blob: be40ba32f1b59bc0d975d647e7536e03b0dcc974 [file] [log] [blame]
Chris Lattner9355b472002-09-06 02:50:58 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head><title>LLVM Programmer's Manual</title></head>
3
4<body bgcolor=white>
5
Chris Lattner9355b472002-09-06 02:50:58 +00006<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
7<tr><td>&nbsp; <font size=+3 color="#EEEEFF" face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
8</tr></table>
9
10<ol>
11 <li><a href="#introduction">Introduction</a>
12 <li><a href="#general">General Information</a>
13 <ul>
14 <li><a href="#stl">The C++ Standard Template Library</a>
Chris Lattner986e0c92002-09-22 19:38:40 +000015<!--
16 <li>The <tt>-time-passes</tt> option
17 <li>How to use the LLVM Makefile system
18 <li>How to write a regression test
19-->
20 </ul>
21 <li><a href="#apis">Important and useful LLVM APIs</a>
22 <ul>
Chris Lattner1d43fd42002-09-09 05:53:21 +000023 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
24 <tt>dyn_cast&lt;&gt;</tt> templates</a>
Chris Lattner986e0c92002-09-22 19:38:40 +000025 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp;
26 <tt>-debug</tt> option</a>
Chris Lattner84b7f8d2003-08-01 22:20:59 +000027 <ul>
28 <li><a href="#DEBUG_TYPE">Fine grained debug info with
29 <tt>DEBUG_TYPE</tt> and the <tt>-debug-only</tt> option</a/>
30 </ul>
Chris Lattner986e0c92002-09-22 19:38:40 +000031 <li><a href="#Statistic">The <tt>Statistic</tt> template &amp;
32 <tt>-stats</tt> option</a>
33<!--
34 <li>The <tt>InstVisitor</tt> template
35 <li>The general graph API
36-->
Chris Lattner9355b472002-09-06 02:50:58 +000037 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000038 <li><a href="#common">Helpful Hints for Common Operations</a>
39 <ul>
40 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
41 <ul>
42 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
43 in a <tt>Function</tt></a>
44 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
45 in a <tt>BasicBlock</tt></a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000046 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
47 in a <tt>Function</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000048 <li><a href="#iterate_convert">Turning an iterator into a class
49 pointer</a>
Chris Lattnerf1ebdc32002-09-06 22:09:21 +000050 <li><a href="#iterate_complex">Finding call sites: a more complex
51 example</a>
Chris Lattner1a3105b2002-09-09 05:49:39 +000052 <li><a href="#iterate_chains">Iterating over def-use &amp; use-def
53 chains</a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000054 </ul>
55 <li><a href="#simplechanges">Making simple changes</a>
56 <ul>
Joel Stanley753eb712002-09-11 22:32:24 +000057 <li><a href="#schanges_creating">Creating and inserting new
58 <tt>Instruction</tt>s</a>
59 <li><a href="#schanges_deleting">Deleting
60 <tt>Instruction</tt>s</a>
61 <li><a href="#schanges_replacing">Replacing an
62 <tt>Instruction</tt> with another <tt>Value</tt></a>
Chris Lattnerae7f7592002-09-06 18:31:18 +000063 </ul>
64<!--
65 <li>Working with the Control Flow Graph
66 <ul>
67 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
68 <li>
69 <li>
70 </ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +000071-->
72 </ul>
Joel Stanley9b96c442002-09-06 21:55:13 +000073 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
Chris Lattner9355b472002-09-06 02:50:58 +000074 <ul>
75 <li><a href="#Value">The <tt>Value</tt> class</a>
76 <ul>
77 <li><a href="#User">The <tt>User</tt> class</a>
78 <ul>
79 <li><a href="#Instruction">The <tt>Instruction</tt> class</a>
80 <ul>
81 <li>
Chris Lattner9355b472002-09-06 02:50:58 +000082 </ul>
83 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
84 <ul>
85 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a>
86 <li><a href="#Function">The <tt>Function</tt> class</a>
87 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a>
88 </ul>
89 <li><a href="#Module">The <tt>Module</tt> class</a>
90 <li><a href="#Constant">The <tt>Constant</tt> class</a>
91 <ul>
92 <li>
93 <li>
94 </ul>
95 </ul>
96 <li><a href="#Type">The <tt>Type</tt> class</a>
97 <li><a href="#Argument">The <tt>Argument</tt> class</a>
98 </ul>
99 <li>The <tt>SymbolTable</tt> class
100 <li>The <tt>ilist</tt> and <tt>iplist</tt> classes
101 <ul>
102 <li>Creating, inserting, moving and deleting from LLVM lists
103 </ul>
104 <li>Important iterator invalidation semantics to be aware of
105 </ul>
106
Chris Lattner6b121f12002-09-10 15:20:46 +0000107 <p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
108 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and
Chris Lattnerf1ebdc32002-09-06 22:09:21 +0000109 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b><p>
Chris Lattner9355b472002-09-06 02:50:58 +0000110</ol>
111
112
113<!-- *********************************************************************** -->
114<table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
115<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
116<a name="introduction">Introduction
117</b></font></td></tr></table><ul>
118<!-- *********************************************************************** -->
119
Joel Stanley9b96c442002-09-06 21:55:13 +0000120This document is meant to highlight some of the important classes and interfaces
121available in the LLVM source-base. This manual is not intended to explain what
Chris Lattner9355b472002-09-06 02:50:58 +0000122LLVM is, how it works, and what LLVM code looks like. It assumes that you know
123the basics of LLVM and are interested in writing transformations or otherwise
124analyzing or manipulating the code.<p>
125
126This document should get you oriented so that you can find your way in the
127continuously growing source code that makes up the LLVM infrastructure. Note
128that this manual is not intended to serve as a replacement for reading the
129source code, so if you think there should be a method in one of these classes to
130do something, but it's not listed, check the source. Links to the <a
131href="/doxygen/">doxygen</a> sources are provided to make this as easy as
132possible.<p>
133
134The first section of this document describes general information that is useful
135to know when working in the LLVM infrastructure, and the second describes the
136Core LLVM classes. In the future this manual will be extended with information
137describing how to use extension libraries, such as dominator information, CFG
138traversal routines, and useful utilities like the <tt><a
139href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.<p>
140
141
142<!-- *********************************************************************** -->
143</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
144<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
145<a name="general">General Information
146</b></font></td></tr></table><ul>
147<!-- *********************************************************************** -->
148
149This section contains general information that is useful if you are working in
150the LLVM source-base, but that isn't specific to any particular API.<p>
151
152
153<!-- ======================================================================= -->
154</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
155<tr><td>&nbsp;</td><td width="100%">&nbsp;
156<font color="#EEEEFF" face="Georgia,Palatino"><b>
157<a name="stl">The C++ Standard Template Library</a>
158</b></font></td></tr></table><ul>
159
160LLVM makes heavy use of the C++ Standard Template Library (STL), perhaps much
161more than you are used to, or have seen before. Because of this, you might want
162to do a little background reading in the techniques used and capabilities of the
163library. There are many good pages that discuss the STL, and several books on
164the subject that you can get, so it will not be discussed in this document.<p>
165
166Here are some useful links:<p>
167<ol>
Chris Lattnerab0577b2002-09-22 21:25:12 +0000168<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++
Chris Lattner9355b472002-09-06 02:50:58 +0000169Library reference</a> - an excellent reference for the STL and other parts of
Chris Lattnere9ddc7f2002-10-21 02:38:02 +0000170the standard C++ library.
171
172<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
173O'Reilly book in the making. It has a decent <a
174href="http://www.tempest-sw.com/cpp/ch13-libref.html">Standard Library
175Reference</a> that rivals Dinkumware's, and is actually free until the book is
176published.
Chris Lattner9355b472002-09-06 02:50:58 +0000177
178<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
179Questions</a>
180
181<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
182Contains a useful <a
183href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
184STL</a>.
185
186<li><a href="http://www.research.att.com/~bs/C++.html">Bjarne Stroustrup's C++
187Page</a>
188
189</ol><p>
190
191You are also encouraged to take a look at the <a
192href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
193to write maintainable code more than where to put your curly braces.<p>
194
195
Chris Lattner986e0c92002-09-22 19:38:40 +0000196<!-- *********************************************************************** -->
197</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
198<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
199<a name="apis">Important and useful LLVM APIs
200</b></font></td></tr></table><ul>
201<!-- *********************************************************************** -->
202
203Here we highlight some LLVM APIs that are generally useful and good to know
204about when writing transformations.<p>
205
Chris Lattner1d43fd42002-09-09 05:53:21 +0000206<!-- ======================================================================= -->
207</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
208<tr><td>&nbsp;</td><td width="100%">&nbsp;
209<font color="#EEEEFF" face="Georgia,Palatino"><b>
210<a name="isa">The isa&lt;&gt;, cast&lt;&gt; and dyn_cast&lt;&gt; templates</a>
211</b></font></td></tr></table><ul>
212
Chris Lattner979d9b72002-09-10 00:39:05 +0000213The LLVM source-base makes extensive use of a custom form of RTTI. These
214templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
215operator, but they don't have some drawbacks (primarily stemming from the fact
216that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that have a v-table).
217Because they are used so often, you must know what they do and how they work.
218All of these templates are defined in the <a
219href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a> file (note
220that you very rarely have to include this file directly).<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000221
Chris Lattner979d9b72002-09-10 00:39:05 +0000222<dl>
223
224<dt><tt>isa&lt;&gt;</tt>:
225
226<dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
227"<tt>instanceof</tt>" operator. It returns true or false depending on whether a
228reference or pointer points to an instance of the specified class. This can be
229very useful for constraint checking of various sorts (example below).<p>
230
231
232<dt><tt>cast&lt;&gt;</tt>:
233
234<dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
235converts a pointer or reference from a base class to a derived cast, causing an
236assertion failure if it is not really an instance of the right type. This
237should be used in cases where you have some information that makes you believe
238that something is of the right type. An example of the <tt>isa&lt;&gt;</tt> and
239<tt>cast&lt;&gt;</tt> template is:<p>
240
241<pre>
242static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
243 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
244 return true;
245
246 <i>// Otherwise, it must be an instruction...</i>
Chris Lattner7496ec52003-08-05 22:54:23 +0000247 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
Chris Lattner979d9b72002-09-10 00:39:05 +0000248</pre><p>
249
250Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed by a
251<tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt> operator.<p>
252
253
254<dt><tt>dyn_cast&lt;&gt;</tt>:
255
256<dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation. It
257checks to see if the operand is of the specified type, and if so, returns a
258pointer to it (this operator does not work with references). If the operand is
259not of the correct type, a null pointer is returned. Thus, this works very much
260like the <tt>dynamic_cast</tt> operator in C++, and should be used in the same
Chris Lattner6b121f12002-09-10 15:20:46 +0000261circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used in an
262<tt>if</tt> statement or some other flow control statement like this:<p>
263
264<pre>
265 if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
266 ...
