namespace. |
| 443 | |
| 444 | char ABCD::ID = 0; |
| 445 | static RegisterPass<ABCD> X("abcd", "ABCD: Eliminating Array Bounds Checks on Demand"); |
| 446 | |
| 447 | |
| 448 | bool ABCD::runOnFunction(Function &F) { |
| 449 | modified = false; |
| 450 | createSSI(F); |
| 451 | executeABCD(F); |
| 452 | DEBUG(inequality_graph.printGraph(errs(), F)); |
| 453 | removePhis(); |
| 454 | |
| 455 | inequality_graph.clear(); |
| 456 | mem_result.clear(); |
| 457 | active.clear(); |
| 458 | created.clear(); |
| 459 | phis_to_remove.clear(); |
| 460 | return modified; |
| 461 | } |
| 462 | |
| 463 | /// Iterates through all BasicBlocks, if the Terminator Instruction |
| 464 | /// uses an Comparator Instruction, all operands of this comparator |
| 465 | /// are sent to be transformed to SSI. Only Instruction operands are |
| 466 | /// transformed. |
| 467 | void ABCD::createSSI(Function &F) { |
| 468 | SSI *ssi = &getAnalysis<SSI>(); |
| 469 | |
| 470 | SmallVector<Instruction *, 16> Insts; |
| 471 | |
| 472 | for (Function::iterator begin = F.begin(), end = F.end(); |
| 473 | begin != end; ++begin) { |
| 474 | BasicBlock *BB = begin; |
| 475 | TerminatorInst *TI = BB->getTerminator(); |
| 476 | if (TI->getNumOperands() == 0) |
| 477 | continue; |
| 478 | |
| 479 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(TI->getOperand(0))) { |
| 480 | if (Instruction *I = dyn_cast<Instruction>(ICI->getOperand(0))) { |
| 481 | modified = true; // XXX: but yet createSSI might do nothing |
| 482 | Insts.push_back(I); |
| 483 | } |
| 484 | if (Instruction *I = dyn_cast<Instruction>(ICI->getOperand(1))) { |
| 485 | modified = true; |
| 486 | Insts.push_back(I); |
| 487 | } |
| 488 | } |
| 489 | } |
| 490 | ssi->createSSI(Insts); |
| 491 | } |
| 492 | |
| 493 | /// Creates the graphs for this function. |
| 494 | /// It will look for all comparators used in branches, and create them. |
| 495 | /// These comparators will create constraints for any instruction as an |
| 496 | /// operand. |
| 497 | void ABCD::executeABCD(Function &F) { |
| 498 | for (Function::iterator begin = F.begin(), end = F.end(); |
| 499 | begin != end; ++begin) { |
| 500 | BasicBlock *BB = begin; |
| 501 | TerminatorInst *TI = BB->getTerminator(); |
| 502 | if (TI->getNumOperands() == 0) |
| 503 | continue; |
| 504 | |
| 505 | ICmpInst *ICI = dyn_cast<ICmpInst>(TI->getOperand(0)); |
| 506 | if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) |
| 507 | continue; |
| 508 | |
| 509 | createConstraintCmpInst(ICI, TI); |
| 510 | seekRedundancy(ICI, TI); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | /// Seeks redundancies in the comparator instruction CI. |
| 515 | /// If the ABCD algorithm can prove that the comparator CI always |
| 516 | /// takes one way, then the Terminator Instruction TI is substituted from |
| 517 | /// a conditional branch to a unconditional one. |
| 518 | /// This code basically receives a comparator, and verifies which kind of |
| 519 | /// instruction it is. Depending on the kind of instruction, we use different |
| 520 | /// strategies to prove its redundancy. |
| 521 | void ABCD::seekRedundancy(ICmpInst *ICI, TerminatorInst *TI) { |
| 522 | CmpInst::Predicate Pred = ICI->getPredicate(); |
| 523 | |
| 524 | Value *source, *dest; |
| 525 | int distance1, distance2; |
| 526 | bool upper; |
| 527 | |
| 528 | switch(Pred) { |
