blob: 44d5311afd44da8a4280b4e5581de1e2ab01ae2d [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000012#include "llvm/Function.h"
13#include "llvm/CodeGen/MachineFrameInfo.h"
14#include "llvm/CodeGen/MachineInstrBuilder.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000016#include "llvm/Support/CommandLine.h"
17#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000018#include "llvm/Support/ErrorHandling.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000019#include "llvm/Support/raw_ostream.h"
Benjamin Kramercfa6ec92009-08-23 11:37:21 +000020#include "llvm/Target/TargetInstrInfo.h"
David Greene2d4e6d32009-07-28 16:49:24 +000021#include "llvm/Target/TargetLowering.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000022#include "llvm/ADT/DepthFirstIterator.h"
23#include "llvm/ADT/Statistic.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000024#include <algorithm>
25using namespace llvm;
26
27STATISTIC(NumDSE , "Number of dead stores elided");
28STATISTIC(NumDSS , "Number of dead spill slots removed");
29STATISTIC(NumCommutes, "Number of instructions commuted");
30STATISTIC(NumDRM , "Number of re-materializable defs elided");
31STATISTIC(NumStores , "Number of stores added");
32STATISTIC(NumPSpills , "Number of physical register spills");
33STATISTIC(NumOmitted , "Number of reloads omited");
34STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
35STATISTIC(NumCopified, "Number of available reloads turned into copies");
36STATISTIC(NumReMats , "Number of re-materialization");
37STATISTIC(NumLoads , "Number of loads added");
38STATISTIC(NumReused , "Number of values reused");
39STATISTIC(NumDCE , "Number of copies elided");
40STATISTIC(NumSUnfold , "Number of stores unfolded");
41STATISTIC(NumModRefUnfold, "Number of modref unfolded");
42
43namespace {
Lang Hamesac276402009-06-04 18:45:36 +000044 enum RewriterName { local, trivial };
Lang Hames87e3bca2009-05-06 02:36:21 +000045}
46
47static cl::opt<RewriterName>
48RewriterOpt("rewriter",
Duncan Sands18619b22010-02-18 14:37:52 +000049 cl::desc("Rewriter to use (default=local)"),
Lang Hames87e3bca2009-05-06 02:36:21 +000050 cl::Prefix,
Lang Hamesac276402009-06-04 18:45:36 +000051 cl::values(clEnumVal(local, "local rewriter"),
Lang Hamesf41538d2009-06-02 16:53:25 +000052 clEnumVal(trivial, "trivial rewriter"),
Lang Hames87e3bca2009-05-06 02:36:21 +000053 clEnumValEnd),
54 cl::init(local));
55
Dan Gohman7db949d2009-08-07 01:32:21 +000056static cl::opt<bool>
David Greene2d4e6d32009-07-28 16:49:24 +000057ScheduleSpills("schedule-spills",
58 cl::desc("Schedule spill code"),
59 cl::init(false));
60
Lang Hames87e3bca2009-05-06 02:36:21 +000061VirtRegRewriter::~VirtRegRewriter() {}
62
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +000063/// substitutePhysReg - Replace virtual register in MachineOperand with a
64/// physical register. Do the right thing with the sub-register index.
Jakob Stoklund Olesend135f142010-02-13 02:06:10 +000065/// Note that operands may be added, so the MO reference is no longer valid.
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +000066static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
67 const TargetRegisterInfo &TRI) {
68 if (unsigned SubIdx = MO.getSubReg()) {
69 // Insert the physical subreg and reset the subreg field.
70 MO.setReg(TRI.getSubReg(Reg, SubIdx));
71 MO.setSubReg(0);
72
73 // Any def, dead, and kill flags apply to the full virtual register, so they
74 // also apply to the full physical register. Add imp-def/dead and imp-kill
75 // as needed.
76 MachineInstr &MI = *MO.getParent();
77 if (MO.isDef())
78 if (MO.isDead())
79 MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
80 else
81 MI.addRegisterDefined(Reg, &TRI);
82 else if (!MO.isUndef() &&
83 (MO.isKill() ||
84 MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
85 MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
86 } else {
87 MO.setReg(Reg);
88 }
89}
90
Dan Gohman7db949d2009-08-07 01:32:21 +000091namespace {
Lang Hames87e3bca2009-05-06 02:36:21 +000092
Lang Hamesf41538d2009-06-02 16:53:25 +000093/// This class is intended for use with the new spilling framework only. It
94/// rewrites vreg def/uses to use the assigned preg, but does not insert any
95/// spill code.
Nick Lewycky6726b6d2009-10-25 06:33:48 +000096struct TrivialRewriter : public VirtRegRewriter {
Lang Hamesf41538d2009-06-02 16:53:25 +000097
98 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
99 LiveIntervals* LIs) {
David Greene0ee52182010-01-05 01:25:52 +0000100 DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000101 DEBUG(dbgs() << "********** Function: "
Daniel Dunbarce63ffb2009-07-25 00:23:56 +0000102 << MF.getFunction()->getName() << '\n');
David Greene0ee52182010-01-05 01:25:52 +0000103 DEBUG(dbgs() << "**** Machine Instrs"
Chris Lattner6456d382009-08-23 03:20:44 +0000104 << "(NOTE! Does not include spills and reloads!) ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +0000105 DEBUG(MF.dump());
106
Lang Hamesf41538d2009-06-02 16:53:25 +0000107 MachineRegisterInfo *mri = &MF.getRegInfo();
Lang Hames38283e22009-11-18 20:31:20 +0000108 const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
Lang Hamesf41538d2009-06-02 16:53:25 +0000109
110 bool changed = false;
111
112 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
113 liItr != liEnd; ++liItr) {
114
Lang Hames38283e22009-11-18 20:31:20 +0000115 const LiveInterval *li = liItr->second;
116 unsigned reg = li->reg;
117
118 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
119 if (!li->empty())
120 mri->setPhysRegUsed(reg);
121 }
122 else {
123 if (!VRM.hasPhys(reg))
124 continue;
125 unsigned pReg = VRM.getPhys(reg);
126 mri->setPhysRegUsed(pReg);
Jakob Stoklund Olesend135f142010-02-13 02:06:10 +0000127 // Copy the register use-list before traversing it.
128 SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
129 for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
130 E = mri->reg_end(); I != E; ++I)
131 reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
132 for (unsigned N=0; N != reglist.size(); ++N)
133 substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
134 pReg, *tri);
135 changed |= !reglist.empty();
Lang Hamesf41538d2009-06-02 16:53:25 +0000136 }
Lang Hamesf41538d2009-06-02 16:53:25 +0000137 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000138
David Greene0ee52182010-01-05 01:25:52 +0000139 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
David Greene2d4e6d32009-07-28 16:49:24 +0000140 DEBUG(MF.dump());
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000141
Lang Hamesf41538d2009-06-02 16:53:25 +0000142 return changed;
143 }
144
145};
146
Dan Gohman7db949d2009-08-07 01:32:21 +0000147}
148
Lang Hames87e3bca2009-05-06 02:36:21 +0000149// ************************************************************************ //
150
Dan Gohman7db949d2009-08-07 01:32:21 +0000151namespace {
152
Lang Hames87e3bca2009-05-06 02:36:21 +0000153/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
154/// from top down, keep track of which spill slots or remat are available in
155/// each register.
156///
157/// Note that not all physregs are created equal here. In particular, some
158/// physregs are reloads that we are allowed to clobber or ignore at any time.
159/// Other physregs are values that the register allocated program is using
160/// that we cannot CHANGE, but we can read if we like. We keep track of this
161/// on a per-stack-slot / remat id basis as the low bit in the value of the
162/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
163/// this bit and addAvailable sets it if.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000164class AvailableSpills {
Lang Hames87e3bca2009-05-06 02:36:21 +0000165 const TargetRegisterInfo *TRI;
166 const TargetInstrInfo *TII;
167
168 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
169 // or remat'ed virtual register values that are still available, due to
170 // being loaded or stored to, but not invalidated yet.
171 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
172
173 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
174 // indicating which stack slot values are currently held by a physreg. This
175 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
176 // physreg is modified.
177 std::multimap<unsigned, int> PhysRegsAvailable;
178
179 void disallowClobberPhysRegOnly(unsigned PhysReg);
180
181 void ClobberPhysRegOnly(unsigned PhysReg);
182public:
183 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
184 : TRI(tri), TII(tii) {
185 }
186
187 /// clear - Reset the state.
188 void clear() {
189 SpillSlotsOrReMatsAvailable.clear();
190 PhysRegsAvailable.clear();
191 }
192
193 const TargetRegisterInfo *getRegInfo() const { return TRI; }
194
195 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
196 /// available in a physical register, return that PhysReg, otherwise
197 /// return 0.
198 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
199 std::map<int, unsigned>::const_iterator I =
200 SpillSlotsOrReMatsAvailable.find(Slot);
201 if (I != SpillSlotsOrReMatsAvailable.end()) {
202 return I->second >> 1; // Remove the CanClobber bit.
203 }
204 return 0;
205 }
206
207 /// addAvailable - Mark that the specified stack slot / remat is available
208 /// in the specified physreg. If CanClobber is true, the physreg can be
209 /// modified at any time without changing the semantics of the program.
210 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000211 // If this stack slot is thought to be available in some other physreg,
Lang Hames87e3bca2009-05-06 02:36:21 +0000212 // remove its record.
213 ModifyStackSlotOrReMat(SlotOrReMat);
214
215 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
216 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
217 (unsigned)CanClobber;
218
219 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
David Greene0ee52182010-01-05 01:25:52 +0000220 DEBUG(dbgs() << "Remembering RM#"
Chris Lattner6456d382009-08-23 03:20:44 +0000221 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
Lang Hames87e3bca2009-05-06 02:36:21 +0000222 else
David Greene0ee52182010-01-05 01:25:52 +0000223 DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
224 DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000225 }
226
227 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
228 /// the value of the specified stackslot register if it desires. The
229 /// specified stack slot must be available in a physreg for this query to
230 /// make sense.
231 bool canClobberPhysRegForSS(int SlotOrReMat) const {
232 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
233 "Value not available!");
234 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
235 }
236
237 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
238 /// physical register where values for some stack slot(s) might be
239 /// available.
240 bool canClobberPhysReg(unsigned PhysReg) const {
241 std::multimap<unsigned, int>::const_iterator I =
242 PhysRegsAvailable.lower_bound(PhysReg);
243 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
244 int SlotOrReMat = I->second;
245 I++;
246 if (!canClobberPhysRegForSS(SlotOrReMat))
247 return false;
248 }
249 return true;
250 }
251
252 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
253 /// stackslot register. The register is still available but is no longer
254 /// allowed to be modifed.
255 void disallowClobberPhysReg(unsigned PhysReg);
256
257 /// ClobberPhysReg - This is called when the specified physreg changes
258 /// value. We use this to invalidate any info about stuff that lives in
259 /// it and any of its aliases.
260 void ClobberPhysReg(unsigned PhysReg);
261
262 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
263 /// slot changes. This removes information about which register the
264 /// previous value for this slot lives in (as the previous value is dead
265 /// now).
266 void ModifyStackSlotOrReMat(int SlotOrReMat);
267
268 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
269 /// into the specified MBB. Add available physical registers as potential
270 /// live-in's. If they are reused in the MBB, they will be added to the
271 /// live-in set to make register scavenger and post-allocation scheduler.
272 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
273 std::vector<MachineOperand*> &KillOps);
274};
275
Dan Gohman7db949d2009-08-07 01:32:21 +0000276}
277
Lang Hames87e3bca2009-05-06 02:36:21 +0000278// ************************************************************************ //
279
David Greene2d4e6d32009-07-28 16:49:24 +0000280// Given a location where a reload of a spilled register or a remat of
281// a constant is to be inserted, attempt to find a safe location to
282// insert the load at an earlier point in the basic-block, to hide
283// latency of the load and to avoid address-generation interlock
284// issues.
285static MachineBasicBlock::iterator
286ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
287 MachineBasicBlock::iterator const Begin,
288 unsigned PhysReg,
289 const TargetRegisterInfo *TRI,
290 bool DoReMat,
291 int SSorRMId,
292 const TargetInstrInfo *TII,
293 const MachineFunction &MF)
294{
295 if (!ScheduleSpills)
296 return InsertLoc;
297
298 // Spill backscheduling is of primary interest to addresses, so
299 // don't do anything if the register isn't in the register class
300 // used for pointers.
