blob: 835617c4a4fd0316f213b48a8fae29e7fad6d3e3 [file] [log] [blame]
Devang Patel6899b312007-07-25 18:00:25 +00001//===- InlineCoast.cpp - Cost analysis for inliner ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Devang Patel6899b312007-07-25 18:00:25 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inline cost analysis.
11//
12//===----------------------------------------------------------------------===//
13
14
15#include "llvm/Transforms/Utils/InlineCost.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/CallingConv.h"
18#include "llvm/IntrinsicInst.h"
19
20using namespace llvm;
21
22// CountCodeReductionForConstant - Figure out an approximation for how many
23// instructions will be constant folded if the specified value is constant.
24//
25unsigned InlineCostAnalyzer::FunctionInfo::
26 CountCodeReductionForConstant(Value *V) {
27 unsigned Reduction = 0;
28 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
29 if (isa<BranchInst>(*UI))
30 Reduction += 40; // Eliminating a conditional branch is a big win
31 else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
32 // Eliminating a switch is a big win, proportional to the number of edges
33 // deleted.
34 Reduction += (SI->getNumSuccessors()-1) * 40;
35 else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
36 // Turning an indirect call into a direct call is a BIG win
37 Reduction += CI->getCalledValue() == V ? 500 : 0;
38 } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
39 // Turning an indirect call into a direct call is a BIG win
40 Reduction += II->getCalledValue() == V ? 500 : 0;
41 } else {
42 // Figure out if this instruction will be removed due to simple constant
43 // propagation.
44 Instruction &Inst = cast<Instruction>(**UI);
45 bool AllOperandsConstant = true;
46 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
47 if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
48 AllOperandsConstant = false;
49 break;
50 }
51
52 if (AllOperandsConstant) {
53 // We will get to remove this instruction...
54 Reduction += 7;
55
56 // And any other instructions that use it which become constants
57 // themselves.
58 Reduction += CountCodeReductionForConstant(&Inst);
59 }
60 }
61
62 return Reduction;
63}
64
65// CountCodeReductionForAlloca - Figure out an approximation of how much smaller
66// the function will be if it is inlined into a context where an argument
67// becomes an alloca.
68//
69unsigned InlineCostAnalyzer::FunctionInfo::
70 CountCodeReductionForAlloca(Value *V) {
71 if (!isa<PointerType>(V->getType())) return 0; // Not a pointer
72 unsigned Reduction = 0;
73 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
74 Instruction *I = cast<Instruction>(*UI);
75 if (isa<LoadInst>(I) || isa<StoreInst>(I))
76 Reduction += 10;
77 else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
78 // If the GEP has variable indices, we won't be able to do much with it.
79 for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
80 I != E; ++I)
81 if (!isa<Constant>(*I)) return 0;
82 Reduction += CountCodeReductionForAlloca(GEP)+15;
83 } else {
84 // If there is some other strange instruction, we're not going to be able
85 // to do much if we inline this.
86 return 0;
87 }
88 }
89
90 return Reduction;
91}
92
93/// analyzeFunction - Fill in the current structure with information gleaned
94/// from the specified function.
95void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
96 unsigned NumInsts = 0, NumBlocks = 0;
97
98 // Look at the size of the callee. Each basic block counts as 20 units, and
Devang Patel161660e2007-09-17 20:07:40 +000099 // each instruction counts as 5.
Devang Patel6899b312007-07-25 18:00:25 +0000100 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
101 for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
102 II != E; ++II) {
103 if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count.
104
105 // Noop casts, including ptr <-> int, don't count.
106 if (const CastInst *CI = dyn_cast<CastInst>(II)) {
107 if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) ||
108 isa<PtrToIntInst>(CI))
109 continue;
110 } else if (const GetElementPtrInst *GEPI =
111 dyn_cast<GetElementPtrInst>(II)) {
112 // If a GEP has all constant indices, it will probably be folded with
113 // a load/store.