| 529 | case CmpInst::ICMP_SGT: // signed greater than |
| 530 | upper = false; |
| 531 | distance1 = 1; |
| 532 | distance2 = 0; |
| 533 | break; |
| 534 | |
| 535 | case CmpInst::ICMP_SGE: // signed greater or equal |
| 536 | upper = false; |
| 537 | distance1 = 0; |
| 538 | distance2 = -1; |
| 539 | break; |
| 540 | |
| 541 | case CmpInst::ICMP_SLT: // signed less than |
| 542 | upper = true; |
| 543 | distance1 = -1; |
| 544 | distance2 = 0; |
| 545 | break; |
| 546 | |
| 547 | case CmpInst::ICMP_SLE: // signed less or equal |
| 548 | upper = true; |
| 549 | distance1 = 0; |
| 550 | distance2 = 1; |
| 551 | break; |
| 552 | |
| 553 | default: |
| 554 | return; |
| 555 | } |
| 556 | |
| 557 | ++NumBranchTested; |
| 558 | source = ICI->getOperand(0); |
| 559 | dest = ICI->getOperand(1); |
| 560 | if (demandProve(dest, source, distance1, upper)) { |
| 561 | removeRedundancy(TI, true); |
| 562 | } else if (demandProve(dest, source, distance2, !upper)) { |
| 563 | removeRedundancy(TI, false); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | /// Substitutes Terminator Instruction TI, that is a conditional branch, |
| 568 | /// with one unconditional branch. Succ_edge determines if the new |
| 569 | /// unconditional edge will be the first or second edge of the former TI |
| 570 | /// instruction. |
| 571 | void ABCD::removeRedundancy(TerminatorInst *TI, bool Succ_edge) { |
| 572 | BasicBlock *Succ; |
| 573 | if (Succ_edge) { |
| 574 | Succ = TI->getSuccessor(0); |
| 575 | fixPhi(TI->getParent(), TI->getSuccessor(1)); |
| 576 | } else { |
| 577 | Succ = TI->getSuccessor(1); |
| 578 | fixPhi(TI->getParent(), TI->getSuccessor(0)); |
| 579 | } |
| 580 | |
| 581 | BranchInst::Create(Succ, TI); |
| 582 | TI->eraseFromParent(); // XXX: invoke |
| 583 | ++NumBranchRemoved; |
| 584 | modified = true; |
| 585 | } |
| 586 | |
| 587 | /// When an conditional branch is removed, the BasicBlock that is no longer |
| 588 | /// reachable will have problems in phi functions. This method fixes these |
| 589 | /// phis removing the former BasicBlock from the list of incoming BasicBlocks |
| 590 | /// of all phis. In case the phi remains with no predecessor it will be |
| 591 | /// marked to be removed later. |
| 592 | void ABCD::fixPhi(BasicBlock *BB, BasicBlock *Succ) { |
| 593 | BasicBlock::iterator begin = Succ->begin(); |
| 594 | while (PHINode *PN = dyn_cast<PHINode>(begin++)) { |
| 595 | PN->removeIncomingValue(BB, false); |
| 596 | if (PN->getNumIncomingValues() == 0) |
| 597 | phis_to_remove.push_back(PN); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | /// Removes phis that have no predecessor |
| 602 | void ABCD::removePhis() { |
| 603 | for (unsigned i = 0, end = phis_to_remove.size(); i < end; ++i) { |
| 604 | PHINode *PN = phis_to_remove[i]; |
| 605 | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); |
| 606 | PN->eraseFromParent(); |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | /// Creates constraints for Instructions. |
| 611 | /// If the constraint for this instruction has already been created |
| 612 | /// nothing is done. |
| 613 | void ABCD::createConstraintInstruction(Instruction *I) { |
| 614 | // Test if this instruction has not been created before |
| 615 | if (created.insert(I)) { |
| 616 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { |
| 617 | createConstraintBinaryOperator(BO); |
| 618 | } else if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| 619 | createConstraintPHINode(PN); |
| 620 | } |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | /// Creates constraints for Binary Operators. |
| 625 | /// It will create constraints only for addition and subtraction, |
| 626 | /// the other binary operations are not treated by ABCD. |
| 627 | /// For additions in the form a = b + X and a = X + b, where X is a constant, |
| 628 | /// the constraint a <= b + X can be obtained. For this constraint, an edge |
| 629 | /// a->b with weight X is added to the lower bound graph, and an edge |
| 630 | /// b->a with weight -X is added to the upper bound graph. |
| 631 | /// Only subtractions in the format a = b - X is used by ABCD. |
| 632 | /// Edges are created using the same semantic as addition. |
| 633 | void ABCD::createConstraintBinaryOperator(BinaryOperator *BO) { |
| 634 | Instruction *I1 = NULL, *I2 = NULL; |
| 635 | ConstantInt *CI1 = NULL, *CI2 = NULL; |
| 636 | |
| 637 | // Test if an operand is an Instruction and the other is a Constant |
| 638 | if (!createBinaryOperatorInfo(BO, &I1, &I2, &CI1, &CI2)) |
| 639 | return; |
| 640 | |
| 641 | Instruction *I = 0; |
| 642 | APInt value; |
| 643 | |
| 644 | switch (BO->getOpcode()) { |
| 645 | case Instruction::Add: |
| 646 | if (I1) { |
| 647 | I = I1; |
| 648 | value = CI2->getValue(); |
| 649 | } else if (I2) { |
| 650 | I = I2; |
| 651 | value = CI1->getValue(); |
| 652 | } |
| 653 | break; |
| 654 | |
| 655 | case Instruction::Sub: |
| 656 | // Instructions like a = X-b, where X is a constant are not represented |
| 657 | // in the graph. |
| 658 | if (!I1) |
| 659 | return; |
| 660 | |
| 661 | I = I1; |
| 662 | value = -CI2->getValue(); |
| 663 | break; |
| 664 | |
| 665 | default: |
| 666 | return; |
| 667 | } |
| 668 | |
| 669 | APInt MinusOne = APInt::getAllOnesValue(value.getBitWidth()); |
| 670 | inequality_graph.addEdge(I, BO, value, true); |
| 671 | inequality_graph.addEdge(BO, I, value * MinusOne, false); |
| 672 | createConstraintInstruction(I); |
| 673 | } |
| 674 | |
| 675 | /// Given a binary operator, we are only interest in the case |
| 676 | /// that one operand is an Instruction and the other is a ConstantInt. In |
| 677 | /// this case the method returns true, otherwise false. It also obtains the |
| 678 | /// Instruction and ConstantInt from the BinaryOperator and returns it. |
| 679 | bool ABCD::createBinaryOperatorInfo(BinaryOperator *BO, Instruction **I1, |
| 680 | Instruction **I2, ConstantInt **C1, |
| 681 | ConstantInt **C2) { |
| 682 | Value *op1 = BO->getOperand(0); |
| 683 | Value *op2 = BO->getOperand(1); |
| 684 | |
| 685 | if ((*I1 = dyn_cast<Instruction>(op1))) { |
| 686 | if ((*C2 = dyn_cast<ConstantInt>(op2))) |
| 687 | return true; // First is Instruction and second ConstantInt |
| 688 | |
| 689 | return false; // Both are Instruction |
| 690 | } else { |
| 691 | if ((*C1 = dyn_cast<ConstantInt>(op1)) && |
| 692 | (*I2 = dyn_cast<Instruction>(op2))) |
| 693 | return true; // First is ConstantInt and second Instruction |
| 694 | |
| 695 | return false; // Both are not Instruction |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | /// Creates constraints for Comparator Instructions. |
| 700 | /// Only comparators that have any of the following operators |