301
302 const TargetLowering *TL = MF.getTarget().getTargetLowering();
303
304 if (!TL->isTypeLegal(TL->getPointerTy()))
305 // Believe it or not, this is true on PIC16.
306 return InsertLoc;
307
308 const TargetRegisterClass *ptrRegClass =
309 TL->getRegClassFor(TL->getPointerTy());
310 if (!ptrRegClass->contains(PhysReg))
311 return InsertLoc;
312
313 // Scan upwards through the preceding instructions. If an instruction doesn't
314 // reference the stack slot or the register we're loading, we can
315 // backschedule the reload up past it.
316 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
317 while (NewInsertLoc != Begin) {
318 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
319 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
320 MachineOperand &Op = Prev->getOperand(i);
321 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
322 goto stop;
323 }
324 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
325 Prev->findRegisterDefOperand(PhysReg))
326 goto stop;
327 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
328 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
329 Prev->findRegisterDefOperand(*Alias))
330 goto stop;
331 NewInsertLoc = Prev;
332 }
333stop:;
334
335 // If we made it to the beginning of the block, turn around and move back
336 // down just past any existing reloads. They're likely to be reloads/remats
337 // for instructions earlier than what our current reload/remat is for, so
338 // they should be scheduled earlier.
339 if (NewInsertLoc == Begin) {
340 int FrameIdx;
341 while (InsertLoc != NewInsertLoc &&
342 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
343 TII->isTriviallyReMaterializable(NewInsertLoc)))
344 ++NewInsertLoc;
345 }
346
347 return NewInsertLoc;
348}
Dan Gohman7db949d2009-08-07 01:32:21 +0000349
350namespace {
351
Lang Hames87e3bca2009-05-06 02:36:21 +0000352// ReusedOp - For each reused operand, we keep track of a bit of information,
353// in case we need to rollback upon processing a new operand. See comments
354// below.
355struct ReusedOp {
356 // The MachineInstr operand that reused an available value.
357 unsigned Operand;
358
359 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
360 unsigned StackSlotOrReMat;
361
362 // PhysRegReused - The physical register the value was available in.
363 unsigned PhysRegReused;
364
365 // AssignedPhysReg - The physreg that was assigned for use by the reload.
366 unsigned AssignedPhysReg;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000367
Lang Hames87e3bca2009-05-06 02:36:21 +0000368 // VirtReg - The virtual register itself.
369 unsigned VirtReg;
370
371 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
372 unsigned vreg)
373 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
374 AssignedPhysReg(apr), VirtReg(vreg) {}
375};
376
377/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
378/// is reused instead of reloaded.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000379class ReuseInfo {
Lang Hames87e3bca2009-05-06 02:36:21 +0000380 MachineInstr &MI;
381 std::vector<ReusedOp> Reuses;
382 BitVector PhysRegsClobbered;
383public:
384 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
385 PhysRegsClobbered.resize(tri->getNumRegs());
386 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000387
Lang Hames87e3bca2009-05-06 02:36:21 +0000388 bool hasReuses() const {
389 return !Reuses.empty();
390 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000391
Lang Hames87e3bca2009-05-06 02:36:21 +0000392 /// addReuse - If we choose to reuse a virtual register that is already
393 /// available instead of reloading it, remember that we did so.
394 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
395 unsigned PhysRegReused, unsigned AssignedPhysReg,
396 unsigned VirtReg) {
397 // If the reload is to the assigned register anyway, no undo will be
398 // required.
399 if (PhysRegReused == AssignedPhysReg) return;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000400
Lang Hames87e3bca2009-05-06 02:36:21 +0000401 // Otherwise, remember this.
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000402 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
Lang Hames87e3bca2009-05-06 02:36:21 +0000403 AssignedPhysReg, VirtReg));
404 }
405
406 void markClobbered(unsigned PhysReg) {
407 PhysRegsClobbered.set(PhysReg);
408 }
409
410 bool isClobbered(unsigned PhysReg) const {
411 return PhysRegsClobbered.test(PhysReg);
412 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000413
Lang Hames87e3bca2009-05-06 02:36:21 +0000414 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
415 /// is some other operand that is using the specified register, either pick
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000416 /// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000417 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
418 MachineFunction &MF, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000419 AvailableSpills &Spills,
420 std::vector<MachineInstr*> &MaybeDeadStores,
421 SmallSet<unsigned, 8> &Rejected,
422 BitVector &RegKills,
423 std::vector<MachineOperand*> &KillOps,
424 VirtRegMap &VRM);
425
426 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
427 /// 'Rejected' set to remember which registers have been considered and
428 /// rejected for the reload. This avoids infinite looping in case like
429 /// this:
430 /// t1 := op t2, t3
431 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
432 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
433 /// t1 <- desires r1
434 /// sees r1 is taken by t2, tries t2's reload register r0
435 /// sees r0 is taken by t3, tries t3's reload register r1
436 /// sees r1 is taken by t2, tries t2's reload register r0 ...
Evan Cheng5d885022009-07-21 09:15:00 +0000437 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
Lang Hames87e3bca2009-05-06 02:36:21 +0000438 AvailableSpills &Spills,
439 std::vector<MachineInstr*> &MaybeDeadStores,
440 BitVector &RegKills,
441 std::vector<MachineOperand*> &KillOps,
442 VirtRegMap &VRM) {
443 SmallSet<unsigned, 8> Rejected;
Evan Cheng5d885022009-07-21 09:15:00 +0000444 MachineFunction &MF = *MI->getParent()->getParent();
445 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
446 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
447 Rejected, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +0000448 }
449};
450
Dan Gohman7db949d2009-08-07 01:32:21 +0000451}
Lang Hames87e3bca2009-05-06 02:36:21 +0000452
453// ****************** //
454// Utility Functions //
455// ****************** //
456
Lang Hames87e3bca2009-05-06 02:36:21 +0000457/// findSinglePredSuccessor - Return via reference a vector of machine basic
458/// blocks each of which is a successor of the specified BB and has no other
459/// predecessor.
460static void findSinglePredSuccessor(MachineBasicBlock *MBB,
461 SmallVectorImpl<MachineBasicBlock *> &Succs) {
462 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
463 SE = MBB->succ_end(); SI != SE; ++SI) {
464 MachineBasicBlock *SuccMBB = *SI;
465 if (SuccMBB->pred_size() == 1)
466 Succs.push_back(SuccMBB);
467 }
468}
469
Evan Cheng427a6b62009-05-15 06:48:19 +0000470/// InvalidateKill - Invalidate register kill information for a specific
471/// register. This also unsets the kills marker on the last kill operand.
472static void InvalidateKill(unsigned Reg,
473 const TargetRegisterInfo* TRI,
474 BitVector &RegKills,
475 std::vector<MachineOperand*> &KillOps) {
476 if (RegKills[Reg]) {
477 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000478 // KillOps[Reg] might be a def of a super-register.
479 unsigned KReg = KillOps[Reg]->getReg();
480 KillOps[KReg] = NULL;
481 RegKills.reset(KReg);
482 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
Evan Cheng427a6b62009-05-15 06:48:19 +0000483 if (RegKills[*SR]) {
484 KillOps[*SR]->setIsKill(false);
485 KillOps[*SR] = NULL;
486 RegKills.reset(*SR);
487 }
488 }
489 }
490}
491
Lang Hames87e3bca2009-05-06 02:36:21 +0000492/// InvalidateKills - MI is going to be deleted. If any of its operands are
493/// marked kill, then invalidate the information.
Evan Cheng427a6b62009-05-15 06:48:19 +0000494static void InvalidateKills(MachineInstr &MI,
495 const TargetRegisterInfo* TRI,
496 BitVector &RegKills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000497 std::vector<MachineOperand*> &KillOps,
498 SmallVector<unsigned, 2> *KillRegs = NULL) {
499 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
500 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000501 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000502 continue;
503 unsigned Reg = MO.getReg();
504 if (TargetRegisterInfo::isVirtualRegister(Reg))
505 continue;
506 if (KillRegs)
507 KillRegs->push_back(Reg);
508 assert(Reg < KillOps.size());
509 if (KillOps[Reg] == &MO) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000510 KillOps[Reg] = NULL;
Evan Cheng427a6b62009-05-15 06:48:19 +0000511 RegKills.reset(Reg);
512 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
513 if (RegKills[*SR]) {
514 KillOps[*SR] = NULL;
515 RegKills.reset(*SR);
516 }
517 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000518 }
519 }
520}
521
522/// InvalidateRegDef - If the def operand of the specified def MI is now dead
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000523/// (since its spill instruction is removed), mark it isDead. Also checks if
Lang Hames87e3bca2009-05-06 02:36:21 +0000524/// the def MI has other definition operands that are not dead. Returns it by
525/// reference.
526static bool InvalidateRegDef(MachineBasicBlock::iterator I,
527 MachineInstr &NewDef, unsigned Reg,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000528 bool &HasLiveDef,
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000529 const TargetRegisterInfo *TRI) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000530 // Due to remat, it's possible this reg isn't being reused. That is,
531 // the def of this reg (by prev MI) is now dead.
532 MachineInstr *DefMI = I;
533 MachineOperand *DefOp = NULL;
534 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
535 MachineOperand &MO = DefMI->getOperand(i);
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000536 if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
Evan Cheng4784f1f2009-06-30 08:49:04 +0000537 continue;
538 if (MO.getReg() == Reg)
539 DefOp = &MO;
540 else if (!MO.isDead())
541 HasLiveDef = true;
Lang Hames87e3bca2009-05-06 02:36:21 +0000542 }
543 if (!DefOp)
544 return false;
545
546 bool FoundUse = false, Done = false;
547 MachineBasicBlock::iterator E = &NewDef;
548 ++I; ++E;
549 for (; !Done && I != E; ++I) {
550 MachineInstr *NMI = I;
551 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
552 MachineOperand &MO = NMI->getOperand(j);
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000553 if (!MO.isReg() || MO.getReg() == 0 ||
554 (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
Lang Hames87e3bca2009-05-06 02:36:21 +0000555 continue;
556 if (MO.isUse())
557 FoundUse = true;
558 Done = true; // Stop after scanning all the operands of this MI.
559 }
560 }
561 if (!FoundUse) {
562 // Def is dead!
563 DefOp->setIsDead();
564 return true;
565 }
566 return false;
567}
568
569/// UpdateKills - Track and update kill info. If a MI reads a register that is
570/// marked kill, then it must be due to register reuse. Transfer the kill info
571/// over.
Evan Cheng427a6b62009-05-15 06:48:19 +0000572static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
573 BitVector &RegKills,
574 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000575 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
576 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000577 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000578 continue;
579 unsigned Reg = MO.getReg();
580 if (Reg == 0)
581 continue;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000582
Lang Hames87e3bca2009-05-06 02:36:21 +0000583 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
584 // That can't be right. Register is killed but not re-defined and it's
585 // being reused. Let's fix that.
586 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000587 // KillOps[Reg] might be a def of a super-register.
588 unsigned KReg = KillOps[Reg]->getReg();
589 KillOps[KReg] = NULL;
590 RegKills.reset(KReg);
591
592 // Must be a def of a super-register. Its other sub-regsters are no
593 // longer killed as well.
594 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
595 KillOps[*SR] = NULL;
596 RegKills.reset(*SR);
597 }
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000598 } else {
599 // Check for subreg kills as well.
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000600 // d4 =
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000601 // store d4, fi#0
602 // ...
603 // = s8<kill>
604 // ...
605 // = d4 <avoiding reload>
606 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
607 unsigned SReg = *SR;
608 if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
609 KillOps[SReg]->setIsKill(false);
610 unsigned KReg = KillOps[SReg]->getReg();
611 KillOps[KReg] = NULL;
612 RegKills.reset(KReg);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000613
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000614 for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
615 KillOps[*SSR] = NULL;
616 RegKills.reset(*SSR);
617 }
618 }
619 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000620 }
Evan Cheng8fdd84c2009-11-14 02:09:09 +0000621
Lang Hames87e3bca2009-05-06 02:36:21 +0000622 if (MO.isKill()) {
623 RegKills.set(Reg);
624 KillOps[Reg] = &MO;
Evan Cheng427a6b62009-05-15 06:48:19 +0000625 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
626 RegKills.set(*SR);
627 KillOps[*SR] = &MO;
628 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000629 }
630 }
631
632 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
633 const MachineOperand &MO = MI.getOperand(i);
Evan Chengd57cdd52009-11-14 02:55:43 +0000634 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000635 continue;
636 unsigned Reg = MO.getReg();
637 RegKills.reset(Reg);
638 KillOps[Reg] = NULL;
639 // It also defines (or partially define) aliases.
