blob: 33fc7d4ff6cbc23b1596a8109623810510ae6741 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling41a07852009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendlinge2753242009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
28 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
29 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
30 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
31 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
32 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
33 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_linkonce">'<tt>linkonce_odr</tt>' Linkage</a></li>
35 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
36 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
37 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
38 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling41a07852009-07-20 01:03:30 +000039 </ol>
40 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000041 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +000042 <li><a href="#namedtypes">Named Types</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043 <li><a href="#globalvars">Global Variables</a></li>
44 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000045 <li><a href="#aliasstructure">Aliases</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000046 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel008cd3e2008-09-26 23:51:19 +000047 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +000048 <li><a href="#gc">Garbage Collector Names</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
50 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman27b47012009-07-27 18:07:55 +000051 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052 </ol>
53 </li>
54 <li><a href="#typesystem">Type System</a>
55 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000056 <li><a href="#t_classifications">Type Classifications</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057 <li><a href="#t_primitive">Primitive Types</a>
58 <ol>
Chris Lattner488772f2008-01-04 04:32:38 +000059 <li><a href="#t_floating">Floating Point Types</a></li>
60 <li><a href="#t_void">Void Type</a></li>
61 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky29aaef82009-05-30 05:06:04 +000062 <li><a href="#t_metadata">Metadata Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000063 </ol>
64 </li>
65 <li><a href="#t_derived">Derived Types</a>
66 <ol>
Chris Lattner251ab812007-12-18 06:18:21 +000067 <li><a href="#t_integer">Integer Type</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000068 <li><a href="#t_array">Array Type</a></li>
69 <li><a href="#t_function">Function Type</a></li>
70 <li><a href="#t_pointer">Pointer Type</a></li>
71 <li><a href="#t_struct">Structure Type</a></li>
72 <li><a href="#t_pstruct">Packed Structure Type</a></li>
73 <li><a href="#t_vector">Vector Type</a></li>
74 <li><a href="#t_opaque">Opaque Type</a></li>
75 </ol>
76 </li>
Chris Lattner515195a2009-02-02 07:32:36 +000077 <li><a href="#t_uprefs">Type Up-references</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 </ol>
79 </li>
80 <li><a href="#constants">Constants</a>
81 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000082 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner97063852009-02-28 18:32:25 +000083 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman2672f3e2008-10-14 16:51:45 +000084 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
85 <li><a href="#undefvalues">Undefined Values</a></li>
86 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky4dcf8102009-04-04 07:22:01 +000087 <li><a href="#metadata">Embedded Metadata</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000088 </ol>
89 </li>
90 <li><a href="#othervalues">Other Values</a>
91 <ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +000092 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000093 </ol>
94 </li>
Chris Lattner75c24e02009-07-20 05:55:19 +000095 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
96 <ol>
97 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner1e0e0d12009-07-20 06:14:25 +000098 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
99 Global Variable</a></li>
Chris Lattner75c24e02009-07-20 05:55:19 +0000100 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
101 Global Variable</a></li>
102 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
103 Global Variable</a></li>
104 </ol>
105 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000106 <li><a href="#instref">Instruction Reference</a>
107 <ol>
108 <li><a href="#terminators">Terminator Instructions</a>
109 <ol>
110 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
111 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
112 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
113 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
114 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
115 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
116 </ol>
117 </li>
118 <li><a href="#binaryops">Binary Operations</a>
119 <ol>
120 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000121 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000123 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohman7ce405e2009-06-04 22:49:04 +0000125 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
127 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
128 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
129 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
130 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
131 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
132 </ol>
133 </li>
134 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
135 <ol>
136 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
137 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
138 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
139 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
140 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
141 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 <li><a href="#vectorops">Vector Operations</a>
145 <ol>
146 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
147 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
148 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
149 </ol>
150 </li>
Dan Gohman74d6faf2008-05-12 23:51:09 +0000151 <li><a href="#aggregateops">Aggregate Operations</a>
152 <ol>
153 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
154 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
155 </ol>
156 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
158 <ol>
159 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
160 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
161 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
162 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
163 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
164 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
165 </ol>
166 </li>
167 <li><a href="#convertops">Conversion Operations</a>
168 <ol>
169 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
170 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
171 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
172 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
173 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
174 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
175 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
176 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
177 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
178 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
179 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
180 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
181 </ol>
Dan Gohman2672f3e2008-10-14 16:51:45 +0000182 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 <li><a href="#otherops">Other Operations</a>
184 <ol>
185 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
186 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
187 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
188 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
189 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
190 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
191 </ol>
192 </li>
193 </ol>
194 </li>
195 <li><a href="#intrinsics">Intrinsic Functions</a>
196 <ol>
197 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
198 <ol>
199 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
200 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
201 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
202 </ol>
203 </li>
204 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
205 <ol>
206 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
207 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
208 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
209 </ol>
210 </li>
211 <li><a href="#int_codegen">Code Generator Intrinsics</a>
212 <ol>
213 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
214 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
215 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
216 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
217 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
218 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
219 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
220 </ol>
221 </li>
222 <li><a href="#int_libc">Standard C Library Intrinsics</a>
223 <ol>
224 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
225 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
226 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
227 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
228 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000229 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
230 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
231 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000232 </ol>
233 </li>
234 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
235 <ol>
236 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
237 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
238 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
239 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240 </ol>
241 </li>
Bill Wendling3f8cebe2009-02-08 01:40:31 +0000242 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
243 <ol>
Bill Wendling3e1258b2009-02-08 04:04:40 +0000244 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
245 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
246 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
247 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
248 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingbda98b62009-02-08 23:00:09 +0000249 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling3f8cebe2009-02-08 01:40:31 +0000250 </ol>
251 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000252 <li><a href="#int_debugger">Debugger intrinsics</a></li>
253 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000254 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000255 <ol>
256 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000257 </ol>
258 </li>
Bill Wendling9127adb2008-11-18 22:10:53 +0000259 <li><a href="#int_atomics">Atomic intrinsics</a>
260 <ol>
261 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
262 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
263 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
264 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
265 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
266 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
267 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
268 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
269 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
270 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
271 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
272 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
273 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
274 </ol>
275 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000276 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000278 <li><a href="#int_var_annotation">
Bill Wendlinge4164592008-11-19 05:56:17 +0000279 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000280 <li><a href="#int_annotation">
Bill Wendlinge4164592008-11-19 05:56:17 +0000281 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +0000282 <li><a href="#int_trap">
Bill Wendlinge4164592008-11-19 05:56:17 +0000283 '<tt>llvm.trap</tt>' Intrinsic</a></li>
284 <li><a href="#int_stackprotector">
285 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000286 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287 </li>
288 </ol>
289 </li>
290</ol>
291
292<div class="doc_author">
293 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
294 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
295</div>
296
297<!-- *********************************************************************** -->
298<div class="doc_section"> <a name="abstract">Abstract </a></div>
299<!-- *********************************************************************** -->
300
301<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000302
303<p>This document is a reference manual for the LLVM assembly language. LLVM is
304 a Static Single Assignment (SSA) based representation that provides type
305 safety, low-level operations, flexibility, and the capability of representing
306 'all' high-level languages cleanly. It is the common code representation
307 used throughout all phases of the LLVM compilation strategy.</p>
308
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000309</div>
310
311<!-- *********************************************************************** -->
312<div class="doc_section"> <a name="introduction">Introduction</a> </div>
313<!-- *********************************************************************** -->
314
315<div class="doc_text">
316
Bill Wendlingf85859d2009-07-20 02:29:24 +0000317<p>The LLVM code representation is designed to be used in three different forms:
318 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
319 for fast loading by a Just-In-Time compiler), and as a human readable
320 assembly language representation. This allows LLVM to provide a powerful
321 intermediate representation for efficient compiler transformations and
322 analysis, while providing a natural means to debug and visualize the
323 transformations. The three different forms of LLVM are all equivalent. This
324 document describes the human readable representation and notation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000325
Bill Wendlingf85859d2009-07-20 02:29:24 +0000326<p>The LLVM representation aims to be light-weight and low-level while being
327 expressive, typed, and extensible at the same time. It aims to be a
328 "universal IR" of sorts, by being at a low enough level that high-level ideas
329 may be cleanly mapped to it (similar to how microprocessors are "universal
330 IR's", allowing many source languages to be mapped to them). By providing
331 type information, LLVM can be used as the target of optimizations: for
332 example, through pointer analysis, it can be proven that a C automatic
333 variable is never accessed outside of the current function... allowing it to
334 be promoted to a simple SSA value instead of a memory location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335
336</div>
337
338<!-- _______________________________________________________________________ -->
339<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
340
341<div class="doc_text">
342
Bill Wendlingf85859d2009-07-20 02:29:24 +0000343<p>It is important to note that this document describes 'well formed' LLVM
344 assembly language. There is a difference between what the parser accepts and
345 what is considered 'well formed'. For example, the following instruction is
346 syntactically okay, but not well formed:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000347
348<div class="doc_code">
349<pre>
350%x = <a href="#i_add">add</a> i32 1, %x
351</pre>
352</div>
353
Bill Wendlingf85859d2009-07-20 02:29:24 +0000354<p>...because the definition of <tt>%x</tt> does not dominate all of its
355 uses. The LLVM infrastructure provides a verification pass that may be used
356 to verify that an LLVM module is well formed. This pass is automatically run
357 by the parser after parsing input assembly and by the optimizer before it
358 outputs bitcode. The violations pointed out by the verifier pass indicate
359 bugs in transformation passes or input to the parser.</p>
360
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000361</div>
362
Chris Lattnera83fdc02007-10-03 17:34:29 +0000363<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000364
365<!-- *********************************************************************** -->
366<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
367<!-- *********************************************************************** -->
368
369<div class="doc_text">
370
Bill Wendlingf85859d2009-07-20 02:29:24 +0000371<p>LLVM identifiers come in two basic types: global and local. Global
372 identifiers (functions, global variables) begin with the <tt>'@'</tt>
373 character. Local identifiers (register names, types) begin with
374 the <tt>'%'</tt> character. Additionally, there are three different formats
375 for identifiers, for different purposes:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376
377<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000378 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingf85859d2009-07-20 02:29:24 +0000379 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
380 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
381 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
382 other characters in their names can be surrounded with quotes. Special
383 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
384 ASCII code for the character in hexadecimal. In this way, any character
385 can be used in a name value, even quotes themselves.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000386
Reid Spencerc8245b02007-08-07 14:34:28 +0000387 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingf85859d2009-07-20 02:29:24 +0000388 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000389
390 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingf85859d2009-07-20 02:29:24 +0000391 constants</a>, below.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392</ol>
393
Reid Spencerc8245b02007-08-07 14:34:28 +0000394<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingf85859d2009-07-20 02:29:24 +0000395 don't need to worry about name clashes with reserved words, and the set of
396 reserved words may be expanded in the future without penalty. Additionally,
397 unnamed identifiers allow a compiler to quickly come up with a temporary
398 variable without having to avoid symbol table conflicts.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399
400<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingf85859d2009-07-20 02:29:24 +0000401 languages. There are keywords for different opcodes
402 ('<tt><a href="#i_add">add</a></tt>',
403 '<tt><a href="#i_bitcast">bitcast</a></tt>',
404 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
405 ('<tt><a href="#t_void">void</a></tt>',
406 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
407 reserved words cannot conflict with variable names, because none of them
408 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000409
410<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingf85859d2009-07-20 02:29:24 +0000411 '<tt>%X</tt>' by 8:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000412
413<p>The easy way:</p>
414
415<div class="doc_code">
416<pre>
417%result = <a href="#i_mul">mul</a> i32 %X, 8
418</pre>
419</div>
420
421<p>After strength reduction:</p>
422
423<div class="doc_code">
424<pre>
425%result = <a href="#i_shl">shl</a> i32 %X, i8 3
426</pre>
427</div>
428
429<p>And the hard way:</p>
430
431<div class="doc_code">
432<pre>
433<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
434<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
435%result = <a href="#i_add">add</a> i32 %1, %1
436</pre>
437</div>
438
Bill Wendlingf85859d2009-07-20 02:29:24 +0000439<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
440 lexical features of LLVM:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441
442<ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000443 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingf85859d2009-07-20 02:29:24 +0000444 line.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445
446 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingf85859d2009-07-20 02:29:24 +0000447 assigned to a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448
449 <li>Unnamed temporaries are numbered sequentially</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000450</ol>
451
452<p>...and it also shows a convention that we follow in this document. When
Bill Wendlingf85859d2009-07-20 02:29:24 +0000453 demonstrating instructions, we will follow an instruction with a comment that
454 defines the type and name of value produced. Comments are shown in italic
455 text.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456
457</div>
458
459<!-- *********************************************************************** -->
460<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
461<!-- *********************************************************************** -->
462
463<!-- ======================================================================= -->
464<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
465</div>
466
467<div class="doc_text">
468
Bill Wendlingf85859d2009-07-20 02:29:24 +0000469<p>LLVM programs are composed of "Module"s, each of which is a translation unit
470 of the input programs. Each module consists of functions, global variables,
471 and symbol table entries. Modules may be combined together with the LLVM
472 linker, which merges function (and global variable) definitions, resolves
473 forward declarations, and merges symbol table entries. Here is an example of
474 the "hello world" module:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475
476<div class="doc_code">
477<pre><i>; Declare the string constant as a global constant...</i>
478<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
479 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
480
481<i>; External declaration of the puts function</i>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000482<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483
484<i>; Definition of main function</i>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000485define i32 @main() { <i>; i32()* </i>
Dan Gohman01852382009-01-04 23:44:43 +0000486 <i>; Convert [13 x i8]* to i8 *...</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000487 %cast210 = <a
Bill Wendlingf85859d2009-07-20 02:29:24 +0000488 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000489
490 <i>; Call puts function to write out the string to stdout...</i>
491 <a
Bill Wendlingf85859d2009-07-20 02:29:24 +0000492 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000493 <a
494 href="#i_ret">ret</a> i32 0<br>}<br>
495</pre>
496</div>
497
Bill Wendlingf85859d2009-07-20 02:29:24 +0000498<p>This example is made up of a <a href="#globalvars">global variable</a> named
499 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function, and
500 a <a href="#functionstructure">function definition</a> for
501 "<tt>main</tt>".</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502
Bill Wendlingf85859d2009-07-20 02:29:24 +0000503<p>In general, a module is made up of a list of global values, where both
504 functions and global variables are global values. Global values are
505 represented by a pointer to a memory location (in this case, a pointer to an
506 array of char, and a pointer to a function), and have one of the
507 following <a href="#linkage">linkage types</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000508
509</div>
510
511<!-- ======================================================================= -->
512<div class="doc_subsection">
513 <a name="linkage">Linkage Types</a>
514</div>
515
516<div class="doc_text">
517
Bill Wendlingf85859d2009-07-20 02:29:24 +0000518<p>All Global Variables and Functions have one of the following types of
519 linkage:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000520
521<dl>
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000522 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000523 <dd>Global values with private linkage are only directly accessible by objects
524 in the current module. In particular, linking code into a module with an
525 private global value may cause the private to be renamed as necessary to
526 avoid collisions. Because the symbol is private to the module, all
527 references can be updated. This doesn't show up in any symbol table in the
528 object file.</dd>
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000529
Bill Wendling41a07852009-07-20 01:03:30 +0000530 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt>: </dt>
Bill Wendling41a07852009-07-20 01:03:30 +0000531 <dd>Similar to private, but the symbol is passed through the assembler and
532 removed by the linker after evaluation.</dd>
533
Dale Johannesen96e7e092008-05-23 23:13:41 +0000534 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000535 <dd>Similar to private, but the value shows as a local symbol
536 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
537 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000538
Bill Wendlingf85859d2009-07-20 02:29:24 +0000539 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt>: </dt>
Chris Lattner68433442009-04-13 05:44:34 +0000540 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingf85859d2009-07-20 02:29:24 +0000541 into the object file corresponding to the LLVM module. They exist to
542 allow inlining and other optimizations to take place given knowledge of
543 the definition of the global, which is known to be somewhere outside the
544 module. Globals with <tt>available_externally</tt> linkage are allowed to
545 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
546 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner68433442009-04-13 05:44:34 +0000547
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000548 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000549 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Bill Wendlingf85859d2009-07-20 02:29:24 +0000550 the same name when linkage occurs. This is typically used to implement
551 inline functions, templates, or other code which must be generated in each
552 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
553 allowed to be discarded.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000554
Dale Johannesen96e7e092008-05-23 23:13:41 +0000555 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000556 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
557 linkage, except that unreferenced <tt>common</tt> globals may not be
558 discarded. This is used for globals that may be emitted in multiple
559 translation units, but that are not guaranteed to be emitted into every
560 translation unit that uses them. One example of this is tentative
561 definitions in C, such as "<tt>int X;</tt>" at global scope.</dd>
Dale Johannesen96e7e092008-05-23 23:13:41 +0000562
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Dale Johannesen96e7e092008-05-23 23:13:41 +0000564 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
Bill Wendlingf85859d2009-07-20 02:29:24 +0000565 that some targets may choose to emit different assembly sequences for them
566 for target-dependent reasons. This is used for globals that are declared
567 "weak" in C source code.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000568
569 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingf85859d2009-07-20 02:29:24 +0000571 pointer to array type. When two global variables with appending linkage
572 are linked together, the two global arrays are appended together. This is
573 the LLVM, typesafe, equivalent of having the system linker append together
574 "sections" with identical names when .o files are linked.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000575
576 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000577 <dd>The semantics of this linkage follow the ELF object file model: the symbol
578 is weak until linked, if not linked, the symbol becomes null instead of
579 being an undefined reference.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000580
Duncan Sands19d161f2009-03-07 15:45:40 +0000581 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands19d161f2009-03-07 15:45:40 +0000582 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000583 <dd>Some languages allow differing globals to be merged, such as two functions
584 with different semantics. Other languages, such as <tt>C++</tt>, ensure
585 that only equivalent globals are ever merged (the "one definition rule" -
586 "ODR"). Such languages can use the <tt>linkonce_odr</tt>
587 and <tt>weak_odr</tt> linkage types to indicate that the global will only
588 be merged with equivalent globals. These linkage types are otherwise the
589 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands19d161f2009-03-07 15:45:40 +0000590
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000591 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingf85859d2009-07-20 02:29:24 +0000593 visible, meaning that it participates in linkage and can be used to
594 resolve external symbol references.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000595</dl>
596
Bill Wendlingf85859d2009-07-20 02:29:24 +0000597<p>The next two types of linkage are targeted for Microsoft Windows platform
598 only. They are designed to support importing (exporting) symbols from (to)
599 DLLs (Dynamic Link Libraries).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600
Bill Wendlingf85859d2009-07-20 02:29:24 +0000601<dl>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000602 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000603 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingf85859d2009-07-20 02:29:24 +0000604 or variable via a global pointer to a pointer that is set up by the DLL
605 exporting the symbol. On Microsoft Windows targets, the pointer name is
606 formed by combining <code>__imp_</code> and the function or variable
607 name.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000608
609 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000610 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingf85859d2009-07-20 02:29:24 +0000611 pointer to a pointer in a DLL, so that it can be referenced with the
612 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
613 name is formed by combining <code>__imp_</code> and the function or
614 variable name.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000615</dl>
616
Bill Wendlingf85859d2009-07-20 02:29:24 +0000617<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
618 another module defined a "<tt>.LC0</tt>" variable and was linked with this
619 one, one of the two would be renamed, preventing a collision. Since
620 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
621 declarations), they are accessible outside of the current module.</p>
622
623<p>It is illegal for a function <i>declaration</i> to have any linkage type
624 other than "externally visible", <tt>dllimport</tt>
625 or <tt>extern_weak</tt>.</p>
626
Duncan Sands19d161f2009-03-07 15:45:40 +0000627<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000628 or <tt>weak_odr</tt> linkages.</p>
629
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630</div>
631
632<!-- ======================================================================= -->
633<div class="doc_subsection">
634 <a name="callingconv">Calling Conventions</a>
635</div>
636
637<div class="doc_text">
638
639<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000640 and <a href="#i_invoke">invokes</a> can all have an optional calling
641 convention specified for the call. The calling convention of any pair of
642 dynamic caller/callee must match, or the behavior of the program is
643 undefined. The following calling conventions are supported by LLVM, and more
644 may be added in the future:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645
646<dl>
647 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000648 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingf85859d2009-07-20 02:29:24 +0000649 specified) matches the target C calling conventions. This calling
650 convention supports varargs function calls and tolerates some mismatch in
651 the declared prototype and implemented declaration of the function (as
652 does normal C).</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653
654 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000655 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingf85859d2009-07-20 02:29:24 +0000656 (e.g. by passing things in registers). This calling convention allows the
657 target to use whatever tricks it wants to produce fast code for the
658 target, without having to conform to an externally specified ABI
659 (Application Binary Interface). Implementations of this convention should
660 allow arbitrary <a href="CodeGenerator.html#tailcallopt">tail call
661 optimization</a> to be supported. This calling convention does not
662 support varargs and requires the prototype of all callees to exactly match
663 the prototype of the function definition.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000664
665 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000666 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingf85859d2009-07-20 02:29:24 +0000667 as possible under the assumption that the call is not commonly executed.
668 As such, these calls often preserve all registers so that the call does
669 not break any live ranges in the caller side. This calling convention
670 does not support varargs and requires the prototype of all callees to
671 exactly match the prototype of the function definition.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000672
673 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000674 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingf85859d2009-07-20 02:29:24 +0000675 target-specific calling conventions to be used. Target specific calling
676 conventions start at 64.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677</dl>
678
679<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingf85859d2009-07-20 02:29:24 +0000680 support Pascal conventions or any other well-known target-independent
681 convention.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682
683</div>
684
685<!-- ======================================================================= -->
686<div class="doc_subsection">
687 <a name="visibility">Visibility Styles</a>
688</div>
689
690<div class="doc_text">
691
Bill Wendlingf85859d2009-07-20 02:29:24 +0000692<p>All Global Variables and Functions have one of the following visibility
693 styles:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000694
695<dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner96451482008-08-05 18:29:16 +0000697 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingf85859d2009-07-20 02:29:24 +0000698 that the declaration is visible to other modules and, in shared libraries,
699 means that the declared entity may be overridden. On Darwin, default
700 visibility means that the declaration is visible to other modules. Default
701 visibility corresponds to "external linkage" in the language.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000702
703 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingf85859d2009-07-20 02:29:24 +0000705 object if they are in the same shared object. Usually, hidden visibility
706 indicates that the symbol will not be placed into the dynamic symbol
707 table, so no other module (executable or shared library) can reference it
708 directly.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709
710 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingf85859d2009-07-20 02:29:24 +0000712 the dynamic symbol table, but that references within the defining module
713 will bind to the local symbol. That is, the symbol cannot be overridden by
714 another module.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715</dl>
716
717</div>
718
719<!-- ======================================================================= -->
720<div class="doc_subsection">
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000721 <a name="namedtypes">Named Types</a>
722</div>
723
724<div class="doc_text">
725
726<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingf85859d2009-07-20 02:29:24 +0000727 it easier to read the IR and make the IR more condensed (particularly when
728 recursive types are involved). An example of a name specification is:</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000729
730<div class="doc_code">
731<pre>
732%mytype = type { %mytype*, i32 }
733</pre>
734</div>
735
Bill Wendlingf85859d2009-07-20 02:29:24 +0000736<p>You may give a name to any <a href="#typesystem">type</a> except
737 "<a href="t_void">void</a>". Type name aliases may be used anywhere a type
738 is expected with the syntax "%mytype".</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000739
740<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingf85859d2009-07-20 02:29:24 +0000741 and that you can therefore specify multiple names for the same type. This
742 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
743 uses structural typing, the name is not part of the type. When printing out
744 LLVM IR, the printer will pick <em>one name</em> to render all types of a
745 particular shape. This means that if you have code where two different
746 source types end up having the same LLVM type, that the dumper will sometimes
747 print the "wrong" or unexpected type. This is an important design point and
748 isn't going to change.</p>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000749
750</div>
751
Chris Lattner5b6dc6e2009-01-11 20:53:49 +0000752<!-- ======================================================================= -->
753<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754 <a name="globalvars">Global Variables</a>
755</div>
756
757<div class="doc_text">
758
759<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingf85859d2009-07-20 02:29:24 +0000760 instead of run-time. Global variables may optionally be initialized, may
761 have an explicit section to be placed in, and may have an optional explicit
762 alignment specified. A variable may be defined as "thread_local", which
763 means that it will not be shared by threads (each thread will have a
764 separated copy of the variable). A variable may be defined as a global
765 "constant," which indicates that the contents of the variable
766 will <b>never</b> be modified (enabling better optimization, allowing the
767 global data to be placed in the read-only section of an executable, etc).