267 }
268</pre><p>
269
270This form of the <tt>if</tt> statement effectively combines together a call to
271<tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one statement,
272which is very convenient.<p>
273
274Another common example is:<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000275
276<pre>
277 <i>// Loop over all of the phi nodes in a basic block</i>
Chris Lattner7496ec52003-08-05 22:54:23 +0000278 BasicBlock::iterator BBI = BB-&gt;begin();
Chris Lattner6a547102003-04-23 16:26:15 +0000279 for (; <a href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)
Chris Lattner979d9b72002-09-10 00:39:05 +0000280 cerr &lt;&lt; *PN;
281</pre><p>
282
Chris Lattner6b121f12002-09-10 15:20:46 +0000283Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
284<tt>dynamic_cast</tt> or Java's <tt>instanceof</tt> operator, can be abused. In
285particular you should not use big chained <tt>if/then/else</tt> blocks to check
286for lots of different variants of classes. If you find yourself wanting to do
287this, it is much cleaner and more efficient to use the InstVisitor class to
288dispatch over the instruction type directly.<p>
Chris Lattner979d9b72002-09-10 00:39:05 +0000289
290
Chris Lattner6b121f12002-09-10 15:20:46 +0000291<dt><tt>cast_or_null&lt;&gt;</tt>:
292
293<dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
294<tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
Joel Stanley753eb712002-09-11 22:32:24 +0000295argument (which it then propagates). This can sometimes be useful, allowing you
Chris Lattner6b121f12002-09-10 15:20:46 +0000296to combine several null checks into one.<p>
297
298
299<dt><tt>dyn_cast_or_null&lt;&gt;</tt>:
300
301<dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
302<tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer as
Joel Stanley753eb712002-09-11 22:32:24 +0000303an argument (which it then propagates). This can sometimes be useful, allowing
Chris Lattner6b121f12002-09-10 15:20:46 +0000304you to combine several null checks into one.<p>
305
Chris Lattner979d9b72002-09-10 00:39:05 +0000306</dl>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000307
Chris Lattner6b121f12002-09-10 15:20:46 +0000308These five templates can be used with any classes, whether they have a v-table
309or not. To add support for these templates, you simply need to add
310<tt>classof</tt> static methods to the class you are interested casting to.
311Describing this is currently outside the scope of this document, but there are
Joel Stanley753eb712002-09-11 22:32:24 +0000312lots of examples in the LLVM source base.<p>
Chris Lattner1d43fd42002-09-09 05:53:21 +0000313
314
Chris Lattner986e0c92002-09-22 19:38:40 +0000315<!-- ======================================================================= -->
316</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
317<tr><td>&nbsp;</td><td width="100%">&nbsp;
318<font color="#EEEEFF" face="Georgia,Palatino"><b>
319<a name="DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt> option</a>
320</b></font></td></tr></table><ul>
321
322Often when working on your pass you will put a bunch of debugging printouts and
323other code into your pass. After you get it working, you want to remove
324it... but you may need it again in the future (to work out new bugs that you run
325across).<p>
326
327Naturally, because of this, you don't want to delete the debug printouts, but
328you don't want them to always be noisy. A standard compromise is to comment
329them out, allowing you to enable them if you need them in the future.<p>
330
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000331The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>" file
332provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to this
333problem. Basically, you can put arbitrary code into the argument of the
334<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
335tool) is run with the '<tt>-debug</tt>' command line argument:
Chris Lattner986e0c92002-09-22 19:38:40 +0000336
337<pre>
338 ...
339 DEBUG(std::cerr &lt;&lt; "I am here!\n");
340 ...
341</pre><p>
342
343Then you can run your pass like this:<p>
344
345<pre>
346 $ opt &lt; a.bc &gt; /dev/null -mypass
347 &lt;no output&gt;
348 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
349 I am here!
350 $
351</pre><p>
352
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000353Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you to
Chris Lattner986e0c92002-09-22 19:38:40 +0000354now have to create "yet another" command line option for the debug output for
Chris Lattnera4e7c4e2002-11-08 06:50:02 +0000355your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
356so they do not cause a performance impact at all (for the same reason, they
357should also not contain side-effects!).<p>
358
359One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
360enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
361"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
362program hasn't been started yet, you can always just run it with
363<tt>-debug</tt>.<p>
Chris Lattner986e0c92002-09-22 19:38:40 +0000364
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000365<!-- _______________________________________________________________________ -->
366</ul><h4><a name="DEBUG_TYPE"><hr size=0>Fine grained debug info with
367 <tt>DEBUG_TYPE()</tt> and the <tt>-debug-only</tt> option</a> </h4><ul>
368
369Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
370just turns on <b>too much</b> information (such as when working on the code
371generator). If you want to enable debug information with more fine-grained
372control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
373option as follows:<p>
374
375<pre>
376 ...
377 DEBUG(std::cerr &lt;&lt; "No debug type\n");
378 #undef DEBUG_TYPE
379 #define DEBUG_TYPE "foo"
380 DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");
381 #undef DEBUG_TYPE
382 #define DEBUG_TYPE "bar"
383 DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");
384 #undef DEBUG_TYPE
385 #define DEBUG_TYPE ""
386 DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");
387 ...
388</pre><p>
389
390Then you can run your pass like this:<p>
391
392<pre>
393 $ opt &lt; a.bc &gt; /dev/null -mypass
394 &lt;no output&gt;
395 $ opt &lt; a.bc &gt; /dev/null -mypass -debug
396 No debug type
397 'foo' debug type
398 'bar' debug type
399 No debug type (2)
400 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000401 'foo' debug type
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000402 $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000403 'bar' debug type
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000404 $
405</pre><p>
406
407Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of a
408file, to specify the debug type for the entire module (if you do this before you
409<tt>#include "Support/Debug.h"</tt>, you don't have to insert the ugly
410<tt>#undef</tt>'s). Also, you should use names more meaningful that "foo" and
411"bar", because there is no system in place to ensure that names do not conflict:
412if two different modules use the same string, they will all be turned on when
Chris Lattner806e1862003-08-01 22:26:27 +0000413the name is specified. This allows all, say, instruction scheduling, debug
Chris Lattner84b7f8d2003-08-01 22:20:59 +0000414information to be enabled with <tt>-debug-type=InstrSched</tt>, even if the
415source lives in multiple files.<p>
416
Chris Lattner986e0c92002-09-22 19:38:40 +0000417
418<!-- ======================================================================= -->
419</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
420<tr><td>&nbsp;</td><td width="100%">&nbsp;
421<font color="#EEEEFF" face="Georgia,Palatino"><b>
422<a name="Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
423option</a>
424</b></font></td></tr></table><ul>
425
426The "<tt><a
Chris Lattner8328f1d2002-10-01 22:39:41 +0000427href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
Chris Lattner986e0c92002-09-22 19:38:40 +0000428file provides a template named <tt>Statistic</tt> that is used as a unified way
429to keeping track of what the LLVM compiler is doing and how effective various
430optimizations are. It is useful to see what optimizations are contributing to
431making a particular program run faster.<p>
432
433Often you may run your pass on some big program, and you're interested to see
434how many times it makes a certain transformation. Although you can do this with
435hand inspection, or some ad-hoc method, this is a real pain and not very useful
436for big programs. Using the <tt>Statistic</tt> template makes it very easy to
437keep track of this information, and the calculated information is presented in a
438uniform manner with the rest of the passes being executed.<p>
439
440There are many examples of <tt>Statistic</tt> users, but this basics of using it
441are as follows:<p>
442
443<ol>
444<li>Define your statistic like this:<p>
445
446<pre>
Chris Lattner8328f1d2002-10-01 22:39:41 +0000447static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");
Chris Lattner986e0c92002-09-22 19:38:40 +0000448</pre><p>
449
450The <tt>Statistic</tt> template can emulate just about any data-type, but if you
451do not specify a template argument, it defaults to acting like an unsigned int
452counter (this is usually what you want).<p>
453
454<li>Whenever you make a transformation, bump the counter:<p>
455
456<pre>
457 ++NumXForms; // I did stuff
458</pre><p>
459
460</ol><p>
461
462That's all you have to do. To get '<tt>opt</tt>' to print out the statistics
463gathered, use the '<tt>-stats</tt>' option:<p>
464
465<pre>
466 $ opt -stats -mypassname &lt; program.bc &gt; /dev/null
467 ... statistic output ...