Evan Cheng427a6b62009-05-15 06:48:19 +0000640 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
641 RegKills.reset(*SR);
642 KillOps[*SR] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000643 }
Evan Cheng1f6a3c82009-11-13 23:16:41 +0000644 for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
645 RegKills.reset(*SR);
646 KillOps[*SR] = NULL;
647 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000648 }
649}
650
651/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
652///
653static void ReMaterialize(MachineBasicBlock &MBB,
654 MachineBasicBlock::iterator &MII,
655 unsigned DestReg, unsigned Reg,
656 const TargetInstrInfo *TII,
657 const TargetRegisterInfo *TRI,
658 VirtRegMap &VRM) {
Evan Cheng5f159922009-07-16 20:15:00 +0000659 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
Daniel Dunbar24cd3c42009-07-16 22:08:25 +0000660#ifndef NDEBUG
Evan Cheng5f159922009-07-16 20:15:00 +0000661 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
Evan Chengc1b46f92009-07-17 00:32:06 +0000662 assert(TID.getNumDefs() == 1 &&
Evan Cheng5f159922009-07-16 20:15:00 +0000663 "Don't know how to remat instructions that define > 1 values!");
664#endif
665 TII->reMaterialize(MBB, MII, DestReg,
Evan Chengd57cdd52009-11-14 02:55:43 +0000666 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI, TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000667 MachineInstr *NewMI = prior(MII);
668 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
669 MachineOperand &MO = NewMI->getOperand(i);
670 if (!MO.isReg() || MO.getReg() == 0)
671 continue;
672 unsigned VirtReg = MO.getReg();
673 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
674 continue;
675 assert(MO.isUse());
Lang Hames87e3bca2009-05-06 02:36:21 +0000676 unsigned Phys = VRM.getPhys(VirtReg);
Evan Cheng427c3ba2009-10-25 07:51:47 +0000677 assert(Phys && "Virtual register is not assigned a register?");
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +0000678 substitutePhysReg(MO, Phys, *TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000679 }
680 ++NumReMats;
681}
682
683/// findSuperReg - Find the SubReg's super-register of given register class
684/// where its SubIdx sub-register is SubReg.
685static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
686 unsigned SubIdx, const TargetRegisterInfo *TRI) {
687 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
688 I != E; ++I) {
689 unsigned Reg = *I;
690 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
691 return Reg;
692 }
693 return 0;
694}
695
696// ******************************** //
697// Available Spills Implementation //
698// ******************************** //
699
700/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
701/// stackslot register. The register is still available but is no longer
702/// allowed to be modifed.
703void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
704 std::multimap<unsigned, int>::iterator I =
705 PhysRegsAvailable.lower_bound(PhysReg);
706 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
707 int SlotOrReMat = I->second;
708 I++;
709 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
710 "Bidirectional map mismatch!");
711 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
David Greene0ee52182010-01-05 01:25:52 +0000712 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
Chris Lattner6456d382009-08-23 03:20:44 +0000713 << " copied, it is available for use but can no longer be modified\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000714 }
715}
716
717/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
718/// stackslot register and its aliases. The register and its aliases may
719/// still available but is no longer allowed to be modifed.
720void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
721 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
722 disallowClobberPhysRegOnly(*AS);
723 disallowClobberPhysRegOnly(PhysReg);
724}
725
726/// ClobberPhysRegOnly - This is called when the specified physreg changes
727/// value. We use this to invalidate any info about stuff we thing lives in it.
728void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
729 std::multimap<unsigned, int>::iterator I =
730 PhysRegsAvailable.lower_bound(PhysReg);
731 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
732 int SlotOrReMat = I->second;
733 PhysRegsAvailable.erase(I++);
734 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
735 "Bidirectional map mismatch!");
736 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
David Greene0ee52182010-01-05 01:25:52 +0000737 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
Chris Lattner6456d382009-08-23 03:20:44 +0000738 << " clobbered, invalidating ");
Lang Hames87e3bca2009-05-06 02:36:21 +0000739 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
David Greene0ee52182010-01-05 01:25:52 +0000740 DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000741 else
David Greene0ee52182010-01-05 01:25:52 +0000742 DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000743 }
744}
745
746/// ClobberPhysReg - This is called when the specified physreg changes
747/// value. We use this to invalidate any info about stuff we thing lives in
748/// it and any of its aliases.
749void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
750 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
751 ClobberPhysRegOnly(*AS);
752 ClobberPhysRegOnly(PhysReg);
753}
754
755/// AddAvailableRegsToLiveIn - Availability information is being kept coming
756/// into the specified MBB. Add available physical registers as potential
757/// live-in's. If they are reused in the MBB, they will be added to the
758/// live-in set to make register scavenger and post-allocation scheduler.
759void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
760 BitVector &RegKills,
761 std::vector<MachineOperand*> &KillOps) {
762 std::set<unsigned> NotAvailable;
763 for (std::multimap<unsigned, int>::iterator
764 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
765 I != E; ++I) {
766 unsigned Reg = I->first;
767 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
768 // FIXME: A temporary workaround. We can't reuse available value if it's
769 // not safe to move the def of the virtual register's class. e.g.
770 // X86::RFP* register classes. Do not add it as a live-in.
771 if (!TII->isSafeToMoveRegClassDefs(RC))
772 // This is no longer available.
773 NotAvailable.insert(Reg);
774 else {
775 MBB.addLiveIn(Reg);
Evan Cheng427a6b62009-05-15 06:48:19 +0000776 InvalidateKill(Reg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000777 }
778
779 // Skip over the same register.
Chris Lattner7896c9f2009-12-03 00:50:42 +0000780 std::multimap<unsigned, int>::iterator NI = llvm::next(I);
Lang Hames87e3bca2009-05-06 02:36:21 +0000781 while (NI != E && NI->first == Reg) {
782 ++I;
783 ++NI;
784 }
785 }
786
787 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
788 E = NotAvailable.end(); I != E; ++I) {
789 ClobberPhysReg(*I);
790 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
791 *SubRegs; ++SubRegs)
792 ClobberPhysReg(*SubRegs);
793 }
794}
795
796/// ModifyStackSlotOrReMat - This method is called when the value in a stack
797/// slot changes. This removes information about which register the previous
798/// value for this slot lives in (as the previous value is dead now).
799void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
800 std::map<int, unsigned>::iterator It =
801 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
802 if (It == SpillSlotsOrReMatsAvailable.end()) return;
803 unsigned Reg = It->second >> 1;
804 SpillSlotsOrReMatsAvailable.erase(It);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000805
Lang Hames87e3bca2009-05-06 02:36:21 +0000806 // This register may hold the value of multiple stack slots, only remove this
807 // stack slot from the set of values the register contains.
808 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
809 for (; ; ++I) {
810 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
811 "Map inverse broken!");
812 if (I->second == SlotOrReMat) break;
813 }
814 PhysRegsAvailable.erase(I);
815}
816
817// ************************** //
818// Reuse Info Implementation //
819// ************************** //
820
821/// GetRegForReload - We are about to emit a reload into PhysReg. If there
822/// is some other operand that is using the specified register, either pick
823/// a new register to use, or evict the previous reload and use this reg.
Evan Cheng5d885022009-07-21 09:15:00 +0000824unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
825 unsigned PhysReg,
826 MachineFunction &MF,
827 MachineInstr *MI, AvailableSpills &Spills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000828 std::vector<MachineInstr*> &MaybeDeadStores,
829 SmallSet<unsigned, 8> &Rejected,
830 BitVector &RegKills,
831 std::vector<MachineOperand*> &KillOps,
832 VirtRegMap &VRM) {
Evan Cheng5d885022009-07-21 09:15:00 +0000833 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
834 const TargetRegisterInfo *TRI = Spills.getRegInfo();
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000835
Lang Hames87e3bca2009-05-06 02:36:21 +0000836 if (Reuses.empty()) return PhysReg; // This is most often empty.
837
838 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
839 ReusedOp &Op = Reuses[ro];
840 // If we find some other reuse that was supposed to use this register
841 // exactly for its reload, we can change this reload to use ITS reload
842 // register. That is, unless its reload register has already been
843 // considered and subsequently rejected because it has also been reused
844 // by another operand.
845 if (Op.PhysRegReused == PhysReg &&
Evan Cheng5d885022009-07-21 09:15:00 +0000846 Rejected.count(Op.AssignedPhysReg) == 0 &&
847 RC->contains(Op.AssignedPhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000848 // Yup, use the reload register that we didn't use before.
849 unsigned NewReg = Op.AssignedPhysReg;
850 Rejected.insert(PhysReg);
Evan Cheng5d885022009-07-21 09:15:00 +0000851 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
Lang Hames87e3bca2009-05-06 02:36:21 +0000852 RegKills, KillOps, VRM);
853 } else {
854 // Otherwise, we might also have a problem if a previously reused
Evan Cheng5d885022009-07-21 09:15:00 +0000855 // value aliases the new register. If so, codegen the previous reload
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000856 // and use this one.
Lang Hames87e3bca2009-05-06 02:36:21 +0000857 unsigned PRRU = Op.PhysRegReused;
Lang Hames3f2f3f52009-09-03 02:52:02 +0000858 if (TRI->regsOverlap(PRRU, PhysReg)) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000859 // Okay, we found out that an alias of a reused register
860 // was used. This isn't good because it means we have
861 // to undo a previous reuse.
862 MachineBasicBlock *MBB = MI->getParent();
863 const TargetRegisterClass *AliasRC =
864 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
865
866 // Copy Op out of the vector and remove it, we're going to insert an
867 // explicit load for it.
868 ReusedOp NewOp = Op;
869 Reuses.erase(Reuses.begin()+ro);
870
Jakob Stoklund Olesen46ff9692009-08-23 13:01:45 +0000871 // MI may be using only a sub-register of PhysRegUsed.
872 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
873 unsigned SubIdx = 0;
874 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
875 "A reuse cannot be a virtual register");
876 if (PRRU != RealPhysRegUsed) {
877 // What was the sub-register index?
Evan Chengfae3e922009-11-14 03:42:17 +0000878 SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
879 assert(SubIdx &&
Jakob Stoklund Olesen46ff9692009-08-23 13:01:45 +0000880 "Operand physreg is not a sub-register of PhysRegUsed");
881 }
882
Lang Hames87e3bca2009-05-06 02:36:21 +0000883 // Ok, we're going to try to reload the assigned physreg into the
884 // slot that we were supposed to in the first place. However, that
885 // register could hold a reuse. Check to see if it conflicts or
886 // would prefer us to use a different register.
Evan Cheng5d885022009-07-21 09:15:00 +0000887 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
888 MF, MI, Spills, MaybeDeadStores,
889 Rejected, RegKills, KillOps, VRM);
David Greene2d4e6d32009-07-28 16:49:24 +0000890
891 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
892 int SSorRMId = DoReMat
893 ? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
894
895 // Back-schedule reloads and remats.
896 MachineBasicBlock::iterator InsertLoc =
897 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
898 DoReMat, SSorRMId, TII, MF);
899
900 if (DoReMat) {
901 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
902 TRI, VRM);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000903 } else {
David Greene2d4e6d32009-07-28 16:49:24 +0000904 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
Lang Hames87e3bca2009-05-06 02:36:21 +0000905 NewOp.StackSlotOrReMat, AliasRC);
David Greene2d4e6d32009-07-28 16:49:24 +0000906 MachineInstr *LoadMI = prior(InsertLoc);
Lang Hames87e3bca2009-05-06 02:36:21 +0000907 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
908 // Any stores to this stack slot are not dead anymore.