768 Note that variables that need runtime initialization cannot be marked
769 "constant" as there is a store to the variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770
Bill Wendlingf85859d2009-07-20 02:29:24 +0000771<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
772 constant, even if the final definition of the global is not. This capability
773 can be used to enable slightly better optimization of the program, but
774 requires the language definition to guarantee that optimizations based on the
775 'constantness' are valid for the translation units that do not include the
776 definition.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000777
Bill Wendlingf85859d2009-07-20 02:29:24 +0000778<p>As SSA values, global variables define pointer values that are in scope
779 (i.e. they dominate) all basic blocks in the program. Global variables
780 always define a pointer to their "content" type because they describe a
781 region of memory, and all memory objects in LLVM are accessed through
782 pointers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000783
Bill Wendlingf85859d2009-07-20 02:29:24 +0000784<p>A global variable may be declared to reside in a target-specific numbered
785 address space. For targets that support them, address spaces may affect how
786 optimizations are performed and/or what target instructions are used to
787 access the variable. The default address space is zero. The address space
788 qualifier must precede any other attributes.</p>
Christopher Lambdd0049d2007-12-11 09:31:00 +0000789
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingf85859d2009-07-20 02:29:24 +0000791 supports it, it will emit globals to the section specified.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792
793<p>An explicit alignment may be specified for a global. If not present, or if
Bill Wendlingf85859d2009-07-20 02:29:24 +0000794 the alignment is set to zero, the alignment of the global is set by the
795 target to whatever it feels convenient. If an explicit alignment is
796 specified, the global is forced to have at least that much alignment. All
797 alignments must be a power of 2.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000798
Bill Wendlingf85859d2009-07-20 02:29:24 +0000799<p>For example, the following defines a global in a numbered address space with
800 an initializer, section, and alignment:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000801
802<div class="doc_code">
803<pre>
Dan Gohman21ef02c2009-01-11 00:40:00 +0000804@G = addrspace(5) constant float 1.0, section "foo", align 4
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000805</pre>
806</div>
807
808</div>
809
810
811<!-- ======================================================================= -->
812<div class="doc_subsection">
813 <a name="functionstructure">Functions</a>
814</div>
815
816<div class="doc_text">
817
Bill Wendlingf85859d2009-07-20 02:29:24 +0000818<p>LLVM function definitions consist of the "<tt>define</tt>" keyord, an
819 optional <a href="#linkage">linkage type</a>, an optional
820 <a href="#visibility">visibility style</a>, an optional
821 <a href="#callingconv">calling convention</a>, a return type, an optional
822 <a href="#paramattrs">parameter attribute</a> for the return type, a function
823 name, a (possibly empty) argument list (each with optional
824 <a href="#paramattrs">parameter attributes</a>), optional
825 <a href="#fnattrs">function attributes</a>, an optional section, an optional
826 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
827 curly brace, a list of basic blocks, and a closing curly brace.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000828
Bill Wendlingf85859d2009-07-20 02:29:24 +0000829<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
830 optional <a href="#linkage">linkage type</a>, an optional
831 <a href="#visibility">visibility style</a>, an optional
832 <a href="#callingconv">calling convention</a>, a return type, an optional
833 <a href="#paramattrs">parameter attribute</a> for the return type, a function
834 name, a possibly empty list of arguments, an optional alignment, and an
835 optional <a href="#gc">garbage collector name</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000836
Chris Lattner96451482008-08-05 18:29:16 +0000837<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingf85859d2009-07-20 02:29:24 +0000838 (Control Flow Graph) for the function. Each basic block may optionally start
839 with a label (giving the basic block a symbol table entry), contains a list
840 of instructions, and ends with a <a href="#terminators">terminator</a>
841 instruction (such as a branch or function return).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000842
843<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingf85859d2009-07-20 02:29:24 +0000844 executed on entrance to the function, and it is not allowed to have
845 predecessor basic blocks (i.e. there can not be any branches to the entry
846 block of a function). Because the block can have no predecessors, it also
847 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000848
849<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingf85859d2009-07-20 02:29:24 +0000850 supports it, it will emit functions to the section specified.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000851
852<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingf85859d2009-07-20 02:29:24 +0000853 the alignment is set to zero, the alignment of the function is set by the
854 target to whatever it feels convenient. If an explicit alignment is
855 specified, the function is forced to have at least that much alignment. All
856 alignments must be a power of 2.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000857
Bill Wendling6ec40612009-07-20 02:39:26 +0000858<h5>Syntax:</h5>
Devang Pateld0bfcc72008-10-07 17:48:33 +0000859<div class="doc_code">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000860<pre>
Chris Lattner1e5c5cd02008-10-13 16:55:18 +0000861define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingf85859d2009-07-20 02:29:24 +0000862 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
863 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
864 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
865 [<a href="#gc">gc</a>] { ... }
866</pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +0000867</div>
868
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000869</div>
870
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871<!-- ======================================================================= -->
872<div class="doc_subsection">
873 <a name="aliasstructure">Aliases</a>
874</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000875
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000876<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +0000877
878<p>Aliases act as "second name" for the aliasee value (which can be either
879 function, global variable, another alias or bitcast of global value). Aliases
880 may have an optional <a href="#linkage">linkage type</a>, and an
881 optional <a href="#visibility">visibility style</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882
Bill Wendling6ec40612009-07-20 02:39:26 +0000883<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884<div class="doc_code">
885<pre>
Duncan Sandsd7bfabf2008-09-12 20:48:21 +0000886@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000887</pre>
888</div>
889
890</div>
891
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000892<!-- ======================================================================= -->
893<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894
Bill Wendlingf85859d2009-07-20 02:29:24 +0000895<div class="doc_text">
896
897<p>The return type and each parameter of a function type may have a set of
898 <i>parameter attributes</i> associated with them. Parameter attributes are
899 used to communicate additional information about the result or parameters of
900 a function. Parameter attributes are considered to be part of the function,
901 not of the function type, so functions with different parameter attributes
902 can have the same function type.</p>
903
904<p>Parameter attributes are simple keywords that follow the type specified. If
905 multiple parameter attributes are needed, they are space separated. For
906 example:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000907
908<div class="doc_code">
909<pre>
Nick Lewycky3022a742009-02-15 23:06:14 +0000910declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerf33b8452008-10-04 18:33:34 +0000911declare i32 @atoi(i8 zeroext)
912declare signext i8 @returns_signed_char()
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000913</pre>
914</div>
915
Bill Wendlingf85859d2009-07-20 02:29:24 +0000916<p>Note that any attributes for the function result (<tt>nounwind</tt>,
917 <tt>readonly</tt>) come immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000918
Bill Wendlingf85859d2009-07-20 02:29:24 +0000919<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner275e6be2008-01-11 06:20:47 +0000920
Bill Wendlingf85859d2009-07-20 02:29:24 +0000921<dl>
922 <dt><tt>zeroext</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000923 <dd>This indicates to the code generator that the parameter or return value
924 should be zero-extended to a 32-bit value by the caller (for a parameter)
925 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000926
Bill Wendlingf85859d2009-07-20 02:29:24 +0000927 <dt><tt>signext</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000928 <dd>This indicates to the code generator that the parameter or return value
929 should be sign-extended to a 32-bit value by the caller (for a parameter)
930 or the callee (for a return value).</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000931
Bill Wendlingf85859d2009-07-20 02:29:24 +0000932 <dt><tt>inreg</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000933 <dd>This indicates that this parameter or return value should be treated in a
934 special target-dependent fashion during while emitting code for a function
935 call or return (usually, by putting it in a register as opposed to memory,
936 though some targets use it to distinguish between two different kinds of
937 registers). Use of this attribute is target-specific.</dd>
Chris Lattner275e6be2008-01-11 06:20:47 +0000938
Bill Wendlingf85859d2009-07-20 02:29:24 +0000939 <dt><tt><a name="byval">byval</a></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000940 <dd>This indicates that the pointer parameter should really be passed by value
941 to the function. The attribute implies that a hidden copy of the pointee
942 is made between the caller and the callee, so the callee is unable to
943 modify the value in the callee. This attribute is only valid on LLVM
944 pointer arguments. It is generally used to pass structs and arrays by
945 value, but is also valid on pointers to scalars. The copy is considered
946 to belong to the caller not the callee (for example,
947 <tt><a href="#readonly">readonly</a></tt> functions should not write to
948 <tt>byval</tt> parameters). This is not a valid attribute for return
949 values. The byval attribute also supports specifying an alignment with
950 the align attribute. This has a target-specific effect on the code
951 generator that usually indicates a desired alignment for the synthesized
952 stack slot.</dd>
953
954 <dt><tt>sret</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000955 <dd>This indicates that the pointer parameter specifies the address of a
956 structure that is the return value of the function in the source program.
957 This pointer must be guaranteed by the caller to be valid: loads and
958 stores to the structure may be assumed by the callee to not to trap. This
959 may only be applied to the first parameter. This is not a valid attribute
960 for return values. </dd>
961
962 <dt><tt>noalias</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000963 <dd>This indicates that the pointer does not alias any global or any other
964 parameter. The caller is responsible for ensuring that this is the
965 case. On a function return value, <tt>noalias</tt> additionally indicates
966 that the pointer does not alias any other pointers visible to the
967 caller. For further details, please see the discussion of the NoAlias
968 response in
969 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
970 analysis</a>.</dd>
971
972 <dt><tt>nocapture</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000973 <dd>This indicates that the callee does not make any copies of the pointer
974 that outlive the callee itself. This is not a valid attribute for return
975 values.</dd>
976
977 <dt><tt>nest</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +0000978 <dd>This indicates that the pointer parameter can be excised using the
979 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
980 attribute for return values.</dd>
981</dl>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982
983</div>
984
985<!-- ======================================================================= -->
986<div class="doc_subsection">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000987 <a name="gc">Garbage Collector Names</a>
988</div>
989
990<div class="doc_text">
Gordon Henriksen13fe5e32007-12-10 03:18:06 +0000991
Bill Wendlingf85859d2009-07-20 02:29:24 +0000992<p>Each function may specify a garbage collector name, which is simply a
993 string:</p>
994
995<div class="doc_code">
996<pre>
997define void @f() gc "name" { ...
998</pre>
999</div>
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001000
1001<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingf85859d2009-07-20 02:29:24 +00001002 collector which will cause the compiler to alter its output in order to
1003 support the named garbage collection algorithm.</p>
1004
Gordon Henriksen13fe5e32007-12-10 03:18:06 +00001005</div>
1006
1007<!-- ======================================================================= -->
1008<div class="doc_subsection">
Devang Patel008cd3e2008-09-26 23:51:19 +00001009 <a name="fnattrs">Function Attributes</a>
Devang Pateld468f1c2008-09-04 23:05:13 +00001010</div>
1011
1012<div class="doc_text">
Devang Patel008cd3e2008-09-26 23:51:19 +00001013
Bill Wendlingf85859d2009-07-20 02:29:24 +00001014<p>Function attributes are set to communicate additional information about a
1015 function. Function attributes are considered to be part of the function, not
1016 of the function type, so functions with different parameter attributes can
1017 have the same function type.</p>
Devang Patel008cd3e2008-09-26 23:51:19 +00001018
Bill Wendlingf85859d2009-07-20 02:29:24 +00001019<p>Function attributes are simple keywords that follow the type specified. If
1020 multiple attributes are needed, they are space separated. For example:</p>
Devang Pateld468f1c2008-09-04 23:05:13 +00001021
1022<div class="doc_code">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001023<pre>
Devang Patel008cd3e2008-09-26 23:51:19 +00001024define void @f() noinline { ... }
1025define void @f() alwaysinline { ... }
1026define void @f() alwaysinline optsize { ... }
1027define void @f() optsize
Bill Wendling74d3eac2008-09-07 10:26:33 +00001028</pre>
Devang Pateld468f1c2008-09-04 23:05:13 +00001029</div>
1030
Bill Wendling74d3eac2008-09-07 10:26:33 +00001031<dl>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001032 <dt><tt>alwaysinline</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001033 <dd>This attribute indicates that the inliner should attempt to inline this
1034 function into callers whenever possible, ignoring any active inlining size
1035 threshold for this caller.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +00001036
Bill Wendlingf85859d2009-07-20 02:29:24 +00001037 <dt><tt>noinline</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001038 <dd>This attribute indicates that the inliner should never inline this
1039 function in any situation. This attribute may not be used together with
1040 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +00001041
Bill Wendlingf85859d2009-07-20 02:29:24 +00001042 <dt><tt>optsize</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001043 <dd>This attribute suggests that optimization passes and code generator passes
1044 make choices that keep the code size of this function low, and otherwise
1045 do optimizations specifically to reduce code size.</dd>
Devang Patel008cd3e2008-09-26 23:51:19 +00001046
Bill Wendlingf85859d2009-07-20 02:29:24 +00001047 <dt><tt>noreturn</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001048 <dd>This function attribute indicates that the function never returns
1049 normally. This produces undefined behavior at runtime if the function
1050 ever does dynamically return.</dd>
Bill Wendlingdfaabba2008-11-13 01:02:51 +00001051
Bill Wendlingf85859d2009-07-20 02:29:24 +00001052 <dt><tt>nounwind</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001053 <dd>This function attribute indicates that the function never returns with an
1054 unwind or exceptional control flow. If the function does unwind, its
1055 runtime behavior is undefined.</dd>
Bill Wendlingbe9ec3f2008-11-26 19:07:40 +00001056
Bill Wendlingf85859d2009-07-20 02:29:24 +00001057 <dt><tt>readnone</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001058 <dd>This attribute indicates that the function computes its result (or decides
1059 to unwind an exception) based strictly on its arguments, without
1060 dereferencing any pointer arguments or otherwise accessing any mutable
1061 state (e.g. memory, control registers, etc) visible to caller functions.
1062 It does not write through any pointer arguments
1063 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1064 changes any state visible to callers. This means that it cannot unwind
1065 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1066 could use the <tt>unwind</tt> instruction.</dd>
Devang Patela2f9f412009-06-12 19:45:19 +00001067
Bill Wendlingf85859d2009-07-20 02:29:24 +00001068 <dt><tt><a name="readonly">readonly</a></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001069 <dd>This attribute indicates that the function does not write through any
1070 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1071 arguments) or otherwise modify any state (e.g. memory, control registers,
1072 etc) visible to caller functions. It may dereference pointer arguments
1073 and read state that may be set in the caller. A readonly function always
1074 returns the same value (or unwinds an exception identically) when called
1075 with the same set of arguments and global state. It cannot unwind an
1076 exception by calling the <tt>C++</tt> exception throwing methods, but may
1077 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovedd7d112009-07-17 18:07:26 +00001078
Bill Wendlingf85859d2009-07-20 02:29:24 +00001079 <dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001080 <dd>This attribute indicates that the function should emit a stack smashing
1081 protector. It is in the form of a "canary"&mdash;a random value placed on
1082 the stack before the local variables that's checked upon return from the
1083 function to see if it has been overwritten. A heuristic is used to
1084 determine if a function needs stack protectors or not.<br>
1085<br>
1086 If a function that has an <tt>ssp</tt> attribute is inlined into a
1087 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1088 function will have an <tt>ssp</tt> attribute.</dd>
1089
1090 <dt><tt>sspreq</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001091 <dd>This attribute indicates that the function should <em>always</em> emit a
1092 stack smashing protector. This overrides
Bill Wendling6ec40612009-07-20 02:39:26 +00001093 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1094<br>
1095 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1096 function that doesn't have an <tt>sspreq</tt> attribute or which has
1097 an <tt>ssp</tt> attribute, then the resulting function will have
1098 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001099
1100 <dt><tt>noredzone</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001101 <dd>This attribute indicates that the code generator should not use a red
1102 zone, even if the target-specific ABI normally permits it.</dd>
1103
1104 <dt><tt>noimplicitfloat</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001105 <dd>This attributes disables implicit floating point instructions.</dd>
1106
1107 <dt><tt>naked</tt></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001108 <dd>This attribute disables prologue / epilogue emission for the function.
1109 This can have very system-specific consequences.</dd>
Bill Wendling74d3eac2008-09-07 10:26:33 +00001110</dl>
1111
Devang Pateld468f1c2008-09-04 23:05:13 +00001112</div>
1113
1114<!-- ======================================================================= -->
1115<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116 <a name="moduleasm">Module-Level Inline Assembly</a>
1117</div>
1118
1119<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001120
1121<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1122 the GCC "file scope inline asm" blocks. These blocks are internally
1123 concatenated by LLVM and treated as a single unit, but may be separated in
1124 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001125
1126<div class="doc_code">
1127<pre>
1128module asm "inline asm code goes here"
1129module asm "more can go here"
1130</pre>
1131</div>
1132
1133<p>The strings can contain any character by escaping non-printable characters.
1134 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingf85859d2009-07-20 02:29:24 +00001135 for the number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001136
Bill Wendlingf85859d2009-07-20 02:29:24 +00001137<p>The inline asm code is simply printed to the machine code .s file when
1138 assembly code is generated.</p>
1139
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001140</div>
1141
1142<!-- ======================================================================= -->
1143<div class="doc_subsection">
1144 <a name="datalayout">Data Layout</a>
1145</div>
1146
1147<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001148
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001149<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingf85859d2009-07-20 02:29:24 +00001150 data is to be laid out in memory. The syntax for the data layout is
1151 simply:</p>
1152
1153<div class="doc_code">
1154<pre>
1155target datalayout = "<i>layout specification</i>"
1156</pre>
1157</div>
1158
1159<p>The <i>layout specification</i> consists of a list of specifications
1160 separated by the minus sign character ('-'). Each specification starts with
1161 a letter and may include other information after the letter to define some
1162 aspect of the data layout. The specifications accepted are as follows:</p>
1163
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001164<dl>
1165 <dt><tt>E</tt></dt>
1166 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001167 bits with the most significance have the lowest address location.</dd>
1168
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001169 <dt><tt>e</tt></dt>
Chris Lattner96451482008-08-05 18:29:16 +00001170 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingf85859d2009-07-20 02:29:24 +00001171 the bits with the least significance have the lowest address
1172 location.</dd>
1173
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001174 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1175 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingf85859d2009-07-20 02:29:24 +00001176 <i>preferred</i> alignments. All sizes are in bits. Specifying
1177 the <i>pref</i> alignment is optional. If omitted, the
1178 preceding <tt>:</tt> should be omitted too.</dd>
1179
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001180 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1181 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001182 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1183
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001184 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1185 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001186 <i>size</i>.</dd>
1187
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001188 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1189 <dd>This specifies the alignment for a floating point type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001190 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1191 (double).</dd>
1192
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001193 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1194 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001195 <i>size</i>.</dd>
1196
Daniel Dunbard88a97b2009-06-08 22:17:53 +00001197 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1198 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00001199 <i>size</i>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001200</dl>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001202<p>When constructing the data layout for a given target, LLVM starts with a
Bill Wendlingf85859d2009-07-20 02:29:24 +00001203 default set of specifications which are then (possibly) overriden by the
1204 specifications in the <tt>datalayout</tt> keyword. The default specifications
1205 are given in this list:</p>
1206
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001207<ul>
1208 <li><tt>E</tt> - big endian</li>
1209 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1210 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1211 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1212 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1213 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner96451482008-08-05 18:29:16 +00001214 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001215 alignment of 64-bits</li>
1216 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1217 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1218 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1219 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1220 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbard88a97b2009-06-08 22:17:53 +00001221 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222</ul>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001223
1224<p>When LLVM is determining the alignment for a given type, it uses the
1225 following rules:</p>
1226
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227<ol>
1228 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingf85859d2009-07-20 02:29:24 +00001229 specification is used.</li>
1230
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001231 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001232 smallest integer type that is larger than the bitwidth of the sought type
1233 is used. If none of the specifications are larger than the bitwidth then
1234 the the largest integer type is used. For example, given the default
1235 specifications above, the i7 type will use the alignment of i8 (next
1236 largest) while both i65 and i256 will use the alignment of i64 (largest
1237 specified).</li>
1238
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001239 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001240 largest vector type that is smaller than the sought vector type will be
1241 used as a fall back. This happens because &lt;128 x double&gt; can be
1242 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001243</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001244
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001245</div>
1246
Dan Gohman27b47012009-07-27 18:07:55 +00001247<!-- ======================================================================= -->
1248<div class="doc_subsection">
1249 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1250</div>
1251
1252<div class="doc_text">
1253
Andreas Bolka11fbf432009-07-29 00:02:05 +00001254<p>Any memory access must be done through a pointer value associated
Andreas Bolka23bece42009-07-27 20:37:10 +00001255with an address range of the memory access, otherwise the behavior
Dan Gohman27b47012009-07-27 18:07:55 +00001256is undefined. Pointer values are associated with address ranges
1257according to the following rules:</p>
1258
1259<ul>
Andreas Bolka11fbf432009-07-29 00:02:05 +00001260 <li>A pointer value formed from a
1261 <tt><a href="#i_getelementptr">getelementptr</a></tt> instruction
1262 is associated with the addresses associated with the first operand
1263 of the <tt>getelementptr</tt>.</li>
1264 <li>An address of a global variable is associated with the address
Dan Gohman27b47012009-07-27 18:07:55 +00001265 range of the variable's storage.</li>
1266 <li>The result value of an allocation instruction is associated with
1267 the address range of the allocated storage.</li>
1268 <li>A null pointer in the default address-space is associated with
Andreas Bolka11fbf432009-07-29 00:02:05 +00001269 no address.</li>
1270 <li>A pointer value formed by an
1271 <tt><a href="#i_inttoptr">inttoptr</a></tt> is associated with all
1272 address ranges of all pointer values that contribute (directly or
1273 indirectly) to the computation of the pointer's value.</li>
1274 <li>The result value of a
1275 <tt><a href="#i_bitcast">bitcast</a></tt> is associated with all
Dan Gohman27b47012009-07-27 18:07:55 +00001276 addresses associated with the operand of the <tt>bitcast</tt>.</li>
1277 <li>An integer constant other than zero or a pointer value returned
1278 from a function not defined within LLVM may be associated with address
1279 ranges allocated through mechanisms other than those provided by
Andreas Bolka11fbf432009-07-29 00:02:05 +00001280 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman27b47012009-07-27 18:07:55 +00001281 allocated by mechanisms provided by LLVM.</li>
1282 </ul>
1283
1284<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka11fbf432009-07-29 00:02:05 +00001285<tt><a href="#i_load">load</a></tt> merely indicates the size and
1286alignment of the memory from which to load, as well as the
1287interpretation of the value. The first operand of a
1288<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1289and alignment of the store.</p>
Dan Gohman27b47012009-07-27 18:07:55 +00001290
1291<p>Consequently, type-based alias analysis, aka TBAA, aka
1292<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1293LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1294additional information which specialized optimization passes may use
1295to implement type-based alias analysis.</p>
1296
1297</div>
1298
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001299<!-- *********************************************************************** -->
1300<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1301<!-- *********************************************************************** -->
1302
1303<div class="doc_text">
1304
1305<p>The LLVM type system is one of the most important features of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00001306 intermediate representation. Being typed enables a number of optimizations
1307 to be performed on the intermediate representation directly, without having
1308 to do extra analyses on the side before the transformation. A strong type
1309 system makes it easier to read the generated code and enables novel analyses
1310 and transformations that are not feasible to perform on normal three address
1311 code representations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001312
1313</div>
1314
1315<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001316<div class="doc_subsection"> <a name="t_classifications">Type
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001317Classifications</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001318
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001319<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001320
1321<p>The types fall into a few useful classifications:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001322
1323<table border="1" cellspacing="0" cellpadding="4">
1324 <tbody>
1325 <tr><th>Classification</th><th>Types</th></tr>
1326 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001327 <td><a href="#t_integer">integer</a></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001328 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1329 </tr>
1330 <tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001331 <td><a href="#t_floating">floating point</a></td>
1332 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001333 </tr>
1334 <tr>
1335 <td><a name="t_firstclass">first class</a></td>
Chris Lattner488772f2008-01-04 04:32:38 +00001336 <td><a href="#t_integer">integer</a>,
1337 <a href="#t_floating">floating point</a>,
1338 <a href="#t_pointer">pointer</a>,
Dan Gohmanf6237db2008-06-18 18:42:13 +00001339 <a href="#t_vector">vector</a>,
Dan Gohman74d6faf2008-05-12 23:51:09 +00001340 <a href="#t_struct">structure</a>,
1341 <a href="#t_array">array</a>,
Nick Lewycky29aaef82009-05-30 05:06:04 +00001342 <a href="#t_label">label</a>,
1343 <a href="#t_metadata">metadata</a>.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344 </td>
1345 </tr>
Chris Lattner488772f2008-01-04 04:32:38 +00001346 <tr>
1347 <td><a href="#t_primitive">primitive</a></td>
1348 <td><a href="#t_label">label</a>,
1349 <a href="#t_void">void</a>,
Nick Lewycky29aaef82009-05-30 05:06:04 +00001350 <a href="#t_floating">floating point</a>,
1351 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner488772f2008-01-04 04:32:38 +00001352 </tr>
1353 <tr>
1354 <td><a href="#t_derived">derived</a></td>
1355 <td><a href="#t_integer">integer</a>,
1356 <a href="#t_array">array</a>,
1357 <a href="#t_function">function</a>,
1358 <a href="#t_pointer">pointer</a>,
1359 <a href="#t_struct">structure</a>,
1360 <a href="#t_pstruct">packed structure</a>,
1361 <a href="#t_vector">vector</a>,
1362 <a href="#t_opaque">opaque</a>.