468</pre><p>
469
470When running <tt>gccas</tt> on a C file from the SPEC benchmark suite, it gives
471a report that looks like this:<p>
472
473<pre>
474 7646 bytecodewriter - Number of normal instructions
475 725 bytecodewriter - Number of oversized instructions
476 129996 bytecodewriter - Number of bytecode bytes written
477 2817 raise - Number of insts DCEd or constprop'd
478 3213 raise - Number of cast-of-self removed
479 5046 raise - Number of expression trees converted
480 75 raise - Number of other getelementptr's formed
481 138 raise - Number of load/store peepholes
482 42 deadtypeelim - Number of unused typenames removed from symtab
483 392 funcresolve - Number of varargs functions resolved
484 27 globaldce - Number of global variables removed
485 2 adce - Number of basic blocks removed
486 134 cee - Number of branches revectored
487 49 cee - Number of setcc instruction eliminated
488 532 gcse - Number of loads removed
489 2919 gcse - Number of instructions removed
490 86 indvars - Number of cannonical indvars added
491 87 indvars - Number of aux indvars removed
492 25 instcombine - Number of dead inst eliminate
493 434 instcombine - Number of insts combined
494 248 licm - Number of load insts hoisted
495 1298 licm - Number of insts hoisted to a loop pre-header
496 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
497 75 mem2reg - Number of alloca's promoted
498 1444 cfgsimplify - Number of blocks simplified
499</pre><p>
500
501Obviously, with so many optimizations, having a unified framework for this stuff
502is very nice. Making your pass fit well into the framework makes it more
503maintainable and useful.<p>
504
Chris Lattnerae7f7592002-09-06 18:31:18 +0000505
Chris Lattnerb99344f2002-09-06 16:40:10 +0000506<!-- *********************************************************************** -->
507</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
508<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
509<a name="common">Helpful Hints for Common Operations
Chris Lattner986e0c92002-09-22 19:38:40 +0000510</b></font></td></tr></table><ul> <!--
511*********************************************************************** -->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000512
Chris Lattnerae7f7592002-09-06 18:31:18 +0000513This section describes how to perform some very simple transformations of LLVM
514code. This is meant to give examples of common idioms used, showing the
515practical side of LLVM transformations.<p>
516
Joel Stanley9b96c442002-09-06 21:55:13 +0000517Because this is a "how-to" section, you should also read about the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000518that you will be working with. The <a href="#coreclasses">Core LLVM Class
Joel Stanley9b96c442002-09-06 21:55:13 +0000519Hierarchy Reference</a> contains details and descriptions of the main classes
Chris Lattnerae7f7592002-09-06 18:31:18 +0000520that you should know about.<p>
521
522<!-- NOTE: this section should be heavy on example code -->
523
524
525<!-- ======================================================================= -->
526</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
527<tr><td>&nbsp;</td><td width="100%">&nbsp;
528<font color="#EEEEFF" face="Georgia,Palatino"><b>
529<a name="inspection">Basic Inspection and Traversal Routines</a>
530</b></font></td></tr></table><ul>
531
Chris Lattnercaa5d132002-09-09 19:58:18 +0000532The LLVM compiler infrastructure have many different data structures that may be
533traversed. Following the example of the C++ standard template library, the
534techniques used to traverse these various data structures are all basically the
535same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
536method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
537function returns an iterator pointing to one past the last valid element of the
538sequence, and there is some <tt>XXXiterator</tt> data type that is common
539between the two operations.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000540
Chris Lattnercaa5d132002-09-09 19:58:18 +0000541Because the pattern for iteration is common across many different aspects of the
542program representation, the standard template library algorithms may be used on
543them, and it is easier to remember how to iterate. First we show a few common
544examples of the data structures that need to be traversed. Other data
545structures are traversed in very similar ways.<p>
546
Chris Lattnerae7f7592002-09-06 18:31:18 +0000547
548<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000549</ul><h4><a name="iterate_function"><hr size=0>Iterating over the <a
550href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
551href="#Function"><tt>Function</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000552
Joel Stanley9b96c442002-09-06 21:55:13 +0000553It's quite common to have a <tt>Function</tt> instance that you'd like
554to transform in some way; in particular, you'd like to manipulate its
555<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over
556all of the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>.
557The following is an example that prints the name of a
558<tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s it
559contains:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000560
Joel Stanley9b96c442002-09-06 21:55:13 +0000561<pre>
562 // func is a pointer to a Function instance
Chris Lattner7496ec52003-08-05 22:54:23 +0000563 for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {
Joel Stanley9b96c442002-09-06 21:55:13 +0000564
565 // print out the name of the basic block if it has one, and then the
566 // number of instructions that it contains
567
Joel Stanley72ef35e2002-09-06 23:05:12 +0000568 cerr &lt;&lt "Basic block (name=" &lt;&lt i-&gt;getName() &lt;&lt; ") has "
569 &lt;&lt i-&gt;size() &lt;&lt " instructions.\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000570 }
571</pre>
572
573Note that i can be used as if it were a pointer for the purposes of
574invoking member functions of the <tt>Instruction</tt> class. This is
575because the indirection operator is overloaded for the iterator
Chris Lattner7496ec52003-08-05 22:54:23 +0000576classes. In the above code, the expression <tt>i-&gt;size()</tt> is
Joel Stanley9b96c442002-09-06 21:55:13 +0000577exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000578
579<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000580</ul><h4><a name="iterate_basicblock"><hr size=0>Iterating over the <a
581href="#Instruction"><tt>Instruction</tt></a>s in a <a
582href="#BasicBlock"><tt>BasicBlock</tt></a> </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000583
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000584Just like when dealing with <tt>BasicBlock</tt>s in
585<tt>Function</tt>s, it's easy to iterate over the individual
586instructions that make up <tt>BasicBlock</tt>s. Here's a code snippet
587that prints out each instruction in a <tt>BasicBlock</tt>:
Chris Lattnerae7f7592002-09-06 18:31:18 +0000588
Joel Stanley9b96c442002-09-06 21:55:13 +0000589<pre>
590 // blk is a pointer to a BasicBlock instance
Chris Lattner7496ec52003-08-05 22:54:23 +0000591 for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
Chris Lattner2b763062002-09-06 22:51:10 +0000592 // the next statement works since operator&lt;&lt;(ostream&amp;,...)
593 // is overloaded for Instruction&amp;
Chris Lattnercaa5d132002-09-09 19:58:18 +0000594 cerr &lt;&lt; *i &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000595</pre>
596
597However, this isn't really the best way to print out the contents of a
598<tt>BasicBlock</tt>! Since the ostream operators are overloaded for
599virtually anything you'll care about, you could have just invoked the
Chris Lattner2b763062002-09-06 22:51:10 +0000600print routine on the basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt;
601"\n";</tt>.<p>
602
603Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>, so it
604will print out the contents of the pointer, instead of
605the pointer value you might expect. This is a deprecated interface that will
606be removed in the future, so it's best not to depend on it. To print out the
607pointer value for now, you must cast to <tt>void*</tt>.<p>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000608
Chris Lattnercaa5d132002-09-09 19:58:18 +0000609
Chris Lattnerae7f7592002-09-06 18:31:18 +0000610<!-- _______________________________________________________________________ -->
Chris Lattnercaa5d132002-09-09 19:58:18 +0000611</ul><h4><a name="iterate_institer"><hr size=0>Iterating over the <a
612href="#Instruction"><tt>Instruction</tt></a>s in a <a
613href="#Function"><tt>Function</tt></a></h4><ul>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000614
Joel Stanleye7be6502002-09-09 15:50:33 +0000615If you're finding that you commonly iterate over a <tt>Function</tt>'s
616<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s
617<tt>Instruction</tt>s, <tt>InstIterator</tt> should be used instead.
Chris Lattnercaa5d132002-09-09 19:58:18 +0000618You'll need to include <a href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>, and then
Joel Stanleye7be6502002-09-09 15:50:33 +0000619instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
620small example that shows how to dump all instructions in a function to
621stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt> yields an
622<tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&amp</tt>!):
Chris Lattner1a3105b2002-09-09 05:49:39 +0000623
Joel Stanleye7be6502002-09-09 15:50:33 +0000624<pre>
Chris Lattnercaa5d132002-09-09 19:58:18 +0000625#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
Joel Stanleye7be6502002-09-09 15:50:33 +0000626...
627// Suppose F is a ptr to a function
Chris Lattner7496ec52003-08-05 22:54:23 +0000628for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)
Joel Stanleye7be6502002-09-09 15:50:33 +0000629 cerr &lt;&lt **i &lt;&lt "\n";
630</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000631
Joel Stanleye7be6502002-09-09 15:50:33 +0000632Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
633worklist with its initial contents. For example, if you wanted to
634initialize a worklist to contain all instructions in a
635<tt>Function</tt> F, all you would need to do is something like:
Chris Lattner1a3105b2002-09-09 05:49:39 +0000636
Joel Stanleye7be6502002-09-09 15:50:33 +0000637<pre>
638std::set&lt;Instruction*&gt worklist;
639worklist.insert(inst_begin(F), inst_end(F));
640</pre>
Chris Lattner1a3105b2002-09-09 05:49:39 +0000641
Joel Stanleye7be6502002-09-09 15:50:33 +0000642The STL set <tt>worklist</tt> would now contain all instructions in
643the <tt>Function</tt> pointed to by F.
Chris Lattner1a3105b2002-09-09 05:49:39 +0000644
645<!-- _______________________________________________________________________ -->
Chris Lattnerae7f7592002-09-06 18:31:18 +0000646</ul><h4><a name="iterate_convert"><hr size=0>Turning an iterator into a class
Joel Stanleye7be6502002-09-09 15:50:33 +0000647pointer (and vice-versa) </h4><ul>
Chris Lattnerae7f7592002-09-06 18:31:18 +0000648
Joel Stanley9b96c442002-09-06 21:55:13 +0000649Sometimes, it'll be useful to grab a reference (or pointer) to a class
650instance when all you've got at hand is an iterator. Well, extracting
651a reference or a pointer from an iterator is very straightforward.
652Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and
653<tt>j</tt> is a <tt>BasicBlock::const_iterator</tt>:
654
655<pre>
Chris Lattner83b5ee02002-09-06 22:12:58 +0000656 Instruction&amp; inst = *i; // grab reference to instruction reference
657 Instruction* pinst = &amp;*i; // grab pointer to instruction reference
658 const Instruction&amp; inst = *j;
Joel Stanley9b96c442002-09-06 21:55:13 +0000659</pre>
660However, the iterators you'll be working with in the LLVM framework
661are special: they will automatically convert to a ptr-to-instance type
662whenever they need to. Instead of dereferencing the iterator and then
663taking the address of the result, you can simply assign the iterator
664to the proper pointer type and you get the dereference and address-of
665operation as a result of the assignment (behind the scenes, this is a
666result of overloading casting mechanisms). Thus the last line of the
667last example,
668
Chris Lattner83b5ee02002-09-06 22:12:58 +0000669<pre>Instruction* pinst = &amp;*i;</pre>
Joel Stanley9b96c442002-09-06 21:55:13 +0000670
671is semantically equivalent to
672
673<pre>Instruction* pinst = i;</pre>
674
Joel Stanleye7be6502002-09-09 15:50:33 +0000675It's also possible to turn a class pointer into the corresponding
676iterator. Usually, this conversion is quite inexpensive. The
677following code snippet illustrates use of the conversion constructors
678provided by LLVM iterators. By using these, you can explicitly grab
679the iterator of something without actually obtaining it via iteration
680over some structure:
Joel Stanley9b96c442002-09-06 21:55:13 +0000681
682<pre>
683void printNextInstruction(Instruction* inst) {
684 BasicBlock::iterator it(inst);
685 ++it; // after this line, it refers to the instruction after *inst.