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000909 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000910 ++NumLoads;
911 }
912 Spills.ClobberPhysReg(NewPhysReg);
913 Spills.ClobberPhysReg(NewOp.PhysRegReused);
914
Evan Cheng427c3ba2009-10-25 07:51:47 +0000915 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
Lang Hames87e3bca2009-05-06 02:36:21 +0000916 MI->getOperand(NewOp.Operand).setReg(RReg);
917 MI->getOperand(NewOp.Operand).setSubReg(0);
918
919 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
David Greene2d4e6d32009-07-28 16:49:24 +0000920 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
David Greene0ee52182010-01-05 01:25:52 +0000921 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000922
David Greene0ee52182010-01-05 01:25:52 +0000923 DEBUG(dbgs() << "Reuse undone!\n");
Lang Hames87e3bca2009-05-06 02:36:21 +0000924 --NumReused;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +0000925
Lang Hames87e3bca2009-05-06 02:36:21 +0000926 // Finally, PhysReg is now available, go ahead and use it.
927 return PhysReg;
928 }
929 }
930 }
931 return PhysReg;
932}
933
934// ************************************************************************ //
935
936/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
937/// stack slot mod/ref. It also checks if it's possible to unfold the
938/// instruction by having it define a specified physical register instead.
939static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
940 const TargetInstrInfo *TII,
941 const TargetRegisterInfo *TRI,
942 VirtRegMap &VRM) {
943 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
944 return false;
945
946 bool Found = false;
947 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
948 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
949 unsigned VirtReg = I->second.first;
950 VirtRegMap::ModRef MR = I->second.second;
951 if (MR & VirtRegMap::isModRef)
952 if (VRM.getStackSlot(VirtReg) == SS) {
953 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
954 break;
955 }
956 }
957 if (!Found)
958 return false;
959
960 // Does the instruction uses a register that overlaps the scratch register?
961 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
962 MachineOperand &MO = MI.getOperand(i);
963 if (!MO.isReg() || MO.getReg() == 0)
964 continue;
965 unsigned Reg = MO.getReg();
966 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
967 if (!VRM.hasPhys(Reg))
968 continue;
969 Reg = VRM.getPhys(Reg);
970 }
971 if (TRI->regsOverlap(PhysReg, Reg))
972 return false;
973 }
974 return true;
975}
976
977/// FindFreeRegister - Find a free register of a given register class by looking
978/// at (at most) the last two machine instructions.
979static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
980 MachineBasicBlock &MBB,
981 const TargetRegisterClass *RC,
982 const TargetRegisterInfo *TRI,
983 BitVector &AllocatableRegs) {
984 BitVector Defs(TRI->getNumRegs());
985 BitVector Uses(TRI->getNumRegs());
986 SmallVector<unsigned, 4> LocalUses;
987 SmallVector<unsigned, 4> Kills;
988
989 // Take a look at 2 instructions at most.
990 for (unsigned Count = 0; Count < 2; ++Count) {
991 if (MII == MBB.begin())
992 break;
993 MachineInstr *PrevMI = prior(MII);
994 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
995 MachineOperand &MO = PrevMI->getOperand(i);
996 if (!MO.isReg() || MO.getReg() == 0)
997 continue;
998 unsigned Reg = MO.getReg();
999 if (MO.isDef()) {
1000 Defs.set(Reg);
1001 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1002 Defs.set(*AS);
1003 } else {
1004 LocalUses.push_back(Reg);
1005 if (MO.isKill() && AllocatableRegs[Reg])
1006 Kills.push_back(Reg);
1007 }
1008 }
1009
1010 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
1011 unsigned Kill = Kills[i];
1012 if (!Defs[Kill] && !Uses[Kill] &&
1013 TRI->getPhysicalRegisterRegClass(Kill) == RC)
1014 return Kill;
1015 }
1016 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
1017 unsigned Reg = LocalUses[i];
1018 Uses.set(Reg);
1019 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1020 Uses.set(*AS);
1021 }
1022
1023 MII = PrevMI;
1024 }
1025
1026 return 0;
1027}
1028
1029static
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +00001030void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
1031 const TargetRegisterInfo &TRI) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001032 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1033 MachineOperand &MO = MI->getOperand(i);
1034 if (MO.isReg() && MO.getReg() == VirtReg)
Jakob Stoklund Olesen8efadf92010-01-06 00:29:28 +00001035 substitutePhysReg(MO, PhysReg, TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001036 }
1037}
1038
Evan Chengeca24fb2009-05-12 23:07:00 +00001039namespace {
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001040
1041struct RefSorter {
1042 bool operator()(const std::pair<MachineInstr*, int> &A,
1043 const std::pair<MachineInstr*, int> &B) {
1044 return A.second < B.second;
1045 }
1046};
Lang Hames87e3bca2009-05-06 02:36:21 +00001047
1048// ***************************** //
1049// Local Spiller Implementation //
1050// ***************************** //
1051
Nick Lewycky6726b6d2009-10-25 06:33:48 +00001052class LocalRewriter : public VirtRegRewriter {
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001053 MachineRegisterInfo *MRI;
Lang Hames87e3bca2009-05-06 02:36:21 +00001054 const TargetRegisterInfo *TRI;
1055 const TargetInstrInfo *TII;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001056 VirtRegMap *VRM;
Lang Hames87e3bca2009-05-06 02:36:21 +00001057 BitVector AllocatableRegs;
1058 DenseMap<MachineInstr*, unsigned> DistanceMap;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001059
1060 MachineBasicBlock *MBB; // Basic block currently being processed.
1061
Lang Hames87e3bca2009-05-06 02:36:21 +00001062public:
1063
1064 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001065 LiveIntervals* LIs);
Lang Hames87e3bca2009-05-06 02:36:21 +00001066
1067private:
1068
Lang Hames87e3bca2009-05-06 02:36:21 +00001069 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
Lang Hames87e3bca2009-05-06 02:36:21 +00001070 MachineBasicBlock::iterator &MII,
1071 std::vector<MachineInstr*> &MaybeDeadStores,
1072 AvailableSpills &Spills,
1073 BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001074 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001075
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001076 bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
Lang Hames87e3bca2009-05-06 02:36:21 +00001077 std::vector<MachineInstr*> &MaybeDeadStores,
1078 AvailableSpills &Spills,
1079 BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001080 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001081
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001082 bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
Lang Hames87e3bca2009-05-06 02:36:21 +00001083 unsigned VirtReg, unsigned SrcReg, int SS,
1084 AvailableSpills &Spills,
1085 BitVector &RegKills,
1086 std::vector<MachineOperand*> &KillOps,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001087 const TargetRegisterInfo *TRI);
Lang Hames87e3bca2009-05-06 02:36:21 +00001088
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001089 void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
Lang Hames87e3bca2009-05-06 02:36:21 +00001090 int Idx, unsigned PhysReg, int StackSlot,
1091 const TargetRegisterClass *RC,
1092 bool isAvailable, MachineInstr *&LastStore,
1093 AvailableSpills &Spills,
1094 SmallSet<MachineInstr*, 4> &ReMatDefs,
1095 BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001096 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001097
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00001098 void TransferDeadness(unsigned Reg, BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001099 std::vector<MachineOperand*> &KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001100
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00001101 bool InsertEmergencySpills(MachineInstr *MI);
1102
1103 bool InsertRestores(MachineInstr *MI,
1104 AvailableSpills &Spills,
1105 BitVector &RegKills,
1106 std::vector<MachineOperand*> &KillOps);
1107
1108 bool InsertSpills(MachineInstr *MI);
1109
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001110 void RewriteMBB(LiveIntervals *LIs,
1111 AvailableSpills &Spills, BitVector &RegKills,
1112 std::vector<MachineOperand*> &KillOps);
1113};
1114}
1115
1116bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
1117 LiveIntervals* LIs) {
1118 MRI = &MF.getRegInfo();
1119 TRI = MF.getTarget().getRegisterInfo();
1120 TII = MF.getTarget().getInstrInfo();
1121 VRM = &vrm;
1122 AllocatableRegs = TRI->getAllocatableSet(MF);
1123 DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
1124 << MF.getFunction()->getName() << "':\n");
1125 DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
1126 " reloads!) ****\n");
1127 DEBUG(MF.dump());
1128
1129 // Spills - Keep track of which spilled values are available in physregs
1130 // so that we can choose to reuse the physregs instead of emitting
1131 // reloads. This is usually refreshed per basic block.
1132 AvailableSpills Spills(TRI, TII);
1133
1134 // Keep track of kill information.
1135 BitVector RegKills(TRI->getNumRegs());
1136 std::vector<MachineOperand*> KillOps;
1137 KillOps.resize(TRI->getNumRegs(), NULL);
1138
1139 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1140 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1141 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1142
1143 // Traverse the basic blocks depth first.
1144 MachineBasicBlock *Entry = MF.begin();
1145 SmallPtrSet<MachineBasicBlock*,16> Visited;
1146 for (df_ext_iterator<MachineBasicBlock*,
1147 SmallPtrSet<MachineBasicBlock*,16> >
1148 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1149 DFI != E; ++DFI) {
1150 MBB = *DFI;
1151 if (!EarlyVisited.count(MBB))
1152 RewriteMBB(LIs, Spills, RegKills, KillOps);
1153
1154 // If this MBB is the only predecessor of a successor. Keep the
1155 // availability information and visit it next.
1156 do {
1157 // Keep visiting single predecessor successor as long as possible.
1158 SinglePredSuccs.clear();
1159 findSinglePredSuccessor(MBB, SinglePredSuccs);
1160 if (SinglePredSuccs.empty())
1161 MBB = 0;
1162 else {
1163 // FIXME: More than one successors, each of which has MBB has
1164 // the only predecessor.
1165 MBB = SinglePredSuccs[0];
1166 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1167 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1168 RewriteMBB(LIs, Spills, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001169 }
1170 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001171 } while (MBB);
Lang Hames87e3bca2009-05-06 02:36:21 +00001172
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001173 // Clear the availability info.
1174 Spills.clear();
Lang Hames87e3bca2009-05-06 02:36:21 +00001175 }
1176
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001177 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
1178 DEBUG(MF.dump());
1179
1180 // Mark unused spill slots.
1181 MachineFrameInfo *MFI = MF.getFrameInfo();
1182 int SS = VRM->getLowSpillSlot();
1183 if (SS != VirtRegMap::NO_STACK_SLOT)
1184 for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS)
1185 if (!VRM->isSpillSlotUsed(SS)) {
1186 MFI->RemoveStackObject(SS);
1187 ++NumDSS;
1188 }
1189
1190 return true;
1191}
1192
1193/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1194/// a scratch register is available.
1195/// xorq %r12<kill>, %r13
1196/// addq %rax, -184(%rbp)
1197/// addq %r13, -184(%rbp)
1198/// ==>
1199/// xorq %r12<kill>, %r13
1200/// movq -184(%rbp), %r12
1201/// addq %rax, %r12
1202/// addq %r13, %r12
1203/// movq %r12, -184(%rbp)
1204bool LocalRewriter::
1205OptimizeByUnfold2(unsigned VirtReg, int SS,
1206 MachineBasicBlock::iterator &MII,
1207 std::vector<MachineInstr*> &MaybeDeadStores,
1208 AvailableSpills &Spills,
1209 BitVector &RegKills,
1210 std::vector<MachineOperand*> &KillOps) {
1211
1212 MachineBasicBlock::iterator NextMII = llvm::next(MII);
1213 if (NextMII == MBB->end())
1214 return false;
1215
1216 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1217 return false;
1218
1219 // Now let's see if the last couple of instructions happens to have freed up
1220 // a register.
1221 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1222 unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
1223 if (!PhysReg)
1224 return false;
1225
1226 MachineFunction &MF = *MBB->getParent();
1227 TRI = MF.getTarget().getRegisterInfo();
1228 MachineInstr &MI = *MII;
1229 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
1230 return false;
1231
1232 // If the next instruction also folds the same SS modref and can be unfoled,
1233 // then it's worthwhile to issue a load from SS into the free register and
1234 // then unfold these instructions.
1235 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
1236 return false;
1237
1238 // Back-schedule reloads and remats.
1239 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
1240
1241 // Load from SS to the spare physical register.
1242 TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC);
1243 // This invalidates Phys.
1244 Spills.ClobberPhysReg(PhysReg);
1245 // Remember it's available.