Dan Gohman032ba852008-10-14 16:32:04 +00001363 </td>
Chris Lattner488772f2008-01-04 04:32:38 +00001364 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001365 </tbody>
1366</table>
1367
Bill Wendlingf85859d2009-07-20 02:29:24 +00001368<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1369 important. Values of these types are the only ones which can be produced by
1370 instructions, passed as arguments, or used as operands to instructions.</p>
1371
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001372</div>
1373
1374<!-- ======================================================================= -->
Chris Lattner488772f2008-01-04 04:32:38 +00001375<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner86437612008-01-04 04:34:14 +00001376
Chris Lattner488772f2008-01-04 04:32:38 +00001377<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001378
Chris Lattner488772f2008-01-04 04:32:38 +00001379<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingf85859d2009-07-20 02:29:24 +00001380 system.</p>
Chris Lattner488772f2008-01-04 04:32:38 +00001381
Chris Lattner86437612008-01-04 04:34:14 +00001382</div>
1383
Chris Lattner488772f2008-01-04 04:32:38 +00001384<!-- _______________________________________________________________________ -->
1385<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1386
1387<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001388
1389<table>
1390 <tbody>
1391 <tr><th>Type</th><th>Description</th></tr>
1392 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1393 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1394 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1395 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1396 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1397 </tbody>
1398</table>
1399
Chris Lattner488772f2008-01-04 04:32:38 +00001400</div>
1401
1402<!-- _______________________________________________________________________ -->
1403<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1404
1405<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001406
Chris Lattner488772f2008-01-04 04:32:38 +00001407<h5>Overview:</h5>
1408<p>The void type does not represent any value and has no size.</p>
1409
1410<h5>Syntax:</h5>
Chris Lattner488772f2008-01-04 04:32:38 +00001411<pre>
1412 void
1413</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001414
Chris Lattner488772f2008-01-04 04:32:38 +00001415</div>
1416
1417<!-- _______________________________________________________________________ -->
1418<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1419
1420<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001421
Chris Lattner488772f2008-01-04 04:32:38 +00001422<h5>Overview:</h5>
1423<p>The label type represents code labels.</p>
1424
1425<h5>Syntax:</h5>
Chris Lattner488772f2008-01-04 04:32:38 +00001426<pre>
1427 label
1428</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001429
Chris Lattner488772f2008-01-04 04:32:38 +00001430</div>
1431
Nick Lewycky29aaef82009-05-30 05:06:04 +00001432<!-- _______________________________________________________________________ -->
1433<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1434
1435<div class="doc_text">
Bill Wendling6ec40612009-07-20 02:39:26 +00001436
Nick Lewycky29aaef82009-05-30 05:06:04 +00001437<h5>Overview:</h5>
1438<p>The metadata type represents embedded metadata. The only derived type that
Bill Wendlingf85859d2009-07-20 02:29:24 +00001439 may contain metadata is <tt>metadata*</tt> or a function type that returns or
1440 takes metadata typed parameters, but not pointer to metadata types.</p>
Nick Lewycky29aaef82009-05-30 05:06:04 +00001441
1442<h5>Syntax:</h5>
Nick Lewycky29aaef82009-05-30 05:06:04 +00001443<pre>
1444 metadata
1445</pre>
Bill Wendling6ec40612009-07-20 02:39:26 +00001446
Nick Lewycky29aaef82009-05-30 05:06:04 +00001447</div>
1448
Chris Lattner488772f2008-01-04 04:32:38 +00001449
1450<!-- ======================================================================= -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001451<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1452
1453<div class="doc_text">
1454
Bill Wendlingf85859d2009-07-20 02:29:24 +00001455<p>The real power in LLVM comes from the derived types in the system. This is
1456 what allows a programmer to represent arrays, functions, pointers, and other
1457 useful types. Note that these derived types may be recursive: For example,
1458 it is possible to have a two dimensional array.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459
1460</div>
1461
1462<!-- _______________________________________________________________________ -->
1463<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1464
1465<div class="doc_text">
1466
1467<h5>Overview:</h5>
1468<p>The integer type is a very simple derived type that simply specifies an
Bill Wendlingf85859d2009-07-20 02:29:24 +00001469 arbitrary bit width for the integer type desired. Any bit width from 1 bit to
1470 2^23-1 (about 8 million) can be specified.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001471
1472<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473<pre>
1474 iN
1475</pre>
1476
1477<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001478 value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001479
1480<h5>Examples:</h5>
1481<table class="layout">
Nick Lewycky39382d62009-05-24 02:46:06 +00001482 <tr class="layout">
1483 <td class="left"><tt>i1</tt></td>
1484 <td class="left">a single-bit integer.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001485 </tr>
Nick Lewycky39382d62009-05-24 02:46:06 +00001486 <tr class="layout">
1487 <td class="left"><tt>i32</tt></td>
1488 <td class="left">a 32-bit integer.</td>
1489 </tr>
1490 <tr class="layout">
1491 <td class="left"><tt>i1942652</tt></td>
1492 <td class="left">a really big integer of over 1 million bits.</td>
1493 </tr>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494</table>
djge93155c2009-01-24 15:58:40 +00001495
Bill Wendlingf85859d2009-07-20 02:29:24 +00001496<p>Note that the code generator does not yet support large integer types to be
1497 used as function return types. The specific limit on how large a return type
1498 the code generator can currently handle is target-dependent; currently it's
1499 often 64 bits for 32-bit targets and 128 bits for 64-bit targets.</p>
djge93155c2009-01-24 15:58:40 +00001500
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501</div>
1502
1503<!-- _______________________________________________________________________ -->
1504<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1505
1506<div class="doc_text">
1507
1508<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001509<p>The array type is a very simple derived type that arranges elements
Bill Wendlingf85859d2009-07-20 02:29:24 +00001510 sequentially in memory. The array type requires a size (number of elements)
1511 and an underlying data type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512
1513<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001514<pre>
1515 [&lt;# elements&gt; x &lt;elementtype&gt;]
1516</pre>
1517
Bill Wendlingf85859d2009-07-20 02:29:24 +00001518<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1519 be any type with a size.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520
1521<h5>Examples:</h5>
1522<table class="layout">
1523 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001524 <td class="left"><tt>[40 x i32]</tt></td>
1525 <td class="left">Array of 40 32-bit integer values.</td>
1526 </tr>
1527 <tr class="layout">
1528 <td class="left"><tt>[41 x i32]</tt></td>
1529 <td class="left">Array of 41 32-bit integer values.</td>
1530 </tr>
1531 <tr class="layout">
1532 <td class="left"><tt>[4 x i8]</tt></td>
1533 <td class="left">Array of 4 8-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001534 </tr>
1535</table>
1536<p>Here are some examples of multidimensional arrays:</p>
1537<table class="layout">
1538 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001539 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1540 <td class="left">3x4 array of 32-bit integer values.</td>
1541 </tr>
1542 <tr class="layout">
1543 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1544 <td class="left">12x10 array of single precision floating point values.</td>
1545 </tr>
1546 <tr class="layout">
1547 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1548 <td class="left">2x3x4 array of 16-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001549 </tr>
1550</table>
1551
Bill Wendlingf85859d2009-07-20 02:29:24 +00001552<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1553 length array. Normally, accesses past the end of an array are undefined in
1554 LLVM (e.g. it is illegal to access the 5th element of a 3 element array). As
1555 a special case, however, zero length arrays are recognized to be variable
1556 length. This allows implementation of 'pascal style arrays' with the LLVM
1557 type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001558
Bill Wendlingf85859d2009-07-20 02:29:24 +00001559<p>Note that the code generator does not yet support large aggregate types to be
1560 used as function return types. The specific limit on how large an aggregate
1561 return type the code generator can currently handle is target-dependent, and
1562 also dependent on the aggregate element types.</p>
djge93155c2009-01-24 15:58:40 +00001563
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001564</div>
1565
1566<!-- _______________________________________________________________________ -->
1567<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001568
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001569<div class="doc_text">
Chris Lattner43030e72008-04-23 04:59:35 +00001570
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001571<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001572<p>The function type can be thought of as a function signature. It consists of
1573 a return type and a list of formal parameter types. The return type of a
1574 function type is a scalar type, a void type, or a struct type. If the return
1575 type is a struct type then all struct elements must be of first class types,
1576 and the struct must have at least one element.</p>
Devang Patela3cc5372008-03-10 20:49:15 +00001577
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001578<h5>Syntax:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00001579<pre>
1580 &lt;returntype list&gt; (&lt;parameter list&gt;)
1581</pre>
1582
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingf85859d2009-07-20 02:29:24 +00001584 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1585 which indicates that the function takes a variable number of arguments.
1586 Variable argument functions can access their arguments with
1587 the <a href="#int_varargs">variable argument handling intrinsic</a>
1588 functions. '<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1589 <a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00001590
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001591<h5>Examples:</h5>
1592<table class="layout">
1593 <tr class="layout">
1594 <td class="left"><tt>i32 (i32)</tt></td>
1595 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1596 </td>
1597 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001598 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001599 </tt></td>
1600 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1601 an <tt>i16</tt> that should be sign extended and a
1602 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1603 <tt>float</tt>.
1604 </td>
1605 </tr><tr class="layout">
1606 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1607 <td class="left">A vararg function that takes at least one
1608 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1609 which returns an integer. This is the signature for <tt>printf</tt> in
1610 LLVM.
1611 </td>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001612 </tr><tr class="layout">
1613 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanafc88b02008-11-27 06:41:20 +00001614 <td class="left">A function taking an <tt>i32</tt>, returning two
1615 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Pateld4ba41d2008-03-24 05:35:41 +00001616 </td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001617 </tr>
1618</table>
1619
1620</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001621
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001622<!-- _______________________________________________________________________ -->
1623<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001624
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001625<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001626
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001627<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001628<p>The structure type is used to represent a collection of data members together
1629 in memory. The packing of the field types is defined to match the ABI of the
1630 underlying processor. The elements of a structure may be any type that has a
1631 size.</p>
1632
1633<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1634 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1635 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1636
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001637<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001638<pre>
1639 { &lt;type list&gt; }
1640</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001641
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001642<h5>Examples:</h5>
1643<table class="layout">
1644 <tr class="layout">
1645 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1646 <td class="left">A triple of three <tt>i32</tt> values</td>
1647 </tr><tr class="layout">
1648 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1649 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1650 second element is a <a href="#t_pointer">pointer</a> to a
1651 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1652 an <tt>i32</tt>.</td>
1653 </tr>
1654</table>
djge93155c2009-01-24 15:58:40 +00001655
Bill Wendlingf85859d2009-07-20 02:29:24 +00001656<p>Note that the code generator does not yet support large aggregate types to be
1657 used as function return types. The specific limit on how large an aggregate
1658 return type the code generator can currently handle is target-dependent, and
1659 also dependent on the aggregate element types.</p>
djge93155c2009-01-24 15:58:40 +00001660
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001661</div>
1662
1663<!-- _______________________________________________________________________ -->
1664<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1665</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001666
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001667<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001668
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669<h5>Overview:</h5>
1670<p>The packed structure type is used to represent a collection of data members
Bill Wendlingf85859d2009-07-20 02:29:24 +00001671 together in memory. There is no padding between fields. Further, the
1672 alignment of a packed structure is 1 byte. The elements of a packed
1673 structure may be any type that has a size.</p>
1674
1675<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1676 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1677 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001679<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001680<pre>
1681 &lt; { &lt;type list&gt; } &gt;
1682</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001683
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684<h5>Examples:</h5>
1685<table class="layout">
1686 <tr class="layout">
1687 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1688 <td class="left">A triple of three <tt>i32</tt> values</td>
1689 </tr><tr class="layout">
Bill Wendling74d3eac2008-09-07 10:26:33 +00001690 <td class="left">
1691<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001692 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1693 second element is a <a href="#t_pointer">pointer</a> to a
1694 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1695 an <tt>i32</tt>.</td>
1696 </tr>
1697</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001698
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699</div>
1700
1701<!-- _______________________________________________________________________ -->
1702<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Chris Lattner96edbd32009-02-08 19:53:29 +00001703
Bill Wendlingf85859d2009-07-20 02:29:24 +00001704<div class="doc_text">
1705
1706<h5>Overview:</h5>
1707<p>As in many languages, the pointer type represents a pointer or reference to
1708 another object, which must live in memory. Pointer types may have an optional
1709 address space attribute defining the target-specific numbered address space
1710 where the pointed-to object resides. The default address space is zero.</p>
1711
1712<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1713 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner96edbd32009-02-08 19:53:29 +00001714
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001715<h5>Syntax:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00001716<pre>
1717 &lt;type&gt; *
1718</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001719
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001720<h5>Examples:</h5>
1721<table class="layout">
1722 <tr class="layout">
Dan Gohman01852382009-01-04 23:44:43 +00001723 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner7311d222007-12-19 05:04:11 +00001724 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1725 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1726 </tr>
1727 <tr class="layout">
1728 <td class="left"><tt>i32 (i32 *) *</tt></td>
1729 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001730 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner7311d222007-12-19 05:04:11 +00001731 <tt>i32</tt>.</td>
1732 </tr>
1733 <tr class="layout">
1734 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1735 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1736 that resides in address space #5.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001737 </tr>
1738</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001739
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001740</div>
1741
1742<!-- _______________________________________________________________________ -->
1743<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001744
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001745<div class="doc_text">
1746
1747<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001748<p>A vector type is a simple derived type that represents a vector of elements.
1749 Vector types are used when multiple primitive data are operated in parallel
1750 using a single instruction (SIMD). A vector type requires a size (number of
1751 elements) and an underlying primitive data type. Vectors must have a power
1752 of two length (1, 2, 4, 8, 16 ...). Vector types are considered
1753 <a href="#t_firstclass">first class</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754
1755<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001756<pre>
1757 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1758</pre>
1759
Bill Wendlingf85859d2009-07-20 02:29:24 +00001760<p>The number of elements is a constant integer value; elementtype may be any
1761 integer or floating point type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762
1763<h5>Examples:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001764<table class="layout">
1765 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001766 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1767 <td class="left">Vector of 4 32-bit integer values.</td>
1768 </tr>
1769 <tr class="layout">
1770 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1771 <td class="left">Vector of 8 32-bit floating-point values.</td>
1772 </tr>
1773 <tr class="layout">
1774 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1775 <td class="left">Vector of 2 64-bit integer values.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001776 </tr>
1777</table>
djge93155c2009-01-24 15:58:40 +00001778
Bill Wendlingf85859d2009-07-20 02:29:24 +00001779<p>Note that the code generator does not yet support large vector types to be
1780 used as function return types. The specific limit on how large a vector
1781 return type codegen can currently handle is target-dependent; currently it's
1782 often a few times longer than a hardware vector register.</p>
djge93155c2009-01-24 15:58:40 +00001783
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784</div>
1785
1786<!-- _______________________________________________________________________ -->
1787<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1788<div class="doc_text">
1789
1790<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00001792 corresponds (for example) to the C notion of a forward declared structure
1793 type. In LLVM, opaque types can eventually be resolved to any type (not just
1794 a structure type).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001795
1796<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797<pre>
1798 opaque
1799</pre>
1800
1801<h5>Examples:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001802<table class="layout">
1803 <tr class="layout">
Chris Lattner7311d222007-12-19 05:04:11 +00001804 <td class="left"><tt>opaque</tt></td>
1805 <td class="left">An opaque type.</td>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001806 </tr>
1807</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001808
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001809</div>
1810
Chris Lattner515195a2009-02-02 07:32:36 +00001811<!-- ======================================================================= -->
1812<div class="doc_subsection">
1813 <a name="t_uprefs">Type Up-references</a>
1814</div>
1815
1816<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001817
Chris Lattner515195a2009-02-02 07:32:36 +00001818<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001819<p>An "up reference" allows you to refer to a lexically enclosing type without
1820 requiring it to have a name. For instance, a structure declaration may
1821 contain a pointer to any of the types it is lexically a member of. Example
1822 of up references (with their equivalent as named type declarations)
1823 include:</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001824
1825<pre>
Chris Lattner5ad632d2009-02-09 10:00:56 +00001826 { \2 * } %x = type { %x* }
Chris Lattner515195a2009-02-02 07:32:36 +00001827 { \2 }* %y = type { %y }*
1828 \1* %z = type %z*
1829</pre>
1830
Bill Wendlingf85859d2009-07-20 02:29:24 +00001831<p>An up reference is needed by the asmprinter for printing out cyclic types
1832 when there is no declared name for a type in the cycle. Because the
1833 asmprinter does not want to print out an infinite type string, it needs a
1834 syntax to handle recursive types that have no names (all names are optional
1835 in llvm IR).</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001836
1837<h5>Syntax:</h5>
1838<pre>
1839 \&lt;level&gt;
1840</pre>
1841
Bill Wendlingf85859d2009-07-20 02:29:24 +00001842<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattner515195a2009-02-02 07:32:36 +00001843
1844<h5>Examples:</h5>
Chris Lattner515195a2009-02-02 07:32:36 +00001845<table class="layout">
1846 <tr class="layout">
1847 <td class="left"><tt>\1*</tt></td>
1848 <td class="left">Self-referential pointer.</td>
1849 </tr>
1850 <tr class="layout">
1851 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1852 <td class="left">Recursive structure where the upref refers to the out-most
1853 structure.</td>
1854 </tr>
1855</table>
Chris Lattner515195a2009-02-02 07:32:36 +00001856
Bill Wendlingf85859d2009-07-20 02:29:24 +00001857</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001858
1859<!-- *********************************************************************** -->
1860<div class="doc_section"> <a name="constants">Constants</a> </div>
1861<!-- *********************************************************************** -->
1862
1863<div class="doc_text">
1864
1865<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingf85859d2009-07-20 02:29:24 +00001866 them all and their syntax.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001867
1868</div>
1869
1870<!-- ======================================================================= -->
1871<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1872
1873<div class="doc_text">
1874
1875<dl>
1876 <dt><b>Boolean constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Bill Wendlingf85859d2009-07-20 02:29:24 +00001878 constants of the <tt><a href="#t_primitive">i1</a></tt> type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001879
1880 <dt><b>Integer constants</b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00001881 <dd>Standard integers (such as '4') are constants of
1882 the <a href="#t_integer">integer</a> type. Negative numbers may be used
1883 with integer types.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001884
1885 <dt><b>Floating point constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001886 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingf85859d2009-07-20 02:29:24 +00001887 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1888 notation (see below). The assembler requires the exact decimal value of a
1889 floating-point constant. For example, the assembler accepts 1.25 but
1890 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1891 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001892
1893 <dt><b>Null pointer constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001894 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingf85859d2009-07-20 02:29:24 +00001895 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896</dl>
1897
Bill Wendlingf85859d2009-07-20 02:29:24 +00001898<p>The one non-intuitive notation for constants is the hexadecimal form of
1899 floating point constants. For example, the form '<tt>double
1900 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
1901 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
1902 constants are required (and the only time that they are generated by the
1903 disassembler) is when a floating point constant must be emitted but it cannot
1904 be represented as a decimal floating point number in a reasonable number of
1905 digits. For example, NaN's, infinities, and other special values are
1906 represented in their IEEE hexadecimal format so that assembly and disassembly
1907 do not cause any bits to change in the constants.</p>
1908
Dale Johannesenf82a52f2009-02-11 22:14:51 +00001909<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingf85859d2009-07-20 02:29:24 +00001910 represented using the 16-digit form shown above (which matches the IEEE754
1911 representation for double); float values must, however, be exactly
1912 representable as IEE754 single precision. Hexadecimal format is always used
1913 for long double, and there are three forms of long double. The 80-bit format
1914 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
1915 The 128-bit format used by PowerPC (two adjacent doubles) is represented
1916 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
1917 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
1918 currently supported target uses this format. Long doubles will only work if
1919 they match the long double format on your target. All hexadecimal formats
1920 are big-endian (sign bit at the left).</p>
1921
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001922</div>
1923
1924<!-- ======================================================================= -->
Chris Lattner97063852009-02-28 18:32:25 +00001925<div class="doc_subsection">
Bill Wendling1a2630a2009-07-20 02:32:41 +00001926<a name="aggregateconstants"></a> <!-- old anchor -->
1927<a name="complexconstants">Complex Constants</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001928</div>
1929
1930<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00001931
Chris Lattner97063852009-02-28 18:32:25 +00001932<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingf85859d2009-07-20 02:29:24 +00001933 constants and smaller complex constants.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001934
1935<dl>
1936 <dt><b>Structure constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001937 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingf85859d2009-07-20 02:29:24 +00001938 type definitions (a comma separated list of elements, surrounded by braces
1939 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1940 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
1941 Structure constants must have <a href="#t_struct">structure type</a>, and
1942 the number and types of elements must match those specified by the
1943 type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944
1945 <dt><b>Array constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001946 <dd>Array constants are represented with notation similar to array type
Bill Wendlingf85859d2009-07-20 02:29:24 +00001947 definitions (a comma separated list of elements, surrounded by square
1948 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
1949 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
1950 the number and types of elements must match those specified by the
1951 type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001952
1953 <dt><b>Vector constants</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingf85859d2009-07-20 02:29:24 +00001955 definitions (a comma separated list of elements, surrounded by
1956 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
1957 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
1958 have <a href="#t_vector">vector type</a>, and the number and types of
1959 elements must match those specified by the type.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001960
1961 <dt><b>Zero initialization</b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001962 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Bill Wendlingf85859d2009-07-20 02:29:24 +00001963 value to zero of <em>any</em> type, including scalar and aggregate types.