Chris Lattner7496ec52003-08-05 22:54:23 +0000686 if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";
Joel Stanley9b96c442002-09-06 21:55:13 +0000687}
688</pre>
Joel Stanleyaaeb1c12002-09-06 23:42:40 +0000689Of course, this example is strictly pedagogical, because it'd be much
690better to explicitly grab the next instruction directly from inst.
Joel Stanley9b96c442002-09-06 21:55:13 +0000691
Chris Lattnerae7f7592002-09-06 18:31:18 +0000692
Chris Lattner1a3105b2002-09-09 05:49:39 +0000693<!--_______________________________________________________________________-->
694</ul><h4><a name="iterate_complex"><hr size=0>Finding call sites: a slightly
695more complex example </h4><ul>
Joel Stanley9b96c442002-09-06 21:55:13 +0000696
697Say that you're writing a FunctionPass and would like to count all the
Joel Stanleye7be6502002-09-09 15:50:33 +0000698locations in the entire module (that is, across every
Misha Brukman79223ed2003-07-28 19:21:20 +0000699<tt>Function</tt>) where a certain function (i.e., some
700<tt>Function</tt>*) is already in scope. As you'll learn later, you may
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000701want to use an <tt>InstVisitor</tt> to accomplish this in a much more
702straightforward manner, but this example will allow us to explore how
703you'd do it if you didn't have <tt>InstVisitor</tt> around. In
Joel Stanleye7be6502002-09-09 15:50:33 +0000704pseudocode, this is what we want to do:
Joel Stanley9b96c442002-09-06 21:55:13 +0000705
706<pre>
707initialize callCounter to zero
708for each Function f in the Module
709 for each BasicBlock b in f
710 for each Instruction i in b
Chris Lattner7496ec52003-08-05 22:54:23 +0000711 if (i is a CallInst and calls the given function)
Joel Stanley9b96c442002-09-06 21:55:13 +0000712 increment callCounter
713</pre>
714
715And the actual code is (remember, since we're writing a
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000716<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply
Joel Stanley9b96c442002-09-06 21:55:13 +0000717has to override the <tt>runOnFunction</tt> method...):
718
719<pre>
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000720Function* targetFunc = ...;
721
Joel Stanleye7be6502002-09-09 15:50:33 +0000722class OurFunctionPass : public FunctionPass {
723 public:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000724 OurFunctionPass(): callCounter(0) { }
Joel Stanley9b96c442002-09-06 21:55:13 +0000725
Chris Lattnercaa5d132002-09-09 19:58:18 +0000726 virtual runOnFunction(Function&amp; F) {
Chris Lattner7496ec52003-08-05 22:54:23 +0000727 for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
728 for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {
Chris Lattnera9030cb2002-09-16 22:08:07 +0000729 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
Joel Stanleye7be6502002-09-09 15:50:33 +0000730 // we know we've encountered a call instruction, so we
731 // need to determine if it's a call to the
732 // function pointed to by m_func or not.
733
Chris Lattner7496ec52003-08-05 22:54:23 +0000734 if (callInst-&gt;getCalledFunction() == targetFunc)
Joel Stanleye7be6502002-09-09 15:50:33 +0000735 ++callCounter;
736 }
737 }
Joel Stanley9b96c442002-09-06 21:55:13 +0000738 }
Joel Stanleye7be6502002-09-09 15:50:33 +0000739
740 private:
Joel Stanleyd8aabb22002-09-09 16:29:58 +0000741 unsigned callCounter;
Joel Stanleye7be6502002-09-09 15:50:33 +0000742};
Joel Stanley9b96c442002-09-06 21:55:13 +0000743</pre>
744
Chris Lattner1a3105b2002-09-09 05:49:39 +0000745<!--_______________________________________________________________________-->
746</ul><h4><a name="iterate_chains"><hr size=0>Iterating over def-use &amp;
747use-def chains</h4><ul>
748
Joel Stanley01040b22002-09-11 20:50:04 +0000749Frequently, we might have an instance of the <a
750href="/doxygen/classValue.html">Value Class</a> and we want to
751determine which <tt>User</tt>s use the <tt>Value</tt>. The list of
752all <tt>User</tt>s of a particular <tt>Value</tt> is called a
753<i>def-use</i> chain. For example, let's say we have a
754<tt>Function*</tt> named <tt>F</tt> to a particular function
755<tt>foo</tt>. Finding all of the instructions that <i>use</i>
756<tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain of
757<tt>F</tt>:
758
759<pre>
760Function* F = ...;
761
Chris Lattner7496ec52003-08-05 22:54:23 +0000762for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {
763 if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
Chris Lattner24b70922002-09-17 22:43:00 +0000764 cerr &lt;&lt; "F is used in instruction:\n";
765 cerr &lt;&lt; *Inst &lt;&lt; "\n";
Joel Stanley01040b22002-09-11 20:50:04 +0000766 }
767}
768</pre>
769
770Alternately, it's common to have an instance of the <a
771href="/doxygen/classUser.html">User Class</a> and need to know what
772<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used
773by a <tt>User</tt> is known as a <i>use-def</i> chain. Instances of
774class <tt>Instruction</tt> are common <tt>User</tt>s, so we might want
775to iterate over all of the values that a particular instruction uses
776(that is, the operands of the particular <tt>Instruction</tt>):
777
778<pre>
779Instruction* pi = ...;
780
Chris Lattner7496ec52003-08-05 22:54:23 +0000781for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Joel Stanley753eb712002-09-11 22:32:24 +0000782 Value* v = *i;
Joel Stanley01040b22002-09-11 20:50:04 +0000783 ...
784}
785</pre>
786
787
Chris Lattner1a3105b2002-09-09 05:49:39 +0000788<!--
789 def-use chains ("finding all users of"): Value::use_begin/use_end
790 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
791-->
792
Chris Lattnerae7f7592002-09-06 18:31:18 +0000793<!-- ======================================================================= -->
794</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
795<tr><td>&nbsp;</td><td width="100%">&nbsp;
796<font color="#EEEEFF" face="Georgia,Palatino"><b>
797<a name="simplechanges">Making simple changes</a>
798</b></font></td></tr></table><ul>
799
Joel Stanley753eb712002-09-11 22:32:24 +0000800There are some primitive transformation operations present in the LLVM
801infrastructure that are worth knowing about. When performing
802transformations, it's fairly common to manipulate the contents of
803basic blocks. This section describes some of the common methods for
804doing so and gives example code.
805
806<!--_______________________________________________________________________-->
807</ul><h4><a name="schanges_creating"><hr size=0>Creating and inserting
808 new <tt>Instruction</tt>s</h4><ul>
809
810<i>Instantiating Instructions</i>
811
812<p>Creation of <tt>Instruction</tt>s is straightforward: simply call the
813constructor for the kind of instruction to instantiate and provide the
814necessary parameters. For example, an <tt>AllocaInst</tt> only
815<i>requires</i> a (const-ptr-to) <tt>Type</tt>. Thus:
816
817<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
818
819will create an <tt>AllocaInst</tt> instance that represents the
820allocation of one integer in the current stack frame, at runtime.
821Each <tt>Instruction</tt> subclass is likely to have varying default
822parameters which change the semantics of the instruction, so refer to
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000823the <a href="/doxygen/classInstruction.html">doxygen documentation for
Joel Stanley753eb712002-09-11 22:32:24 +0000824the subclass of Instruction</a> that you're interested in
825instantiating.</p>
826
827<p><i>Naming values</i></p>
828
829<p>
830It is very useful to name the values of instructions when you're able
831to, as this facilitates the debugging of your transformations. If you
832end up looking at generated LLVM machine code, you definitely want to
833have logical names associated with the results of instructions! By
834supplying a value for the <tt>Name</tt> (default) parameter of the
835<tt>Instruction</tt> constructor, you associate a logical name with
836the result of the instruction's execution at runtime. For example,
837say that I'm writing a transformation that dynamically allocates space
838for an integer on the stack, and that integer is going to be used as
839some kind of index by some other code. To accomplish this, I place an
840<tt>AllocaInst</tt> at the first point in the first
841<tt>BasicBlock</tt> of some <tt>Function</tt>, and I'm intending to
842use it within the same <tt>Function</tt>. I might do:
843
844<pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
845
846where <tt>indexLoc</tt> is now the logical name of the instruction's
847execution value, which is a pointer to an integer on the runtime
848stack.
849</p>
850
851<p><i>Inserting instructions</i></p>
852
853<p>
854There are essentially two ways to insert an <tt>Instruction</tt> into
855an existing sequence of instructions that form a <tt>BasicBlock</tt>:
856<ul>
857<li>Insertion into an explicit instruction list
858
859<p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within
860that <tt>BasicBlock</tt>, and a newly-created instruction
861we wish to insert before <tt>*pi</tt>, we do the following:
862
863<pre>
Chris Lattner7496ec52003-08-05 22:54:23 +0000864 BasicBlock *pb = ...;
865 Instruction *pi = ...;
866 Instruction *newInst = new Instruction(...);
867 pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb
Joel Stanley753eb712002-09-11 22:32:24 +0000868</pre>
869</p>
870
871<li>Insertion into an implicit instruction list
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000872<p><tt>Instruction</tt> instances that are already in
Joel Stanley753eb712002-09-11 22:32:24 +0000873<tt>BasicBlock</tt>s are implicitly associated with an existing
874instruction list: the instruction list of the enclosing basic block.
875Thus, we could have accomplished the same thing as the above code
876without being given a <tt>BasicBlock</tt> by doing:
877<pre>
Chris Lattner7496ec52003-08-05 22:54:23 +0000878 Instruction *pi = ...;
879 Instruction *newInst = new Instruction(...);
880 pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
Joel Stanley753eb712002-09-11 22:32:24 +0000881</pre>
882In fact, this sequence of steps occurs so frequently that the
883<tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes
884provide constructors which take (as a default parameter) a pointer to
885an <tt>Instruction</tt> which the newly-created <tt>Instruction</tt>
886should precede. That is, <tt>Instruction</tt> constructors are
887capable of inserting the newly-created instance into the
888<tt>BasicBlock</tt> of a provided instruction, immediately before that
889instruction. Using an <tt>Instruction</tt> constructor with a
890<tt>insertBefore</tt> (default) parameter, the above code becomes:
891<pre>
892Instruction* pi = ...;
893Instruction* newInst = new Instruction(..., pi);
894</pre>
895which is much cleaner, especially if you're creating a lot of
896instructions and adding them to <tt>BasicBlock</tt>s.