| 701 | /// are used to create constraints: >=, >, <=, <. And only if |
| 702 | /// at least one operand is an Instruction. In a Comparator Instruction |
| 703 | /// a op b, there will be 4 sigma functions a_t, a_f, b_t and b_f. Where |
| 704 | /// t and f represent sigma for operands in true and false branches. The |
| 705 | /// following constraints can be obtained. a_t <= a, a_f <= a, b_t <= b and |
| 706 | /// b_f <= b. There are two more constraints that depend on the operator. |
| 707 | /// For the operator <= : a_t <= b_t and b_f <= a_f-1 |
| 708 | /// For the operator < : a_t <= b_t-1 and b_f <= a_f |
| 709 | /// For the operator >= : b_t <= a_t and a_f <= b_f-1 |
| 710 | /// For the operator > : b_t <= a_t-1 and a_f <= b_f |
| 711 | void ABCD::createConstraintCmpInst(ICmpInst *ICI, TerminatorInst *TI) { |
| 712 | Value *V_op1 = ICI->getOperand(0); |
| 713 | Value *V_op2 = ICI->getOperand(1); |
| 714 | |
| 715 | if (!isa<IntegerType>(V_op1->getType())) |
| 716 | return; |
| 717 | |
| 718 | Instruction *I_op1 = dyn_cast<Instruction>(V_op1); |
| 719 | Instruction *I_op2 = dyn_cast<Instruction>(V_op2); |
| 720 | |
| 721 | // Test if at least one operand is an Instruction |
| 722 | if (!I_op1 && !I_op2) |
| 723 | return; |
| 724 | |
| 725 | BasicBlock *BB_succ_t = TI->getSuccessor(0); |
| 726 | BasicBlock *BB_succ_f = TI->getSuccessor(1); |
| 727 | |
| 728 | PHINode *SIG_op1_t = NULL, *SIG_op1_f = NULL, |
| 729 | *SIG_op2_t = NULL, *SIG_op2_f = NULL; |
| 730 | |
| 731 | createConstraintSigInst(I_op1, BB_succ_t, BB_succ_f, |
| 732 | &SIG_op1_t, &SIG_op1_f); |
| 733 | createConstraintSigInst(I_op2, BB_succ_t, BB_succ_f, |
| 734 | &SIG_op2_t, &SIG_op2_f); |
| 735 | |
| 736 | int32_t width = cast<IntegerType>(V_op1->getType())->getBitWidth(); |
| 737 | APInt MinusOne = APInt::getAllOnesValue(width); |
| 738 | APInt Zero = APInt::getNullValue(width); |
| 739 | |
| 740 | CmpInst::Predicate Pred = ICI->getPredicate(); |
| 741 | switch (Pred) { |
| 742 | case CmpInst::ICMP_SGT: // signed greater than |
| 743 | createConstraintSigSig(SIG_op2_t, SIG_op1_t, MinusOne); |
| 744 | createConstraintSigSig(SIG_op1_f, SIG_op2_f, Zero); |
| 745 | break; |
| 746 | |
| 747 | case CmpInst::ICMP_SGE: // signed greater or equal |
| 748 | createConstraintSigSig(SIG_op2_t, SIG_op1_t, Zero); |
| 749 | createConstraintSigSig(SIG_op1_f, SIG_op2_f, MinusOne); |
| 750 | break; |
| 751 | |
| 752 | case CmpInst::ICMP_SLT: // signed less than |
| 753 | createConstraintSigSig(SIG_op1_t, SIG_op2_t, MinusOne); |
| 754 | createConstraintSigSig(SIG_op2_f, SIG_op1_f, Zero); |
| 755 | break; |
| 756 | |
| 757 | case CmpInst::ICMP_SLE: // signed less or equal |
| 758 | createConstraintSigSig(SIG_op1_t, SIG_op2_t, Zero); |
| 759 | createConstraintSigSig(SIG_op2_f, SIG_op1_f, MinusOne); |
| 760 | break; |
| 761 | |
| 762 | default: |
| 763 | break; |
| 764 | } |
| 765 | |
| 766 | if (I_op1) |
| 767 | createConstraintInstruction(I_op1); |
| 768 | if (I_op2) |
| 769 | createConstraintInstruction(I_op2); |
| 770 | } |
| 771 | |
| 772 | /// Creates constraints for PHI nodes. |
| 773 | /// In a PHI node a = phi(b,c) we can create the constraint |
| 774 | /// a<= max(b,c). With this constraint there will be the edges, |
| 775 | /// b->a and c->a with weight 0 in the lower bound graph, and the edges |
| 776 | /// a->b and a->c with weight 0 in the upper bound graph. |