1964 This is often used to avoid having to print large zero initializers
1965 (e.g. for large arrays) and is always exactly equivalent to using explicit
1966 zero initializers.</dd>
Nick Lewycky4dcf8102009-04-04 07:22:01 +00001967
1968 <dt><b>Metadata node</b></dt>
Nick Lewyckyf122c7e2009-05-30 16:08:30 +00001969 <dd>A metadata node is a structure-like constant with
Bill Wendlingf85859d2009-07-20 02:29:24 +00001970 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
1971 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
1972 be interpreted as part of the instruction stream, metadata is a place to
1973 attach additional information such as debug info.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001974</dl>
1975
1976</div>
1977
1978<!-- ======================================================================= -->
1979<div class="doc_subsection">
1980 <a name="globalconstants">Global Variable and Function Addresses</a>
1981</div>
1982
1983<div class="doc_text">
1984
Bill Wendlingf85859d2009-07-20 02:29:24 +00001985<p>The addresses of <a href="#globalvars">global variables</a>
1986 and <a href="#functionstructure">functions</a> are always implicitly valid
1987 (link-time) constants. These constants are explicitly referenced when
1988 the <a href="#identifiers">identifier for the global</a> is used and always
1989 have <a href="#t_pointer">pointer</a> type. For example, the following is a
1990 legal LLVM file:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001991
1992<div class="doc_code">
1993<pre>
1994@X = global i32 17
1995@Y = global i32 42
1996@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1997</pre>
1998</div>
1999
2000</div>
2001
2002<!-- ======================================================================= -->
2003<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
2004<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002005
Bill Wendlingf85859d2009-07-20 02:29:24 +00002006<p>The string '<tt>undef</tt>' is recognized as a type-less constant that has no
2007 specific value. Undefined values may be of any type and be used anywhere a
2008 constant is permitted.</p>
2009
2010<p>Undefined values indicate to the compiler that the program is well defined no
2011 matter what value is used, giving the compiler more freedom to optimize.</p>
2012
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002013</div>
2014
2015<!-- ======================================================================= -->
2016<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2017</div>
2018
2019<div class="doc_text">
2020
2021<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingf85859d2009-07-20 02:29:24 +00002022 to be used as constants. Constant expressions may be of
2023 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2024 operation that does not have side effects (e.g. load and call are not
2025 supported). The following is the syntax for constant expressions:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002026
2027<dl>
2028 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002029 <dd>Truncate a constant to another type. The bit size of CST must be larger
2030 than the bit size of TYPE. Both types must be integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031
2032 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002033 <dd>Zero extend a constant to another type. The bit size of CST must be
2034 smaller or equal to the bit size of TYPE. Both types must be
2035 integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002036
2037 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002038 <dd>Sign extend a constant to another type. The bit size of CST must be
2039 smaller or equal to the bit size of TYPE. Both types must be
2040 integers.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002041
2042 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002043 <dd>Truncate a floating point constant to another floating point type. The
2044 size of CST must be larger than the size of TYPE. Both types must be
2045 floating point.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002046
2047 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002048 <dd>Floating point extend a constant to another type. The size of CST must be
2049 smaller or equal to the size of TYPE. Both types must be floating
2050 point.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002051
Reid Spencere6adee82007-07-31 14:40:14 +00002052 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002054 constant. TYPE must be a scalar or vector integer type. CST must be of
2055 scalar or vector floating point type. Both CST and TYPE must be scalars,
2056 or vectors of the same number of elements. If the value won't fit in the
2057 integer type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002058
2059 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
2060 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002061 constant. TYPE must be a scalar or vector integer type. CST must be of
2062 scalar or vector floating point type. Both CST and TYPE must be scalars,
2063 or vectors of the same number of elements. If the value won't fit in the
2064 integer type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002065
2066 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
2067 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingf85859d2009-07-20 02:29:24 +00002068 constant. TYPE must be a scalar or vector floating point type. CST must be
2069 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2070 vectors of the same number of elements. If the value won't fit in the
2071 floating point type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002072
2073 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
2074 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingf85859d2009-07-20 02:29:24 +00002075 constant. TYPE must be a scalar or vector floating point type. CST must be
2076 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2077 vectors of the same number of elements. If the value won't fit in the
2078 floating point type, the results are undefined.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002079
2080 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2081 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingf85859d2009-07-20 02:29:24 +00002082 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2083 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2084 make it fit in <tt>TYPE</tt>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002085
2086 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002087 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2088 type. CST must be of integer type. The CST value is zero extended,
2089 truncated, or unchanged to make it fit in a pointer size. This one is
2090 <i>really</i> dangerous!</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002091
2092 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner557bc5d2009-02-28 18:27:03 +00002093 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2094 are the same as those for the <a href="#i_bitcast">bitcast
2095 instruction</a>.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096
2097 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohman106b2ae2009-07-27 21:53:46 +00002098 <dt><b><tt>getelementptr inbounds ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002099 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingf85859d2009-07-20 02:29:24 +00002100 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2101 instruction, the index list may have zero or more indexes, which are
2102 required to make sense for the type of "CSTPTR".</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002103
2104 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002105 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002106
2107 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2108 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2109
2110 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2111 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2112
2113 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002114 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2115 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002116
2117 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002118 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2119 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002120
2121 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002122 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2123 constants.</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002124
2125 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002126 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2127 be any of the <a href="#binaryops">binary</a>
2128 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2129 on operands are the same as those for the corresponding instruction
2130 (e.g. no bitwise operations on floating point values are allowed).</dd>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002131</dl>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002132
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002133</div>
2134
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002135<!-- ======================================================================= -->
2136<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2137</div>
2138
2139<div class="doc_text">
2140
Bill Wendlingf85859d2009-07-20 02:29:24 +00002141<p>Embedded metadata provides a way to attach arbitrary data to the instruction
2142 stream without affecting the behaviour of the program. There are two
2143 metadata primitives, strings and nodes. All metadata has the
2144 <tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2145 point ('<tt>!</tt>').</p>
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002146
2147<p>A metadata string is a string surrounded by double quotes. It can contain
Bill Wendlingf85859d2009-07-20 02:29:24 +00002148 any character by escaping non-printable characters with "\xx" where "xx" is
2149 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002150
2151<p>Metadata nodes are represented with notation similar to structure constants
Bill Wendlingf85859d2009-07-20 02:29:24 +00002152 (a comma separated list of elements, surrounded by braces and preceeded by an
2153 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2154 10}</tt>".</p>
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002155
Bill Wendlingf85859d2009-07-20 02:29:24 +00002156<p>A metadata node will attempt to track changes to the values it holds. In the
2157 event that a value is deleted, it will be replaced with a typeless
2158 "<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewycky117f4382009-05-10 20:57:05 +00002159
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002160<p>Optimizations may rely on metadata to provide additional information about
Bill Wendlingf85859d2009-07-20 02:29:24 +00002161 the program that isn't available in the instructions, or that isn't easily
2162 computable. Similarly, the code generator may expect a certain metadata
2163 format to be used to express debugging information.</p>
2164
Nick Lewycky4dcf8102009-04-04 07:22:01 +00002165</div>
2166
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002167<!-- *********************************************************************** -->
2168<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2169<!-- *********************************************************************** -->
2170
2171<!-- ======================================================================= -->
2172<div class="doc_subsection">
2173<a name="inlineasm">Inline Assembler Expressions</a>
2174</div>
2175
2176<div class="doc_text">
2177
Bill Wendlingf85859d2009-07-20 02:29:24 +00002178<p>LLVM supports inline assembler expressions (as opposed
2179 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2180 a special value. This value represents the inline assembler as a string
2181 (containing the instructions to emit), a list of operand constraints (stored
2182 as a string), and a flag that indicates whether or not the inline asm
2183 expression has side effects. An example inline assembler expression is:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002184
2185<div class="doc_code">
2186<pre>
2187i32 (i32) asm "bswap $0", "=r,r"
2188</pre>
2189</div>
2190
Bill Wendlingf85859d2009-07-20 02:29:24 +00002191<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2192 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2193 have:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002194
2195<div class="doc_code">
2196<pre>
2197%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2198</pre>
2199</div>
2200
Bill Wendlingf85859d2009-07-20 02:29:24 +00002201<p>Inline asms with side effects not visible in the constraint list must be
2202 marked as having side effects. This is done through the use of the
2203 '<tt>sideeffect</tt>' keyword, like so:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002204
2205<div class="doc_code">
2206<pre>
2207call void asm sideeffect "eieio", ""()
2208</pre>
2209</div>
2210
2211<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002212 documented here. Constraints on what can be done (e.g. duplication, moving,
2213 etc need to be documented). This is probably best done by reference to
2214 another document that covers inline asm from a holistic perspective.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002215
2216</div>
2217
Chris Lattner75c24e02009-07-20 05:55:19 +00002218
2219<!-- *********************************************************************** -->
2220<div class="doc_section">
2221 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2222</div>
2223<!-- *********************************************************************** -->
2224
2225<p>LLVM has a number of "magic" global variables that contain data that affect
2226code generation or other IR semantics. These are documented here. All globals
Chris Lattner1e0e0d12009-07-20 06:14:25 +00002227of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2228section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2229by LLVM.</p>
Chris Lattner75c24e02009-07-20 05:55:19 +00002230
2231<!-- ======================================================================= -->
2232<div class="doc_subsection">
2233<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2234</div>
2235
2236<div class="doc_text">
2237
2238<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2239href="#linkage_appending">appending linkage</a>. This array contains a list of
2240pointers to global variables and functions which may optionally have a pointer
2241cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2242
2243<pre>
2244 @X = global i8 4
2245 @Y = global i32 123
2246
2247 @llvm.used = appending global [2 x i8*] [
2248 i8* @X,
2249 i8* bitcast (i32* @Y to i8*)
2250 ], section "llvm.metadata"
2251</pre>
2252
2253<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2254compiler, assembler, and linker are required to treat the symbol as if there is
2255a reference to the global that it cannot see. For example, if a variable has
2256internal linkage and no references other than that from the <tt>@llvm.used</tt>
2257list, it cannot be deleted. This is commonly used to represent references from
2258inline asms and other things the compiler cannot "see", and corresponds to
2259"attribute((used))" in GNU C.</p>
2260
2261<p>On some targets, the code generator must emit a directive to the assembler or
2262object file to prevent the assembler and linker from molesting the symbol.</p>
2263
2264</div>
2265
2266<!-- ======================================================================= -->
2267<div class="doc_subsection">
Chris Lattner1e0e0d12009-07-20 06:14:25 +00002268<a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2269</div>
2270
2271<div class="doc_text">
2272
2273<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2274<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2275touching the symbol. On targets that support it, this allows an intelligent
2276linker to optimize references to the symbol without being impeded as it would be
2277by <tt>@llvm.used</tt>.</p>
2278
2279<p>This is a rare construct that should only be used in rare circumstances, and
2280should not be exposed to source languages.</p>
2281
2282</div>
2283
2284<!-- ======================================================================= -->
2285<div class="doc_subsection">
Chris Lattner75c24e02009-07-20 05:55:19 +00002286<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2287</div>
2288
2289<div class="doc_text">
2290
2291<p>TODO: Describe this.</p>
2292
2293</div>
2294
2295<!-- ======================================================================= -->
2296<div class="doc_subsection">
2297<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2298</div>
2299
2300<div class="doc_text">
2301
2302<p>TODO: Describe this.</p>
2303
2304</div>
2305
2306
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002307<!-- *********************************************************************** -->
2308<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2309<!-- *********************************************************************** -->
2310
2311<div class="doc_text">
2312
Bill Wendlingf85859d2009-07-20 02:29:24 +00002313<p>The LLVM instruction set consists of several different classifications of
2314 instructions: <a href="#terminators">terminator
2315 instructions</a>, <a href="#binaryops">binary instructions</a>,
2316 <a href="#bitwiseops">bitwise binary instructions</a>,
2317 <a href="#memoryops">memory instructions</a>, and
2318 <a href="#otherops">other instructions</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002319
2320</div>
2321
2322<!-- ======================================================================= -->
2323<div class="doc_subsection"> <a name="terminators">Terminator
2324Instructions</a> </div>
2325
2326<div class="doc_text">
2327
Bill Wendlingf85859d2009-07-20 02:29:24 +00002328<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2329 in a program ends with a "Terminator" instruction, which indicates which
2330 block should be executed after the current block is finished. These
2331 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2332 control flow, not values (the one exception being the
2333 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2334
2335<p>There are six different terminator instructions: the
2336 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2337 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2338 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2339 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2340 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2341 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002342
2343</div>
2344
2345<!-- _______________________________________________________________________ -->
2346<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2347Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002348
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002349<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002350
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351<h5>Syntax:</h5>
Dan Gohman3e700032008-10-04 19:00:07 +00002352<pre>
2353 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002354 ret void <i>; Return from void function</i>
2355</pre>
Chris Lattner43030e72008-04-23 04:59:35 +00002356
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002357<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002358<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2359 a value) from a function back to the caller.</p>
2360
2361<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2362 value and then causes control flow, and one that just causes control flow to
2363 occur.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002364
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002365<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002366<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2367 return value. The type of the return value must be a
2368 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohman3e700032008-10-04 19:00:07 +00002369
Bill Wendlingf85859d2009-07-20 02:29:24 +00002370<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2371 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2372 value or a return value with a type that does not match its type, or if it
2373 has a void return type and contains a '<tt>ret</tt>' instruction with a
2374 return value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002377<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2378 the calling function's context. If the caller is a
2379 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2380 instruction after the call. If the caller was an
2381 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2382 the beginning of the "normal" destination block. If the instruction returns
2383 a value, that value shall set the call or invoke instruction's return
2384 value.</p>
Chris Lattner43030e72008-04-23 04:59:35 +00002385
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386<h5>Example:</h5>
Chris Lattner43030e72008-04-23 04:59:35 +00002387<pre>
2388 ret i32 5 <i>; Return an integer value of 5</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002389 ret void <i>; Return from a void function</i>
Bill Wendlingd163e2d2009-02-28 22:12:54 +00002390 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002391</pre>
Dan Gohman60967192009-01-12 23:12:39 +00002392
djge93155c2009-01-24 15:58:40 +00002393<p>Note that the code generator does not yet fully support large
2394 return values. The specific sizes that are currently supported are
2395 dependent on the target. For integers, on 32-bit targets the limit
2396 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2397 For aggregate types, the current limits are dependent on the element
2398 types; for example targets are often limited to 2 total integer
2399 elements and 2 total floating-point elements.</p>
Dan Gohman60967192009-01-12 23:12:39 +00002400
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002401</div>
2402<!-- _______________________________________________________________________ -->
2403<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002404
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002406
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002407<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002408<pre>
2409 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002411
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002412<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002413<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2414 different basic block in the current function. There are two forms of this
2415 instruction, corresponding to a conditional branch and an unconditional
2416 branch.</p>
2417
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002418<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002419<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2420 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2421 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2422 target.</p>
2423
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424<h5>Semantics:</h5>
2425<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingf85859d2009-07-20 02:29:24 +00002426 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2427 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2428 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2429
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002430<h5>Example:</h5>
Bill Wendling6ec40612009-07-20 02:39:26 +00002431<pre>
2432Test:
2433 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2434 br i1 %cond, label %IfEqual, label %IfUnequal
2435IfEqual:
2436 <a href="#i_ret">ret</a> i32 1
2437IfUnequal:
2438 <a href="#i_ret">ret</a> i32 0
2439</pre>
2440
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002441</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002442
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002443<!-- _______________________________________________________________________ -->
2444<div class="doc_subsubsection">
2445 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2446</div>
2447
2448<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002449
Bill Wendlingf85859d2009-07-20 02:29:24 +00002450<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002451<pre>
2452 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2453</pre>
2454
2455<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002456<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingf85859d2009-07-20 02:29:24 +00002457 several different places. It is a generalization of the '<tt>br</tt>'
2458 instruction, allowing a branch to occur to one of many possible
2459 destinations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002460
2461<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002462<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00002463 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2464 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2465 The table is not allowed to contain duplicate constant entries.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002466
2467<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002468<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingf85859d2009-07-20 02:29:24 +00002469 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2470 is searched for the given value. If the value is found, control flow is
2471 transfered to the corresponding destination; otherwise, control flow is
2472 transfered to the default destination.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473
2474<h5>Implementation:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002475<p>Depending on properties of the target machine and the particular
Bill Wendlingf85859d2009-07-20 02:29:24 +00002476 <tt>switch</tt> instruction, this instruction may be code generated in
2477 different ways. For example, it could be generated as a series of chained
2478 conditional branches or with a lookup table.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002479
2480<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002481<pre>
2482 <i>; Emulate a conditional br instruction</i>
2483 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman01852382009-01-04 23:44:43 +00002484 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002485
2486 <i>; Emulate an unconditional br instruction</i>
2487 switch i32 0, label %dest [ ]
2488
2489 <i>; Implement a jump table:</i>
Dan Gohman01852382009-01-04 23:44:43 +00002490 switch i32 %val, label %otherwise [ i32 0, label %onzero
2491 i32 1, label %onone
2492 i32 2, label %ontwo ]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002493</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002494
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002495</div>
2496
2497<!-- _______________________________________________________________________ -->
2498<div class="doc_subsubsection">
2499 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2500</div>
2501
2502<div class="doc_text">
2503
2504<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00002506 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
2508</pre>
2509
2510<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002511<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingf85859d2009-07-20 02:29:24 +00002512 function, with the possibility of control flow transfer to either the
2513 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
2514 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
2515 control flow will return to the "normal" label. If the callee (or any
2516 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
2517 instruction, control is interrupted and continued at the dynamically nearest
2518 "exception" label.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002519
2520<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002521<p>This instruction requires several arguments:</p>
2522
2523<ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002524 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
2525 convention</a> the call should use. If none is specified, the call
2526 defaults to using C calling conventions.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00002527
2528 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingf85859d2009-07-20 02:29:24 +00002529 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
2530 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00002531
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002532 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingf85859d2009-07-20 02:29:24 +00002533 function value being invoked. In most cases, this is a direct function
2534 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
2535 off an arbitrary pointer to function value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536
2537 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingf85859d2009-07-20 02:29:24 +00002538 function to be invoked. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002539
2540 <li>'<tt>function args</tt>': argument list whose types match the function
Bill Wendlingf85859d2009-07-20 02:29:24 +00002541 signature argument types. If the function signature indicates the
2542 function accepts a variable number of arguments, the extra arguments can
2543 be specified.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002544
2545 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingf85859d2009-07-20 02:29:24 +00002546 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002547
2548 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingf85859d2009-07-20 02:29:24 +00002549 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002550
Devang Pateld0bfcc72008-10-07 17:48:33 +00002551 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingf85859d2009-07-20 02:29:24 +00002552 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2553 '<tt>readnone</tt>' attributes are valid here.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002554</ol>
2555
2556<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002557<p>This instruction is designed to operate as a standard
2558 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
2559 primary difference is that it establishes an association with a label, which
2560 is used by the runtime library to unwind the stack.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002561
2562<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingf85859d2009-07-20 02:29:24 +00002563 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2564 exception. Additionally, this is important for implementation of
2565 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002566
Bill Wendlingf85859d2009-07-20 02:29:24 +00002567<p>For the purposes of the SSA form, the definition of the value returned by the
2568 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
2569 block to the "normal" label. If the callee unwinds then no return value is
2570 available.</p>
Dan Gohman140ba5d2009-05-22 21:47:08 +00002571
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002572<h5>Example:</h5>
2573<pre>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002574 %retval = invoke i32 @Test(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002575 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckya1c11a12008-03-16 07:18:12 +00002576 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002577 unwind label %TestCleanup <i>; {i32}:retval set</i>
2578</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002579
Bill Wendlingf85859d2009-07-20 02:29:24 +00002580</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002581
2582<!-- _______________________________________________________________________ -->
2583
2584<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2585Instruction</a> </div>
2586
2587<div class="doc_text">
2588
2589<h5>Syntax:</h5>
2590<pre>
2591 unwind
2592</pre>
2593
2594<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002595<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingf85859d2009-07-20 02:29:24 +00002596 at the first callee in the dynamic call stack which used
2597 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
2598 This is primarily used to implement exception handling.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002599
2600<h5>Semantics:</h5>
Chris Lattner8b094fc2008-04-19 21:01:16 +00002601<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingf85859d2009-07-20 02:29:24 +00002602 immediately halt. The dynamic call stack is then searched for the
2603 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
2604 Once found, execution continues at the "exceptional" destination block
2605 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
2606 instruction in the dynamic call chain, undefined behavior results.</p>
2607
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002608</div>
2609
2610<!-- _______________________________________________________________________ -->
2611
2612<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2613Instruction</a> </div>
2614
2615<div class="doc_text">
2616
2617<h5>Syntax:</h5>
2618<pre>
2619 unreachable
2620</pre>
2621
2622<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002623<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00002624 instruction is used to inform the optimizer that a particular portion of the
2625 code is not reachable. This can be used to indicate that the code after a
2626 no-return function cannot be reached, and other facts.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002627
2628<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002629<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002630
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002631</div>
2632
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002633<!-- ======================================================================= -->
2634<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002635
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002636<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002637
2638<p>Binary operators are used to do most of the computation in a program. They
2639 require two operands of the same type, execute an operation on them, and
2640 produce a single value. The operands might represent multiple data, as is
2641 the case with the <a href="#t_vector">vector</a> data type. The result value
2642 has the same type as its operands.</p>
2643
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002644<p>There are several different binary operators:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002645
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002646</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002647
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002648<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002649<div class="doc_subsubsection">
2650 <a name="i_add">'<tt>add</tt>' Instruction</a>
2651</div>
2652
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002653<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002654
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002656<pre>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00002657 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman46e96012009-07-22 22:44:56 +00002658 &lt;result&gt; = nuw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2659 &lt;result&gt; = nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2660 &lt;result&gt; = nuw nsw add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002661</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002662
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002663<h5>Overview:</h5>
2664<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002665
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002667<p>The two arguments to the '<tt>add</tt>' instruction must
2668 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2669 integer values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002670
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002671<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002672<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002673
Bill Wendlingf85859d2009-07-20 02:29:24 +00002674<p>If the sum has unsigned overflow, the result returned is the mathematical
2675 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002676
Bill Wendlingf85859d2009-07-20 02:29:24 +00002677<p>Because LLVM integers use a two's complement representation, this instruction
2678 is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002679
Dan Gohman46e96012009-07-22 22:44:56 +00002680<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2681 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2682 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
2683 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00002684
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002685<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002686<pre>
2687 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002688</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002690</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002691
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002692<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002693<div class="doc_subsubsection">
Dan Gohman7ce405e2009-06-04 22:49:04 +00002694 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2695</div>
2696
2697<div class="doc_text">
2698
2699<h5>Syntax:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002700<pre>
2701 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2702</pre>
2703
2704<h5>Overview:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002705<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2706
2707<h5>Arguments:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002708<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002709 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2710 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002711
2712<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002713<p>The value produced is the floating point sum of the two operands.</p>
2714
2715<h5>Example:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002716<pre>
2717 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2718</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002719
Dan Gohman7ce405e2009-06-04 22:49:04 +00002720</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002721
Dan Gohman7ce405e2009-06-04 22:49:04 +00002722<!-- _______________________________________________________________________ -->
2723<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00002724 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2725</div>
2726
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002727<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002728
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002729<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002730<pre>
Dan Gohman46e96012009-07-22 22:44:56 +00002731 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2732 &lt;result&gt; = nuw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2733 &lt;result&gt; = nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2734 &lt;result&gt; = nuw nsw sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002735</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002736
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002737<h5>Overview:</h5>
2738<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingf85859d2009-07-20 02:29:24 +00002739 operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002740
2741<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingf85859d2009-07-20 02:29:24 +00002742 '<tt>neg</tt>' instruction present in most other intermediate
2743 representations.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002744
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002745<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002746<p>The two arguments to the '<tt>sub</tt>' instruction must
2747 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2748 integer values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002749
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002750<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002751<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002752
Dan Gohman7ce405e2009-06-04 22:49:04 +00002753<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingf85859d2009-07-20 02:29:24 +00002754 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
2755 result.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002756
Bill Wendlingf85859d2009-07-20 02:29:24 +00002757<p>Because LLVM integers use a two's complement representation, this instruction
2758 is appropriate for both signed and unsigned integers.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002759
Dan Gohman46e96012009-07-22 22:44:56 +00002760<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2761 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2762 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
2763 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00002764
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002765<h5>Example:</h5>
2766<pre>
2767 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
2768 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
2769</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002770
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002771</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002772
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002773<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00002774<div class="doc_subsubsection">
Dan Gohman7ce405e2009-06-04 22:49:04 +00002775 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2776</div>
2777
2778<div class="doc_text">
2779
2780<h5>Syntax:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002781<pre>
2782 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2783</pre>
2784
2785<h5>Overview:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002786<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingf85859d2009-07-20 02:29:24 +00002787 operands.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002788
2789<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingf85859d2009-07-20 02:29:24 +00002790 '<tt>fneg</tt>' instruction present in most other intermediate
2791 representations.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002792
2793<h5>Arguments:</h5>
Bill Wendling1a2630a2009-07-20 02:32:41 +00002794<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002795 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2796 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002797
2798<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002799<p>The value produced is the floating point difference of the two operands.</p>
2800
2801<h5>Example:</h5>
2802<pre>
2803 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2804 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2805</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002806
Dan Gohman7ce405e2009-06-04 22:49:04 +00002807</div>
2808
2809<!-- _______________________________________________________________________ -->
2810<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00002811 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2812</div>
2813
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002814<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00002815
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002816<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002817<pre>
Dan Gohman46e96012009-07-22 22:44:56 +00002818 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2819 &lt;result&gt; = nuw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2820 &lt;result&gt; = nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2821 &lt;result&gt; = nuw nsw mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002822</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002823
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002824<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002825<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002826
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002827<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002828<p>The two arguments to the '<tt>mul</tt>' instruction must
2829 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2830 integer values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002831
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002832<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002833<p>The value produced is the integer product of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002834
Bill Wendlingf85859d2009-07-20 02:29:24 +00002835<p>If the result of the multiplication has unsigned overflow, the result
2836 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
2837 width of the result.</p>
2838
2839<p>Because LLVM integers use a two's complement representation, and the result
2840 is the same width as the operands, this instruction returns the correct
2841 result for both signed and unsigned integers. If a full product
2842 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
2843 be sign-extended or zero-extended as appropriate to the width of the full
2844 product.</p>
2845
Dan Gohman46e96012009-07-22 22:44:56 +00002846<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
2847 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
2848 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
2849 is undefined if unsigned and/or signed overflow, respectively, occurs.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00002850
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002851<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002852<pre>
2853 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002854</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002855
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002856</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002857
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002858<!-- _______________________________________________________________________ -->
Dan Gohman7ce405e2009-06-04 22:49:04 +00002859<div class="doc_subsubsection">
2860 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2861</div>
2862
2863<div class="doc_text">
2864
2865<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002866<pre>
2867 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002868</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002869
Dan Gohman7ce405e2009-06-04 22:49:04 +00002870<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002871<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002872
2873<h5>Arguments:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002874<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002875 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2876 floating point values. Both arguments must have identical types.</p>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002877
2878<h5>Semantics:</h5>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002879<p>The value produced is the floating point product of the two operands.</p>
2880
2881<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002882<pre>
2883 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohman7ce405e2009-06-04 22:49:04 +00002884</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002885
Dan Gohman7ce405e2009-06-04 22:49:04 +00002886</div>
2887
2888<!-- _______________________________________________________________________ -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2890</a></div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002891
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002892<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002893
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002894<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002895<pre>
2896 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002897</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002898
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002899<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002900<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002901
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002902<h5>Arguments:</h5>
2903<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002904 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2905 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002906
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002907<h5>Semantics:</h5>
Chris Lattner9aba1e22008-01-28 00:36:27 +00002908<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002909
Chris Lattner9aba1e22008-01-28 00:36:27 +00002910<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingf85859d2009-07-20 02:29:24 +00002911 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2912
Chris Lattner9aba1e22008-01-28 00:36:27 +00002913<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002914
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002915<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002916<pre>
2917 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002918</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002919
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002920</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002921
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002922<!-- _______________________________________________________________________ -->
2923<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2924</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002925
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002926<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002927
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002928<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002929<pre>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00002930 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2931 &lt;result&gt; = exact sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002932</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002933
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002935<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002936
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002937<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002938<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002939 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2940 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002941
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002942<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002943<p>The value produced is the signed integer quotient of the two operands rounded
2944 towards zero.</p>
2945
Chris Lattner9aba1e22008-01-28 00:36:27 +00002946<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingf85859d2009-07-20 02:29:24 +00002947 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2948
Chris Lattner9aba1e22008-01-28 00:36:27 +00002949<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingf85859d2009-07-20 02:29:24 +00002950 undefined behavior; this is a rare case, but can occur, for example, by doing
2951 a 32-bit division of -2147483648 by -1.</p>
2952
Dan Gohman67fa48e2009-07-22 00:04:19 +00002953<p>If the <tt>exact</tt> keyword is present, the result value of the
2954 <tt>sdiv</tt> is undefined if the result would be rounded or if overflow
2955 would occur.</p>
Dan Gohmaned5fcb22009-07-20 22:41:19 +00002956
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002958<pre>
2959 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002960</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002961
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002962</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002963
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002964<!-- _______________________________________________________________________ -->
2965<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2966Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002967
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002968<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002969
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002970<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002971<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00002972 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002973</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00002974
Bill Wendlingf85859d2009-07-20 02:29:24 +00002975<h5>Overview:</h5>
2976<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002977
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002978<h5>Arguments:</h5>
2979<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00002980 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2981 floating point values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002982
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002983<h5>Semantics:</h5>
2984<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00002985
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00002987<pre>
2988 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002989</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002990
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002991</div>
Chris Lattner6704c212008-05-20 20:48:21 +00002992
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002993<!-- _______________________________________________________________________ -->
2994<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2995</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00002996
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002997<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00002998
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002999<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003000<pre>
3001 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003002</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003003
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003005<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3006 division of its two arguments.</p>
3007
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003008<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003009<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003010 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3011 values. Both arguments must have identical types.</p>
3012
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003013<h5>Semantics:</h5>
3014<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingf85859d2009-07-20 02:29:24 +00003015 This instruction always performs an unsigned division to get the
3016 remainder.</p>
3017
Chris Lattner9aba1e22008-01-28 00:36:27 +00003018<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingf85859d2009-07-20 02:29:24 +00003019 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3020
Chris Lattner9aba1e22008-01-28 00:36:27 +00003021<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003022
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003023<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003024<pre>
3025 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003026</pre>
3027
3028</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003029
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003030<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003031<div class="doc_subsubsection">
3032 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3033</div>
3034
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003035<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003036
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003037<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003038<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003039 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003040</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003041
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003042<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003043<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3044 division of its two operands. This instruction can also take
3045 <a href="#t_vector">vector</a> versions of the values in which case the
3046 elements must be integers.</p>
Chris Lattner08497ce2008-01-04 04:33:49 +00003047
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003048<h5>Arguments:</h5>
3049<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003050 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3051 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003052
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003053<h5>Semantics:</h5>
3054<p>This instruction returns the <i>remainder</i> of a division (where the result
Bill Wendlingf85859d2009-07-20 02:29:24 +00003055 has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
3056 operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
3057 a value. For more information about the difference,
3058 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3059 Math Forum</a>. For a table of how this is implemented in various languages,
3060 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3061 Wikipedia: modulo operation</a>.</p>
3062
Chris Lattner9aba1e22008-01-28 00:36:27 +00003063<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingf85859d2009-07-20 02:29:24 +00003064 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3065
Chris Lattner9aba1e22008-01-28 00:36:27 +00003066<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingf85859d2009-07-20 02:29:24 +00003067 Overflow also leads to undefined behavior; this is a rare case, but can
3068 occur, for example, by taking the remainder of a 32-bit division of
3069 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3070 lets srem be implemented using instructions that return both the result of
3071 the division and the remainder.)</p>
3072
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003073<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003074<pre>
3075 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003076</pre>
3077
3078</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003079
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003080<!-- _______________________________________________________________________ -->
Chris Lattner6704c212008-05-20 20:48:21 +00003081<div class="doc_subsubsection">
3082 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3083
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003084<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003085
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003086<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003087<pre>
3088 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003089</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003090
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003091<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003092<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3093 its two operands.</p>
3094
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003095<h5>Arguments:</h5>
3096<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003097 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3098 floating point values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003099
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003100<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003101<p>This instruction returns the <i>remainder</i> of a division. The remainder
3102 has the same sign as the dividend.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003103
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003104<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003105<pre>
3106 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003107</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003108
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003109</div>
3110
3111<!-- ======================================================================= -->
3112<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3113Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003114
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003115<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003116
3117<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3118 program. They are generally very efficient instructions and can commonly be
3119 strength reduced from other instructions. They require two operands of the
3120 same type, execute an operation on them, and produce a single value. The
3121 resulting value is the same type as its operands.</p>
3122
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003123</div>
3124
3125<!-- _______________________________________________________________________ -->
3126<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3127Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003128
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003129<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003130
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003131<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003132<pre>
3133 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003134</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003135
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003136<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003137<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3138 a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003139
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003140<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003141<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3142 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3143 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003144
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003145<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003146<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3147 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3148 is (statically or dynamically) negative or equal to or larger than the number
3149 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3150 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3151 shift amount in <tt>op2</tt>.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003152
Bill Wendlingf85859d2009-07-20 02:29:24 +00003153<h5>Example:</h5>
3154<pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003155 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3156 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3157 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003158 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003159 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003160</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003161
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003162</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003163
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003164<!-- _______________________________________________________________________ -->
3165<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3166Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003167
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003168<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003169
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003170<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003171<pre>
3172 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003173</pre>
3174
3175<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003176<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3177 operand shifted to the right a specified number of bits with zero fill.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003178
3179<h5>Arguments:</h5>
3180<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingf85859d2009-07-20 02:29:24 +00003181 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3182 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003183
3184<h5>Semantics:</h5>
3185<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingf85859d2009-07-20 02:29:24 +00003186 significant bits of the result will be filled with zero bits after the shift.