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000897 </p>
Joel Stanley753eb712002-09-11 22:32:24 +0000898</p>
Chris Lattner9ebf5162002-09-12 19:08:16 +0000899</ul>
Joel Stanley753eb712002-09-11 22:32:24 +0000900
901<!--_______________________________________________________________________-->
902</ul><h4><a name="schanges_deleting"><hr size=0>Deleting
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000903<tt>Instruction</tt>s</h4><ul>
904
905Deleting an instruction from an existing sequence of instructions that form a <a
906href="#BasicBlock"><tt>BasicBlock</tt></a> is very straightforward. First, you
907must have a pointer to the instruction that you wish to delete. Second, you
908need to obtain the pointer to that instruction's basic block. You use the
909pointer to the basic block to get its list of instructions and then use the
910erase function to remove your instruction.<p>
911
912For example:<p>
913
914<pre>
915 <a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner7dbf6832002-09-18 05:14:25 +0000916 <a href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();
917 BB-&gt;getInstList().erase(I);
Chris Lattner4e1f96b2002-09-12 19:06:51 +0000918</pre><p>
919
Joel Stanley753eb712002-09-11 22:32:24 +0000920<!--_______________________________________________________________________-->
921</ul><h4><a name="schanges_replacing"><hr size=0>Replacing an
922 <tt>Instruction</tt> with another <tt>Value</tt></h4><ul>
923
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000924<p><i>Replacing individual instructions</i></p>
925<p>
926Including "<a
Misha Brukman79223ed2003-07-28 19:21:20 +0000927href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>" permits use of two very useful replace functions:
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000928<tt>ReplaceInstWithValue</tt> and <tt>ReplaceInstWithInst</tt>.
Chris Lattnerae7f7592002-09-06 18:31:18 +0000929
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000930<ul>
931
Chris Lattner7dbf6832002-09-18 05:14:25 +0000932<li><tt>ReplaceInstWithValue</tt>
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000933
934<p>This function replaces all uses (within a basic block) of a given
935instruction with a value, and then removes the original instruction.
936The following example illustrates the replacement of the result of a
937particular <tt>AllocaInst</tt> that allocates memory for a single
938integer with an null pointer to an integer.</p>
939
940<pre>
941AllocaInst* instToReplace = ...;
Joel Stanley4b287932002-09-29 17:31:54 +0000942BasicBlock::iterator ii(instToReplace);
943ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000944 Constant::getNullValue(PointerType::get(Type::IntTy)));
945</pre>
946
Chris Lattner7dbf6832002-09-18 05:14:25 +0000947<li><tt>ReplaceInstWithInst</tt>
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000948
949<p>This function replaces a particular instruction with another
950instruction. The following example illustrates the replacement of one
951<tt>AllocaInst</tt> with another.<p>
952
953<pre>
954AllocaInst* instToReplace = ...;
Joel Stanley4b287932002-09-29 17:31:54 +0000955BasicBlock::iterator ii(instToReplace);
956ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Misha Brukmane7a7ab42003-05-07 21:47:39 +0000957 new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));
Joel Stanley9dd1ad62002-09-18 03:17:23 +0000958</pre>
959
960</ul>
961<p><i>Replacing multiple uses of <tt>User</tt>s and
962 <tt>Value</tt>s</i></p>
963
964You can use <tt>Value::replaceAllUsesWith</tt> and
965<tt>User::replaceUsesOfWith</tt> to change more than one use at a
966time. See the doxygen documentation for the <a
967href="/doxygen/classValue.html">Value Class</a> and <a
968href="/doxygen/classUser.html">User Class</a>, respectively, for more
969information.
970
971<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
972include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
973ReplaceInstWithValue, ReplaceInstWithInst
Chris Lattnerae7f7592002-09-06 18:31:18 +0000974-->
Chris Lattnerb99344f2002-09-06 16:40:10 +0000975
Chris Lattner9355b472002-09-06 02:50:58 +0000976<!-- *********************************************************************** -->
977</ul><table width="100%" bgcolor="#330077" border=0 cellpadding=4 cellspacing=0>
978<tr><td align=center><font color="#EEEEFF" size=+2 face="Georgia,Palatino"><b>
Joel Stanley9b96c442002-09-06 21:55:13 +0000979<a name="coreclasses">The Core LLVM Class Hierarchy Reference
Chris Lattner9355b472002-09-06 02:50:58 +0000980</b></font></td></tr></table><ul>
981<!-- *********************************************************************** -->
982
983The Core LLVM classes are the primary means of representing the program being
984inspected or transformed. The core LLVM classes are defined in header files in
985the <tt>include/llvm/</tt> directory, and implemented in the <tt>lib/VMCore</tt>
986directory.<p>
987
988
989<!-- ======================================================================= -->
990</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
991<tr><td>&nbsp;</td><td width="100%">&nbsp;
992<font color="#EEEEFF" face="Georgia,Palatino"><b>
993<a name="Value">The <tt>Value</tt> class</a>
994</b></font></td></tr></table><ul>
995
996<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt></b><br>
997doxygen info: <a href="/doxygen/classValue.html">Value Class</a><p>
998
999
1000The <tt>Value</tt> class is the most important class in LLVM Source base. It
1001represents a typed value that may be used (among other things) as an operand to
1002an instruction. There are many different types of <tt>Value</tt>s, such as <a
1003href="#Constant"><tt>Constant</tt></a>s, <a
1004href="#Argument"><tt>Argument</tt></a>s, and even <a
1005href="#Instruction"><tt>Instruction</tt></a>s and <a
1006href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.<p>
1007
1008A particular <tt>Value</tt> may be used many times in the LLVM representation
1009for a program. For example, an incoming argument to a function (represented
1010with an instance of the <a href="#Argument">Argument</a> class) is "used" by
1011every instruction in the function that references the argument. To keep track
1012of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
1013href="#User"><tt>User</tt></a>s that is using it (the <a
1014href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
1015graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
Joel Stanley9b96c442002-09-06 21:55:13 +00001016def-use information in the program, and is accessible through the <tt>use_</tt>*
Chris Lattner9355b472002-09-06 02:50:58 +00001017methods, shown below.<p>
1018
1019Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed, and
1020this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
1021method. <a name="#nameWarning">In addition, all LLVM values can be named. The
1022"name" of the <tt>Value</tt> is symbolic string printed in the LLVM code:<p>
1023
1024<pre>
1025 %<b>foo</b> = add int 1, 2
1026</pre>
1027
1028The name of this instruction is "foo". <b>NOTE</b> that the name of any value
1029may be missing (an empty string), so names should <b>ONLY</b> be used for
1030debugging (making the source code easier to read, debugging printouts), they
1031should not be used to keep track of values or map between them. For this
1032purpose, use a <tt>std::map</tt> of pointers to the <tt>Value</tt> itself
1033instead.<p>
1034
1035One important aspect of LLVM is that there is no distinction between an SSA
1036variable and the operation that produces it. Because of this, any reference to
1037the value produced by an instruction (or the value available as an incoming
1038argument, for example) is represented as a direct pointer to the class that
1039represents this value. Although this may take some getting used to, it
1040simplifies the representation and makes it easier to manipulate.<p>
1041
1042
1043<!-- _______________________________________________________________________ -->
1044</ul><h4><a name="m_Value"><hr size=0>Important Public Members of
1045the <tt>Value</tt> class</h4><ul>
1046
1047<li><tt>Value::use_iterator</tt> - Typedef for iterator over the use-list<br>
1048 <tt>Value::use_const_iterator</tt>
1049 - Typedef for const_iterator over the use-list<br>
1050 <tt>unsigned use_size()</tt> - Returns the number of users of the value.<br>
1051 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
1052 <tt>use_iterator use_begin()</tt>
1053 - Get an iterator to the start of the use-list.<br>
1054 <tt>use_iterator use_end()</tt>
1055 - Get an iterator to the end of the use-list.<br>
1056 <tt><a href="#User">User</a> *use_back()</tt>
1057 - Returns the last element in the list.<p>
1058
1059These methods are the interface to access the def-use information in LLVM. As with all other iterators in LLVM, the naming conventions follow the conventions defined by the <a href="#stl">STL</a>.<p>
1060
1061<li><tt><a href="#Type">Type</a> *getType() const</tt><p>
1062This method returns the Type of the Value.