| 777 | void ABCD::createConstraintPHINode(PHINode *PN) { |
| 778 | int32_t width = cast<IntegerType>(PN->getType())->getBitWidth(); |
| 779 | for (unsigned i = 0, end = PN->getNumIncomingValues(); i < end; ++i) { |
| 780 | Value *V = PN->getIncomingValue(i); |
| 781 | if (Instruction *I = dyn_cast<Instruction>(V)) { |
| 782 | createConstraintInstruction(I); |
| 783 | } |
| 784 | inequality_graph.addEdge(V, PN, APInt(width, 0), true); |
| 785 | inequality_graph.addEdge(V, PN, APInt(width, 0), false); |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | /// This method creates a constraint between a Sigma and an Instruction. |
| 790 | /// These constraints are created as soon as we find a comparator that uses a |
| 791 | /// SSI variable. |
| 792 | void ABCD::createConstraintSigInst(Instruction *I_op, BasicBlock *BB_succ_t, |
| 793 | BasicBlock *BB_succ_f, PHINode **SIG_op_t, |
| 794 | PHINode **SIG_op_f) { |
| 795 | *SIG_op_t = findSigma(BB_succ_t, I_op); |
| 796 | *SIG_op_f = findSigma(BB_succ_f, I_op); |
| 797 | |
| 798 | if (*SIG_op_t) { |
| 799 | int32_t width = cast<IntegerType>((*SIG_op_t)->getType())->getBitWidth(); |
| 800 | inequality_graph.addEdge(I_op, *SIG_op_t, APInt(width, 0), true); |
| 801 | inequality_graph.addEdge(*SIG_op_t, I_op, APInt(width, 0), false); |
| 802 | created.insert(*SIG_op_t); |
| 803 | } |
| 804 | if (*SIG_op_f) { |
| 805 | int32_t width = cast<IntegerType>((*SIG_op_f)->getType())->getBitWidth(); |
| 806 | inequality_graph.addEdge(I_op, *SIG_op_f, APInt(width, 0), true); |
| 807 | inequality_graph.addEdge(*SIG_op_f, I_op, APInt(width, 0), false); |
| 808 | created.insert(*SIG_op_f); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | /// If PN_op1 and PN_o2 are different from NULL, create a constraint |
| 813 | /// PN_op2 -> PN_op1 with value. In case any of them is NULL, replace |
| 814 | /// with the respective V_op#, if V_op# is a ConstantInt. |
| 815 | void ABCD::createConstraintSigSig(PHINode *SIG_op1, PHINode *SIG_op2, |
| 816 | APInt value) { |
| 817 | if (SIG_op1 && SIG_op2) { |
| 818 | APInt MinusOne = APInt::getAllOnesValue(value.getBitWidth()); |
| 819 | inequality_graph.addEdge(SIG_op2, SIG_op1, value, true); |
| 820 | inequality_graph.addEdge(SIG_op1, SIG_op2, value * MinusOne, false); |
| 821 | } |
| 822 | } |
| 823 | |
| 824 | /// Returns the sigma representing the Instruction I in BasicBlock BB. |
| 825 | /// Returns NULL in case there is no sigma for this Instruction in this |
| 826 | /// Basic Block. This methods assume that sigmas are the first instructions |
| 827 | /// in a block, and that there can be only two sigmas in a block. So it will |
| 828 | /// only look on the first two instructions of BasicBlock BB. |
| 829 | PHINode *ABCD::findSigma(BasicBlock *BB, Instruction *I) { |
| 830 | // BB has more than one predecessor, BB cannot have sigmas. |
| 831 | if (I == NULL || BB->getSinglePredecessor() == NULL) |
| 832 | return NULL; |
| 833 | |
| 834 | BasicBlock::iterator begin = BB->begin(); |
| 835 | BasicBlock::iterator end = BB->end(); |
| 836 | |
| 837 | for (unsigned i = 0; i < 2 && begin != end; ++i, ++begin) { |
| 838 | Instruction *I_succ = begin; |
| 839 | if (PHINode *PN = dyn_cast<PHINode>(I_succ)) |
| 840 | if (PN->getIncomingValue(0) == I) |
| 841 | return PN; |
| 842 | } |
| 843 | |