3187 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3188 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3189 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3190 shift amount in <tt>op2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003191
3192<h5>Example:</h5>
3193<pre>
3194 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3195 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3196 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3197 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003198 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003199 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003200</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003201
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003202</div>
3203
3204<!-- _______________________________________________________________________ -->
3205<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3206Instruction</a> </div>
3207<div class="doc_text">
3208
3209<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003210<pre>
3211 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003212</pre>
3213
3214<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003215<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3216 operand shifted to the right a specified number of bits with sign
3217 extension.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003218
3219<h5>Arguments:</h5>
3220<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingf85859d2009-07-20 02:29:24 +00003221 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3222 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003223
3224<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003225<p>This instruction always performs an arithmetic shift right operation, The
3226 most significant bits of the result will be filled with the sign bit
3227 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3228 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3229 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3230 the corresponding shift amount in <tt>op2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003231
3232<h5>Example:</h5>
3233<pre>
3234 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3235 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3236 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3237 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00003238 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang9901e732008-12-09 05:46:39 +00003239 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003240</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003241
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003242</div>
3243
3244<!-- _______________________________________________________________________ -->
3245<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3246Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00003247
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003248<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00003249
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003250<h5>Syntax:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003251<pre>
Gabor Greifd9068fe2008-08-07 21:46:00 +00003252 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003253</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00003254
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003255<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003256<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3257 operands.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003259<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003260<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003261 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3262 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003263
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003264<h5>Semantics:</h5>
3265<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003266
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003267<table border="1" cellspacing="0" cellpadding="4">
3268 <tbody>
3269 <tr>
3270 <td>In0</td>
3271 <td>In1</td>
3272 <td>Out</td>
3273 </tr>
3274 <tr>
3275 <td>0</td>
3276 <td>0</td>
3277 <td>0</td>
3278 </tr>
3279 <tr>
3280 <td>0</td>
3281 <td>1</td>
3282 <td>0</td>
3283 </tr>
3284 <tr>
3285 <td>1</td>
3286 <td>0</td>
3287 <td>0</td>
3288 </tr>
3289 <tr>
3290 <td>1</td>
3291 <td>1</td>
3292 <td>1</td>
3293 </tr>
3294 </tbody>
3295</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003296
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003297<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003298<pre>
3299 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003300 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3301 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
3302</pre>
3303</div>
3304<!-- _______________________________________________________________________ -->
3305<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Chris Lattner6704c212008-05-20 20:48:21 +00003306
Bill Wendlingf85859d2009-07-20 02:29:24 +00003307<div class="doc_text">
3308
3309<h5>Syntax:</h5>
3310<pre>
3311 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3312</pre>
3313
3314<h5>Overview:</h5>
3315<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3316 two operands.</p>
3317
3318<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003319<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003320 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3321 values. Both arguments must have identical types.</p>
3322
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003323<h5>Semantics:</h5>
3324<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003325
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003326<table border="1" cellspacing="0" cellpadding="4">
3327 <tbody>
3328 <tr>
3329 <td>In0</td>
3330 <td>In1</td>
3331 <td>Out</td>
3332 </tr>
3333 <tr>
3334 <td>0</td>
3335 <td>0</td>
3336 <td>0</td>
3337 </tr>
3338 <tr>
3339 <td>0</td>
3340 <td>1</td>
3341 <td>1</td>
3342 </tr>
3343 <tr>
3344 <td>1</td>
3345 <td>0</td>
3346 <td>1</td>
3347 </tr>
3348 <tr>
3349 <td>1</td>
3350 <td>1</td>
3351 <td>1</td>
3352 </tr>
3353 </tbody>
3354</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003355
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003356<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003357<pre>
3358 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3360 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
3361</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003362
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003363</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003364
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003365<!-- _______________________________________________________________________ -->
3366<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3367Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003368
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003369<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003370
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003371<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003372<pre>
3373 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003374</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003375
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003376<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003377<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3378 its two operands. The <tt>xor</tt> is used to implement the "one's
3379 complement" operation, which is the "~" operator in C.</p>
3380
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003381<h5>Arguments:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00003382<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingf85859d2009-07-20 02:29:24 +00003383 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3384 values. Both arguments must have identical types.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00003385
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003386<h5>Semantics:</h5>
3387<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003388
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003389<table border="1" cellspacing="0" cellpadding="4">
3390 <tbody>
3391 <tr>
3392 <td>In0</td>
3393 <td>In1</td>
3394 <td>Out</td>
3395 </tr>
3396 <tr>
3397 <td>0</td>
3398 <td>0</td>
3399 <td>0</td>
3400 </tr>
3401 <tr>
3402 <td>0</td>
3403 <td>1</td>
3404 <td>1</td>
3405 </tr>
3406 <tr>
3407 <td>1</td>
3408 <td>0</td>
3409 <td>1</td>
3410 </tr>
3411 <tr>
3412 <td>1</td>
3413 <td>1</td>
3414 <td>0</td>
3415 </tr>
3416 </tbody>
3417</table>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003418
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003419<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003420<pre>
3421 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003422 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3423 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3424 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
3425</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003426
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003427</div>
3428
3429<!-- ======================================================================= -->
3430<div class="doc_subsection">
3431 <a name="vectorops">Vector Operations</a>
3432</div>
3433
3434<div class="doc_text">
3435
3436<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingf85859d2009-07-20 02:29:24 +00003437 target-independent manner. These instructions cover the element-access and
3438 vector-specific operations needed to process vectors effectively. While LLVM
3439 does directly support these vector operations, many sophisticated algorithms
3440 will want to use target-specific intrinsics to take full advantage of a
3441 specific target.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003442
3443</div>
3444
3445<!-- _______________________________________________________________________ -->
3446<div class="doc_subsubsection">
3447 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3448</div>
3449
3450<div class="doc_text">
3451
3452<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003453<pre>
3454 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
3455</pre>
3456
3457<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003458<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
3459 from a vector at a specified index.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003460
3461
3462<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003463<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
3464 of <a href="#t_vector">vector</a> type. The second operand is an index
3465 indicating the position from which to extract the element. The index may be
3466 a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003467
3468<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003469<p>The result is a scalar of the same type as the element type of
3470 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3471 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3472 results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003473
3474<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003475<pre>
3476 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
3477</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003478
Bill Wendlingf85859d2009-07-20 02:29:24 +00003479</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003480
3481<!-- _______________________________________________________________________ -->
3482<div class="doc_subsubsection">
3483 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3484</div>
3485
3486<div class="doc_text">
3487
3488<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003489<pre>
Dan Gohmanbcc3c502008-05-12 23:38:42 +00003490 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003491</pre>
3492
3493<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003494<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
3495 vector at a specified index.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003496
3497<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003498<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
3499 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
3500 whose type must equal the element type of the first operand. The third
3501 operand is an index indicating the position at which to insert the value.
3502 The index may be a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003503
3504<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003505<p>The result is a vector of the same type as <tt>val</tt>. Its element values
3506 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
3507 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3508 results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003509
3510<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003511<pre>
3512 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
3513</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003514
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515</div>
3516
3517<!-- _______________________________________________________________________ -->
3518<div class="doc_subsubsection">
3519 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3520</div>
3521
3522<div class="doc_text">
3523
3524<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003525<pre>
Mon P Wangbff5d9c2008-11-10 04:46:22 +00003526 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003527</pre>
3528
3529<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003530<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
3531 from two input vectors, returning a vector with the same element type as the
3532 input and length that is the same as the shuffle mask.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003533
3534<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003535<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3536 with types that match each other. The third argument is a shuffle mask whose
3537 element type is always 'i32'. The result of the instruction is a vector
3538 whose length is the same as the shuffle mask and whose element type is the
3539 same as the element type of the first two operands.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003540
Bill Wendlingf85859d2009-07-20 02:29:24 +00003541<p>The shuffle mask operand is required to be a constant vector with either
3542 constant integer or undef values.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003543
3544<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003545<p>The elements of the two input vectors are numbered from left to right across
3546 both of the vectors. The shuffle mask operand specifies, for each element of
3547 the result vector, which element of the two input vectors the result element
3548 gets. The element selector may be undef (meaning "don't care") and the
3549 second operand may be undef if performing a shuffle from only one vector.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003550
3551<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003552<pre>
3553 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3554 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
3555 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3556 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangbff5d9c2008-11-10 04:46:22 +00003557 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3558 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3559 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3560 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003561</pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003562
Bill Wendlingf85859d2009-07-20 02:29:24 +00003563</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003564
3565<!-- ======================================================================= -->
3566<div class="doc_subsection">
Dan Gohman74d6faf2008-05-12 23:51:09 +00003567 <a name="aggregateops">Aggregate Operations</a>
3568</div>
3569
3570<div class="doc_text">
3571
Bill Wendlingf85859d2009-07-20 02:29:24 +00003572<p>LLVM supports several instructions for working with aggregate values.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003573
3574</div>
3575
3576<!-- _______________________________________________________________________ -->
3577<div class="doc_subsubsection">
3578 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3579</div>
3580
3581<div class="doc_text">
3582
3583<h5>Syntax:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003584<pre>
3585 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3586</pre>
3587
3588<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003589<p>The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3590 or array element from an aggregate value.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003591
3592<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003593<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
3594 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3595 operands are constant indices to specify which value to extract in a similar
3596 manner as indices in a
3597 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003598
3599<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003600<p>The result is the value at the position in the aggregate specified by the
3601 index operands.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003602
3603<h5>Example:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003604<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00003605 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003606</pre>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003607
Bill Wendlingf85859d2009-07-20 02:29:24 +00003608</div>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003609
3610<!-- _______________________________________________________________________ -->
3611<div class="doc_subsubsection">
3612 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3613</div>
3614
3615<div class="doc_text">
3616
3617<h5>Syntax:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003618<pre>
Dan Gohmane5febe42008-05-31 00:58:22 +00003619 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003620</pre>
3621
3622<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003623<p>The '<tt>insertvalue</tt>' instruction inserts a value into a struct field or
3624 array element in an aggregate.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003625
3626
3627<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003628<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
3629 of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. The
3630 second operand is a first-class value to insert. The following operands are
3631 constant indices indicating the position at which to insert the value in a
3632 similar manner as indices in a
3633 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. The
3634 value to insert must have the same type as the value identified by the
3635 indices.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003636
3637<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003638<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
3639 that of <tt>val</tt> except that the value at the position specified by the
3640 indices is that of <tt>elt</tt>.</p>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003641
3642<h5>Example:</h5>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003643<pre>
Dan Gohmanb1aab4e2008-06-23 15:26:37 +00003644 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohman74d6faf2008-05-12 23:51:09 +00003645</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003646
Dan Gohman74d6faf2008-05-12 23:51:09 +00003647</div>
3648
3649
3650<!-- ======================================================================= -->
3651<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003652 <a name="memoryops">Memory Access and Addressing Operations</a>
3653</div>
3654
3655<div class="doc_text">
3656
Bill Wendlingf85859d2009-07-20 02:29:24 +00003657<p>A key design point of an SSA-based representation is how it represents
3658 memory. In LLVM, no memory locations are in SSA form, which makes things
3659 very simple. This section describes how to read, write, allocate, and free
3660 memory in LLVM.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003661
3662</div>
3663
3664<!-- _______________________________________________________________________ -->
3665<div class="doc_subsubsection">
3666 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3667</div>
3668
3669<div class="doc_text">
3670
3671<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003672<pre>
3673 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3674</pre>
3675
3676<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003677<p>The '<tt>malloc</tt>' instruction allocates memory from the system heap and
3678 returns a pointer to it. The object is always allocated in the generic
3679 address space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003680
3681<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682<p>The '<tt>malloc</tt>' instruction allocates
Bill Wendlingf85859d2009-07-20 02:29:24 +00003683 <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory from the operating
3684 system and returns a pointer of the appropriate type to the program. If
3685 "NumElements" is specified, it is the number of elements allocated, otherwise
3686 "NumElements" is defaulted to be one. If a constant alignment is specified,
3687 the value result of the allocation is guaranteed to be aligned to at least
3688 that boundary. If not specified, or if zero, the target can choose to align
3689 the allocation on any convenient boundary compatible with the type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003690
3691<p>'<tt>type</tt>' must be a sized type.</p>
3692
3693<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003694<p>Memory is allocated using the system "<tt>malloc</tt>" function, and a
3695 pointer is returned. The result of a zero byte allocation is undefined. The
3696 result is null if there is insufficient memory available.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003697
3698<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003699<pre>
Dan Gohmanf54f50a2009-01-04 23:49:44 +00003700 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003701
3702 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3703 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3704 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3705 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3706 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
3707</pre>
Dan Gohman60967192009-01-12 23:12:39 +00003708
Bill Wendlingf85859d2009-07-20 02:29:24 +00003709<p>Note that the code generator does not yet respect the alignment value.</p>
Dan Gohman60967192009-01-12 23:12:39 +00003710
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003711</div>
3712
3713<!-- _______________________________________________________________________ -->
3714<div class="doc_subsubsection">
3715 <a name="i_free">'<tt>free</tt>' Instruction</a>
3716</div>
3717
3718<div class="doc_text">
3719
3720<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003721<pre>
Dan Gohmanf54f50a2009-01-04 23:49:44 +00003722 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003723</pre>
3724
3725<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003726<p>The '<tt>free</tt>' instruction returns memory back to the unused memory heap
3727 to be reallocated in the future.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003728
3729<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003730<p>'<tt>value</tt>' shall be a pointer value that points to a value that was
3731 allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' instruction.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003732
3733<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003734<p>Access to the memory pointed to by the pointer is no longer defined after
3735 this instruction executes. If the pointer is null, the operation is a
3736 noop.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003737
3738<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003739<pre>
Dan Gohmanf54f50a2009-01-04 23:49:44 +00003740 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003741 free [4 x i8]* %array
3742</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003743
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003744</div>
3745
3746<!-- _______________________________________________________________________ -->
3747<div class="doc_subsubsection">
3748 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3749</div>
3750
3751<div class="doc_text">
3752
3753<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003754<pre>
3755 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
3756</pre>
3757
3758<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003759<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003760 currently executing function, to be automatically released when this function
3761 returns to its caller. The object is always allocated in the generic address
3762 space (address space zero).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003763
3764<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003765<p>The '<tt>alloca</tt>' instruction
3766 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
3767 runtime stack, returning a pointer of the appropriate type to the program.
3768 If "NumElements" is specified, it is the number of elements allocated,
3769 otherwise "NumElements" is defaulted to be one. If a constant alignment is
3770 specified, the value result of the allocation is guaranteed to be aligned to
3771 at least that boundary. If not specified, or if zero, the target can choose
3772 to align the allocation on any convenient boundary compatible with the
3773 type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774
3775<p>'<tt>type</tt>' may be any sized type.</p>
3776
3777<h5>Semantics:</h5>
Bill Wendling2a454572009-05-08 20:49:29 +00003778<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingf85859d2009-07-20 02:29:24 +00003779 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
3780 memory is automatically released when the function returns. The
3781 '<tt>alloca</tt>' instruction is commonly used to represent automatic
3782 variables that must have an address available. When the function returns
3783 (either with the <tt><a href="#i_ret">ret</a></tt>
3784 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
3785 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003786
3787<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003788<pre>
Dan Gohmanf54f50a2009-01-04 23:49:44 +00003789 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3790 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3791 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3792 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003793</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003794
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003795</div>
3796
3797<!-- _______________________________________________________________________ -->
3798<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3799Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003800
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003801<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003802
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003803<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003804<pre>
3805 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3806 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]
3807</pre>
3808
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809<h5>Overview:</h5>
3810<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003811
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003812<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003813<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
3814 from which to load. The pointer must point to
3815 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
3816 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
3817 number or order of execution of this <tt>load</tt> with other
3818 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3819 instructions. </p>
3820
3821<p>The optional constant "align" argument specifies the alignment of the
3822 operation (that is, the alignment of the memory address). A value of 0 or an
3823 omitted "align" argument means that the operation has the preferential
3824 alignment for the target. It is the responsibility of the code emitter to
3825 ensure that the alignment information is correct. Overestimating the
3826 alignment results in an undefined behavior. Underestimating the alignment may
3827 produce less efficient code. An alignment of 1 is always safe.</p>
3828
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003829<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003830<p>The location of memory pointed to is loaded. If the value being loaded is of
3831 scalar type then the number of bytes read does not exceed the minimum number
3832 of bytes needed to hold all bits of the type. For example, loading an
3833 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
3834 <tt>i20</tt> with a size that is not an integral number of bytes, the result
3835 is undefined if the value was not originally written using a store of the
3836 same type.</p>
3837
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003838<h5>Examples:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003839<pre>
3840 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
3841 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003842 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
3843</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003844
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003845</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003846
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003847<!-- _______________________________________________________________________ -->
3848<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3849Instruction</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003850
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003851<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003852
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003853<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003854<pre>
3855 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003856 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3857</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003858
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003859<h5>Overview:</h5>
3860<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003861
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003862<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003863<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
3864 and an address at which to store it. The type of the
3865 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
3866 the <a href="#t_firstclass">first class</a> type of the
3867 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked
3868 as <tt>volatile</tt>, then the optimizer is not allowed to modify the number
3869 or order of execution of this <tt>store</tt> with other
3870 volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3871 instructions.</p>
3872
3873<p>The optional constant "align" argument specifies the alignment of the
3874 operation (that is, the alignment of the memory address). A value of 0 or an
3875 omitted "align" argument means that the operation has the preferential
3876 alignment for the target. It is the responsibility of the code emitter to
3877 ensure that the alignment information is correct. Overestimating the
3878 alignment results in an undefined behavior. Underestimating the alignment may
3879 produce less efficient code. An alignment of 1 is always safe.</p>
3880
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003881<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003882<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
3883 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
3884 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
3885 does not exceed the minimum number of bytes needed to hold all bits of the
3886 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
3887 writing a value of a type like <tt>i20</tt> with a size that is not an
3888 integral number of bytes, it is unspecified what happens to the extra bits
3889 that do not belong to the type, but they will typically be overwritten.</p>
3890
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003892<pre>
3893 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00003894 store i32 3, i32* %ptr <i>; yields {void}</i>
3895 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003896</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003897
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003898</div>
3899
3900<!-- _______________________________________________________________________ -->
3901<div class="doc_subsubsection">
3902 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3903</div>
3904
3905<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00003906
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003907<h5>Syntax:</h5>
3908<pre>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003909 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman106b2ae2009-07-27 21:53:46 +00003910 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911</pre>
3912
3913<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00003914<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
3915 subelement of an aggregate data structure. It performs address calculation
3916 only and does not access memory.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003917
3918<h5>Arguments:</h5>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003919<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnere92fc832009-07-29 06:44:13 +00003920 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00003921 elements of the aggregate object are indexed. The interpretation of each
3922 index is dependent on the type being indexed into. The first index always
3923 indexes the pointer value given as the first argument, the second index
3924 indexes a value of the type pointed to (not necessarily the value directly
3925 pointed to, since the first index can be non-zero), etc. The first type
3926 indexed into must be a pointer value, subsequent types can be arrays, vectors
3927 and structs. Note that subsequent types being indexed into can never be
3928 pointers, since that would require loading the pointer before continuing
3929 calculation.</p>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00003930
3931<p>The type of each index argument depends on the type it is indexing into.
Chris Lattnere92fc832009-07-29 06:44:13 +00003932 When indexing into a (optionally packed) structure, only <tt>i32</tt> integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00003933 <b>constants</b> are allowed. When indexing into an array, pointer or
Chris Lattnere92fc832009-07-29 06:44:13 +00003934 vector, integers of any width are allowed, and they are not required to be
3935 constant.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003936
Bill Wendlingf85859d2009-07-20 02:29:24 +00003937<p>For example, let's consider a C code fragment and how it gets compiled to
3938 LLVM:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003939
3940<div class="doc_code">
3941<pre>
3942struct RT {
3943 char A;
3944 int B[10][20];
3945 char C;
3946};
3947struct ST {
3948 int X;
3949 double Y;
3950 struct RT Z;
3951};
3952
3953int *foo(struct ST *s) {
3954 return &amp;s[1].Z.B[5][13];
3955}
3956</pre>
3957</div>
3958
3959<p>The LLVM code generated by the GCC frontend is:</p>
3960
3961<div class="doc_code">
3962<pre>
Chris Lattner5b6dc6e2009-01-11 20:53:49 +00003963%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3964%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003965
Dan Gohman47360842009-07-25 02:23:48 +00003966define i32* @foo(%ST* %s) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003967entry:
3968 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3969 ret i32* %reg
3970}
3971</pre>
3972</div>
3973
3974<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003975<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingf85859d2009-07-20 02:29:24 +00003976 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
3977 }</tt>' type, a structure. The second index indexes into the third element
3978 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3979 i8 }</tt>' type, another structure. The third index indexes into the second
3980 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
3981 array. The two dimensions of the array are subscripted into, yielding an
3982 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
3983 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003984
Bill Wendlingf85859d2009-07-20 02:29:24 +00003985<p>Note that it is perfectly legal to index partially through a structure,
3986 returning a pointer to an inner element. Because of this, the LLVM code for
3987 the given testcase is equivalent to:</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003988
3989<pre>
Dan Gohman47360842009-07-25 02:23:48 +00003990 define i32* @foo(%ST* %s) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003991 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
3992 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3993 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
3994 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3995 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3996 ret i32* %t5
3997 }
3998</pre>
3999
Dan Gohman106b2ae2009-07-27 21:53:46 +00004000<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman4cba1562009-07-29 16:00:30 +00004001 <tt>getelementptr</tt> is undefined if the base pointer is not an
4002 <i>in bounds</i> address of an allocated object, or if any of the addresses
4003 formed by successive addition of the offsets implied by the indices to
4004 the base address are not an <i>in bounds</i> address of that allocated
4005 object.