1246 Spills.addAvailable(SS, PhysReg);
1247 MaybeDeadStores[SS] = NULL;
1248
1249 // Unfold current MI.
1250 SmallVector<MachineInstr*, 4> NewMIs;
1251 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1252 llvm_unreachable("Unable unfold the load / store folding instruction!");
1253 assert(NewMIs.size() == 1);
1254 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1255 VRM->transferRestorePts(&MI, NewMIs[0]);
1256 MII = MBB->insert(MII, NewMIs[0]);
1257 InvalidateKills(MI, TRI, RegKills, KillOps);
1258 VRM->RemoveMachineInstrFromMaps(&MI);
1259 MBB->erase(&MI);
1260 ++NumModRefUnfold;
1261
1262 // Unfold next instructions that fold the same SS.
1263 do {
1264 MachineInstr &NextMI = *NextMII;
1265 NextMII = llvm::next(NextMII);
1266 NewMIs.clear();
1267 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1268 llvm_unreachable("Unable unfold the load / store folding instruction!");
1269 assert(NewMIs.size() == 1);
1270 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1271 VRM->transferRestorePts(&NextMI, NewMIs[0]);
1272 MBB->insert(NextMII, NewMIs[0]);
1273 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1274 VRM->RemoveMachineInstrFromMaps(&NextMI);
1275 MBB->erase(&NextMI);
1276 ++NumModRefUnfold;
1277 if (NextMII == MBB->end())
1278 break;
1279 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
1280
1281 // Store the value back into SS.
1282 TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC);
1283 MachineInstr *StoreMI = prior(NextMII);
1284 VRM->addSpillSlotUse(SS, StoreMI);
1285 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1286
1287 return true;
1288}
1289
1290/// OptimizeByUnfold - Turn a store folding instruction into a load folding
1291/// instruction. e.g.
1292/// xorl %edi, %eax
1293/// movl %eax, -32(%ebp)
1294/// movl -36(%ebp), %eax
1295/// orl %eax, -32(%ebp)
1296/// ==>
1297/// xorl %edi, %eax
1298/// orl -36(%ebp), %eax
1299/// mov %eax, -32(%ebp)
1300/// This enables unfolding optimization for a subsequent instruction which will
1301/// also eliminate the newly introduced store instruction.
1302bool LocalRewriter::
1303OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1304 std::vector<MachineInstr*> &MaybeDeadStores,
1305 AvailableSpills &Spills,
1306 BitVector &RegKills,
1307 std::vector<MachineOperand*> &KillOps) {
1308 MachineFunction &MF = *MBB->getParent();
1309 MachineInstr &MI = *MII;
1310 unsigned UnfoldedOpc = 0;
1311 unsigned UnfoldPR = 0;
1312 unsigned UnfoldVR = 0;
1313 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1314 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1315 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
1316 // Only transform a MI that folds a single register.
1317 if (UnfoldedOpc)
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001318 return false;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001319 UnfoldVR = I->second.first;
1320 VirtRegMap::ModRef MR = I->second.second;
1321 // MI2VirtMap be can updated which invalidate the iterator.
1322 // Increment the iterator first.
1323 ++I;
1324 if (VRM->isAssignedReg(UnfoldVR))
1325 continue;
1326 // If this reference is not a use, any previous store is now dead.
1327 // Otherwise, the store to this stack slot is not dead anymore.
1328 FoldedSS = VRM->getStackSlot(UnfoldVR);
1329 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1330 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1331 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1332 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001333 continue;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001334 UnfoldPR = PhysReg;
1335 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1336 false, true);
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001337 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001338 }
1339
1340 if (!UnfoldedOpc) {
1341 if (!UnfoldVR)
1342 return false;
1343
1344 // Look for other unfolding opportunities.
1345 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
1346 RegKills, KillOps);
1347 }
1348
1349 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1350 MachineOperand &MO = MI.getOperand(i);
1351 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1352 continue;
1353 unsigned VirtReg = MO.getReg();
1354 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1355 continue;
1356 if (VRM->isAssignedReg(VirtReg)) {
1357 unsigned PhysReg = VRM->getPhys(VirtReg);
1358 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1359 return false;
1360 } else if (VRM->isReMaterialized(VirtReg))
1361 continue;
1362 int SS = VRM->getStackSlot(VirtReg);
1363 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1364 if (PhysReg) {
1365 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1366 return false;
1367 continue;
1368 }
1369 if (VRM->hasPhys(VirtReg)) {
1370 PhysReg = VRM->getPhys(VirtReg);
1371 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1372 continue;
1373 }
1374
1375 // Ok, we'll need to reload the value into a register which makes
1376 // it impossible to perform the store unfolding optimization later.
1377 // Let's see if it is possible to fold the load if the store is
1378 // unfolded. This allows us to perform the store unfolding
1379 // optimization.
1380 SmallVector<MachineInstr*, 4> NewMIs;
1381 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1382 assert(NewMIs.size() == 1);
1383 MachineInstr *NewMI = NewMIs.back();
1384 NewMIs.clear();
1385 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1386 assert(Idx != -1);
1387 SmallVector<unsigned, 1> Ops;
1388 Ops.push_back(Idx);
1389 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1390 if (FoldedMI) {
1391 VRM->addSpillSlotUse(SS, FoldedMI);
1392 if (!VRM->hasPhys(UnfoldVR))
1393 VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
1394 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1395 MII = MBB->insert(MII, FoldedMI);
1396 InvalidateKills(MI, TRI, RegKills, KillOps);
1397 VRM->RemoveMachineInstrFromMaps(&MI);
1398 MBB->erase(&MI);
1399 MF.DeleteMachineInstr(NewMI);
1400 return true;
1401 }
1402 MF.DeleteMachineInstr(NewMI);
1403 }
1404 }
1405
1406 return false;
1407}
1408
1409/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1410/// where SrcReg is r1 and it is tied to r0. Return true if after
1411/// commuting this instruction it will be r0 = op r2, r1.
1412static bool CommuteChangesDestination(MachineInstr *DefMI,
1413 const TargetInstrDesc &TID,
1414 unsigned SrcReg,
1415 const TargetInstrInfo *TII,
1416 unsigned &DstIdx) {
1417 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1418 return false;
1419 if (!DefMI->getOperand(1).isReg() ||
1420 DefMI->getOperand(1).getReg() != SrcReg)
1421 return false;
1422 unsigned DefIdx;
1423 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1424 return false;
1425 unsigned SrcIdx1, SrcIdx2;
1426 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1427 return false;
1428 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1429 DstIdx = 2;
1430 return true;
1431 }
1432 return false;
1433}
1434
1435/// CommuteToFoldReload -
1436/// Look for
1437/// r1 = load fi#1
1438/// r1 = op r1, r2<kill>
1439/// store r1, fi#1
1440///
1441/// If op is commutable and r2 is killed, then we can xform these to
1442/// r2 = op r2, fi#1
1443/// store r2, fi#1
1444bool LocalRewriter::
1445CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1446 unsigned VirtReg, unsigned SrcReg, int SS,
1447 AvailableSpills &Spills,
1448 BitVector &RegKills,
1449 std::vector<MachineOperand*> &KillOps,
1450 const TargetRegisterInfo *TRI) {
1451 if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
1452 return false;
1453
1454 MachineFunction &MF = *MBB->getParent();
1455 MachineInstr &MI = *MII;
1456 MachineBasicBlock::iterator DefMII = prior(MII);
1457 MachineInstr *DefMI = DefMII;
1458 const TargetInstrDesc &TID = DefMI->getDesc();
1459 unsigned NewDstIdx;
1460 if (DefMII != MBB->begin() &&
1461 TID.isCommutable() &&
1462 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1463 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1464 unsigned NewReg = NewDstMO.getReg();
1465 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1466 return false;
1467 MachineInstr *ReloadMI = prior(DefMII);
1468 int FrameIdx;
1469 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1470 if (DestReg != SrcReg || FrameIdx != SS)
1471 return false;
1472 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1473 if (UseIdx == -1)
1474 return false;
1475 unsigned DefIdx;
1476 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1477 return false;
1478 assert(DefMI->getOperand(DefIdx).isReg() &&
1479 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1480
1481 // Now commute def instruction.
1482 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1483 if (!CommutedMI)
1484 return false;
1485 SmallVector<unsigned, 1> Ops;
1486 Ops.push_back(NewDstIdx);
1487 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1488 // Not needed since foldMemoryOperand returns new MI.
1489 MF.DeleteMachineInstr(CommutedMI);
1490 if (!FoldedMI)
1491 return false;
1492
1493 VRM->addSpillSlotUse(SS, FoldedMI);
1494 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1495 // Insert new def MI and spill MI.
1496 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1497 TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC);
1498 MII = prior(MII);
1499 MachineInstr *StoreMI = MII;
1500 VRM->addSpillSlotUse(SS, StoreMI);
1501 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1502 MII = MBB->insert(MII, FoldedMI); // Update MII to backtrack.
1503
1504 // Delete all 3 old instructions.
1505 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1506 VRM->RemoveMachineInstrFromMaps(ReloadMI);
1507 MBB->erase(ReloadMI);
1508 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1509 VRM->RemoveMachineInstrFromMaps(DefMI);
1510 MBB->erase(DefMI);
1511 InvalidateKills(MI, TRI, RegKills, KillOps);
1512 VRM->RemoveMachineInstrFromMaps(&MI);
1513 MBB->erase(&MI);
1514
1515 // If NewReg was previously holding value of some SS, it's now clobbered.
1516 // This has to be done now because it's a physical register. When this
1517 // instruction is re-visited, it's ignored.
1518 Spills.ClobberPhysReg(NewReg);
1519
1520 ++NumCommutes;
Dale Johannesen3a6b9eb2009-10-12 18:49:00 +00001521 return true;
1522 }
1523
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001524 return false;
1525}
Lang Hames87e3bca2009-05-06 02:36:21 +00001526
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001527/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1528/// the last store to the same slot is now dead. If so, remove the last store.
1529void LocalRewriter::
1530SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1531 int Idx, unsigned PhysReg, int StackSlot,
1532 const TargetRegisterClass *RC,
1533 bool isAvailable, MachineInstr *&LastStore,
1534 AvailableSpills &Spills,
1535 SmallSet<MachineInstr*, 4> &ReMatDefs,
1536 BitVector &RegKills,
1537 std::vector<MachineOperand*> &KillOps) {
Evan Chengeca24fb2009-05-12 23:07:00 +00001538
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001539 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1540 TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC);
1541 MachineInstr *StoreMI = prior(oldNextMII);
1542 VRM->addSpillSlotUse(StackSlot, StoreMI);
1543 DEBUG(dbgs() << "Store:\t" << *StoreMI);
Evan Chengeca24fb2009-05-12 23:07:00 +00001544
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001545 // If there is a dead store to this stack slot, nuke it now.
1546 if (LastStore) {
1547 DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
1548 ++NumDSE;
1549 SmallVector<unsigned, 2> KillRegs;
1550 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1551 MachineBasicBlock::iterator PrevMII = LastStore;
1552 bool CheckDef = PrevMII != MBB->begin();
1553 if (CheckDef)
1554 --PrevMII;
1555 VRM->RemoveMachineInstrFromMaps(LastStore);
1556 MBB->erase(LastStore);
1557 if (CheckDef) {
1558 // Look at defs of killed registers on the store. Mark the defs
1559 // as dead since the store has been deleted and they aren't
1560 // being reused.
1561 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1562 bool HasOtherDef = false;
1563 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
1564 MachineInstr *DeadDef = PrevMII;
1565 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1566 // FIXME: This assumes a remat def does not have side effects.
1567 VRM->RemoveMachineInstrFromMaps(DeadDef);
1568 MBB->erase(DeadDef);
1569 ++NumDRM;
1570 }
Evan Chengeca24fb2009-05-12 23:07:00 +00001571 }
Lang Hames87e3bca2009-05-06 02:36:21 +00001572 }
1573 }
1574 }
1575
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001576 // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
1577 // the last of multiple instructions is the actual store.
1578 LastStore = prior(oldNextMII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001579
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001580 // If the stack slot value was previously available in some other
1581 // register, change it now. Otherwise, make the register available,
1582 // in PhysReg.