| 844 | return NULL; |
| 845 | } |
| 846 | |
| 847 | /// Original ABCD algorithm to prove redundant checks. |
| 848 | /// This implementation works on any kind of inequality branch. |
| 849 | bool ABCD::demandProve(Value *a, Value *b, int c, bool upper_bound) { |
| 850 | int32_t width = cast<IntegerType>(a->getType())->getBitWidth(); |
| 851 | Bound *bound = new Bound(APInt(width, c), upper_bound); |
| 852 | |
| 853 | mem_result.clear(); |
| 854 | active.clear(); |
| 855 | |
| 856 | ProveResult res = prove(a, b, bound, 0); |
| 857 | return res != False; |
| 858 | } |
| 859 | |
| 860 | /// Prove that distance between b and a is <= bound |
| 861 | ABCD::ProveResult ABCD::prove(Value *a, Value *b, Bound *bound, |
| 862 | unsigned level) { |
| 863 | // if (C[b-a<=e] == True for some e <= bound |
| 864 | // Same or stronger difference was already proven |
| 865 | if (mem_result.hasTrue(b, bound)) |
| 866 | return True; |
| 867 | |
| 868 | // if (C[b-a<=e] == False for some e >= bound |
| 869 | // Same or weaker difference was already disproved |
| 870 | if (mem_result.hasFalse(b, bound)) |
| 871 | return False; |
| 872 | |
| 873 | // if (C[b-a<=e] == Reduced for some e <= bound |
| 874 | // b is on a cycle that was reduced for same or stronger difference |
| 875 | if (mem_result.hasReduced(b, bound)) |
| 876 | return Reduced; |
| 877 | |
| 878 | // traversal reached the source vertex |
| 879 | if (a == b && Bound::geq(bound, APInt(bound->getBitWidth(), 0, true))) |
| 880 | return True; |
| 881 | |
| 882 | // if b has no predecessor then fail |
| 883 | if (!inequality_graph.hasEdge(b, bound->isUpperBound())) |
| 884 | return False; |
| 885 | |
| 886 | // a cycle was encountered |
| 887 | if (active.count(b)) { |
| 888 | if (Bound::leq(active.lookup(b), bound)) |
| 889 | return Reduced; // a "harmless" cycle |
| 890 | |
| 891 | return False; // an amplifying cycle |
| 892 | } |
| 893 | |
| 894 | active[b] = bound; |
| 895 | PHINode *PN = dyn_cast<PHINode>(b); |
| 896 | |
| 897 | // Test if a Value is a Phi. If it is a PHINode with more than 1 incoming |
| 898 | // value, then it is a phi, if it has 1 incoming value it is a sigma. |
| 899 | if (PN && PN->getNumIncomingValues() > 1) |
| 900 | updateMemDistance(a, b, bound, level, min); |
| 901 | else |
| 902 | updateMemDistance(a, b, bound, level, max); |
| 903 | |
| 904 | active.erase(b); |
| 905 | |
| 906 | ABCD::ProveResult res = mem_result.getBoundResult(b, bound); |
| 907 | return res; |
| 908 | } |
| 909 | |
| 910 | /// Updates the distance value for a and b |
| 911 | void ABCD::updateMemDistance(Value *a, Value *b, Bound *bound, unsigned level, |
| 912 | meet_function meet) { |
| 913 | ABCD::ProveResult res = (meet == max) ? False : True; |
| 914 | |
| 915 | SmallPtrSet<Edge *, 16> Edges = inequality_graph.getEdges(b); |
| 916 | SmallPtrSet<Edge *, 16>::iterator begin = Edges.begin(), end = Edges.end(); |
| 917 | |
| 918 | for (; begin != end ; ++begin) { |
| 919 | if (((res >= Reduced) && (meet == max)) || |
| 920 | ((res == False) && (meet == min))) { |
| 921 | break; |
| 922 | } |
| 923 | Edge *in = *begin; |
| 924 | if (in->isUpperBound() == bound->isUpperBound()) { |
| 925 | Value *succ = in->getVertex(); |
| 926 | res = meet(res, prove(a, succ, new Bound(bound, in->getValue()), |
| 927 | level+1)); |
| 928 | } |
| 929 | } |
| 930 | |