4006 The <i>in bounds</i> addresses for an allocated object are all the addresses
4007 that point into the object, plus the address one past the end.</p>
Dan Gohman106b2ae2009-07-27 21:53:46 +00004008
4009<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4010 the base address with silently-wrapping two's complement arithmetic, and
4011 the result value of the <tt>getelementptr</tt> may be outside the object
4012 pointed to by the base pointer. The result value may not necessarily be
4013 used to access memory though, even if it happens to point into allocated
4014 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4015 section for more information.</p>
4016
Bill Wendlingf85859d2009-07-20 02:29:24 +00004017<p>The getelementptr instruction is often confusing. For some more insight into
4018 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004019
4020<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004021<pre>
4022 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004023 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4024 <i>; yields i8*:vptr</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004025 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman32a080e2008-10-13 13:44:15 +00004026 <i>; yields i8*:eptr</i>
4027 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta4f9a0dc2009-04-25 07:27:44 +00004028 <i>; yields i32*:iptr</i>
Sanjiv Gupta1e46c582009-04-24 16:38:13 +00004029 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004030</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004031
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004032</div>
4033
4034<!-- ======================================================================= -->
4035<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
4036</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004037
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004038<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004039
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004040<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingf85859d2009-07-20 02:29:24 +00004041 which all take a single operand and a type. They perform various bit
4042 conversions on the operand.</p>
4043
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004044</div>
4045
4046<!-- _______________________________________________________________________ -->
4047<div class="doc_subsubsection">
4048 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4049</div>
4050<div class="doc_text">
4051
4052<h5>Syntax:</h5>
4053<pre>
4054 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4055</pre>
4056
4057<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004058<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4059 type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004060
4061<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004062<p>The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
4063 be an <a href="#t_integer">integer</a> type, and a type that specifies the
4064 size and type of the result, which must be
4065 an <a href="#t_integer">integer</a> type. The bit size of <tt>value</tt> must
4066 be larger than the bit size of <tt>ty2</tt>. Equal sized types are not
4067 allowed.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004068
4069<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004070<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4071 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4072 source size must be larger than the destination size, <tt>trunc</tt> cannot
4073 be a <i>no-op cast</i>. It will always truncate bits.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004074
4075<h5>Example:</h5>
4076<pre>
4077 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4078 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4079 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
4080</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004081
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004082</div>
4083
4084<!-- _______________________________________________________________________ -->
4085<div class="doc_subsubsection">
4086 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4087</div>
4088<div class="doc_text">
4089
4090<h5>Syntax:</h5>
4091<pre>
4092 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4093</pre>
4094
4095<h5>Overview:</h5>
4096<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004097 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004098
4099
4100<h5>Arguments:</h5>
4101<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Bill Wendlingf85859d2009-07-20 02:29:24 +00004102 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4103 also be of <a href="#t_integer">integer</a> type. The bit size of the
4104 <tt>value</tt> must be smaller than the bit size of the destination type,
4105 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004106
4107<h5>Semantics:</h5>
4108<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingf85859d2009-07-20 02:29:24 +00004109 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004110
4111<p>When zero extending from i1, the result will always be either 0 or 1.</p>
4112
4113<h5>Example:</h5>
4114<pre>
4115 %X = zext i32 257 to i64 <i>; yields i64:257</i>
4116 %Y = zext i1 true to i32 <i>; yields i32:1</i>
4117</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004118
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004119</div>
4120
4121<!-- _______________________________________________________________________ -->
4122<div class="doc_subsubsection">
4123 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4124</div>
4125<div class="doc_text">
4126
4127<h5>Syntax:</h5>
4128<pre>
4129 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4130</pre>
4131
4132<h5>Overview:</h5>
4133<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4134
4135<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004136<p>The '<tt>sext</tt>' instruction takes a value to cast, which must be of
4137 <a href="#t_integer">integer</a> type, and a type to cast it to, which must
4138 also be of <a href="#t_integer">integer</a> type. The bit size of the
4139 <tt>value</tt> must be smaller than the bit size of the destination type,
4140 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004141
4142<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004143<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4144 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4145 of the type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004146
4147<p>When sign extending from i1, the extension always results in -1 or 0.</p>
4148
4149<h5>Example:</h5>
4150<pre>
4151 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
4152 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
4153</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004154
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004155</div>
4156
4157<!-- _______________________________________________________________________ -->
4158<div class="doc_subsubsection">
4159 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4160</div>
4161
4162<div class="doc_text">
4163
4164<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004165<pre>
4166 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4167</pre>
4168
4169<h5>Overview:</h5>
4170<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004171 <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004172
4173<h5>Arguments:</h5>
4174<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingf85859d2009-07-20 02:29:24 +00004175 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4176 to cast it to. The size of <tt>value</tt> must be larger than the size of
4177 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4178 <i>no-op cast</i>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004179
4180<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004181<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4182 <a href="#t_floating">floating point</a> type to a smaller
4183 <a href="#t_floating">floating point</a> type. If the value cannot fit
4184 within the destination type, <tt>ty2</tt>, then the results are
4185 undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004186
4187<h5>Example:</h5>
4188<pre>
4189 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4190 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4191</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004192
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004193</div>
4194
4195<!-- _______________________________________________________________________ -->
4196<div class="doc_subsubsection">
4197 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4198</div>
4199<div class="doc_text">
4200
4201<h5>Syntax:</h5>
4202<pre>
4203 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4204</pre>
4205
4206<h5>Overview:</h5>
4207<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingf85859d2009-07-20 02:29:24 +00004208 floating point value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004209
4210<h5>Arguments:</h5>
4211<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004212 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4213 a <a href="#t_floating">floating point</a> type to cast it to. The source
4214 type must be smaller than the destination type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004215
4216<h5>Semantics:</h5>
4217<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingf85859d2009-07-20 02:29:24 +00004218 <a href="#t_floating">floating point</a> type to a larger
4219 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4220 used to make a <i>no-op cast</i> because it always changes bits. Use
4221 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004222
4223<h5>Example:</h5>
4224<pre>
4225 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4226 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4227</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004228
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004229</div>
4230
4231<!-- _______________________________________________________________________ -->
4232<div class="doc_subsubsection">
4233 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4234</div>
4235<div class="doc_text">
4236
4237<h5>Syntax:</h5>
4238<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00004239 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004240</pre>
4241
4242<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00004243<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004244 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004245
4246<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004247<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4248 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4249 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4250 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4251 vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004252
4253<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004254<p>The '<tt>fptoui</tt>' instruction converts its
4255 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4256 towards zero) unsigned integer value. If the value cannot fit
4257 in <tt>ty2</tt>, the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004258
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004259<h5>Example:</h5>
4260<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00004261 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00004262 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00004263 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004264</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004265
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004266</div>
4267
4268<!-- _______________________________________________________________________ -->
4269<div class="doc_subsubsection">
4270 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4271</div>
4272<div class="doc_text">
4273
4274<h5>Syntax:</h5>
4275<pre>
4276 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4277</pre>
4278
4279<h5>Overview:</h5>
4280<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingf85859d2009-07-20 02:29:24 +00004281 <a href="#t_floating">floating point</a> <tt>value</tt> to
4282 type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004283
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004284<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004285<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4286 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4287 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4288 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4289 vector integer type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004290
4291<h5>Semantics:</h5>
4292<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingf85859d2009-07-20 02:29:24 +00004293 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4294 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4295 the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004296
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004297<h5>Example:</h5>
4298<pre>
4299 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00004300 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004301 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
4302</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004303
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004304</div>
4305
4306<!-- _______________________________________________________________________ -->
4307<div class="doc_subsubsection">
4308 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4309</div>
4310<div class="doc_text">
4311
4312<h5>Syntax:</h5>
4313<pre>
4314 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4315</pre>
4316
4317<h5>Overview:</h5>
4318<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingf85859d2009-07-20 02:29:24 +00004319 integer and converts that value to the <tt>ty2</tt> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004320
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004321<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00004322<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004323 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4324 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4325 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4326 floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004327
4328<h5>Semantics:</h5>
4329<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingf85859d2009-07-20 02:29:24 +00004330 integer quantity and converts it to the corresponding floating point
4331 value. If the value cannot fit in the floating point value, the results are
4332 undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004333
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004334<h5>Example:</h5>
4335<pre>
4336 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004337 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004338</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004339
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004340</div>
4341
4342<!-- _______________________________________________________________________ -->
4343<div class="doc_subsubsection">
4344 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4345</div>
4346<div class="doc_text">
4347
4348<h5>Syntax:</h5>
4349<pre>
4350 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4351</pre>
4352
4353<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004354<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4355 and converts that value to the <tt>ty2</tt> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004356
4357<h5>Arguments:</h5>
Nate Begeman78246ca2007-11-17 03:58:34 +00004358<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingf85859d2009-07-20 02:29:24 +00004359 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4360 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4361 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4362 floating point type with the same number of elements as <tt>ty</tt></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004363
4364<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004365<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4366 quantity and converts it to the corresponding floating point value. If the
4367 value cannot fit in the floating point value, the results are undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004368
4369<h5>Example:</h5>
4370<pre>
4371 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004372 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004373</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004374
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004375</div>
4376
4377<!-- _______________________________________________________________________ -->
4378<div class="doc_subsubsection">
4379 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4380</div>
4381<div class="doc_text">
4382
4383<h5>Syntax:</h5>
4384<pre>
4385 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4386</pre>
4387
4388<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004389<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4390 the integer type <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004391
4392<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004393<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4394 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4395 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004396
4397<h5>Semantics:</h5>
4398<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004399 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4400 truncating or zero extending that value to the size of the integer type. If
4401 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4402 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4403 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4404 change.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004405
4406<h5>Example:</h5>
4407<pre>
4408 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4409 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4410</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004411
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004412</div>
4413
4414<!-- _______________________________________________________________________ -->
4415<div class="doc_subsubsection">
4416 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4417</div>
4418<div class="doc_text">
4419
4420<h5>Syntax:</h5>
4421<pre>
4422 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4423</pre>
4424
4425<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004426<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4427 pointer type, <tt>ty2</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004428
4429<h5>Arguments:</h5>
4430<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004431 value to cast, and a type to cast it to, which must be a
4432 <a href="#t_pointer">pointer</a> type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004433
4434<h5>Semantics:</h5>
4435<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004436 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4437 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4438 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4439 than the size of a pointer then a zero extension is done. If they are the
4440 same size, nothing is done (<i>no-op cast</i>).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004441
4442<h5>Example:</h5>
4443<pre>
4444 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4445 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4446 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
4447</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004448
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004449</div>
4450
4451<!-- _______________________________________________________________________ -->
4452<div class="doc_subsubsection">
4453 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
4454</div>
4455<div class="doc_text">
4456
4457<h5>Syntax:</h5>
4458<pre>
4459 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4460</pre>
4461
4462<h5>Overview:</h5>
4463<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004464 <tt>ty2</tt> without changing any bits.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004465
4466<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004467<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4468 non-aggregate first class value, and a type to cast it to, which must also be
4469 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4470 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
4471 identical. If the source type is a pointer, the destination type must also be
4472 a pointer. This instruction supports bitwise conversion of vectors to
4473 integers and to vectors of other types (as long as they have the same
4474 size).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004475
4476<h5>Semantics:</h5>
4477<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingf85859d2009-07-20 02:29:24 +00004478 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4479 this conversion. The conversion is done as if the <tt>value</tt> had been
4480 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
4481 be converted to other pointer types with this instruction. To convert
4482 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
4483 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004484
4485<h5>Example:</h5>
4486<pre>
4487 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
4488 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman2672f3e2008-10-14 16:51:45 +00004489 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004490</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004491
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004492</div>
4493
4494<!-- ======================================================================= -->
4495<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004496
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004497<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004498
4499<p>The instructions in this category are the "miscellaneous" instructions, which
4500 defy better classification.</p>
4501
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004502</div>
4503
4504<!-- _______________________________________________________________________ -->
4505<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4506</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004507
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004508<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004509
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004510<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004511<pre>
4512 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004513</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004514
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004515<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004516<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
4517 boolean values based on comparison of its two integer, integer vector, or
4518 pointer operands.</p>
4519
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004520<h5>Arguments:</h5>
4521<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingf85859d2009-07-20 02:29:24 +00004522 the condition code indicating the kind of comparison to perform. It is not a
4523 value, just a keyword. The possible condition code are:</p>
4524
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004525<ol>
4526 <li><tt>eq</tt>: equal</li>
4527 <li><tt>ne</tt>: not equal </li>
4528 <li><tt>ugt</tt>: unsigned greater than</li>
4529 <li><tt>uge</tt>: unsigned greater or equal</li>
4530 <li><tt>ult</tt>: unsigned less than</li>
4531 <li><tt>ule</tt>: unsigned less or equal</li>
4532 <li><tt>sgt</tt>: signed greater than</li>
4533 <li><tt>sge</tt>: signed greater or equal</li>
4534 <li><tt>slt</tt>: signed less than</li>
4535 <li><tt>sle</tt>: signed less or equal</li>
4536</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004537
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004538<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004539 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
4540 typed. They must also be identical types.</p>
4541
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004542<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004543<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
4544 condition code given as <tt>cond</tt>. The comparison performed always yields
4545 either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt>
4546 result, as follows:</p>
4547
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004548<ol>
4549 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004550 <tt>false</tt> otherwise. No sign interpretation is necessary or
4551 performed.</li>
4552
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004553 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingf85859d2009-07-20 02:29:24 +00004554 <tt>false</tt> otherwise. No sign interpretation is necessary or
4555 performed.</li>
4556
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004557 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004558 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4559
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004560 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004561 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4562 to <tt>op2</tt>.</li>
4563
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004564 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004565 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4566
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004567 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004568 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4569
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004570 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004571 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4572
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004573 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004574 <tt>true</tt> if <tt>op1</tt> is greater than or equal
4575 to <tt>op2</tt>.</li>
4576
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004577 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004578 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
4579
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004580 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingf85859d2009-07-20 02:29:24 +00004581 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004582</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004583
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004584<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingf85859d2009-07-20 02:29:24 +00004585 values are compared as if they were integers.</p>
4586
4587<p>If the operands are integer vectors, then they are compared element by
4588 element. The result is an <tt>i1</tt> vector with the same number of elements
4589 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004590
4591<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004592<pre>
4593 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004594 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4595 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4596 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4597 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4598 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
4599</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00004600
4601<p>Note that the code generator does not yet support vector types with
4602 the <tt>icmp</tt> instruction.</p>
4603
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004604</div>
4605
4606<!-- _______________________________________________________________________ -->
4607<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4608</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004609
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004610<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00004611
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004612<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004613<pre>
4614 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004615</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004616
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004617<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004618<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
4619 values based on comparison of its operands.</p>
4620
4621<p>If the operands are floating point scalars, then the result type is a boolean
4622(<a href="#t_primitive"><tt>i1</tt></a>).</p>
4623
4624<p>If the operands are floating point vectors, then the result type is a vector
4625 of boolean with the same number of elements as the operands being
4626 compared.</p>
4627
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004628<h5>Arguments:</h5>
4629<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingf85859d2009-07-20 02:29:24 +00004630 the condition code indicating the kind of comparison to perform. It is not a
4631 value, just a keyword. The possible condition code are:</p>
4632
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004633<ol>
4634 <li><tt>false</tt>: no comparison, always returns false</li>
4635 <li><tt>oeq</tt>: ordered and equal</li>
4636 <li><tt>ogt</tt>: ordered and greater than </li>
4637 <li><tt>oge</tt>: ordered and greater than or equal</li>
4638 <li><tt>olt</tt>: ordered and less than </li>
4639 <li><tt>ole</tt>: ordered and less than or equal</li>
4640 <li><tt>one</tt>: ordered and not equal</li>
4641 <li><tt>ord</tt>: ordered (no nans)</li>
4642 <li><tt>ueq</tt>: unordered or equal</li>
4643 <li><tt>ugt</tt>: unordered or greater than </li>
4644 <li><tt>uge</tt>: unordered or greater than or equal</li>
4645 <li><tt>ult</tt>: unordered or less than </li>
4646 <li><tt>ule</tt>: unordered or less than or equal</li>
4647 <li><tt>une</tt>: unordered or not equal</li>
4648 <li><tt>uno</tt>: unordered (either nans)</li>
4649 <li><tt>true</tt>: no comparison, always returns true</li>
4650</ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004651
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004652<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingf85859d2009-07-20 02:29:24 +00004653 <i>unordered</i> means that either operand may be a QNAN.</p>
4654
4655<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
4656 a <a href="#t_floating">floating point</a> type or
4657 a <a href="#t_vector">vector</a> of floating point type. They must have
4658 identical types.</p>
4659
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004660<h5>Semantics:</h5>
Gabor Greifd9068fe2008-08-07 21:46:00 +00004661<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004662 according to the condition code given as <tt>cond</tt>. If the operands are
4663 vectors, then the vectors are compared element by element. Each comparison
4664 performed always yields an <a href="#t_primitive">i1</a> result, as
4665 follows:</p>
4666
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004667<ol>
4668 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004669
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004670 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004671 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4672
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004673 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004674 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
4675
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004676 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004677 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004679 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004680 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4681
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004682 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004683 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4684
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004685 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingf85859d2009-07-20 02:29:24 +00004686 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4687
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004688 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004690 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004691 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
4692
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004693 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004694 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
4695
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004696 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004697 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
4698
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004699 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004700 <tt>op1</tt> is less than <tt>op2</tt>.</li>
4701
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004702 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004703 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
4704
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004705 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingf85859d2009-07-20 02:29:24 +00004706 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
4707
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004708 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004709
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004710 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4711</ol>
4712
4713<h5>Example:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004714<pre>
4715 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004716 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4717 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4718 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004719</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00004720
4721<p>Note that the code generator does not yet support vector types with
4722 the <tt>fcmp</tt> instruction.</p>
4723
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004724</div>
4725
4726<!-- _______________________________________________________________________ -->
Nate Begeman646fa482008-05-12 19:01:56 +00004727<div class="doc_subsubsection">
Chris Lattner6704c212008-05-20 20:48:21 +00004728 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4729</div>
4730
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004731<div class="doc_text">
Chris Lattner6704c212008-05-20 20:48:21 +00004732
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004733<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004734<pre>
4735 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
4736</pre>
Chris Lattner6704c212008-05-20 20:48:21 +00004737
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004738<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004739<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
4740 SSA graph representing the function.</p>
4741
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004742<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004743<p>The type of the incoming values is specified with the first type field. After
4744 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
4745 one pair for each predecessor basic block of the current block. Only values
4746 of <a href="#t_firstclass">first class</a> type may be used as the value
4747 arguments to the PHI node. Only labels may be used as the label
4748 arguments.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004749
Bill Wendlingf85859d2009-07-20 02:29:24 +00004750<p>There must be no non-phi instructions between the start of a basic block and
4751 the PHI instructions: i.e. PHI instructions must be first in a basic
4752 block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004753
Bill Wendlingf85859d2009-07-20 02:29:24 +00004754<p>For the purposes of the SSA form, the use of each incoming value is deemed to
4755 occur on the edge from the corresponding predecessor block to the current
4756 block (but after any definition of an '<tt>invoke</tt>' instruction's return
4757 value on the same edge).</p>
Jay Foad8e2fd2c2009-06-03 10:20:10 +00004758
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004759<h5>Semantics:</h5>
4760<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingf85859d2009-07-20 02:29:24 +00004761 specified by the pair corresponding to the predecessor basic block that
4762 executed just prior to the current block.</p>
Chris Lattner6704c212008-05-20 20:48:21 +00004763
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004764<h5>Example:</h5>
Chris Lattner6704c212008-05-20 20:48:21 +00004765<pre>
4766Loop: ; Infinite loop that counts from 0 on up...
4767 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4768 %nextindvar = add i32 %indvar, 1
4769 br label %Loop
4770</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004771
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004772</div>
4773
4774<!-- _______________________________________________________________________ -->
4775<div class="doc_subsubsection">
4776 <a name="i_select">'<tt>select</tt>' Instruction</a>
4777</div>
4778
4779<div class="doc_text">
4780
4781<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004782<pre>
Dan Gohmanb60ca3c2008-09-09 01:02:47 +00004783 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4784
Dan Gohman2672f3e2008-10-14 16:51:45 +00004785 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004786</pre>
4787
4788<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004789<p>The '<tt>select</tt>' instruction is used to choose one value based on a
4790 condition, without branching.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004791
4792
4793<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004794<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
4795 values indicating the condition, and two values of the
4796 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
4797 vectors and the condition is a scalar, then entire vectors are selected, not
4798 individual elements.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004799
4800<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004801<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
4802 first value argument; otherwise, it returns the second value argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004803
Bill Wendlingf85859d2009-07-20 02:29:24 +00004804<p>If the condition is a vector of i1, then the value arguments must be vectors
4805 of the same size, and the selection is done element by element.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004806
4807<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004808<pre>
4809 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
4810</pre>
Dan Gohmana53eb382009-01-22 01:39:38 +00004811
4812<p>Note that the code generator does not yet support conditions
4813 with vector type.</p>
4814
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004815</div>
4816
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004817<!-- _______________________________________________________________________ -->
4818<div class="doc_subsubsection">
4819 <a name="i_call">'<tt>call</tt>' Instruction</a>
4820</div>
4821
4822<div class="doc_text">
4823
4824<h5>Syntax:</h5>
4825<pre>
Devang Pateld0bfcc72008-10-07 17:48:33 +00004826 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004827</pre>
4828
4829<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004830<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
4831
4832<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004833<p>This instruction requires several arguments:</p>
4834
4835<ol>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004836 <li>The optional "tail" marker indicates whether the callee function accesses
4837 any allocas or varargs in the caller. If the "tail" marker is present,
4838 the function call is eligible for tail call optimization. Note that calls
4839 may be marked "tail" even if they do not occur before
4840 a <a href="#i_ret"><tt>ret</tt></a> instruction.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00004841
Bill Wendlingf85859d2009-07-20 02:29:24 +00004842 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
4843 convention</a> the call should use. If none is specified, the call
4844 defaults to using C calling conventions.</li>
Devang Patelac2fc272008-10-06 18:50:38 +00004845
Bill Wendlingf85859d2009-07-20 02:29:24 +00004846 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4847 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
4848 '<tt>inreg</tt>' attributes are valid here.</li>
4849
4850 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
4851 type of the return value. Functions that return no value are marked
4852 <tt><a href="#t_void">void</a></tt>.</li>
4853
4854 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
4855 being invoked. The argument types must match the types implied by this
4856 signature. This type can be omitted if the function is not varargs and if
4857 the function type does not return a pointer to a function.</li>
4858
4859 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4860 be invoked. In most cases, this is a direct function invocation, but
4861 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
4862 to function value.</li>
4863
4864 <li>'<tt>function args</tt>': argument list whose types match the function
4865 signature argument types. All arguments must be of
4866 <a href="#t_firstclass">first class</a> type. If the function signature
4867 indicates the function accepts a variable number of arguments, the extra
4868 arguments can be specified.</li>
4869
4870 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
4871 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4872 '<tt>readnone</tt>' attributes are valid here.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004873</ol>
4874
4875<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004876<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
4877 a specified function, with its incoming arguments bound to the specified
4878 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
4879 function, control flow continues with the instruction after the function
4880 call, and the return value of the function is bound to the result
4881 argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004882
4883<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004884<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00004885 %retval = call i32 @test(i32 %argc)
Chris Lattner5e893ef2008-03-21 17:24:17 +00004886 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4887 %X = tail call i32 @foo() <i>; yields i32</i>
4888 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4889 call void %foo(i8 97 signext)
Devang Patela3cc5372008-03-10 20:49:15 +00004890
4891 %struct.A = type { i32, i8 }
Devang Patelac2fc272008-10-06 18:50:38 +00004892 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohman3e700032008-10-04 19:00:07 +00004893 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4894 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattnerac454b32008-10-08 06:26:11 +00004895 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijman2c4e05a2008-10-07 10:03:45 +00004896 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004897</pre>
4898
4899</div>
4900
4901<!-- _______________________________________________________________________ -->
4902<div class="doc_subsubsection">
4903 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
4904</div>
4905
4906<div class="doc_text">
4907
4908<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004909<pre>
4910 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
4911</pre>
4912
4913<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004914<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingf85859d2009-07-20 02:29:24 +00004915 the "variable argument" area of a function call. It is used to implement the
4916 <tt>va_arg</tt> macro in C.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004917
4918<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004919<p>This instruction takes a <tt>va_list*</tt> value and the type of the
4920 argument. It returns a value of the specified argument type and increments
4921 the <tt>va_list</tt> to point to the next argument. The actual type
4922 of <tt>va_list</tt> is target specific.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004923
4924<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00004925<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
4926 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
4927 to the next argument. For more information, see the variable argument
4928 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004929
4930<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingf85859d2009-07-20 02:29:24 +00004931 take a variable number of arguments, for example, the <tt>vfprintf</tt>
4932 function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004933
Bill Wendlingf85859d2009-07-20 02:29:24 +00004934<p><tt>va_arg</tt> is an LLVM instruction instead of
4935 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
4936 argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004937
4938<h5>Example:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004939<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4940
Bill Wendlingf85859d2009-07-20 02:29:24 +00004941<p>Note that the code generator does not yet fully support va_arg on many
4942 targets. Also, it does not currently support va_arg with aggregate types on
4943 any target.</p>
Dan Gohman60967192009-01-12 23:12:39 +00004944
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004945</div>
4946
4947<!-- *********************************************************************** -->
4948<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4949<!-- *********************************************************************** -->
4950
4951<div class="doc_text">
4952
4953<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingf85859d2009-07-20 02:29:24 +00004954 well known names and semantics and are required to follow certain
4955 restrictions. Overall, these intrinsics represent an extension mechanism for
4956 the LLVM language that does not require changing all of the transformations
4957 in LLVM when adding to the language (or the bitcode reader/writer, the
4958 parser, etc...).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004959
4960<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingf85859d2009-07-20 02:29:24 +00004961 prefix is reserved in LLVM for intrinsic names; thus, function names may not
4962 begin with this prefix. Intrinsic functions must always be external
4963 functions: you cannot define the body of intrinsic functions. Intrinsic
4964 functions may only be used in call or invoke instructions: it is illegal to
4965 take the address of an intrinsic function. Additionally, because intrinsic
4966 functions are part of the LLVM language, it is required if any are added that
4967 they be documented here.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004968
Bill Wendlingf85859d2009-07-20 02:29:24 +00004969<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
4970 family of functions that perform the same operation but on different data
4971 types. Because LLVM can represent over 8 million different integer types,
4972 overloading is used commonly to allow an intrinsic function to operate on any
4973 integer type. One or more of the argument types or the result type can be
4974 overloaded to accept any integer type. Argument types may also be defined as
4975 exactly matching a previous argument's type or the result type. This allows
4976 an intrinsic function which accepts multiple arguments, but needs all of them
4977 to be of the same type, to only be overloaded with respect to a single
4978 argument or the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004979
Bill Wendlingf85859d2009-07-20 02:29:24 +00004980<p>Overloaded intrinsics will have the names of its overloaded argument types
4981 encoded into its function name, each preceded by a period. Only those types
4982 which are overloaded result in a name suffix. Arguments whose type is matched
4983 against another type do not. For example, the <tt>llvm.ctpop</tt> function
4984 can take an integer of any width and returns an integer of exactly the same
4985 integer width. This leads to a family of functions such as
4986 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
4987 %val)</tt>. Only one type, the return type, is overloaded, and only one type
4988 suffix is required. Because the argument's type is matched against the return
4989 type, it does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004990
4991<p>To learn how to add an intrinsic function, please see the
Bill Wendlingf85859d2009-07-20 02:29:24 +00004992 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004993
4994</div>
4995
4996<!-- ======================================================================= -->
4997<div class="doc_subsection">
4998 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4999</div>
5000
5001<div class="doc_text">
5002
Bill Wendlingf85859d2009-07-20 02:29:24 +00005003<p>Variable argument support is defined in LLVM with
5004 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5005 intrinsic functions. These functions are related to the similarly named
5006 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005007
Bill Wendlingf85859d2009-07-20 02:29:24 +00005008<p>All of these functions operate on arguments that use a target-specific value
5009 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5010 not define what this type is, so all transformations should be prepared to
5011 handle these functions regardless of the type used.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005012
5013<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005014 instruction and the variable argument handling intrinsic functions are
5015 used.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005016
5017<div class="doc_code">
5018<pre>
5019define i32 @test(i32 %X, ...) {
5020 ; Initialize variable argument processing
5021 %ap = alloca i8*
5022 %ap2 = bitcast i8** %ap to i8*
5023 call void @llvm.va_start(i8* %ap2)
5024
5025 ; Read a single integer argument
5026 %tmp = va_arg i8** %ap, i32
5027
5028 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5029 %aq = alloca i8*
5030 %aq2 = bitcast i8** %aq to i8*
5031 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5032 call void @llvm.va_end(i8* %aq2)
5033
5034 ; Stop processing of arguments.