1583 Spills.ModifyStackSlotOrReMat(StackSlot);
1584 Spills.ClobberPhysReg(PhysReg);
1585 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1586 ++NumStores;
1587}
Lang Hames87e3bca2009-05-06 02:36:21 +00001588
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001589/// isSafeToDelete - Return true if this instruction doesn't produce any side
1590/// effect and all of its defs are dead.
1591static bool isSafeToDelete(MachineInstr &MI) {
1592 const TargetInstrDesc &TID = MI.getDesc();
1593 if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1594 TID.isCall() || TID.isBarrier() || TID.isReturn() ||
1595 TID.hasUnmodeledSideEffects())
1596 return false;
1597 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1598 MachineOperand &MO = MI.getOperand(i);
1599 if (!MO.isReg() || !MO.getReg())
1600 continue;
1601 if (MO.isDef() && !MO.isDead())
1602 return false;
1603 if (MO.isUse() && MO.isKill())
1604 // FIXME: We can't remove kill markers or else the scavenger will assert.
1605 // An alternative is to add a ADD pseudo instruction to replace kill
1606 // markers.
1607 return false;
1608 }
1609 return true;
1610}
Lang Hames87e3bca2009-05-06 02:36:21 +00001611
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001612/// TransferDeadness - A identity copy definition is dead and it's being
1613/// removed. Find the last def or use and mark it as dead / kill.
1614void LocalRewriter::
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00001615TransferDeadness(unsigned Reg, BitVector &RegKills,
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001616 std::vector<MachineOperand*> &KillOps) {
1617 SmallPtrSet<MachineInstr*, 4> Seens;
1618 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1619 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
1620 RE = MRI->reg_end(); RI != RE; ++RI) {
1621 MachineInstr *UDMI = &*RI;
1622 if (UDMI->getParent() != MBB)
1623 continue;
1624 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00001625 if (DI == DistanceMap.end())
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001626 continue;
1627 if (Seens.insert(UDMI))
1628 Refs.push_back(std::make_pair(UDMI, DI->second));
1629 }
Lang Hames87e3bca2009-05-06 02:36:21 +00001630
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001631 if (Refs.empty())
1632 return;
1633 std::sort(Refs.begin(), Refs.end(), RefSorter());
Lang Hames87e3bca2009-05-06 02:36:21 +00001634
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001635 while (!Refs.empty()) {
1636 MachineInstr *LastUDMI = Refs.back().first;
1637 Refs.pop_back();
Lang Hames87e3bca2009-05-06 02:36:21 +00001638
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001639 MachineOperand *LastUD = NULL;
1640 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1641 MachineOperand &MO = LastUDMI->getOperand(i);
1642 if (!MO.isReg() || MO.getReg() != Reg)
1643 continue;
1644 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1645 LastUD = &MO;
1646 if (LastUDMI->isRegTiedToDefOperand(i))
1647 break;
1648 }
1649 if (LastUD->isDef()) {
1650 // If the instruction has no side effect, delete it and propagate
1651 // backward further. Otherwise, mark is dead and we are done.
1652 if (!isSafeToDelete(*LastUDMI)) {
1653 LastUD->setIsDead();
1654 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001655 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001656 VRM->RemoveMachineInstrFromMaps(LastUDMI);
1657 MBB->erase(LastUDMI);
1658 } else {
1659 LastUD->setIsKill();
1660 RegKills.set(Reg);
1661 KillOps[Reg] = LastUD;
1662 break;
1663 }
1664 }
1665}
Lang Hames87e3bca2009-05-06 02:36:21 +00001666
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00001667/// InsertEmergencySpills - Insert emergency spills before MI if requested by
1668/// VRM. Return true if spills were inserted.
1669bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
1670 if (!VRM->hasEmergencySpills(MI))
1671 return false;
1672 MachineBasicBlock::iterator MII = MI;
1673 SmallSet<int, 4> UsedSS;
1674 std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
1675 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1676 unsigned PhysReg = EmSpills[i];
1677 const TargetRegisterClass *RC = TRI->getPhysicalRegisterRegClass(PhysReg);
1678 assert(RC && "Unable to determine register class!");
1679 int SS = VRM->getEmergencySpillSlot(RC);
1680 if (UsedSS.count(SS))
1681 llvm_unreachable("Need to spill more than one physical registers!");
1682 UsedSS.insert(SS);
1683 TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC);
1684 MachineInstr *StoreMI = prior(MII);
1685 VRM->addSpillSlotUse(SS, StoreMI);
1686
1687 // Back-schedule reloads and remats.
1688 MachineBasicBlock::iterator InsertLoc =
1689 ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
1690 TII, *MBB->getParent());
1691
1692 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC);
1693
1694 MachineInstr *LoadMI = prior(InsertLoc);
1695 VRM->addSpillSlotUse(SS, LoadMI);
1696 ++NumPSpills;
1697 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1698 }
1699 return true;
1700}
1701
1702/// InsertRestores - Restore registers before MI is requested by VRM. Return
1703/// true is any instructions were inserted.
1704bool LocalRewriter::InsertRestores(MachineInstr *MI,
1705 AvailableSpills &Spills,
1706 BitVector &RegKills,
1707 std::vector<MachineOperand*> &KillOps) {
1708 if (!VRM->isRestorePt(MI))
1709 return false;
1710 MachineBasicBlock::iterator MII = MI;
1711 std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
1712 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1713 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1714 if (!VRM->getPreSplitReg(VirtReg))
1715 continue; // Split interval spilled again.
1716 unsigned Phys = VRM->getPhys(VirtReg);
1717 MRI->setPhysRegUsed(Phys);
1718
1719 // Check if the value being restored if available. If so, it must be
1720 // from a predecessor BB that fallthrough into this BB. We do not
1721 // expect:
1722 // BB1:
1723 // r1 = load fi#1
1724 // ...
1725 // = r1<kill>
1726 // ... # r1 not clobbered
1727 // ...
1728 // = load fi#1
1729 bool DoReMat = VRM->isReMaterialized(VirtReg);
1730 int SSorRMId = DoReMat
1731 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1732 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1733 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1734 if (InReg == Phys) {
1735 // If the value is already available in the expected register, save
1736 // a reload / remat.
1737 if (SSorRMId)
1738 DEBUG(dbgs() << "Reusing RM#"
1739 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1740 else
1741 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1742 DEBUG(dbgs() << " from physreg "
1743 << TRI->getName(InReg) << " for vreg"
1744 << VirtReg <<" instead of reloading into physreg "
1745 << TRI->getName(Phys) << '\n');
1746 ++NumOmitted;
1747 continue;
1748 } else if (InReg && InReg != Phys) {
1749 if (SSorRMId)
1750 DEBUG(dbgs() << "Reusing RM#"
1751 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1752 else
1753 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1754 DEBUG(dbgs() << " from physreg "
1755 << TRI->getName(InReg) << " for vreg"
1756 << VirtReg <<" by copying it into physreg "
1757 << TRI->getName(Phys) << '\n');
1758
1759 // If the reloaded / remat value is available in another register,
1760 // copy it to the desired register.
1761
1762 // Back-schedule reloads and remats.
1763 MachineBasicBlock::iterator InsertLoc =
1764 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1765 *MBB->getParent());
1766
1767 TII->copyRegToReg(*MBB, InsertLoc, Phys, InReg, RC, RC);
1768
1769 // This invalidates Phys.
1770 Spills.ClobberPhysReg(Phys);
1771 // Remember it's available.
1772 Spills.addAvailable(SSorRMId, Phys);
1773
1774 // Mark is killed.
1775 MachineInstr *CopyMI = prior(InsertLoc);
1776 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
1777 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1778 KillOpnd->setIsKill();
1779 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1780
1781 DEBUG(dbgs() << '\t' << *CopyMI);
1782 ++NumCopified;
1783 continue;
1784 }
1785
1786 // Back-schedule reloads and remats.
1787 MachineBasicBlock::iterator InsertLoc =
1788 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1789 *MBB->getParent());
1790
1791 if (VRM->isReMaterialized(VirtReg)) {
1792 ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
1793 } else {
1794 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1795 TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC);
1796 MachineInstr *LoadMI = prior(InsertLoc);
1797 VRM->addSpillSlotUse(SSorRMId, LoadMI);
1798 ++NumLoads;
1799 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1800 }
1801
1802 // This invalidates Phys.
1803 Spills.ClobberPhysReg(Phys);
1804 // Remember it's available.
1805 Spills.addAvailable(SSorRMId, Phys);
1806
1807 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1808 DEBUG(dbgs() << '\t' << *prior(MII));
1809 }
1810 return true;
1811}
1812
1813/// InsertEmergencySpills - Insert spills after MI if requested by VRM. Return
1814/// true if spills were inserted.
1815bool LocalRewriter::InsertSpills(MachineInstr *MI) {
1816 if (!VRM->isSpillPt(MI))
1817 return false;
1818 MachineBasicBlock::iterator MII = MI;
1819 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1820 VRM->getSpillPtSpills(MI);
1821 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1822 unsigned VirtReg = SpillRegs[i].first;
1823 bool isKill = SpillRegs[i].second;
1824 if (!VRM->getPreSplitReg(VirtReg))
1825 continue; // Split interval spilled again.
1826 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
1827 unsigned Phys = VRM->getPhys(VirtReg);
1828 int StackSlot = VRM->getStackSlot(VirtReg);
1829 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1830 TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
1831 RC);
1832 MachineInstr *StoreMI = prior(oldNextMII);
1833 VRM->addSpillSlotUse(StackSlot, StoreMI);
1834 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1835 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1836 }
1837 return true;
1838}
1839
1840
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001841/// rewriteMBB - Keep track of which spills are available even after the
1842/// register allocator is done with them. If possible, avid reloading vregs.
1843void
1844LocalRewriter::RewriteMBB(LiveIntervals *LIs,
1845 AvailableSpills &Spills, BitVector &RegKills,
1846 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001847
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001848 DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
1849 << MBB->getName() << "':\n");
Lang Hames87e3bca2009-05-06 02:36:21 +00001850
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001851 MachineFunction &MF = *MBB->getParent();
David Greene2d4e6d32009-07-28 16:49:24 +00001852
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001853 // MaybeDeadStores - When we need to write a value back into a stack slot,
1854 // keep track of the inserted store. If the stack slot value is never read
1855 // (because the value was used from some available register, for example), and
1856 // subsequently stored to, the original store is dead. This map keeps track
1857 // of inserted stores that are not used. If we see a subsequent store to the
1858 // same stack slot, the original store is deleted.
1859 std::vector<MachineInstr*> MaybeDeadStores;
1860 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
David Greene2d4e6d32009-07-28 16:49:24 +00001861
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001862 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1863 SmallSet<MachineInstr*, 4> ReMatDefs;
Lang Hames87e3bca2009-05-06 02:36:21 +00001864
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001865 // Clear kill info.
1866 SmallSet<unsigned, 2> KilledMIRegs;
1867 RegKills.reset();
1868 KillOps.clear();
1869 KillOps.resize(TRI->getNumRegs(), NULL);
Lang Hames87e3bca2009-05-06 02:36:21 +00001870
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001871 DistanceMap.clear();
1872 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1873 MII != E; ) {
1874 MachineBasicBlock::iterator NextMII = llvm::next(MII);
Lang Hames87e3bca2009-05-06 02:36:21 +00001875
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001876 if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
1877 NextMII = llvm::next(MII);
1878
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00001879 if (InsertEmergencySpills(MII))
1880 NextMII = llvm::next(MII);
1881
1882 InsertRestores(MII, Spills, RegKills, KillOps);
1883
1884 if (InsertSpills(MII))
1885 NextMII = llvm::next(MII);
1886
1887 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1888 bool Erased = false;
1889 bool BackTracked = false;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001890 MachineInstr &MI = *MII;
1891
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00001892 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1893 /// reuse.
1894 ReuseInfo ReusedOperands(MI, TRI);
1895 SmallVector<unsigned, 4> VirtUseOps;
1896 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1897 MachineOperand &MO = MI.getOperand(i);
1898 if (!MO.isReg() || MO.getReg() == 0)
1899 continue; // Ignore non-register operands.
1900
1901 unsigned VirtReg = MO.getReg();
1902 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1903 // Ignore physregs for spilling, but remember that it is used by this
1904 // function.