| 931 | mem_result.updateBound(b, bound, res); |
| 932 | } |
| 933 | |
| 934 | /// Return the stored result for this bound |
| 935 | ABCD::ProveResult ABCD::MemoizedResultChart::getResult(const Bound *bound)const{ |
| 936 | if (max_false && Bound::leq(bound, max_false)) |
| 937 | return False; |
| 938 | if (min_true && Bound::leq(min_true, bound)) |
| 939 | return True; |
| 940 | if (min_reduced && Bound::leq(min_reduced, bound)) |
| 941 | return Reduced; |
| 942 | return False; |
| 943 | } |
| 944 | |
| 945 | /// Stores a false found |
| 946 | void ABCD::MemoizedResultChart::addFalse(Bound *bound) { |
| 947 | if (!max_false || Bound::leq(max_false, bound)) |
| 948 | max_false = bound; |
| 949 | |
| 950 | if (Bound::eq(max_false, min_reduced)) |
| 951 | min_reduced = Bound::createIncrement(min_reduced); |
| 952 | if (Bound::eq(max_false, min_true)) |
| 953 | min_true = Bound::createIncrement(min_true); |
| 954 | if (Bound::eq(min_reduced, min_true)) |
| 955 | min_reduced = NULL; |
| 956 | clearRedundantReduced(); |
| 957 | } |
| 958 | |
| 959 | /// Stores a true found |
| 960 | void ABCD::MemoizedResultChart::addTrue(Bound *bound) { |
| 961 | if (!min_true || Bound::leq(bound, min_true)) |
| 962 | min_true = bound; |
| 963 | |
| 964 | if (Bound::eq(min_true, min_reduced)) |
| 965 | min_reduced = Bound::createDecrement(min_reduced); |
| 966 | if (Bound::eq(min_true, max_false)) |
| 967 | max_false = Bound::createDecrement(max_false); |
| 968 | if (Bound::eq(max_false, min_reduced)) |
| 969 | min_reduced = NULL; |
| 970 | clearRedundantReduced(); |
| 971 | } |
| 972 | |
| 973 | /// Stores a Reduced found |
| 974 | void ABCD::MemoizedResultChart::addReduced(Bound *bound) { |
| 975 | if (!min_reduced || Bound::leq(bound, min_reduced)) |
| 976 | min_reduced = bound; |
| 977 | |
| 978 | if (Bound::eq(min_reduced, min_true)) |
| 979 | min_true = Bound::createIncrement(min_true); |
| 980 | if (Bound::eq(min_reduced, max_false)) |
| 981 | max_false = Bound::createDecrement(max_false); |
| 982 | } |
| 983 | |
| 984 | /// Clears redundant reduced |
| 985 | /// If a min_true is smaller than a min_reduced then the min_reduced |
| 986 | /// is unnecessary and then removed. It also works for min_reduced |
| 987 | /// begin smaller than max_false. |
| 988 | void ABCD::MemoizedResultChart::clearRedundantReduced() { |
| 989 | if (min_true && min_reduced && Bound::lt(min_true, min_reduced)) |
| 990 | min_reduced = NULL; |
| 991 | if (max_false && min_reduced && Bound::lt(min_reduced, max_false)) |
| 992 | min_reduced = NULL; |
| 993 | } |
| 994 | |
| 995 | /// Stores the bound found |
| 996 | void ABCD::MemoizedResult::updateBound(Value *b, Bound *bound, |
| 997 | const ProveResult res) { |
| 998 | if (res == False) { |
| 999 | map[b].addFalse(bound); |
| 1000 | } else if (res == True) { |
| 1001 | map[b].addTrue(bound); |
| 1002 | } else { |
| 1003 | map[b].addReduced(bound); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | /// Adds an edge from V_from to V_to with weight value |
| 1008 | void ABCD::InequalityGraph::addEdge(Value *V_to, Value *V_from, |
| 1009 | APInt value, bool upper) { |
| 1010 | assert(V_from->getType() == V_to->getType()); |
| 1011 | assert(cast<IntegerType>(V_from->getType())->getBitWidth() == |
| 1012 | value.getBitWidth()); |
| 1013 | |
| 1014 | DenseMap<Value *, SmallPtrSet<Edge *, 16> >::iterator from; |