5035 call void @llvm.va_end(i8* %ap2)
5036 ret i32 %tmp
5037}
5038
5039declare void @llvm.va_start(i8*)
5040declare void @llvm.va_copy(i8*, i8*)
5041declare void @llvm.va_end(i8*)
5042</pre>
5043</div>
5044
5045</div>
5046
5047<!-- _______________________________________________________________________ -->
5048<div class="doc_subsubsection">
5049 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5050</div>
5051
5052
5053<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005054
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005055<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005056<pre>
5057 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5058</pre>
5059
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005060<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005061<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5062 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005063
5064<h5>Arguments:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005065<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005066
5067<h5>Semantics:</h5>
Dan Gohman2672f3e2008-10-14 16:51:45 +00005068<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005069 macro available in C. In a target-dependent way, it initializes
5070 the <tt>va_list</tt> element to which the argument points, so that the next
5071 call to <tt>va_arg</tt> will produce the first variable argument passed to
5072 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5073 need to know the last argument of the function as the compiler can figure
5074 that out.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005075
5076</div>
5077
5078<!-- _______________________________________________________________________ -->
5079<div class="doc_subsubsection">
5080 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5081</div>
5082
5083<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005084
Bill Wendlingf85859d2009-07-20 02:29:24 +00005085<h5>Syntax:</h5>
5086<pre>
5087 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5088</pre>
5089
5090<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005091<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005092 which has been initialized previously
5093 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5094 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005095
5096<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005097<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5098
5099<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005100<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005101 macro available in C. In a target-dependent way, it destroys
5102 the <tt>va_list</tt> element to which the argument points. Calls
5103 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5104 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5105 with calls to <tt>llvm.va_end</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005106
5107</div>
5108
5109<!-- _______________________________________________________________________ -->
5110<div class="doc_subsubsection">
5111 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5112</div>
5113
5114<div class="doc_text">
5115
5116<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005117<pre>
5118 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5119</pre>
5120
5121<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005122<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingf85859d2009-07-20 02:29:24 +00005123 from the source argument list to the destination argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005124
5125<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005126<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingf85859d2009-07-20 02:29:24 +00005127 The second argument is a pointer to a <tt>va_list</tt> element to copy
5128 from.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005129
5130<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005131<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005132 macro available in C. In a target-dependent way, it copies the
5133 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5134 element. This intrinsic is necessary because
5135 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5136 arbitrarily complex and require, for example, memory allocation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005137
5138</div>
5139
5140<!-- ======================================================================= -->
5141<div class="doc_subsection">
5142 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5143</div>
5144
5145<div class="doc_text">
5146
Bill Wendlingf85859d2009-07-20 02:29:24 +00005147<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner96451482008-08-05 18:29:16 +00005148Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingf85859d2009-07-20 02:29:24 +00005149intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5150roots on the stack</a>, as well as garbage collector implementations that
5151require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5152barriers. Front-ends for type-safe garbage collected languages should generate
5153these intrinsics to make use of the LLVM garbage collectors. For more details,
5154see <a href="GarbageCollection.html">Accurate Garbage Collection with
5155LLVM</a>.</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00005156
Bill Wendlingf85859d2009-07-20 02:29:24 +00005157<p>The garbage collection intrinsics only operate on objects in the generic
5158 address space (address space zero).</p>
Christopher Lambcfe00962007-12-17 01:00:21 +00005159
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005160</div>
5161
5162<!-- _______________________________________________________________________ -->
5163<div class="doc_subsubsection">
5164 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5165</div>
5166
5167<div class="doc_text">
5168
5169<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005170<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005171 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005172</pre>
5173
5174<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005175<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingf85859d2009-07-20 02:29:24 +00005176 the code generator, and allows some metadata to be associated with it.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005177
5178<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005179<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005180 root pointer. The second pointer (which must be either a constant or a
5181 global value address) contains the meta-data to be associated with the
5182 root.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005183
5184<h5>Semantics:</h5>
Chris Lattnera7d94ba2008-04-24 05:59:56 +00005185<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingf85859d2009-07-20 02:29:24 +00005186 location. At compile-time, the code generator generates information to allow
5187 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5188 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5189 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005190
5191</div>
5192
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005193<!-- _______________________________________________________________________ -->
5194<div class="doc_subsubsection">
5195 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5196</div>
5197
5198<div class="doc_text">
5199
5200<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005201<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005202 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005203</pre>
5204
5205<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005206<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingf85859d2009-07-20 02:29:24 +00005207 locations, allowing garbage collector implementations that require read
5208 barriers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005209
5210<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005211<p>The second argument is the address to read from, which should be an address
Bill Wendlingf85859d2009-07-20 02:29:24 +00005212 allocated from the garbage collector. The first object is a pointer to the
5213 start of the referenced object, if needed by the language runtime (otherwise
5214 null).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005215
5216<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005217<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingf85859d2009-07-20 02:29:24 +00005218 instruction, but may be replaced with substantially more complex code by the
5219 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5220 may only be used in a function which <a href="#gc">specifies a GC
5221 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005222
5223</div>
5224
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005225<!-- _______________________________________________________________________ -->
5226<div class="doc_subsubsection">
5227 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5228</div>
5229
5230<div class="doc_text">
5231
5232<h5>Syntax:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005233<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005234 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005235</pre>
5236
5237<h5>Overview:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005238<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingf85859d2009-07-20 02:29:24 +00005239 locations, allowing garbage collector implementations that require write
5240 barriers (such as generational or reference counting collectors).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005241
5242<h5>Arguments:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005243<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingf85859d2009-07-20 02:29:24 +00005244 object to store it to, and the third is the address of the field of Obj to
5245 store to. If the runtime does not require a pointer to the object, Obj may
5246 be null.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005247
5248<h5>Semantics:</h5>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005249<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingf85859d2009-07-20 02:29:24 +00005250 instruction, but may be replaced with substantially more complex code by the
5251 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5252 may only be used in a function which <a href="#gc">specifies a GC
5253 algorithm</a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005254
5255</div>
5256
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005257<!-- ======================================================================= -->
5258<div class="doc_subsection">
5259 <a name="int_codegen">Code Generator Intrinsics</a>
5260</div>
5261
5262<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005263
5264<p>These intrinsics are provided by LLVM to expose special features that may
5265 only be implemented with code generator support.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005266
5267</div>
5268
5269<!-- _______________________________________________________________________ -->
5270<div class="doc_subsubsection">
5271 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5272</div>
5273
5274<div class="doc_text">
5275
5276<h5>Syntax:</h5>
5277<pre>
5278 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
5279</pre>
5280
5281<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005282<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5283 target-specific value indicating the return address of the current function
5284 or one of its callers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005285
5286<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005287<p>The argument to this intrinsic indicates which function to return the address
5288 for. Zero indicates the calling function, one indicates its caller, etc.
5289 The argument is <b>required</b> to be a constant integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005290
5291<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005292<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5293 indicating the return address of the specified call frame, or zero if it
5294 cannot be identified. The value returned by this intrinsic is likely to be
5295 incorrect or 0 for arguments other than zero, so it should only be used for
5296 debugging purposes.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005297
Bill Wendlingf85859d2009-07-20 02:29:24 +00005298<p>Note that calling this intrinsic does not prevent function inlining or other
5299 aggressive transformations, so the value returned may not be that of the
5300 obvious source-language caller.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005301
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005302</div>
5303
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005304<!-- _______________________________________________________________________ -->
5305<div class="doc_subsubsection">
5306 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5307</div>
5308
5309<div class="doc_text">
5310
5311<h5>Syntax:</h5>
5312<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005313 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005314</pre>
5315
5316<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005317<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5318 target-specific frame pointer value for the specified stack frame.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005319
5320<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005321<p>The argument to this intrinsic indicates which function to return the frame
5322 pointer for. Zero indicates the calling function, one indicates its caller,
5323 etc. The argument is <b>required</b> to be a constant integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005324
5325<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005326<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5327 indicating the frame address of the specified call frame, or zero if it
5328 cannot be identified. The value returned by this intrinsic is likely to be
5329 incorrect or 0 for arguments other than zero, so it should only be used for
5330 debugging purposes.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005331
Bill Wendlingf85859d2009-07-20 02:29:24 +00005332<p>Note that calling this intrinsic does not prevent function inlining or other
5333 aggressive transformations, so the value returned may not be that of the
5334 obvious source-language caller.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005335
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005336</div>
5337
5338<!-- _______________________________________________________________________ -->
5339<div class="doc_subsubsection">
5340 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5341</div>
5342
5343<div class="doc_text">
5344
5345<h5>Syntax:</h5>
5346<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005347 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005348</pre>
5349
5350<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005351<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5352 of the function stack, for use
5353 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5354 useful for implementing language features like scoped automatic variable
5355 sized arrays in C99.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005356
5357<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005358<p>This intrinsic returns a opaque pointer value that can be passed
5359 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5360 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5361 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5362 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5363 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5364 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005365
5366</div>
5367
5368<!-- _______________________________________________________________________ -->
5369<div class="doc_subsubsection">
5370 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5371</div>
5372
5373<div class="doc_text">
5374
5375<h5>Syntax:</h5>
5376<pre>
5377 declare void @llvm.stackrestore(i8 * %ptr)
5378</pre>
5379
5380<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005381<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5382 the function stack to the state it was in when the
5383 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5384 executed. This is useful for implementing language features like scoped
5385 automatic variable sized arrays in C99.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005386
5387<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005388<p>See the description
5389 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005390
5391</div>
5392
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005393<!-- _______________________________________________________________________ -->
5394<div class="doc_subsubsection">
5395 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5396</div>
5397
5398<div class="doc_text">
5399
5400<h5>Syntax:</h5>
5401<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005402 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005403</pre>
5404
5405<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005406<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5407 insert a prefetch instruction if supported; otherwise, it is a noop.
5408 Prefetches have no effect on the behavior of the program but can change its
5409 performance characteristics.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005410
5411<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005412<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5413 specifier determining if the fetch should be for a read (0) or write (1),
5414 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5415 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5416 and <tt>locality</tt> arguments must be constant integers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005417
5418<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005419<p>This intrinsic does not modify the behavior of the program. In particular,
5420 prefetches cannot trap and do not produce a value. On targets that support
5421 this intrinsic, the prefetch can provide hints to the processor cache for
5422 better performance.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005423
5424</div>
5425
5426<!-- _______________________________________________________________________ -->
5427<div class="doc_subsubsection">
5428 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
5429</div>
5430
5431<div class="doc_text">
5432
5433<h5>Syntax:</h5>
5434<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00005435 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005436</pre>
5437
5438<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005439<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5440 Counter (PC) in a region of code to simulators and other tools. The method
5441 is target specific, but it is expected that the marker will use exported
5442 symbols to transmit the PC of the marker. The marker makes no guarantees
5443 that it will remain with any specific instruction after optimizations. It is
5444 possible that the presence of a marker will inhibit optimizations. The
5445 intended use is to be inserted after optimizations to allow correlations of
5446 simulation runs.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005447
5448<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005449<p><tt>id</tt> is a numerical id identifying the marker.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005450
5451<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005452<p>This intrinsic does not modify the behavior of the program. Backends that do
5453 not support this intrinisic may ignore it.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005454
5455</div>
5456
5457<!-- _______________________________________________________________________ -->
5458<div class="doc_subsubsection">
5459 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
5460</div>
5461
5462<div class="doc_text">
5463
5464<h5>Syntax:</h5>
5465<pre>
5466 declare i64 @llvm.readcyclecounter( )
5467</pre>
5468
5469<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005470<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5471 counter register (or similar low latency, high accuracy clocks) on those
5472 targets that support it. On X86, it should map to RDTSC. On Alpha, it
5473 should map to RPCC. As the backing counters overflow quickly (on the order
5474 of 9 seconds on alpha), this should only be used for small timings.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005475
5476<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005477<p>When directly supported, reading the cycle counter should not modify any
5478 memory. Implementations are allowed to either return a application specific
5479 value or a system wide value. On backends without support, this is lowered
5480 to a constant 0.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005481
5482</div>
5483
5484<!-- ======================================================================= -->
5485<div class="doc_subsection">
5486 <a name="int_libc">Standard C Library Intrinsics</a>
5487</div>
5488
5489<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005490
5491<p>LLVM provides intrinsics for a few important standard C library functions.
5492 These intrinsics allow source-language front-ends to pass information about
5493 the alignment of the pointer arguments to the code generator, providing
5494 opportunity for more efficient code generation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005495
5496</div>
5497
5498<!-- _______________________________________________________________________ -->
5499<div class="doc_subsubsection">
5500 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
5501</div>
5502
5503<div class="doc_text">
5504
5505<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005506<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
5507 integer bit width. Not all targets support all bit widths however.</p>
5508
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005509<pre>
Chris Lattner82c2e432008-11-21 16:42:48 +00005510 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005511 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner82c2e432008-11-21 16:42:48 +00005512 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5513 i16 &lt;len&gt;, i32 &lt;align&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005514 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5515 i32 &lt;len&gt;, i32 &lt;align&gt;)
5516 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5517 i64 &lt;len&gt;, i32 &lt;align&gt;)
5518</pre>
5519
5520<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005521<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5522 source location to the destination location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005523
Bill Wendlingf85859d2009-07-20 02:29:24 +00005524<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5525 intrinsics do not return a value, and takes an extra alignment argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005526
5527<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005528<p>The first argument is a pointer to the destination, the second is a pointer
5529 to the source. The third argument is an integer argument specifying the
5530 number of bytes to copy, and the fourth argument is the alignment of the
5531 source and destination locations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005532
Bill Wendlingf85859d2009-07-20 02:29:24 +00005533<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5534 then the caller guarantees that both the source and destination pointers are
5535 aligned to that boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005536
5537<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005538<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
5539 source location to the destination location, which are not allowed to
5540 overlap. It copies "len" bytes of memory over. If the argument is known to
5541 be aligned to some boundary, this can be specified as the fourth argument,
5542 otherwise it should be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005543
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005544</div>
5545
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005546<!-- _______________________________________________________________________ -->
5547<div class="doc_subsubsection">
5548 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
5549</div>
5550
5551<div class="doc_text">
5552
5553<h5>Syntax:</h5>
Chris Lattner82c2e432008-11-21 16:42:48 +00005554<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00005555 width. Not all targets support all bit widths however.</p>
5556
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005557<pre>
Chris Lattner82c2e432008-11-21 16:42:48 +00005558 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005559 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner82c2e432008-11-21 16:42:48 +00005560 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5561 i16 &lt;len&gt;, i32 &lt;align&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005562 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5563 i32 &lt;len&gt;, i32 &lt;align&gt;)
5564 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5565 i64 &lt;len&gt;, i32 &lt;align&gt;)
5566</pre>
5567
5568<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005569<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
5570 source location to the destination location. It is similar to the
5571 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
5572 overlap.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005573
Bill Wendlingf85859d2009-07-20 02:29:24 +00005574<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5575 intrinsics do not return a value, and takes an extra alignment argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005576
5577<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005578<p>The first argument is a pointer to the destination, the second is a pointer
5579 to the source. The third argument is an integer argument specifying the
5580 number of bytes to copy, and the fourth argument is the alignment of the
5581 source and destination locations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005582
Bill Wendlingf85859d2009-07-20 02:29:24 +00005583<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5584 then the caller guarantees that the source and destination pointers are
5585 aligned to that boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005586
5587<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005588<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
5589 source location to the destination location, which may overlap. It copies
5590 "len" bytes of memory over. If the argument is known to be aligned to some
5591 boundary, this can be specified as the fourth argument, otherwise it should
5592 be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005593
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005594</div>
5595
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005596<!-- _______________________________________________________________________ -->
5597<div class="doc_subsubsection">
5598 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
5599</div>
5600
5601<div class="doc_text">
5602
5603<h5>Syntax:</h5>
Chris Lattner82c2e432008-11-21 16:42:48 +00005604<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00005605 width. Not all targets support all bit widths however.</p>
5606
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005607<pre>
Chris Lattner82c2e432008-11-21 16:42:48 +00005608 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Bill Wendlingf85859d2009-07-20 02:29:24 +00005609 i8 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner82c2e432008-11-21 16:42:48 +00005610 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5611 i16 &lt;len&gt;, i32 &lt;align&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005612 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5613 i32 &lt;len&gt;, i32 &lt;align&gt;)
5614 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5615 i64 &lt;len&gt;, i32 &lt;align&gt;)
5616</pre>
5617
5618<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005619<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
5620 particular byte value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005621
Bill Wendlingf85859d2009-07-20 02:29:24 +00005622<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
5623 intrinsic does not return a value, and takes an extra alignment argument.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005624
5625<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005626<p>The first argument is a pointer to the destination to fill, the second is the
5627 byte value to fill it with, the third argument is an integer argument
5628 specifying the number of bytes to fill, and the fourth argument is the known
5629 alignment of destination location.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005630
Bill Wendlingf85859d2009-07-20 02:29:24 +00005631<p>If the call to this intrinisic has an alignment value that is not 0 or 1,
5632 then the caller guarantees that the destination pointer is aligned to that
5633 boundary.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005634
5635<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005636<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
5637 at the destination location. If the argument is known to be aligned to some
5638 boundary, this can be specified as the fourth argument, otherwise it should
5639 be set to 0 or 1.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005640
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005641</div>
5642
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005643<!-- _______________________________________________________________________ -->
5644<div class="doc_subsubsection">
5645 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
5646</div>
5647
5648<div class="doc_text">
5649
5650<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005651<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
5652 floating point or vector of floating point type. Not all targets support all
5653 types however.</p>
5654
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005655<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005656 declare float @llvm.sqrt.f32(float %Val)
5657 declare double @llvm.sqrt.f64(double %Val)
5658 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5659 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5660 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005661</pre>
5662
5663<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005664<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
5665 returning the same value as the libm '<tt>sqrt</tt>' functions would.
5666 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
5667 behavior for negative numbers other than -0.0 (which allows for better
5668 optimization, because there is no need to worry about errno being
5669 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005670
5671<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005672<p>The argument and return value are floating point numbers of the same
5673 type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005674
5675<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005676<p>This function returns the sqrt of the specified operand if it is a
5677 nonnegative floating point number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005678
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005679</div>
5680
5681<!-- _______________________________________________________________________ -->
5682<div class="doc_subsubsection">
5683 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
5684</div>
5685
5686<div class="doc_text">
5687
5688<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005689<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
5690 floating point or vector of floating point type. Not all targets support all
5691 types however.</p>
5692
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005693<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00005694 declare float @llvm.powi.f32(float %Val, i32 %power)
5695 declare double @llvm.powi.f64(double %Val, i32 %power)
5696 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5697 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5698 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005699</pre>
5700
5701<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005702<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5703 specified (positive or negative) power. The order of evaluation of
5704 multiplications is not defined. When a vector of floating point type is
5705 used, the second argument remains a scalar integer value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005706
5707<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005708<p>The second argument is an integer power, and the first is a value to raise to
5709 that power.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005710
5711<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005712<p>This function returns the first value raised to the second power with an
5713 unspecified sequence of rounding operations.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005714
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005715</div>
5716
Dan Gohman361079c2007-10-15 20:30:11 +00005717<!-- _______________________________________________________________________ -->
5718<div class="doc_subsubsection">
5719 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5720</div>
5721
5722<div class="doc_text">
5723
5724<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005725<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5726 floating point or vector of floating point type. Not all targets support all
5727 types however.</p>
5728
Dan Gohman361079c2007-10-15 20:30:11 +00005729<pre>
5730 declare float @llvm.sin.f32(float %Val)
5731 declare double @llvm.sin.f64(double %Val)
5732 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5733 declare fp128 @llvm.sin.f128(fp128 %Val)
5734 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5735</pre>
5736
5737<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005738<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005739
5740<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005741<p>The argument and return value are floating point numbers of the same
5742 type.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005743
5744<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005745<p>This function returns the sine of the specified operand, returning the same
5746 values as the libm <tt>sin</tt> functions would, and handles error conditions
5747 in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005748
Dan Gohman361079c2007-10-15 20:30:11 +00005749</div>
5750
5751<!-- _______________________________________________________________________ -->
5752<div class="doc_subsubsection">
5753 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5754</div>
5755
5756<div class="doc_text">
5757
5758<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005759<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5760 floating point or vector of floating point type. Not all targets support all
5761 types however.</p>
5762
Dan Gohman361079c2007-10-15 20:30:11 +00005763<pre>
5764 declare float @llvm.cos.f32(float %Val)
5765 declare double @llvm.cos.f64(double %Val)
5766 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5767 declare fp128 @llvm.cos.f128(fp128 %Val)
5768 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5769</pre>
5770
5771<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005772<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005773
5774<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005775<p>The argument and return value are floating point numbers of the same
5776 type.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005777
5778<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005779<p>This function returns the cosine of the specified operand, returning the same
5780 values as the libm <tt>cos</tt> functions would, and handles error conditions
5781 in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005782
Dan Gohman361079c2007-10-15 20:30:11 +00005783</div>
5784
5785<!-- _______________________________________________________________________ -->
5786<div class="doc_subsubsection">
5787 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5788</div>
5789
5790<div class="doc_text">
5791
5792<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005793<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5794 floating point or vector of floating point type. Not all targets support all
5795 types however.</p>
5796
Dan Gohman361079c2007-10-15 20:30:11 +00005797<pre>
5798 declare float @llvm.pow.f32(float %Val, float %Power)
5799 declare double @llvm.pow.f64(double %Val, double %Power)
5800 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5801 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5802 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5803</pre>
5804
5805<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005806<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5807 specified (positive or negative) power.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005808
5809<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005810<p>The second argument is a floating point power, and the first is a value to
5811 raise to that power.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005812
5813<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005814<p>This function returns the first value raised to the second power, returning
5815 the same values as the libm <tt>pow</tt> functions would, and handles error
5816 conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00005817
Dan Gohman361079c2007-10-15 20:30:11 +00005818</div>
5819
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005820<!-- ======================================================================= -->
5821<div class="doc_subsection">
5822 <a name="int_manip">Bit Manipulation Intrinsics</a>
5823</div>
5824
5825<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005826
5827<p>LLVM provides intrinsics for a few important bit manipulation operations.