1905 MRI->setPhysRegUsed(VirtReg);
1906 continue;
1907 }
1908
1909 // We want to process implicit virtual register uses first.
1910 if (MO.isImplicit())
1911 // If the virtual register is implicitly defined, emit a implicit_def
1912 // before so scavenger knows it's "defined".
1913 // FIXME: This is a horrible hack done the by register allocator to
1914 // remat a definition with virtual register operand.
1915 VirtUseOps.insert(VirtUseOps.begin(), i);
1916 else
1917 VirtUseOps.push_back(i);
1918 }
1919
1920 // Process all of the spilled uses and all non spilled reg references.
1921 SmallVector<int, 2> PotentialDeadStoreSlots;
1922 KilledMIRegs.clear();
1923 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1924 unsigned i = VirtUseOps[j];
1925 unsigned VirtReg = MI.getOperand(i).getReg();
1926 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1927 "Not a virtual register?");
1928
1929 unsigned SubIdx = MI.getOperand(i).getSubReg();
1930 if (VRM->isAssignedReg(VirtReg)) {
1931 // This virtual register was assigned a physreg!
1932 unsigned Phys = VRM->getPhys(VirtReg);
1933 MRI->setPhysRegUsed(Phys);
1934 if (MI.getOperand(i).isDef())
1935 ReusedOperands.markClobbered(Phys);
1936 substitutePhysReg(MI.getOperand(i), Phys, *TRI);
1937 if (VRM->isImplicitlyDefined(VirtReg))
1938 // FIXME: Is this needed?
1939 BuildMI(*MBB, &MI, MI.getDebugLoc(),
1940 TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
1941 continue;
1942 }
1943
1944 // This virtual register is now known to be a spilled value.
1945 if (!MI.getOperand(i).isUse())
1946 continue; // Handle defs in the loop below (handle use&def here though)
1947
1948 bool AvoidReload = MI.getOperand(i).isUndef();
1949 // Check if it is defined by an implicit def. It should not be spilled.
1950 // Note, this is for correctness reason. e.g.
1951 // 8 %reg1024<def> = IMPLICIT_DEF
1952 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1953 // The live range [12, 14) are not part of the r1024 live interval since
1954 // it's defined by an implicit def. It will not conflicts with live
1955 // interval of r1025. Now suppose both registers are spilled, you can
1956 // easily see a situation where both registers are reloaded before
1957 // the INSERT_SUBREG and both target registers that would overlap.
1958 bool DoReMat = VRM->isReMaterialized(VirtReg);
1959 int SSorRMId = DoReMat
1960 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1961 int ReuseSlot = SSorRMId;
1962
1963 // Check to see if this stack slot is available.
1964 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1965
1966 // If this is a sub-register use, make sure the reuse register is in the
1967 // right register class. For example, for x86 not all of the 32-bit
1968 // registers have accessible sub-registers.
1969 // Similarly so for EXTRACT_SUBREG. Consider this:
1970 // EDI = op
1971 // MOV32_mr fi#1, EDI
1972 // ...
1973 // = EXTRACT_SUBREG fi#1
1974 // fi#1 is available in EDI, but it cannot be reused because it's not in
1975 // the right register file.
1976 if (PhysReg && !AvoidReload && (SubIdx || MI.isExtractSubreg())) {
1977 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1978 if (!RC->contains(PhysReg))
1979 PhysReg = 0;
1980 }
1981
1982 if (PhysReg && !AvoidReload) {
1983 // This spilled operand might be part of a two-address operand. If this
1984 // is the case, then changing it will necessarily require changing the
1985 // def part of the instruction as well. However, in some cases, we
1986 // aren't allowed to modify the reused register. If none of these cases
1987 // apply, reuse it.
1988 bool CanReuse = true;
1989 bool isTied = MI.isRegTiedToDefOperand(i);
1990 if (isTied) {
1991 // Okay, we have a two address operand. We can reuse this physreg as
1992 // long as we are allowed to clobber the value and there isn't an
1993 // earlier def that has already clobbered the physreg.
1994 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1995 Spills.canClobberPhysReg(PhysReg);
1996 }
1997
1998 if (CanReuse) {
1999 // If this stack slot value is already available, reuse it!
2000 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2001 DEBUG(dbgs() << "Reusing RM#"
2002 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2003 else
2004 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2005 DEBUG(dbgs() << " from physreg "
2006 << TRI->getName(PhysReg) << " for vreg"
2007 << VirtReg <<" instead of reloading into physreg "
2008 << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
2009 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
Lang Hames87e3bca2009-05-06 02:36:21 +00002010 MI.getOperand(i).setReg(RReg);
2011 MI.getOperand(i).setSubReg(0);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002012
2013 // The only technical detail we have is that we don't know that
2014 // PhysReg won't be clobbered by a reloaded stack slot that occurs
2015 // later in the instruction. In particular, consider 'op V1, V2'.
2016 // If V1 is available in physreg R0, we would choose to reuse it
2017 // here, instead of reloading it into the register the allocator
2018 // indicated (say R1). However, V2 might have to be reloaded
2019 // later, and it might indicate that it needs to live in R0. When
2020 // this occurs, we need to have information available that
2021 // indicates it is safe to use R1 for the reload instead of R0.
2022 //
2023 // To further complicate matters, we might conflict with an alias,
2024 // or R0 and R1 might not be compatible with each other. In this
2025 // case, we actually insert a reload for V1 in R1, ensuring that
2026 // we can get at R0 or its alias.
2027 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
2028 VRM->getPhys(VirtReg), VirtReg);
2029 if (isTied)
2030 // Only mark it clobbered if this is a use&def operand.
2031 ReusedOperands.markClobbered(PhysReg);
Lang Hames87e3bca2009-05-06 02:36:21 +00002032 ++NumReused;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002033
2034 if (MI.getOperand(i).isKill() &&
2035 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
2036
2037 // The store of this spilled value is potentially dead, but we
2038 // won't know for certain until we've confirmed that the re-use
2039 // above is valid, which means waiting until the other operands
2040 // are processed. For now we just track the spill slot, we'll
2041 // remove it after the other operands are processed if valid.
2042
2043 PotentialDeadStoreSlots.push_back(ReuseSlot);
2044 }
2045
2046 // Mark is isKill if it's there no other uses of the same virtual
2047 // register and it's not a two-address operand. IsKill will be
2048 // unset if reg is reused.
2049 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
2050 MI.getOperand(i).setIsKill();
2051 KilledMIRegs.insert(VirtReg);
2052 }
2053
Lang Hames87e3bca2009-05-06 02:36:21 +00002054 continue;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002055 } // CanReuse
2056
2057 // Otherwise we have a situation where we have a two-address instruction
2058 // whose mod/ref operand needs to be reloaded. This reload is already
2059 // available in some register "PhysReg", but if we used PhysReg as the
2060 // operand to our 2-addr instruction, the instruction would modify
2061 // PhysReg. This isn't cool if something later uses PhysReg and expects
2062 // to get its initial value.
2063 //
2064 // To avoid this problem, and to avoid doing a load right after a store,
2065 // we emit a copy from PhysReg into the designated register for this
2066 // operand.
2067 unsigned DesignatedReg = VRM->getPhys(VirtReg);
2068 assert(DesignatedReg && "Must map virtreg to physreg!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002069
2070 // Note that, if we reused a register for a previous operand, the
2071 // register we want to reload into might not actually be
2072 // available. If this occurs, use the register indicated by the
2073 // reuser.
2074 if (ReusedOperands.hasReuses())
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002075 DesignatedReg = ReusedOperands.
2076 GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
2077 MaybeDeadStores, RegKills, KillOps, *VRM);
David Greene2d4e6d32009-07-28 16:49:24 +00002078
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002079 // If the mapped designated register is actually the physreg we have
2080 // incoming, we don't need to inserted a dead copy.
2081 if (DesignatedReg == PhysReg) {
2082 // If this stack slot value is already available, reuse it!
2083 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2084 DEBUG(dbgs() << "Reusing RM#"
2085 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2086 else
2087 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2088 DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
2089 << " for vreg" << VirtReg
2090 << " instead of reloading into same physreg.\n");
2091 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2092 MI.getOperand(i).setReg(RReg);
2093 MI.getOperand(i).setSubReg(0);
2094 ReusedOperands.markClobbered(RReg);
2095 ++NumReused;
2096 continue;
Lang Hames87e3bca2009-05-06 02:36:21 +00002097 }
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002098
2099 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2100 MRI->setPhysRegUsed(DesignatedReg);
2101 ReusedOperands.markClobbered(DesignatedReg);
2102
2103 // Back-schedule reloads and remats.
2104 MachineBasicBlock::iterator InsertLoc =
2105 ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
2106 SSorRMId, TII, MF);
2107
2108 TII->copyRegToReg(*MBB, InsertLoc, DesignatedReg, PhysReg, RC, RC);
2109
2110 MachineInstr *CopyMI = prior(InsertLoc);
2111 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2112 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
2113
2114 // This invalidates DesignatedReg.
2115 Spills.ClobberPhysReg(DesignatedReg);
2116
2117 Spills.addAvailable(ReuseSlot, DesignatedReg);
2118 unsigned RReg =
2119 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
Lang Hames87e3bca2009-05-06 02:36:21 +00002120 MI.getOperand(i).setReg(RReg);
2121 MI.getOperand(i).setSubReg(0);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002122 DEBUG(dbgs() << '\t' << *prior(MII));
2123 ++NumReused;
2124 continue;
2125 } // if (PhysReg)
Lang Hames87e3bca2009-05-06 02:36:21 +00002126
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002127 // Otherwise, reload it and remember that we have it.
2128 PhysReg = VRM->getPhys(VirtReg);
2129 assert(PhysReg && "Must map virtreg to physreg!");
2130
2131 // Note that, if we reused a register for a previous operand, the
2132 // register we want to reload into might not actually be
2133 // available. If this occurs, use the register indicated by the
2134 // reuser.
2135 if (ReusedOperands.hasReuses())
2136 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2137 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2138
2139 MRI->setPhysRegUsed(PhysReg);
2140 ReusedOperands.markClobbered(PhysReg);
2141 if (AvoidReload)
2142 ++NumAvoided;
2143 else {
2144 // Back-schedule reloads and remats.
2145 MachineBasicBlock::iterator InsertLoc =
2146 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat,
2147 SSorRMId, TII, MF);
2148
2149 if (DoReMat) {
2150 ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
2151 } else {
2152 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2153 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC);
2154 MachineInstr *LoadMI = prior(InsertLoc);
2155 VRM->addSpillSlotUse(SSorRMId, LoadMI);
2156 ++NumLoads;
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00002157 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002158 }
2159 // This invalidates PhysReg.
2160 Spills.ClobberPhysReg(PhysReg);
2161
2162 // Any stores to this stack slot are not dead anymore.
2163 if (!DoReMat)
2164 MaybeDeadStores[SSorRMId] = NULL;
2165 Spills.addAvailable(SSorRMId, PhysReg);
2166 // Assumes this is the last use. IsKill will be unset if reg is reused
2167 // unless it's a two-address operand.
2168 if (!MI.isRegTiedToDefOperand(i) &&
2169 KilledMIRegs.count(VirtReg) == 0) {
2170 MI.getOperand(i).setIsKill();
2171 KilledMIRegs.insert(VirtReg);
2172 }
2173
2174 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2175 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
2176 }
2177 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2178 MI.getOperand(i).setReg(RReg);
2179 MI.getOperand(i).setSubReg(0);
2180 }
2181
2182 // Ok - now we can remove stores that have been confirmed dead.
2183 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2184 // This was the last use and the spilled value is still available
2185 // for reuse. That means the spill was unnecessary!
2186 int PDSSlot = PotentialDeadStoreSlots[j];
2187 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2188 if (DeadStore) {
2189 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2190 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2191 VRM->RemoveMachineInstrFromMaps(DeadStore);
2192 MBB->erase(DeadStore);
2193 MaybeDeadStores[PDSSlot] = NULL;
2194 ++NumDSE;
2195 }
2196 }
2197
2198
2199 DEBUG(dbgs() << '\t' << MI);
2200
2201
2202 // If we have folded references to memory operands, make sure we clear all
2203 // physical registers that may contain the value of the spilled virtual
2204 // register
2205 SmallSet<int, 2> FoldedSS;
2206 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
2207 unsigned VirtReg = I->second.first;
2208 VirtRegMap::ModRef MR = I->second.second;
2209 DEBUG(dbgs() << "Folded vreg: " << VirtReg << " MR: " << MR);
2210
2211 // MI2VirtMap be can updated which invalidate the iterator.