| 1015 | from = addNode(V_from); |
| 1016 | from->second.insert(new Edge(V_to, value, upper)); |
| 1017 | } |
| 1018 | |
| 1019 | /// Test if there is any edge from V in the upper direction |
| 1020 | bool ABCD::InequalityGraph::hasEdge(Value *V, bool upper) const { |
| 1021 | SmallPtrSet<Edge *, 16> it = graph.lookup(V); |
| 1022 | |
| 1023 | SmallPtrSet<Edge *, 16>::iterator begin = it.begin(); |
| 1024 | SmallPtrSet<Edge *, 16>::iterator end = it.end(); |
| 1025 | for (; begin != end; ++begin) { |
| 1026 | if ((*begin)->isUpperBound() == upper) { |
| 1027 | return true; |
| 1028 | } |
| 1029 | } |
| 1030 | return false; |
| 1031 | } |
| 1032 | |
| 1033 | /// Prints the header of the dot file |
| 1034 | void ABCD::InequalityGraph::printHeader(raw_ostream &OS, Function &F) const { |
| 1035 | OS << "digraph dotgraph {\n"; |
| 1036 | OS << "label=\"Inequality Graph for \'"; |
| 1037 | OS << F.getNameStr() << "\' function\";\n"; |
| 1038 | OS << "node [shape=record,fontname=\"Times-Roman\",fontsize=14];\n"; |
| 1039 | } |
| 1040 | |
| 1041 | /// Prints the body of the dot file |
| 1042 | void ABCD::InequalityGraph::printBody(raw_ostream &OS) const { |
| 1043 | DenseMap<Value *, SmallPtrSet<Edge *, 16> >::iterator begin = |
| 1044 | graph.begin(), end = graph.end(); |
| 1045 | |
| 1046 | for (; begin != end ; ++begin) { |
| 1047 | SmallPtrSet<Edge *, 16>::iterator begin_par = |
| 1048 | begin->second.begin(), end_par = begin->second.end(); |
| 1049 | Value *source = begin->first; |
| 1050 | |
| 1051 | printVertex(OS, source); |
| 1052 | |
| 1053 | for (; begin_par != end_par ; ++begin_par) { |
| 1054 | Edge *edge = *begin_par; |
| 1055 | printEdge(OS, source, edge); |
| 1056 | } |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | /// Prints vertex source to the dot file |
| 1061 | /// |
| 1062 | void ABCD::InequalityGraph::printVertex(raw_ostream &OS, Value *source) const { |
| 1063 | OS << "\""; |
| 1064 | printName(OS, source); |
| 1065 | OS << "\""; |
| 1066 | OS << " [label=\"{"; |
| 1067 | printName(OS, source); |
| 1068 | OS << "}\"];\n"; |
| 1069 | } |
| 1070 | |
| 1071 | /// Prints the edge to the dot file |
| 1072 | void ABCD::InequalityGraph::printEdge(raw_ostream &OS, Value *source, |
| 1073 | Edge *edge) const { |
| 1074 | Value *dest = edge->getVertex(); |
| 1075 | APInt value = edge->getValue(); |
| 1076 | bool upper = edge->isUpperBound(); |
| 1077 | |
| 1078 | OS << "\""; |
| 1079 | printName(OS, source); |
| 1080 | OS << "\""; |
| 1081 | OS << " -> "; |
| 1082 | OS << "\""; |
| 1083 | printName(OS, dest); |
| 1084 | OS << "\""; |
| 1085 | OS << " [label=\"" << value << "\""; |
| 1086 | if (upper) { |
| 1087 | OS << "color=\"blue\""; |
| 1088 | } else { |
| 1089 | OS << "color=\"red\""; |
| 1090 | } |
| 1091 | OS << "];\n"; |
| 1092 | } |
| 1093 | |
| 1094 | void ABCD::InequalityGraph::printName(raw_ostream &OS, Value *info) const { |
| 1095 | if (ConstantInt *CI = dyn_cast<ConstantInt>(info)) { |
| 1096 | OS << *CI->getValue().getRawData(); |
| 1097 | } else { |
| 1098 | if (info->getName() == "") { |
| 1099 | info->setName("V"); |
| 1100 | } |
| 1101 | OS << info->getNameStr(); |
| 1102 | } |
| 1103 | } |
| 1104 | |
| 1105 | /// createABCDPass - The public interface to this file... |
| 1106 | FunctionPass *llvm::createABCDPass() { |
| 1107 | return new ABCD(); |
| 1108 | } |