5828 These allow efficient code generation for some algorithms.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005829
5830</div>
5831
5832<!-- _______________________________________________________________________ -->
5833<div class="doc_subsubsection">
5834 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
5835</div>
5836
5837<div class="doc_text">
5838
5839<h5>Syntax:</h5>
5840<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingf85859d2009-07-20 02:29:24 +00005841 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
5842
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005843<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005844 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5845 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5846 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005847</pre>
5848
5849<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005850<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
5851 values with an even number of bytes (positive multiple of 16 bits). These
5852 are useful for performing operations on data that is not in the target's
5853 native byte order.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005854
5855<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005856<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
5857 and low byte of the input i16 swapped. Similarly,
5858 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
5859 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
5860 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
5861 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
5862 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
5863 more, respectively).</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005864
5865</div>
5866
5867<!-- _______________________________________________________________________ -->
5868<div class="doc_subsubsection">
5869 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
5870</div>
5871
5872<div class="doc_text">
5873
5874<h5>Syntax:</h5>
5875<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingf85859d2009-07-20 02:29:24 +00005876 width. Not all targets support all bit widths however.</p>
5877
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005878<pre>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00005879 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005880 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005881 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005882 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5883 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005884</pre>
5885
5886<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005887<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
5888 in a value.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005889
5890<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005891<p>The only argument is the value to be counted. The argument may be of any
5892 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005893
5894<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005895<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005896
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005897</div>
5898
5899<!-- _______________________________________________________________________ -->
5900<div class="doc_subsubsection">
5901 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
5902</div>
5903
5904<div class="doc_text">
5905
5906<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005907<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
5908 integer bit width. Not all targets support all bit widths however.</p>
5909
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005910<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005911 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5912 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005913 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005914 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5915 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005916</pre>
5917
5918<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005919<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5920 leading zeros in a variable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005921
5922<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005923<p>The only argument is the value to be counted. The argument may be of any
5924 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005925
5926<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005927<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
5928 zeros in a variable. If the src == 0 then the result is the size in bits of
5929 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005930
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005931</div>
5932
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005933<!-- _______________________________________________________________________ -->
5934<div class="doc_subsubsection">
5935 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
5936</div>
5937
5938<div class="doc_text">
5939
5940<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005941<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
5942 integer bit width. Not all targets support all bit widths however.</p>
5943
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005944<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00005945 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5946 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005947 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00005948 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5949 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005950</pre>
5951
5952<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005953<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5954 trailing zeros.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005955
5956<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005957<p>The only argument is the value to be counted. The argument may be of any
5958 integer type. The return type must match the argument type.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005959
5960<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005961<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
5962 zeros in a variable. If the src == 0 then the result is the size in bits of
5963 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005964
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005965</div>
5966
Bill Wendling3e1258b2009-02-08 04:04:40 +00005967<!-- ======================================================================= -->
5968<div class="doc_subsection">
5969 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5970</div>
5971
5972<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00005973
5974<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendling3e1258b2009-02-08 04:04:40 +00005975
5976</div>
5977
Bill Wendling3f8cebe2009-02-08 01:40:31 +00005978<!-- _______________________________________________________________________ -->
5979<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00005980 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00005981</div>
5982
5983<div class="doc_text">
5984
5985<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00005986<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00005987 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00005988
5989<pre>
5990 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5991 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5992 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5993</pre>
5994
5995<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00005996<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00005997 a signed addition of the two arguments, and indicate whether an overflow
5998 occurred during the signed summation.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00005999
6000<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006001<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006002 be of integer types of any bit width, but they must have the same bit
6003 width. The second element of the result structure must be of
6004 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6005 undergo signed addition.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006006
6007<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006008<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006009 a signed addition of the two variables. They return a structure &mdash; the
6010 first element of which is the signed summation, and the second element of
6011 which is a bit specifying if the signed summation resulted in an
6012 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006013
6014<h5>Examples:</h5>
6015<pre>
6016 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6017 %sum = extractvalue {i32, i1} %res, 0
6018 %obit = extractvalue {i32, i1} %res, 1
6019 br i1 %obit, label %overflow, label %normal
6020</pre>
6021
6022</div>
6023
6024<!-- _______________________________________________________________________ -->
6025<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006026 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006027</div>
6028
6029<div class="doc_text">
6030
6031<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006032<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006033 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006034
6035<pre>
6036 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6037 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6038 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6039</pre>
6040
6041<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006042<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006043 an unsigned addition of the two arguments, and indicate whether a carry
6044 occurred during the unsigned summation.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006045
6046<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006047<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006048 be of integer types of any bit width, but they must have the same bit
6049 width. The second element of the result structure must be of
6050 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6051 undergo unsigned addition.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006052
6053<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006054<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006055 an unsigned addition of the two arguments. They return a structure &mdash;
6056 the first element of which is the sum, and the second element of which is a
6057 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006058
6059<h5>Examples:</h5>
6060<pre>
6061 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6062 %sum = extractvalue {i32, i1} %res, 0
6063 %obit = extractvalue {i32, i1} %res, 1
6064 br i1 %obit, label %carry, label %normal
6065</pre>
6066
6067</div>
6068
6069<!-- _______________________________________________________________________ -->
6070<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006071 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006072</div>
6073
6074<div class="doc_text">
6075
6076<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006077<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006078 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006079
6080<pre>
6081 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6082 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6083 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6084</pre>
6085
6086<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006087<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006088 a signed subtraction of the two arguments, and indicate whether an overflow
6089 occurred during the signed subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006090
6091<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006092<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006093 be of integer types of any bit width, but they must have the same bit
6094 width. The second element of the result structure must be of
6095 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6096 undergo signed subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006097
6098<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006099<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006100 a signed subtraction of the two arguments. They return a structure &mdash;
6101 the first element of which is the subtraction, and the second element of
6102 which is a bit specifying if the signed subtraction resulted in an
6103 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006104
6105<h5>Examples:</h5>
6106<pre>
6107 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6108 %sum = extractvalue {i32, i1} %res, 0
6109 %obit = extractvalue {i32, i1} %res, 1
6110 br i1 %obit, label %overflow, label %normal
6111</pre>
6112
6113</div>
6114
6115<!-- _______________________________________________________________________ -->
6116<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006117 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006118</div>
6119
6120<div class="doc_text">
6121
6122<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006123<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006124 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006125
6126<pre>
6127 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6128 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6129 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6130</pre>
6131
6132<h5>Overview:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006133<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006134 an unsigned subtraction of the two arguments, and indicate whether an
6135 overflow occurred during the unsigned subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006136
6137<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006138<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006139 be of integer types of any bit width, but they must have the same bit
6140 width. The second element of the result structure must be of
6141 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6142 undergo unsigned subtraction.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006143
6144<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006145<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006146 an unsigned subtraction of the two arguments. They return a structure &mdash;
6147 the first element of which is the subtraction, and the second element of
6148 which is a bit specifying if the unsigned subtraction resulted in an
6149 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006150
6151<h5>Examples:</h5>
6152<pre>
6153 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6154 %sum = extractvalue {i32, i1} %res, 0
6155 %obit = extractvalue {i32, i1} %res, 1
6156 br i1 %obit, label %overflow, label %normal
6157</pre>
6158
6159</div>
6160
6161<!-- _______________________________________________________________________ -->
6162<div class="doc_subsubsection">
Bill Wendling3e1258b2009-02-08 04:04:40 +00006163 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006164</div>
6165
6166<div class="doc_text">
6167
6168<h5>Syntax:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006169<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006170 on any integer bit width.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006171
6172<pre>
6173 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6174 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6175 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6176</pre>
6177
6178<h5>Overview:</h5>
6179
6180<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006181 a signed multiplication of the two arguments, and indicate whether an
6182 overflow occurred during the signed multiplication.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006183
6184<h5>Arguments:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006185<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006186 be of integer types of any bit width, but they must have the same bit
6187 width. The second element of the result structure must be of
6188 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6189 undergo signed multiplication.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006190
6191<h5>Semantics:</h5>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006192<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006193 a signed multiplication of the two arguments. They return a structure &mdash;
6194 the first element of which is the multiplication, and the second element of
6195 which is a bit specifying if the signed multiplication resulted in an
6196 overflow.</p>
Bill Wendling3f8cebe2009-02-08 01:40:31 +00006197
6198<h5>Examples:</h5>
6199<pre>
6200 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6201 %sum = extractvalue {i32, i1} %res, 0
6202 %obit = extractvalue {i32, i1} %res, 1
6203 br i1 %obit, label %overflow, label %normal
6204</pre>
6205
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006206</div>
6207
Bill Wendlingbda98b62009-02-08 23:00:09 +00006208<!-- _______________________________________________________________________ -->
6209<div class="doc_subsubsection">
6210 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6211</div>
6212
6213<div class="doc_text">
6214
6215<h5>Syntax:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006216<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006217 on any integer bit width.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006218
6219<pre>
6220 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6221 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6222 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6223</pre>
6224
6225<h5>Overview:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006226<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006227 a unsigned multiplication of the two arguments, and indicate whether an
6228 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006229
6230<h5>Arguments:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006231<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingf85859d2009-07-20 02:29:24 +00006232 be of integer types of any bit width, but they must have the same bit
6233 width. The second element of the result structure must be of
6234 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6235 undergo unsigned multiplication.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006236
6237<h5>Semantics:</h5>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006238<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingf85859d2009-07-20 02:29:24 +00006239 an unsigned multiplication of the two arguments. They return a structure
6240 &mdash; the first element of which is the multiplication, and the second
6241 element of which is a bit specifying if the unsigned multiplication resulted
6242 in an overflow.</p>
Bill Wendlingbda98b62009-02-08 23:00:09 +00006243
6244<h5>Examples:</h5>
6245<pre>
6246 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6247 %sum = extractvalue {i32, i1} %res, 0
6248 %obit = extractvalue {i32, i1} %res, 1
6249 br i1 %obit, label %overflow, label %normal
6250</pre>
6251
6252</div>
6253
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006254<!-- ======================================================================= -->
6255<div class="doc_subsection">
6256 <a name="int_debugger">Debugger Intrinsics</a>
6257</div>
6258
6259<div class="doc_text">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006260
Bill Wendlingf85859d2009-07-20 02:29:24 +00006261<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6262 prefix), are described in
6263 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6264 Level Debugging</a> document.</p>
6265
6266</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006267
6268<!-- ======================================================================= -->
6269<div class="doc_subsection">
6270 <a name="int_eh">Exception Handling Intrinsics</a>
6271</div>
6272
6273<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006274
6275<p>The LLVM exception handling intrinsics (which all start with
6276 <tt>llvm.eh.</tt> prefix), are described in
6277 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6278 Handling</a> document.</p>
6279
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006280</div>
6281
6282<!-- ======================================================================= -->
6283<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00006284 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00006285</div>
6286
6287<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006288
6289<p>This intrinsic makes it possible to excise one parameter, marked with
6290 the <tt>nest</tt> attribute, from a function. The result is a callable
6291 function pointer lacking the nest parameter - the caller does not need to
6292 provide a value for it. Instead, the value to use is stored in advance in a
6293 "trampoline", a block of memory usually allocated on the stack, which also
6294 contains code to splice the nest value into the argument list. This is used
6295 to implement the GCC nested function address extension.</p>
6296
6297<p>For example, if the function is
6298 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6299 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6300 follows:</p>
6301
6302<div class="doc_code">
Duncan Sands38947cd2007-07-27 12:58:54 +00006303<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00006304 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6305 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6306 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6307 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00006308</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006309</div>
6310
6311<p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6312 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
6313
Duncan Sands38947cd2007-07-27 12:58:54 +00006314</div>
6315
6316<!-- _______________________________________________________________________ -->
6317<div class="doc_subsubsection">
6318 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6319</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006320
Duncan Sands38947cd2007-07-27 12:58:54 +00006321<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006322
Duncan Sands38947cd2007-07-27 12:58:54 +00006323<h5>Syntax:</h5>
6324<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006325 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00006326</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006327
Duncan Sands38947cd2007-07-27 12:58:54 +00006328<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006329<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6330 function pointer suitable for executing it.</p>
6331
Duncan Sands38947cd2007-07-27 12:58:54 +00006332<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006333<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6334 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6335 sufficiently aligned block of memory; this memory is written to by the
6336 intrinsic. Note that the size and the alignment are target-specific - LLVM
6337 currently provides no portable way of determining them, so a front-end that
6338 generates this intrinsic needs to have some target-specific knowledge.
6339 The <tt>func</tt> argument must hold a function bitcast to
6340 an <tt>i8*</tt>.</p>
6341
Duncan Sands38947cd2007-07-27 12:58:54 +00006342<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006343<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
6344 dependent code, turning it into a function. A pointer to this function is
6345 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
6346 function pointer type</a> before being called. The new function's signature
6347 is the same as that of <tt>func</tt> with any arguments marked with
6348 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
6349 is allowed, and it must be of pointer type. Calling the new function is
6350 equivalent to calling <tt>func</tt> with the same argument list, but
6351 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
6352 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
6353 by <tt>tramp</tt> is modified, then the effect of any later call to the
6354 returned function pointer is undefined.</p>
6355
Duncan Sands38947cd2007-07-27 12:58:54 +00006356</div>
6357
6358<!-- ======================================================================= -->
6359<div class="doc_subsection">
Andrew Lenharth785610d2008-02-16 01:24:58 +00006360 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6361</div>
6362
6363<div class="doc_text">
Andrew Lenharth785610d2008-02-16 01:24:58 +00006364
Bill Wendlingf85859d2009-07-20 02:29:24 +00006365<p>These intrinsic functions expand the "universal IR" of LLVM to represent
6366 hardware constructs for atomic operations and memory synchronization. This
6367 provides an interface to the hardware, not an interface to the programmer. It
6368 is aimed at a low enough level to allow any programming models or APIs
6369 (Application Programming Interfaces) which need atomic behaviors to map
6370 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
6371 hardware provides a "universal IR" for source languages, it also provides a
6372 starting point for developing a "universal" atomic operation and
6373 synchronization IR.</p>
6374
6375<p>These do <em>not</em> form an API such as high-level threading libraries,
6376 software transaction memory systems, atomic primitives, and intrinsic
6377 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6378 application libraries. The hardware interface provided by LLVM should allow
6379 a clean implementation of all of these APIs and parallel programming models.
6380 No one model or paradigm should be selected above others unless the hardware
6381 itself ubiquitously does so.</p>
6382
Andrew Lenharth785610d2008-02-16 01:24:58 +00006383</div>
6384
6385<!-- _______________________________________________________________________ -->
6386<div class="doc_subsubsection">
6387 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6388</div>
6389<div class="doc_text">
6390<h5>Syntax:</h5>
6391<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006392 declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt; )
Andrew Lenharth785610d2008-02-16 01:24:58 +00006393</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006394
Andrew Lenharth785610d2008-02-16 01:24:58 +00006395<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006396<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6397 specific pairs of memory access types.</p>
6398
Andrew Lenharth785610d2008-02-16 01:24:58 +00006399<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006400<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6401 The first four arguments enables a specific barrier as listed below. The
6402 fith argument specifies that the barrier applies to io or device or uncached
6403 memory.</p>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006404
Bill Wendlingf85859d2009-07-20 02:29:24 +00006405<ul>
6406 <li><tt>ll</tt>: load-load barrier</li>
6407 <li><tt>ls</tt>: load-store barrier</li>
6408 <li><tt>sl</tt>: store-load barrier</li>
6409 <li><tt>ss</tt>: store-store barrier</li>
6410 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
6411</ul>
6412
Andrew Lenharth785610d2008-02-16 01:24:58 +00006413<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006414<p>This intrinsic causes the system to enforce some ordering constraints upon
6415 the loads and stores of the program. This barrier does not
6416 indicate <em>when</em> any events will occur, it only enforces
6417 an <em>order</em> in which they occur. For any of the specified pairs of load
6418 and store operations (f.ex. load-load, or store-load), all of the first
6419 operations preceding the barrier will complete before any of the second
6420 operations succeeding the barrier begin. Specifically the semantics for each
6421 pairing is as follows:</p>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006422
Bill Wendlingf85859d2009-07-20 02:29:24 +00006423<ul>
6424 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6425 after the barrier begins.</li>
6426 <li><tt>ls</tt>: All loads before the barrier must complete before any
6427 store after the barrier begins.</li>
6428 <li><tt>ss</tt>: All stores before the barrier must complete before any
6429 store after the barrier begins.</li>
6430 <li><tt>sl</tt>: All stores before the barrier must complete before any
6431 load after the barrier begins.</li>
6432</ul>
6433
6434<p>These semantics are applied with a logical "and" behavior when more than one
6435 is enabled in a single memory barrier intrinsic.</p>
6436
6437<p>Backends may implement stronger barriers than those requested when they do
6438 not support as fine grained a barrier as requested. Some architectures do
6439 not need all types of barriers and on such architectures, these become
6440 noops.</p>
6441
Andrew Lenharth785610d2008-02-16 01:24:58 +00006442<h5>Example:</h5>
6443<pre>
6444%ptr = malloc i32
6445 store i32 4, %ptr
6446
6447%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6448 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6449 <i>; guarantee the above finishes</i>
6450 store i32 8, %ptr <i>; before this begins</i>
6451</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006452
Andrew Lenharth785610d2008-02-16 01:24:58 +00006453</div>
6454
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006455<!-- _______________________________________________________________________ -->
6456<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006457 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006458</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006459
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006460<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006461
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006462<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006463<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6464 any integer bit width and for different address spaces. Not all targets
6465 support all bit widths however.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006466
6467<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006468 declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6469 declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6470 declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6471 declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006472</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006473
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006474<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006475<p>This loads a value in memory and compares it to a given value. If they are
6476 equal, it stores a new value into the memory.</p>
6477
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006478<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006479<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
6480 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6481 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6482 this integer type. While any bit width integer may be used, targets may only
6483 lower representations they support in hardware.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006484
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006485<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006486<p>This entire intrinsic must be executed atomically. It first loads the value
6487 in memory pointed to by <tt>ptr</tt> and compares it with the
6488 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
6489 memory. The loaded value is yielded in all cases. This provides the
6490 equivalent of an atomic compare-and-swap operation within the SSA
6491 framework.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006492
Bill Wendlingf85859d2009-07-20 02:29:24 +00006493<h5>Examples:</h5>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006494<pre>
6495%ptr = malloc i32
6496 store i32 4, %ptr
6497
6498%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00006499%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006500 <i>; yields {i32}:result1 = 4</i>
6501%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6502%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6503
6504%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00006505%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006506 <i>; yields {i32}:result2 = 8</i>
6507%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6508
6509%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6510</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006511
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006512</div>
6513
6514<!-- _______________________________________________________________________ -->
6515<div class="doc_subsubsection">
6516 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6517</div>
6518<div class="doc_text">
6519<h5>Syntax:</h5>
6520
Bill Wendlingf85859d2009-07-20 02:29:24 +00006521<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6522 integer bit width. Not all targets support all bit widths however.</p>
6523
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006524<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006525 declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6526 declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6527 declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6528 declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006529</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006530
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006531<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006532<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6533 the value from memory. It then stores the value in <tt>val</tt> in the memory
6534 at <tt>ptr</tt>.</p>
6535
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006536<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006537<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
6538 the <tt>val</tt> argument and the result must be integers of the same bit
6539 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6540 integer type. The targets may only lower integer representations they
6541 support.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006542
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006543<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006544<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6545 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6546 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006547
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006548<h5>Examples:</h5>
6549<pre>
6550%ptr = malloc i32
6551 store i32 4, %ptr
6552
6553%val1 = add i32 4, 4
Mon P Wangce3ac892008-07-30 04:36:53 +00006554%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006555 <i>; yields {i32}:result1 = 4</i>
6556%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6557%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6558
6559%val2 = add i32 1, 1
Mon P Wangce3ac892008-07-30 04:36:53 +00006560%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006561 <i>; yields {i32}:result2 = 8</i>
6562
6563%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6564%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6565</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006566
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006567</div>
6568
6569<!-- _______________________________________________________________________ -->
6570<div class="doc_subsubsection">
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006571 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006572
6573</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006574
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006575<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006576
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006577<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006578<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
6579 any integer bit width. Not all targets support all bit widths however.</p>
6580
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006581<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006582 declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6583 declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6584 declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6585 declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006586</pre>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006587
Bill Wendlingf85859d2009-07-20 02:29:24 +00006588<h5>Overview:</h5>
6589<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
6590 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6591
6592<h5>Arguments:</h5>
6593<p>The intrinsic takes two arguments, the first a pointer to an integer value
6594 and the second an integer value. The result is also an integer value. These
6595 integer types can have any bit width, but they must all have the same bit
6596 width. The targets may only lower integer representations they support.</p>
6597
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006598<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006599<p>This intrinsic does a series of operations atomically. It first loads the
6600 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6601 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006602
6603<h5>Examples:</h5>
6604<pre>
6605%ptr = malloc i32
6606 store i32 4, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006607%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006608 <i>; yields {i32}:result1 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006609%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006610 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006611%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006612 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006613%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006614</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006615
Andrew Lenharthe44f3902008-02-21 06:45:13 +00006616</div>
6617
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006618<!-- _______________________________________________________________________ -->
6619<div class="doc_subsubsection">
6620 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6621
6622</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006623
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006624<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006625
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006626<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006627<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
6628 any integer bit width and for different address spaces. Not all targets
6629 support all bit widths however.</p>
6630
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006631<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006632 declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6633 declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6634 declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6635 declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006636</pre>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006637
Bill Wendlingf85859d2009-07-20 02:29:24 +00006638<h5>Overview:</h5>
6639<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6640 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
6641
6642<h5>Arguments:</h5>
6643<p>The intrinsic takes two arguments, the first a pointer to an integer value
6644 and the second an integer value. The result is also an integer value. These
6645 integer types can have any bit width, but they must all have the same bit
6646 width. The targets may only lower integer representations they support.</p>
6647
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006648<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006649<p>This intrinsic does a series of operations atomically. It first loads the
6650 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6651 result to <tt>ptr</tt>. It yields the original value stored
6652 at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006653
6654<h5>Examples:</h5>
6655<pre>
6656%ptr = malloc i32
6657 store i32 8, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006658%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006659 <i>; yields {i32}:result1 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006660%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006661 <i>; yields {i32}:result2 = 4</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006662%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006663 <i>; yields {i32}:result3 = 2</i>
6664%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6665</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006666
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006667</div>
6668
6669<!-- _______________________________________________________________________ -->
6670<div class="doc_subsubsection">
6671 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6672 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6673 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6674 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006675</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006676
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006677<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006678
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006679<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006680<p>These are overloaded intrinsics. You can
6681 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
6682 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
6683 bit width and for different address spaces. Not all targets support all bit
6684 widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006685
Bill Wendlingf85859d2009-07-20 02:29:24 +00006686<pre>
6687 declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6688 declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6689 declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6690 declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006691</pre>
6692
6693<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006694 declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6695 declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6696 declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6697 declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006698</pre>
6699
6700<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006701 declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6702 declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6703 declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6704 declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006705</pre>
6706
6707<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006708 declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6709 declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6710 declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6711 declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006712</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006713
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006714<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006715<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6716 the value stored in memory at <tt>ptr</tt>. It yields the original value
6717 at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006718
Bill Wendlingf85859d2009-07-20 02:29:24 +00006719<h5>Arguments:</h5>
6720<p>These intrinsics take two arguments, the first a pointer to an integer value
6721 and the second an integer value. The result is also an integer value. These
6722 integer types can have any bit width, but they must all have the same bit
6723 width. The targets may only lower integer representations they support.</p>
6724
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006725<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006726<p>These intrinsics does a series of operations atomically. They first load the
6727 value stored at <tt>ptr</tt>. They then do the bitwise
6728 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
6729 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006730
6731<h5>Examples:</h5>
6732<pre>
6733%ptr = malloc i32
6734 store i32 0x0F0F, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006735%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006736 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006737%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006738 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006739%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006740 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006741%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006742 <i>; yields {i32}:result3 = FF</i>
6743%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6744</pre>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006745
Bill Wendlingf85859d2009-07-20 02:29:24 +00006746</div>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006747
6748<!-- _______________________________________________________________________ -->
6749<div class="doc_subsubsection">
6750 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6751 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6752 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6753 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006754</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006755
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006756<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006757
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006758<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006759<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6760 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
6761 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6762 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006763
Bill Wendlingf85859d2009-07-20 02:29:24 +00006764<pre>
6765 declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6766 declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6767 declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6768 declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006769</pre>
6770
6771<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006772 declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6773 declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6774 declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6775 declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006776</pre>
6777
6778<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006779 declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6780 declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6781 declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6782 declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006783</pre>
6784
6785<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006786 declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6787 declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6788 declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6789 declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006790</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006791
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006792<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006793<p>These intrinsics takes the signed or unsigned minimum or maximum of
6794 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6795 original value at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006796
Bill Wendlingf85859d2009-07-20 02:29:24 +00006797<h5>Arguments:</h5>
6798<p>These intrinsics take two arguments, the first a pointer to an integer value
6799 and the second an integer value. The result is also an integer value. These
6800 integer types can have any bit width, but they must all have the same bit
6801 width. The targets may only lower integer representations they support.</p>
6802
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006803<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006804<p>These intrinsics does a series of operations atomically. They first load the
6805 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
6806 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
6807 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006808
6809<h5>Examples:</h5>
6810<pre>
6811%ptr = malloc i32
6812 store i32 7, %ptr
Mon P Wangce3ac892008-07-30 04:36:53 +00006813%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006814 <i>; yields {i32}:result0 = 7</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006815%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006816 <i>; yields {i32}:result1 = -2</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006817%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006818 <i>; yields {i32}:result2 = 8</i>
Mon P Wangce3ac892008-07-30 04:36:53 +00006819%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006820 <i>; yields {i32}:result3 = 8</i>
6821%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6822</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006823
Mon P Wang6bde9ec2008-06-25 08:15:39 +00006824</div>
Andrew Lenharth785610d2008-02-16 01:24:58 +00006825
6826<!-- ======================================================================= -->
6827<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006828 <a name="int_general">General Intrinsics</a>
6829</div>
6830
6831<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006832
6833<p>This class of intrinsics is designed to be generic and has no specific
6834 purpose.</p>
6835
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006836</div>
6837
6838<!-- _______________________________________________________________________ -->
6839<div class="doc_subsubsection">
6840 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6841</div>
6842
6843<div class="doc_text">
6844
6845<h5>Syntax:</h5>
6846<pre>
6847 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6848</pre>
6849
6850<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006851<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006852
6853<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006854<p>The first argument is a pointer to a value, the second is a pointer to a
6855 global string, the third is a pointer to a global string which is the source
6856 file name, and the last argument is the line number.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006857
6858<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006859<p>This intrinsic allows annotation of local variables with arbitrary strings.
6860 This can be useful for special purpose optimizations that want to look for
6861 these annotations. These have no other defined use, they are ignored by code
6862 generation and optimization.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006863
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006864</div>
6865
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006866<!-- _______________________________________________________________________ -->
6867<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00006868 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006869</div>
6870
6871<div class="doc_text">
6872
6873<h5>Syntax:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006874<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6875 any integer bit width.</p>
6876
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006877<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00006878 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6879 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6880 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6881 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6882 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006883</pre>
6884
6885<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006886<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006887
6888<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006889<p>The first argument is an integer value (result of some expression), the
6890 second is a pointer to a global string, the third is a pointer to a global
6891 string which is the source file name, and the last argument is the line
6892 number. It returns the value of the first argument.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006893
6894<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006895<p>This intrinsic allows annotations to be put on arbitrary expressions with
6896 arbitrary strings. This can be useful for special purpose optimizations that
6897 want to look for these annotations. These have no other defined use, they
6898 are ignored by code generation and optimization.</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006899
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00006900</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006901
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006902<!-- _______________________________________________________________________ -->
6903<div class="doc_subsubsection">
6904 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6905</div>
6906
6907<div class="doc_text">
6908
6909<h5>Syntax:</h5>
6910<pre>
6911 declare void @llvm.trap()
6912</pre>
6913
6914<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006915<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006916
6917<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006918<p>None.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006919
6920<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006921<p>This intrinsics is lowered to the target dependent trap instruction. If the
6922 target does not have a trap instruction, this intrinsic will be lowered to
6923 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006924
Anton Korobeynikove6e764f2008-01-15 22:31:34 +00006925</div>
6926
Bill Wendlinge4164592008-11-19 05:56:17 +00006927<!-- _______________________________________________________________________ -->
6928<div class="doc_subsubsection">
Misha Brukman5dd7f4d2008-11-22 23:55:29 +00006929 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendlinge4164592008-11-19 05:56:17 +00006930</div>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006931
Bill Wendlinge4164592008-11-19 05:56:17 +00006932<div class="doc_text">
Bill Wendlingf85859d2009-07-20 02:29:24 +00006933
Bill Wendlinge4164592008-11-19 05:56:17 +00006934<h5>Syntax:</h5>
6935<pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006936 declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
Bill Wendlinge4164592008-11-19 05:56:17 +00006937</pre>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006938
Bill Wendlinge4164592008-11-19 05:56:17 +00006939<h5>Overview:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006940<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
6941 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
6942 ensure that it is placed on the stack before local variables.</p>
6943
Bill Wendlinge4164592008-11-19 05:56:17 +00006944<h5>Arguments:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006945<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
6946 arguments. The first argument is the value loaded from the stack
6947 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
6948 that has enough space to hold the value of the guard.</p>
6949
Bill Wendlinge4164592008-11-19 05:56:17 +00006950<h5>Semantics:</h5>
Bill Wendlingf85859d2009-07-20 02:29:24 +00006951<p>This intrinsic causes the prologue/epilogue inserter to force the position of
6952 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6953 stack. This is to ensure that if a local variable on the stack is
6954 overwritten, it will destroy the value of the guard. When the function exits,
6955 the guard on the stack is checked against the original guard. If they're
6956 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
6957 function.</p>
6958
Bill Wendlinge4164592008-11-19 05:56:17 +00006959</div>
6960
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006961<!-- *********************************************************************** -->
6962<hr>
6963<address>
6964 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00006965 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006966 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00006967 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006968
6969 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
6970 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
6971 Last modified: $Date$
6972</address>
Chris Lattner08497ce2008-01-04 04:33:49 +00006973
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006974</body>
6975</html>