1063
1064<li><tt>bool hasName() const</tt><br>
1065 <tt>std::string getName() const</tt><br>
1066 <tt>void setName(const std::string &amp;Name)</tt><p>
1067
1068This family of methods is used to access and assign a name to a <tt>Value</tt>,
1069be aware of the <a href="#nameWarning">precaution above</a>.<p>
1070
1071
1072<li><tt>void replaceAllUsesWith(Value *V)</tt><p>
1073
1074This method traverses the use list of a <tt>Value</tt> changing all <a
Misha Brukmanc4f5bb02002-09-18 02:21:57 +00001075href="#User"><tt>User</tt>s</a> of the current value to refer to "<tt>V</tt>"
Chris Lattner9355b472002-09-06 02:50:58 +00001076instead. For example, if you detect that an instruction always produces a
1077constant value (for example through constant folding), you can replace all uses
1078of the instruction with the constant like this:<p>
1079
1080<pre>
1081 Inst-&gt;replaceAllUsesWith(ConstVal);
1082</pre><p>
1083
1084
1085
1086<!-- ======================================================================= -->
1087</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1088<tr><td>&nbsp;</td><td width="100%">&nbsp;
1089<font color="#EEEEFF" face="Georgia,Palatino"><b>
1090<a name="User">The <tt>User</tt> class</a>
1091</b></font></td></tr></table><ul>
1092
1093<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt></b><br>
1094doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
1095Superclass: <a href="#Value"><tt>Value</tt></a><p>
1096
1097
1098The <tt>User</tt> class is the common base class of all LLVM nodes that may
1099refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
1100that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
1101referring to. The <tt>User</tt> class itself is a subclass of
1102<tt>Value</tt>.<p>
1103
1104The operands of a <tt>User</tt> point directly to the LLVM <a
1105href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
1106Single Assignment (SSA) form, there can only be one definition referred to,
1107allowing this direct connection. This connection provides the use-def
1108information in LLVM.<p>
1109
1110<!-- _______________________________________________________________________ -->
1111</ul><h4><a name="m_User"><hr size=0>Important Public Members of
1112the <tt>User</tt> class</h4><ul>
1113
1114The <tt>User</tt> class exposes the operand list in two ways: through an index
1115access interface and through an iterator based interface.<p>
1116
1117<li><tt>Value *getOperand(unsigned i)</tt><br>
1118 <tt>unsigned getNumOperands()</tt><p>
1119
1120These two methods expose the operands of the <tt>User</tt> in a convenient form
1121for direct access.<p>
1122
1123<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand list<br>
1124 <tt>User::op_const_iterator</tt>
1125 <tt>use_iterator op_begin()</tt>
1126 - Get an iterator to the start of the operand list.<br>
1127 <tt>use_iterator op_end()</tt>
1128 - Get an iterator to the end of the operand list.<p>
1129
1130Together, these methods make up the iterator based interface to the operands of
1131a <tt>User</tt>.<p>
1132
1133
1134
1135<!-- ======================================================================= -->
1136</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1137<tr><td>&nbsp;</td><td width="100%">&nbsp;
1138<font color="#EEEEFF" face="Georgia,Palatino"><b>
1139<a name="Instruction">The <tt>Instruction</tt> class</a>
1140</b></font></td></tr></table><ul>
1141
1142<tt>#include "<a
1143href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt></b><br>
1144doxygen info: <a href="/doxygen/classInstruction.html">Instruction Class</a><br>
1145Superclasses: <a href="#User"><tt>User</tt></a>, <a
1146href="#Value"><tt>Value</tt></a><p>
1147
1148The <tt>Instruction</tt> class is the common base class for all LLVM
1149instructions. It provides only a few methods, but is a very commonly used
1150class. The primary data tracked by the <tt>Instruction</tt> class itself is the
1151opcode (instruction type) and the parent <a
1152href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
1153into. To represent a specific type of instruction, one of many subclasses of
1154<tt>Instruction</tt> are used.<p>
1155
1156Because the <tt>Instruction</tt> class subclasses the <a
1157href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
1158way as for other <a href="#User"><tt>User</tt></a>s (with the
1159<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
1160<tt>op_begin()</tt>/<tt>op_end()</tt> methods).<p>
1161
Chris Lattner17635252002-09-12 17:18:46 +00001162An important file for the <tt>Instruction</tt> class is the
1163<tt>llvm/Instruction.def</tt> file. This file contains some meta-data about the
1164various different types of instructions in LLVM. It describes the enum values
1165that are used as opcodes (for example <tt>Instruction::Add</tt> and
1166<tt>Instruction::SetLE</tt>), as well as the concrete sub-classes of
1167<tt>Instruction</tt> that implement the instruction (for example <tt><a
1168href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
1169href="#SetCondInst">SetCondInst</a></tt>). Unfortunately, the use of macros in
1170this file confused doxygen, so these enum values don't show up correctly in the
1171<a href="/doxygen/classInstruction.html">doxygen output</a>.<p>
1172
Chris Lattner9355b472002-09-06 02:50:58 +00001173
1174<!-- _______________________________________________________________________ -->
1175</ul><h4><a name="m_Instruction"><hr size=0>Important Public Members of
1176the <tt>Instruction</tt> class</h4><ul>
1177
1178<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt><p>
1179
1180Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that this
1181<tt>Instruction</tt> is embedded into.<p>
1182
Chris Lattnerc3dc2122003-02-26 16:38:15 +00001183<li><tt>bool mayWriteToMemory()</tt><p>
Chris Lattner9355b472002-09-06 02:50:58 +00001184
Chris Lattnerc3dc2122003-02-26 16:38:15 +00001185Returns true if the instruction writes to memory, i.e. it is a <tt>call</tt>,
Chris Lattner9355b472002-09-06 02:50:58 +00001186<tt>free</tt>, <tt>invoke</tt>, or <tt>store</tt>.<p>
1187
1188<li><tt>unsigned getOpcode()</tt><p>
1189
1190Returns the opcode for the <tt>Instruction</tt>.<p>
1191
Chris Lattner17635252002-09-12 17:18:46 +00001192<li><tt><a href="#Instruction">Instruction</a> *clone() const</tt><p>
1193
1194Returns another instance of the specified instruction, identical in all ways to
1195the original except that the instruction has no parent (ie it's not embedded
1196into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>), and it has no name.<p>
1197
1198
1199
Chris Lattner9355b472002-09-06 02:50:58 +00001200<!--
1201
1202\subsection{Subclasses of Instruction :}
1203\begin{itemize}
1204<li>BinaryOperator : This subclass of Instruction defines a general interface to the all the instructions involvong binary operators in LLVM.
1205 \begin{itemize}
1206 <li><tt>bool swapOperands()</tt>: Exchange the two operands to this instruction. If the instruction cannot be reversed (i.e. if it's a Div), it returns true.
1207 \end{itemize}
1208<li>TerminatorInst : This subclass of Instructions defines an interface for all instructions that can terminate a BasicBlock.
1209 \begin{itemize}
1210 <li> <tt>unsigned getNumSuccessors()</tt>: Returns the number of successors for this terminator instruction.
1211 <li><tt>BasicBlock *getSuccessor(unsigned i)</tt>: As the name suggests returns the ith successor BasicBlock.
1212 <li><tt>void setSuccessor(unsigned i, BasicBlock *B)</tt>: sets BasicBlock B as the ith succesor to this terminator instruction.
1213 \end{itemize}
1214
1215<li>PHINode : This represents the PHI instructions in the SSA form.
1216 \begin{itemize}
1217 <li><tt> unsigned getNumIncomingValues()</tt>: Returns the number of incoming edges to this PHI node.
1218 <li><tt> Value *getIncomingValue(unsigned i)</tt>: Returns the ith incoming Value.
1219 <li><tt>void setIncomingValue(unsigned i, Value *V)</tt>: Sets the ith incoming Value as V
1220 <li><tt>BasicBlock *getIncomingBlock(unsigned i)</tt>: Returns the Basic Block corresponding to the ith incoming Value.
1221 <li><tt> void addIncoming(Value *D, BasicBlock *BB)</tt>:
1222 Add an incoming value to the end of the PHI list
1223 <li><tt> int getBasicBlockIndex(const BasicBlock *BB) const</tt>:
1224 Returns the first index of the specified basic block in the value list for this PHI. Returns -1 if no instance.
1225 \end{itemize}
1226<li>CastInst : In LLVM all casts have to be done through explicit cast instructions. CastInst defines the interface to the cast instructions.
1227<li>CallInst : This defines an interface to the call instruction in LLVM. ARguments to the function are nothing but operands of the instruction.
1228 \begin{itemize}
1229 <li>: <tt>Function *getCalledFunction()</tt>: Returns a handle to the function that is being called by this Function.
1230 \end{itemize}
1231<li>LoadInst, StoreInst, GetElemPtrInst : These subclasses represent load, store and getelementptr instructions in LLVM.
1232 \begin{itemize}
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001233 <li><tt>Value * getPointerOperand()</tt>: Returns the Pointer Operand which is typically the 0th operand.
Chris Lattner9355b472002-09-06 02:50:58 +00001234 \end{itemize}
1235<li>BranchInst : This is a subclass of TerminatorInst and defines the interface for conditional and unconditional branches in LLVM.
1236 \begin{itemize}
1237 <li><tt>bool isConditional()</tt>: Returns true if the branch is a conditional branch else returns false
1238 <li> <tt>Value *getCondition()</tt>: Returns the condition if it is a conditional branch else returns null.
1239 <li> <tt>void setUnconditionalDest(BasicBlock *Dest)</tt>: Changes the current branch to an unconditional one targetting the specified block.