2212 // Increment the iterator first.
2213 ++I;
2214 int SS = VRM->getStackSlot(VirtReg);
2215 if (SS == VirtRegMap::NO_STACK_SLOT)
2216 continue;
2217 FoldedSS.insert(SS);
2218 DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
2219
2220 // If this folded instruction is just a use, check to see if it's a
2221 // straight load from the virt reg slot.
2222 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2223 int FrameIdx;
2224 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2225 if (DestReg && FrameIdx == SS) {
2226 // If this spill slot is available, turn it into a copy (or nothing)
2227 // instead of leaving it as a load!
2228 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2229 DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
2230 if (DestReg != InReg) {
2231 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2232 TII->copyRegToReg(*MBB, &MI, DestReg, InReg, RC, RC);
2233 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2234 unsigned SubIdx = DefMO->getSubReg();
2235 // Revisit the copy so we make sure to notice the effects of the
2236 // operation on the destreg (either needing to RA it if it's
2237 // virtual or needing to clobber any values if it's physical).
2238 NextMII = &MI;
2239 --NextMII; // backtrack to the copy.
2240 NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2241 // Propagate the sub-register index over.
2242 if (SubIdx) {
2243 DefMO = NextMII->findRegisterDefOperand(DestReg);
2244 DefMO->setSubReg(SubIdx);
2245 }
2246
2247 // Mark is killed.
2248 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
2249 KillOpnd->setIsKill();
2250
2251 BackTracked = true;
2252 } else {
2253 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2254 // Unset last kill since it's being reused.
2255 InvalidateKill(InReg, TRI, RegKills, KillOps);
2256 Spills.disallowClobberPhysReg(InReg);
2257 }
2258
2259 InvalidateKills(MI, TRI, RegKills, KillOps);
2260 VRM->RemoveMachineInstrFromMaps(&MI);
2261 MBB->erase(&MI);
2262 Erased = true;
2263 goto ProcessNextInst;
2264 }
2265 } else {
2266 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2267 SmallVector<MachineInstr*, 4> NewMIs;
2268 if (PhysReg &&
2269 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
2270 MBB->insert(MII, NewMIs[0]);
2271 InvalidateKills(MI, TRI, RegKills, KillOps);
2272 VRM->RemoveMachineInstrFromMaps(&MI);
2273 MBB->erase(&MI);
2274 Erased = true;
2275 --NextMII; // backtrack to the unfolded instruction.
2276 BackTracked = true;
2277 goto ProcessNextInst;
2278 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002279 }
2280 }
2281
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002282 // If this reference is not a use, any previous store is now dead.
2283 // Otherwise, the store to this stack slot is not dead anymore.
2284 MachineInstr* DeadStore = MaybeDeadStores[SS];
2285 if (DeadStore) {
2286 bool isDead = !(MR & VirtRegMap::isRef);
2287 MachineInstr *NewStore = NULL;
2288 if (MR & VirtRegMap::isModRef) {
2289 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2290 SmallVector<MachineInstr*, 4> NewMIs;
2291 // We can reuse this physreg as long as we are allowed to clobber
2292 // the value and there isn't an earlier def that has already clobbered
2293 // the physreg.
2294 if (PhysReg &&
2295 !ReusedOperands.isClobbered(PhysReg) &&
2296 Spills.canClobberPhysReg(PhysReg) &&
2297 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2298 MachineOperand *KillOpnd =
2299 DeadStore->findRegisterUseOperand(PhysReg, true);
2300 // Note, if the store is storing a sub-register, it's possible the
2301 // super-register is needed below.
2302 if (KillOpnd && !KillOpnd->getSubReg() &&
2303 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2304 MBB->insert(MII, NewMIs[0]);
2305 NewStore = NewMIs[1];
2306 MBB->insert(MII, NewStore);
2307 VRM->addSpillSlotUse(SS, NewStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00002308 InvalidateKills(MI, TRI, RegKills, KillOps);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002309 VRM->RemoveMachineInstrFromMaps(&MI);
2310 MBB->erase(&MI);
Lang Hames87e3bca2009-05-06 02:36:21 +00002311 Erased = true;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002312 --NextMII;
Lang Hames87e3bca2009-05-06 02:36:21 +00002313 --NextMII; // backtrack to the unfolded instruction.
2314 BackTracked = true;
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002315 isDead = true;
2316 ++NumSUnfold;
2317 }
2318 }
2319 }
2320
2321 if (isDead) { // Previous store is dead.
2322 // If we get here, the store is dead, nuke it now.
2323 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2324 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2325 VRM->RemoveMachineInstrFromMaps(DeadStore);
2326 MBB->erase(DeadStore);
2327 if (!NewStore)
2328 ++NumDSE;
2329 }
2330
2331 MaybeDeadStores[SS] = NULL;
2332 if (NewStore) {
2333 // Treat this store as a spill merged into a copy. That makes the
2334 // stack slot value available.
2335 VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2336 goto ProcessNextInst;
2337 }
2338 }
2339
2340 // If the spill slot value is available, and this is a new definition of
2341 // the value, the value is not available anymore.
2342 if (MR & VirtRegMap::isMod) {
2343 // Notice that the value in this stack slot has been modified.
2344 Spills.ModifyStackSlotOrReMat(SS);
2345
2346 // If this is *just* a mod of the value, check to see if this is just a
2347 // store to the spill slot (i.e. the spill got merged into the copy). If
2348 // so, realize that the vreg is available now, and add the store to the
2349 // MaybeDeadStore info.
2350 int StackSlot;
2351 if (!(MR & VirtRegMap::isRef)) {
2352 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2353 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2354 "Src hasn't been allocated yet?");
2355
2356 if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
2357 Spills, RegKills, KillOps, TRI)) {
2358 NextMII = llvm::next(MII);
2359 BackTracked = true;
Lang Hames87e3bca2009-05-06 02:36:21 +00002360 goto ProcessNextInst;
2361 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002362
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002363 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2364 // this as a potentially dead store in case there is a subsequent
2365 // store into the stack slot without a read from it.
2366 MaybeDeadStores[StackSlot] = &MI;
Lang Hames87e3bca2009-05-06 02:36:21 +00002367
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002368 // If the stack slot value was previously available in some other
2369 // register, change it now. Otherwise, make the register
2370 // available in PhysReg.
2371 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
Lang Hames87e3bca2009-05-06 02:36:21 +00002372 }
2373 }
2374 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002375 }
2376
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002377 // Process all of the spilled defs.
2378 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2379 MachineOperand &MO = MI.getOperand(i);
2380 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2381 continue;
Lang Hames87e3bca2009-05-06 02:36:21 +00002382
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002383 unsigned VirtReg = MO.getReg();
2384 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2385 // Check to see if this is a noop copy. If so, eliminate the
2386 // instruction before considering the dest reg to be changed.
2387 // Also check if it's copying from an "undef", if so, we can't
2388 // eliminate this or else the undef marker is lost and it will
2389 // confuses the scavenger. This is extremely rare.
2390 unsigned Src, Dst, SrcSR, DstSR;
2391 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2392 !MI.findRegisterUseOperand(Src)->isUndef()) {
2393 ++NumDCE;
2394 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2395 SmallVector<unsigned, 2> KillRegs;
2396 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2397 if (MO.isDead() && !KillRegs.empty()) {
2398 // Source register or an implicit super/sub-register use is killed.
2399 assert(KillRegs[0] == Dst ||
2400 TRI->isSubRegister(KillRegs[0], Dst) ||
2401 TRI->isSuperRegister(KillRegs[0], Dst));
2402 // Last def is now dead.
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00002403 TransferDeadness(Src, RegKills, KillOps);
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002404 }
2405 VRM->RemoveMachineInstrFromMaps(&MI);
2406 MBB->erase(&MI);
2407 Erased = true;
2408 Spills.disallowClobberPhysReg(VirtReg);
2409 goto ProcessNextInst;
2410 }
2411
2412 // If it's not a no-op copy, it clobbers the value in the destreg.
2413 Spills.ClobberPhysReg(VirtReg);
2414 ReusedOperands.markClobbered(VirtReg);
2415
2416 // Check to see if this instruction is a load from a stack slot into
2417 // a register. If so, this provides the stack slot value in the reg.
2418 int FrameIdx;
2419 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2420 assert(DestReg == VirtReg && "Unknown load situation!");
2421
2422 // If it is a folded reference, then it's not safe to clobber.
2423 bool Folded = FoldedSS.count(FrameIdx);
2424 // Otherwise, if it wasn't available, remember that it is now!
2425 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2426 goto ProcessNextInst;
2427 }
2428
2429 continue;
2430 }
2431
2432 unsigned SubIdx = MO.getSubReg();
2433 bool DoReMat = VRM->isReMaterialized(VirtReg);
2434 if (DoReMat)
2435 ReMatDefs.insert(&MI);
2436
2437 // The only vregs left are stack slot definitions.
2438 int StackSlot = VRM->getStackSlot(VirtReg);
2439 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2440
2441 // If this def is part of a two-address operand, make sure to execute
2442 // the store from the correct physical register.
2443 unsigned PhysReg;
2444 unsigned TiedOp;
2445 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2446 PhysReg = MI.getOperand(TiedOp).getReg();
2447 if (SubIdx) {
2448 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2449 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2450 "Can't find corresponding super-register!");
2451 PhysReg = SuperReg;
2452 }
2453 } else {
2454 PhysReg = VRM->getPhys(VirtReg);
2455 if (ReusedOperands.isClobbered(PhysReg)) {
2456 // Another def has taken the assigned physreg. It must have been a
2457 // use&def which got it due to reuse. Undo the reuse!
2458 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2459 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2460 }
2461 }
2462
2463 assert(PhysReg && "VR not assigned a physical register?");
2464 MRI->setPhysRegUsed(PhysReg);
2465 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2466 ReusedOperands.markClobbered(RReg);
2467 MI.getOperand(i).setReg(RReg);
2468 MI.getOperand(i).setSubReg(0);
2469
2470 if (!MO.isDead()) {
2471 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2472 SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
2473 LastStore, Spills, ReMatDefs, RegKills, KillOps);
2474 NextMII = llvm::next(MII);
2475
2476 // Check to see if this is a noop copy. If so, eliminate the
2477 // instruction before considering the dest reg to be changed.
2478 {
2479 unsigned Src, Dst, SrcSR, DstSR;
2480 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2481 ++NumDCE;
2482 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2483 InvalidateKills(MI, TRI, RegKills, KillOps);
2484 VRM->RemoveMachineInstrFromMaps(&MI);
2485 MBB->erase(&MI);
2486 Erased = true;
2487 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2488 goto ProcessNextInst;
2489 }
2490 }
2491 }
2492 }
2493 ProcessNextInst:
2494 // Delete dead instructions without side effects.
2495 if (!Erased && !BackTracked && isSafeToDelete(MI)) {
2496 InvalidateKills(MI, TRI, RegKills, KillOps);
2497 VRM->RemoveMachineInstrFromMaps(&MI);
2498 MBB->erase(&MI);
2499 Erased = true;
2500 }
2501 if (!Erased)
Jakob Stoklund Olesen56698802010-03-11 23:04:34 +00002502 DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
Jakob Stoklund Olesen2cb42022010-03-11 00:11:33 +00002503 if (!Erased && !BackTracked) {
2504 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2505 UpdateKills(*II, TRI, RegKills, KillOps);
2506 }
2507 MII = NextMII;
2508 }
Lang Hames87e3bca2009-05-06 02:36:21 +00002509
Dan Gohman7db949d2009-08-07 01:32:21 +00002510}
2511
Lang Hames87e3bca2009-05-06 02:36:21 +00002512llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2513 switch (RewriterOpt) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002514 default: llvm_unreachable("Unreachable!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002515 case local:
2516 return new LocalRewriter();
Lang Hamesf41538d2009-06-02 16:53:25 +00002517 case trivial:
2518 return new TrivialRewriter();
Lang Hames87e3bca2009-05-06 02:36:21 +00002519 }
2520}