114 bool AllConstant = true;
115 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
116 if (!isa<ConstantInt>(GEPI->getOperand(i))) {
117 AllConstant = false;
118 break;
119 }
120 if (AllConstant) continue;
121 }
122
123 ++NumInsts;
124 }
125
126 ++NumBlocks;
127 }
128
129 this->NumBlocks = NumBlocks;
130 this->NumInsts = NumInsts;
131
132 // Check out all of the arguments to the function, figuring out how much
133 // code can be eliminated if one of the arguments is a constant.
134 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
135 ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
136 CountCodeReductionForAlloca(I)));
137}
138
139
140
141// getInlineCost - The heuristic used to determine if we should inline the
142// function call or not.
143//
Devang Patel29381fb2007-07-27 18:34:27 +0000144int InlineCostAnalyzer::getInlineCost(CallSite CS, SmallPtrSet<const Function *, 16> &NeverInline) {
Devang Patel6899b312007-07-25 18:00:25 +0000145 Instruction *TheCall = CS.getInstruction();
146 Function *Callee = CS.getCalledFunction();
147 const Function *Caller = TheCall->getParent()->getParent();
148
149 // Don't inline a directly recursive call.
150 if (Caller == Callee ||
151 // Don't inline functions which can be redefined at link-time to mean
152 // something else. link-once linkage is ok though.
153 Callee->hasWeakLinkage() ||
154
155 // Don't inline functions marked noinline.
156 NeverInline.count(Callee))
157 return 2000000000;
158
159 // InlineCost - This value measures how good of an inline candidate this call
160 // site is to inline. A lower inline cost make is more likely for the call to
161 // be inlined. This value may go negative.
162 //
163 int InlineCost = 0;
164
165 // If there is only one call of the function, and it has internal linkage,
166 // make it almost guaranteed to be inlined.
167 //
168 if (Callee->hasInternalLinkage() && Callee->hasOneUse())
169 InlineCost -= 30000;
170
171 // If this function uses the coldcc calling convention, prefer not to inline
172 // it.
173 if (Callee->getCallingConv() == CallingConv::Cold)
174 InlineCost += 2000;
175
176 // If the instruction after the call, or if the normal destination of the
177 // invoke is an unreachable instruction, the function is noreturn. As such,
178 // there is little point in inlining this.
179 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
180 if (isa<UnreachableInst>(II->getNormalDest()->begin()))
181 InlineCost += 10000;
182 } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
183 InlineCost += 10000;
184
185 // Get information about the callee...
186 FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
187
188 // If we haven't calculated this information yet, do so now.
189 if (CalleeFI.NumBlocks == 0)
190 CalleeFI.analyzeFunction(Callee);
191
192 // Add to the inline quality for properties that make the call valuable to
193 // inline. This includes factors that indicate that the result of inlining
194 // the function will be optimizable. Currently this just looks at arguments
195 // passed into the function.
196 //
197 unsigned ArgNo = 0;
198 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
199 I != E; ++I, ++ArgNo) {
200 // Each argument passed in has a cost at both the caller and the callee
201 // sides. This favors functions that take many arguments over functions
202 // that take few arguments.
203 InlineCost -= 20;
204
205 // If this is a function being passed in, it is very likely that we will be
206 // able to turn an indirect function call into a direct function call.
207 if (isa<Function>(I))
208 InlineCost -= 100;
209
210 // If an alloca is passed in, inlining this function is likely to allow
211 // significant future optimization possibilities (like scalar promotion, and
212 // scalarization), so encourage the inlining of the function.
213 //
214 else if (isa<AllocaInst>(I)) {
215 if (ArgNo < CalleeFI.ArgumentWeights.size())
216 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
217
218 // If this is a constant being passed into the function, use the argument
219 // weights calculated for the callee to determine how much will be folded
220 // away with this information.
221 } else if (isa<Constant>(I)) {
222 if (ArgNo < CalleeFI.ArgumentWeights.size())
223 InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
224 }
225 }
226
227 // Now that we have considered all of the factors that make the call site more
228 // likely to be inlined, look at factors that make us not want to inline it.
229
230 // Don't inline into something too big, which would make it bigger. Here, we
231 // count each basic block as a single unit.
232 //
233 InlineCost += Caller->size()/20;
234
235
236 // Look at the size of the callee. Each basic block counts as 20 units, and
237 // each instruction counts as 5.
238 InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
239 return InlineCost;
240}
241