1240 \end{itemize}
1241
1242\end{itemize}
1243
1244-->
1245
1246
1247<!-- ======================================================================= -->
1248</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1249<tr><td>&nbsp;</td><td width="100%">&nbsp;
1250<font color="#EEEEFF" face="Georgia,Palatino"><b>
1251<a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
1252</b></font></td></tr></table><ul>
1253
1254<tt>#include "<a
1255href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt></b><br>
1256doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
1257Superclass: <a href="#Value"><tt>Value</tt></a><p>
1258
1259
1260This class represents a single entry multiple exit section of the code, commonly
1261known as a basic block by the compiler community. The <tt>BasicBlock</tt> class
1262maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s, which form
1263the body of the block. Matching the language definition, the last element of
1264this list of instructions is always a terminator instruction (a subclass of the
1265<a href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).<p>
1266
1267In addition to tracking the list of instructions that make up the block, the
1268<tt>BasicBlock</tt> class also keeps track of the <a
1269href="#Function"><tt>Function</tt></a> that it is embedded into.<p>
1270
1271Note that <tt>BasicBlock</tt>s themselves are <a
1272href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
1273like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
1274<tt>label</tt>.<p>
1275
1276
1277<!-- _______________________________________________________________________ -->
1278</ul><h4><a name="m_BasicBlock"><hr size=0>Important Public Members of
1279the <tt>BasicBlock</tt> class</h4><ul>
1280
1281<li><tt>BasicBlock(const std::string &amp;Name = "", <a
1282href="#Function">Function</a> *Parent = 0)</tt><p>
1283
1284The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
1285insertion into a function. The constructor simply takes a name for the new
1286block, and optionally a <a href="#Function"><tt>Function</tt></a> to insert it
1287into. If the <tt>Parent</tt> parameter is specified, the new
1288<tt>BasicBlock</tt> is automatically inserted at the end of the specified <a
1289href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
1290manually inserted into the <a href="#Function"><tt>Function</tt></a>.<p>
1291
1292<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
1293 <tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
1294 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1295 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1296
1297These methods and typedefs are forwarding functions that have the same semantics
1298as the standard library methods of the same names. These methods expose the
1299underlying instruction list of a basic block in a way that is easy to
1300manipulate. To get the full complement of container operations (including
1301operations to update the list), you must use the <tt>getInstList()</tt>
1302method.<p>
1303
1304<li><tt>BasicBlock::InstListType &amp;getInstList()</tt><p>
1305
1306This method is used to get access to the underlying container that actually
1307holds the Instructions. This method must be used when there isn't a forwarding
1308function in the <tt>BasicBlock</tt> class for the operation that you would like
1309to perform. Because there are no forwarding functions for "updating"
1310operations, you need to use this if you want to update the contents of a
1311<tt>BasicBlock</tt>.<p>
1312
1313<li><tt><A href="#Function">Function</a> *getParent()</tt><p>
1314
1315Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
1316embedded into, or a null pointer if it is homeless.<p>
1317
1318<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt><p>
1319
1320Returns a pointer to the terminator instruction that appears at the end of the
1321<tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
1322instruction in the block is not a terminator, then a null pointer is
1323returned.<p>
1324
1325
1326<!-- ======================================================================= -->
1327</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1328<tr><td>&nbsp;</td><td width="100%">&nbsp;
1329<font color="#EEEEFF" face="Georgia,Palatino"><b>
1330<a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
1331</b></font></td></tr></table><ul>
1332
1333<tt>#include "<a
1334href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt></b><br>
1335doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue Class</a><br>
1336Superclasses: <a href="#User"><tt>User</tt></a>, <a
1337href="#Value"><tt>Value</tt></a><p>
1338
1339Global values (<A href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
1340href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
1341visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
1342Because they are visible at global scope, they are also subject to linking with
1343other globals defined in different translation units. To control the linking
1344process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
1345<tt>GlobalValue</tt>s know whether they have internal or external linkage.<p>
1346
1347If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
1348<tt>static</tt> in C), it is not visible to code outside the current translation
1349unit, and does not participate in linking. If it has external linkage, it is
1350visible to external code, and does participate in linking. In addition to
1351linkage information, <tt>GlobalValue</tt>s keep track of which <a
1352href="#Module"><tt>Module</tt></a> they are currently part of.<p>
1353
1354Because <tt>GlobalValue</tt>s are memory objects, they are always referred to by
1355their address. As such, the <a href="#Type"><tt>Type</tt></a> of a global is
1356always a pointer to its contents. This is explained in the LLVM Language
1357Reference Manual.<p>
1358
1359
1360<!-- _______________________________________________________________________ -->
1361</ul><h4><a name="m_GlobalValue"><hr size=0>Important Public Members of
1362the <tt>GlobalValue</tt> class</h4><ul>
1363
1364<li><tt>bool hasInternalLinkage() const</tt><br>
1365 <tt>bool hasExternalLinkage() const</tt><br>
1366 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt><p>
1367
1368These methods manipulate the linkage characteristics of the
1369<tt>GlobalValue</tt>.<p>
1370
1371<li><tt><a href="#Module">Module</a> *getParent()</tt><p>
1372
1373This returns the <a href="#Module"><tt>Module</tt></a> that the GlobalValue is
1374currently embedded into.<p>
1375
1376
1377
1378<!-- ======================================================================= -->
1379</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1380<tr><td>&nbsp;</td><td width="100%">&nbsp;
1381<font color="#EEEEFF" face="Georgia,Palatino"><b>
1382<a name="Function">The <tt>Function</tt> class</a>
1383</b></font></td></tr></table><ul>
1384
1385<tt>#include "<a
1386href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt></b><br>
1387doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
1388Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1389href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1390
1391The <tt>Function</tt> class represents a single procedure in LLVM. It is
1392actually one of the more complex classes in the LLVM heirarchy because it must
1393keep track of a large amount of data. The <tt>Function</tt> class keeps track
1394of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal <a
1395href="#Argument"><tt>Argument</tt></a>s, and a <a
1396href="#SymbolTable"><tt>SymbolTable</tt></a>.<p>
1397
1398The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most commonly
1399used part of <tt>Function</tt> objects. The list imposes an implicit ordering
1400of the blocks in the function, which indicate how the code will be layed out by
1401the backend. Additionally, the first <a
1402href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
1403<tt>Function</tt>. It is not legal in LLVM explicitly branch to this initial
1404block. There are no implicit exit nodes, and in fact there may be multiple exit
1405nodes from a single <tt>Function</tt>. If the <a
1406href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
1407the <tt>Function</tt> is actually a function declaration: the actual body of the
1408function hasn't been linked in yet.<p>
1409
1410In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
1411<tt>Function</tt> class also keeps track of the list of formal <a
1412href="#Argument"><tt>Argument</tt></a>s that the function receives. This
1413container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
1414nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
1415the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.<p>
1416
1417The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used LLVM
1418feature that is only used when you have to look up a value by name. Aside from
1419that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used internally to
1420make sure that there are not conflicts between the names of <a
1421href="#Instruction"><tt>Instruction</tt></a>s, <a
1422href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
1423href="#Argument"><tt>Argument</tt></a>s in the function body.<p>
1424
1425
1426<!-- _______________________________________________________________________ -->
1427</ul><h4><a name="m_Function"><hr size=0>Important Public Members of
1428the <tt>Function</tt> class</h4><ul>
1429
1430<li><tt>Function(const <a href="#FunctionType">FunctionType</a> *Ty, bool isInternal, const std::string &amp;N = "")</tt><p>
1431
1432Constructor used when you need to create new <tt>Function</tt>s to add the the
1433program. The constructor must specify the type of the function to create and
1434whether or not it should start out with internal or external linkage.<p>
1435
1436<li><tt>bool isExternal()</tt><p>
1437
1438Return whether or not the <tt>Function</tt> has a body defined. If the function
1439is "external", it does not have a body, and thus must be resolved by linking
1440with a function defined in a different translation unit.<p>
1441
1442
1443<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
1444 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
1445 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1446 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1447
1448These are forwarding methods that make it easy to access the contents of a
1449<tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
1450list.<p>
1451
1452<li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt><p>
1453
1454Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This is
Misha Brukman5560c9d2003-08-18 14:43:39 +00001455necessary to use when you need to update the list or perform a complex action
Chris Lattner9355b472002-09-06 02:50:58 +00001456that doesn't have a forwarding method.<p>
1457
1458
1459<li><tt>Function::aiterator</tt> - Typedef for the argument list iterator<br>
1460 <tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
1461 <tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,
1462 <tt>asize()</tt>, <tt>aempty()</tt>, <tt>arbegin()</tt>, <tt>arend()</tt><p>
1463
1464These are forwarding methods that make it easy to access the contents of a
1465<tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a> list.<p>
1466
1467<li><tt>Function::ArgumentListType &amp;getArgumentList()</tt><p>
1468
1469Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
Misha Brukman5560c9d2003-08-18 14:43:39 +00001470necessary to use when you need to update the list or perform a complex action
Chris Lattner9355b472002-09-06 02:50:58 +00001471that doesn't have a forwarding method.<p>
1472
1473
1474
1475<li><tt><a href="#BasicBlock">BasicBlock</a> &getEntryNode()</tt><p>
1476
1477Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
1478function. Because the entry block for the function is always the first block,
1479this returns the first block of the <tt>Function</tt>.<p>
1480
1481<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
1482 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt><p>
1483
1484This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
1485and returns the return type of the function, or the <a
1486href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.<p>
1487
Chris Lattner9355b472002-09-06 02:50:58 +00001488<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1489
1490Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for this
Chris Lattner6e6026b2002-11-20 18:36:02 +00001491<tt>Function</tt>.<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001492
1493
1494
1495<!-- ======================================================================= -->
1496</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1497<tr><td>&nbsp;</td><td width="100%">&nbsp;
1498<font color="#EEEEFF" face="Georgia,Palatino"><b>
1499<a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
1500</b></font></td></tr></table><ul>
1501
1502<tt>#include "<a
1503href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt></b><br>
1504doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable Class</a><br>
1505Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
1506href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a><p>
1507
Chris Lattner0377de42002-09-06 14:50:55 +00001508Global variables are represented with the (suprise suprise)
1509<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are
1510also subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such
1511are always referenced by their address (global values must live in memory, so
1512their "name" refers to their address). Global variables may have an initial
1513value (which must be a <a href="#Constant"><tt>Constant</tt></a>), and if they
1514have an initializer, they may be marked as "constant" themselves (indicating
1515that their contents never change at runtime).<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001516
1517
1518<!-- _______________________________________________________________________ -->
Chris Lattner0377de42002-09-06 14:50:55 +00001519</ul><h4><a name="m_GlobalVariable"><hr size=0>Important Public Members of the
1520<tt>GlobalVariable</tt> class</h4><ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001521
1522<li><tt>GlobalVariable(const <a href="#Type">Type</a> *Ty, bool isConstant, bool
1523isInternal, <a href="#Constant">Constant</a> *Initializer = 0, const std::string
1524&amp;Name = "")</tt><p>
1525
Chris Lattner0377de42002-09-06 14:50:55 +00001526Create a new global variable of the specified type. If <tt>isConstant</tt> is
1527true then the global variable will be marked as unchanging for the program, and
1528if <tt>isInternal</tt> is true the resultant global variable will have internal
1529linkage. Optionally an initializer and name may be specified for the global variable as well.<p>
1530
1531
Chris Lattner9355b472002-09-06 02:50:58 +00001532<li><tt>bool isConstant() const</tt><p>
1533
1534Returns true if this is a global variable is known not to be modified at
1535runtime.<p>
1536
Chris Lattner0377de42002-09-06 14:50:55 +00001537
Chris Lattner9355b472002-09-06 02:50:58 +00001538<li><tt>bool hasInitializer()</tt><p>
1539
1540Returns true if this <tt>GlobalVariable</tt> has an intializer.<p>
1541
Chris Lattner0377de42002-09-06 14:50:55 +00001542
Chris Lattner9355b472002-09-06 02:50:58 +00001543<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt><p>
1544
Chris Lattner0377de42002-09-06 14:50:55 +00001545Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal to call
1546this method if there is no initializer.<p>
1547
1548
1549<!-- ======================================================================= -->
1550</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1551<tr><td>&nbsp;</td><td width="100%">&nbsp;
1552<font color="#EEEEFF" face="Georgia,Palatino"><b>
1553<a name="Module">The <tt>Module</tt> class</a>
1554</b></font></td></tr></table><ul>
1555
1556<tt>#include "<a
1557href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt></b><br>
1558doxygen info: <a href="/doxygen/classModule.html">Module Class</a><p>
1559
1560The <tt>Module</tt> class represents the top level structure present in LLVM
1561programs. An LLVM module is effectively either a translation unit of the
1562original program or a combination of several translation units merged by the
1563linker. The <tt>Module</tt> class keeps track of a list of <a
1564href="#Function"><tt>Function</tt></a>s, a list of <a
1565href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
1566href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
1567helpful member functions that try to make common operations easy.<p>
1568
1569
1570<!-- _______________________________________________________________________ -->
1571</ul><h4><a name="m_Module"><hr size=0>Important Public Members of the
1572<tt>Module</tt> class</h4><ul>
1573
1574<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
1575 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
1576 <tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
1577 <tt>size()</tt>, <tt>empty()</tt>, <tt>rbegin()</tt>, <tt>rend()</tt><p>
1578
1579These are forwarding methods that make it easy to access the contents of a
1580<tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
1581list.<p>
1582
1583<li><tt>Module::FunctionListType &amp;getFunctionList()</tt><p>
1584
1585Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
Misha Brukman5560c9d2003-08-18 14:43:39 +00001586necessary to use when you need to update the list or perform a complex action
Chris Lattner0377de42002-09-06 14:50:55 +00001587that doesn't have a forwarding method.<p>
1588
1589<!-- Global Variable -->
1590<hr size=0>
1591
1592<li><tt>Module::giterator</tt> - Typedef for global variable list iterator<br>
1593 <tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
1594 <tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,
1595 <tt>gsize()</tt>, <tt>gempty()</tt>, <tt>grbegin()</tt>, <tt>grend()</tt><p>
1596
1597These are forwarding methods that make it easy to access the contents of a
1598<tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
1599list.<p>
1600
1601<li><tt>Module::GlobalListType &amp;getGlobalList()</tt><p>
1602
1603Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
Misha Brukman5560c9d2003-08-18 14:43:39 +00001604This is necessary to use when you need to update the list or perform a complex
Chris Lattner0377de42002-09-06 14:50:55 +00001605action that doesn't have a forwarding method.<p>
1606
1607
1608<!-- Symbol table stuff -->
1609<hr size=0>
1610
Chris Lattner0377de42002-09-06 14:50:55 +00001611<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt><p>
1612
Chris Lattner6e6026b2002-11-20 18:36:02 +00001613Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a> for
1614this <tt>Module</tt>.<p>
Chris Lattner0377de42002-09-06 14:50:55 +00001615
1616
1617<!-- Convenience methods -->
1618<hr size=0>
1619
1620<li><tt><a href="#Function">Function</a> *getFunction(const std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt><p>
1621
1622Look up the specified function in the <tt>Module</tt> <a
1623href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
1624<tt>null</tt>.<p>
1625
1626
1627<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const std::string
1628 &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt><p>
1629
1630Look up the specified function in the <tt>Module</tt> <a
1631href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
1632external declaration for the function and return it.<p>
1633
1634
1635<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt><p>
1636
1637If there is at least one entry in the <a
1638href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
1639href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
1640string.<p>
1641
1642
1643<li><tt>bool addTypeName(const std::string &Name, const <a href="#Type">Type</a>
1644*Ty)</tt><p>
1645
1646Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a> mapping
1647<tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this name, true
1648is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is not
1649modified.<p>
1650
Chris Lattner9355b472002-09-06 02:50:58 +00001651
1652<!-- ======================================================================= -->
1653</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1654<tr><td>&nbsp;</td><td width="100%">&nbsp;
1655<font color="#EEEEFF" face="Georgia,Palatino"><b>
1656<a name="Constant">The <tt>Constant</tt> class and subclasses</a>
1657</b></font></td></tr></table><ul>
1658
1659Constant represents a base class for different types of constants. It is
1660subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
1661ConstantArray etc for representing the various types of Constants.<p>
1662
1663
1664<!-- _______________________________________________________________________ -->
1665</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1666
1667<li><tt>bool isConstantExpr()</tt>: Returns true if it is a ConstantExpr
1668
1669
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001670<hr>
1671Important Subclasses of Constant<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001672
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001673<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001674<li>ConstantSInt : This subclass of Constant represents a signed integer constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001675<ul>
1676 <li><tt>int64_t getValue() const</tt>: Returns the underlying value of this constant.
1677</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001678<li>ConstantUInt : This class represents an unsigned integer.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001679<ul>
1680 <li><tt>uint64_t getValue() const</tt>: Returns the underlying value of this constant.
1681</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001682<li>ConstantFP : This class represents a floating point constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001683<ul>
1684 <li><tt>double getValue() const</tt>: Returns the underlying value of this constant.
1685</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001686<li>ConstantBool : This represents a boolean constant.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001687<ul>
1688 <li><tt>bool getValue() const</tt>: Returns the underlying value of this constant.
1689</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001690<li>ConstantArray : This represents a constant array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001691<ul>
Chris Lattner7496ec52003-08-05 22:54:23 +00001692 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001693</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001694<li>ConstantStruct : This represents a constant struct.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001695<ul>
Chris Lattner7496ec52003-08-05 22:54:23 +00001696 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns a Vecotr of component constants that makeup this array.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001697</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001698<li>ConstantPointerRef : This represents a constant pointer value that is initialized to point to a global value, which lies at a constant fixed address.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001699<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001700<li><tt>GlobalValue *getValue()</tt>: Returns the global value to which this pointer is pointing to.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001701</ul>
1702</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001703
1704
1705<!-- ======================================================================= -->
1706</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1707<tr><td>&nbsp;</td><td width="100%">&nbsp;
1708<font color="#EEEEFF" face="Georgia,Palatino"><b>
1709<a name="Type">The <tt>Type</tt> class and Derived Types</a>
1710</b></font></td></tr></table><ul>
1711
1712Type as noted earlier is also a subclass of a Value class. Any primitive
1713type (like int, short etc) in LLVM is an instance of Type Class. All
1714other types are instances of subclasses of type like FunctionType,
1715ArrayType etc. DerivedType is the interface for all such dervied types
1716including FunctionType, ArrayType, PointerType, StructType. Types can have
1717names. They can be recursive (StructType). There exists exactly one instance
1718of any type structure at a time. This allows using pointer equality of Type *s for comparing types.
1719
1720<!-- _______________________________________________________________________ -->
1721</ul><h4><a name="m_Value"><hr size=0>Important Public Methods</h4><ul>
1722
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001723<li><tt>PrimitiveID getPrimitiveID() const</tt>: Returns the base type of the type.
1724<li><tt> bool isSigned() const</tt>: Returns whether an integral numeric type is signed. This is true for SByteTy, ShortTy, IntTy, LongTy. Note that this is not true for Float and Double.
1725<li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type is unsigned. This is not quite the complement of isSigned... nonnumeric types return false as they do with isSigned. This returns true for UByteTy, UShortTy, UIntTy, and ULongTy.
1726<li><tt> bool isInteger() const</tt>: Equilivent to isSigned() || isUnsigned(), but with only a single virtual function invocation.
1727<li><tt>bool isIntegral() const</tt>: Returns true if this is an integral type, which is either Bool type or one of the Integer types.
Chris Lattner9355b472002-09-06 02:50:58 +00001728
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001729<li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two floating point types.
1730<li><tt>bool isRecursive() const</tt>: Returns rue if the type graph contains a cycle.
Chris Lattner9355b472002-09-06 02:50:58 +00001731<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return true if this type can be converted to 'Ty' without any reinterpretation of bits. For example, uint to int.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001732<li><tt>bool isPrimitiveType() const</tt>: Returns true if it is a primitive type.
1733<li><tt>bool isDerivedType() const</tt>: Returns true if it is a derived type.
Chris Lattner9355b472002-09-06 02:50:58 +00001734<li><tt>const Type * getContainedType (unsigned i) const</tt>:
1735This method is used to implement the type iterator. For derived types, this returns the types 'contained' in the derived type, returning 0 when 'i' becomes invalid. This allows the user to iterate over the types in a struct, for example, really easily.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001736<li><tt>unsigned getNumContainedTypes() const</tt>: Return the number of types in the derived type.
Chris Lattner9355b472002-09-06 02:50:58 +00001737
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001738<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001739
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001740<hr>
1741Derived Types<p>
Chris Lattner9355b472002-09-06 02:50:58 +00001742
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001743<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001744<li>SequentialType : This is subclassed by ArrayType and PointerType
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001745<ul>
1746 <li><tt>const Type * getElementType() const</tt>: Returns the type of each of the elements in the sequential type.
1747</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001748<li>ArrayType : This is a subclass of SequentialType and defines interface for array types.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001749<ul>
1750 <li><tt>unsigned getNumElements() const</tt>: Returns the number of elements in the array.
1751</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001752<li>PointerType : Subclass of SequentialType for pointer types.
1753<li>StructType : subclass of DerivedTypes for struct types
1754<li>FunctionType : subclass of DerivedTypes for function types.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001755
1756<ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001757
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001758 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg function
1759 <li><tt> const Type * getReturnType() const</tt>: Returns the return type of the function.
1760 <li><tt> const ParamTypes &amp;getParamTypes() const</tt>: Returns a vector of parameter types.
Chris Lattner9355b472002-09-06 02:50:58 +00001761 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns the type of the ith parameter.
Chris Lattnerc75ff9a2002-10-01 23:17:09 +00001762 <li><tt> const unsigned getNumParams() const</tt>: Returns the number of formal parameters.
1763</ul>
1764</ul>
Chris Lattner9355b472002-09-06 02:50:58 +00001765
1766
1767
1768
1769<!-- ======================================================================= -->
1770</ul><table width="100%" bgcolor="#441188" border=0 cellpadding=4 cellspacing=0>
1771<tr><td>&nbsp;</td><td width="100%">&nbsp;
1772<font color="#EEEEFF" face="Georgia,Palatino"><b>
1773<a name="Argument">The <tt>Argument</tt> class</a>
1774</b></font></td></tr></table><ul>
1775
1776This subclass of Value defines the interface for incoming formal arguments to a
1777function. A Function maitanis a list of its formal arguments. An argument has a
1778pointer to the parent Function.
1779
1780
1781
1782
1783<!-- *********************************************************************** -->
1784</ul>
1785<!-- *********************************************************************** -->
1786
1787<hr><font size-1>
1788<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
1789<a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
1790<!-- Created: Tue Aug 6 15:00:33 CDT 2002 -->
1791<!-- hhmts start -->
Chris Lattner7496ec52003-08-05 22:54:23 +00001792Last modified: Tue Aug 5 17:53:43 CDT 2003
Chris Lattner9355b472002-09-06 02:50:58 +00001793<!-- hhmts end -->
1794</font></body></html>