blob: 64c60ba2e6398ba39001537e4d0b281bcd33814e [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Nate Begeman and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a strength reduction on array references inside loops that
11// have as one or more of their components the loop induction variable. This is
12// accomplished by creating a new Value to hold the initial value of the array
13// access for the first iteration, and then creating a new GEP instruction in
14// the loop to increment the value by the appropriate amount.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "loop-reduce"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Constants.h"
21#include "llvm/Instructions.h"
22#include "llvm/IntrinsicInst.h"
23#include "llvm/Type.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Analysis/Dominators.h"
26#include "llvm/Analysis/LoopInfo.h"
27#include "llvm/Analysis/LoopPass.h"
28#include "llvm/Analysis/ScalarEvolutionExpander.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Transforms/Utils/BasicBlockUtils.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Target/TargetLowering.h"
38#include <algorithm>
39#include <set>
40using namespace llvm;
41
42STATISTIC(NumReduced , "Number of GEPs strength reduced");
43STATISTIC(NumInserted, "Number of PHIs inserted");
44STATISTIC(NumVariable, "Number of PHIs with variable strides");
45
46namespace {
47
48 struct BasedUser;
49
50 /// IVStrideUse - Keep track of one use of a strided induction variable, where
51 /// the stride is stored externally. The Offset member keeps track of the
52 /// offset from the IV, User is the actual user of the operand, and 'Operand'
53 /// is the operand # of the User that is the use.
54 struct VISIBILITY_HIDDEN IVStrideUse {
55 SCEVHandle Offset;
56 Instruction *User;
57 Value *OperandValToReplace;
58
59 // isUseOfPostIncrementedValue - True if this should use the
60 // post-incremented version of this IV, not the preincremented version.
61 // This can only be set in special cases, such as the terminating setcc
62 // instruction for a loop or uses dominated by the loop.
63 bool isUseOfPostIncrementedValue;
64
65 IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
66 : Offset(Offs), User(U), OperandValToReplace(O),
67 isUseOfPostIncrementedValue(false) {}
68 };
69
70 /// IVUsersOfOneStride - This structure keeps track of all instructions that
71 /// have an operand that is based on the trip count multiplied by some stride.
72 /// The stride for all of these users is common and kept external to this
73 /// structure.
74 struct VISIBILITY_HIDDEN IVUsersOfOneStride {
75 /// Users - Keep track of all of the users of this stride as well as the
76 /// initial value and the operand that uses the IV.
77 std::vector<IVStrideUse> Users;
78
79 void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
80 Users.push_back(IVStrideUse(Offset, User, Operand));
81 }
82 };
83
84 /// IVInfo - This structure keeps track of one IV expression inserted during
85 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
86 /// well as the PHI node and increment value created for rewrite.
87 struct VISIBILITY_HIDDEN IVExpr {
88 SCEVHandle Stride;
89 SCEVHandle Base;
90 PHINode *PHI;
91 Value *IncV;
92
93 IVExpr()
94 : Stride(SCEVUnknown::getIntegerSCEV(0, Type::Int32Ty)),
95 Base (SCEVUnknown::getIntegerSCEV(0, Type::Int32Ty)) {}
96 IVExpr(const SCEVHandle &stride, const SCEVHandle &base, PHINode *phi,
97 Value *incv)
98 : Stride(stride), Base(base), PHI(phi), IncV(incv) {}
99 };
100
101 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
102 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
103 struct VISIBILITY_HIDDEN IVsOfOneStride {
104 std::vector<IVExpr> IVs;
105
106 void addIV(const SCEVHandle &Stride, const SCEVHandle &Base, PHINode *PHI,
107 Value *IncV) {
108 IVs.push_back(IVExpr(Stride, Base, PHI, IncV));
109 }
110 };
111
112 class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
113 LoopInfo *LI;
114 DominatorTree *DT;
115 ScalarEvolution *SE;
116 const TargetData *TD;
117 const Type *UIntPtrTy;
118 bool Changed;
119
120 /// IVUsesByStride - Keep track of all uses of induction variables that we
121 /// are interested in. The key of the map is the stride of the access.
122 std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
123
124 /// IVsByStride - Keep track of all IVs that have been inserted for a
125 /// particular stride.
126 std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
127
128 /// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
129 /// We use this to iterate over the IVUsesByStride collection without being
130 /// dependent on random ordering of pointers in the process.
131 std::vector<SCEVHandle> StrideOrder;
132
133 /// CastedValues - As we need to cast values to uintptr_t, this keeps track
134 /// of the casted version of each value. This is accessed by
135 /// getCastedVersionOf.
136 std::map<Value*, Value*> CastedPointers;
137
138 /// DeadInsts - Keep track of instructions we may have made dead, so that
139 /// we can remove them after we are done working.
140 std::set<Instruction*> DeadInsts;
141
142 /// TLI - Keep a pointer of a TargetLowering to consult for determining
143 /// transformation profitability.
144 const TargetLowering *TLI;
145
146 public:
147 static char ID; // Pass ID, replacement for typeid
148 LoopStrengthReduce(const TargetLowering *tli = NULL) :
149 LoopPass((intptr_t)&ID), TLI(tli) {
150 }
151
152 bool runOnLoop(Loop *L, LPPassManager &LPM);
153
154 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
155 // We split critical edges, so we change the CFG. However, we do update
156 // many analyses if they are around.
157 AU.addPreservedID(LoopSimplifyID);
158 AU.addPreserved<LoopInfo>();
159 AU.addPreserved<DominanceFrontier>();
160 AU.addPreserved<DominatorTree>();
161
162 AU.addRequiredID(LoopSimplifyID);
163 AU.addRequired<LoopInfo>();
164 AU.addRequired<DominatorTree>();
165 AU.addRequired<TargetData>();
166 AU.addRequired<ScalarEvolution>();
167 }
168
169 /// getCastedVersionOf - Return the specified value casted to uintptr_t.
170 ///
171 Value *getCastedVersionOf(Instruction::CastOps opcode, Value *V);
172private:
173 bool AddUsersIfInteresting(Instruction *I, Loop *L,
174 std::set<Instruction*> &Processed);
175 SCEVHandle GetExpressionSCEV(Instruction *E, Loop *L);
176
177 void OptimizeIndvars(Loop *L);
178 bool FindIVForUser(ICmpInst *Cond, IVStrideUse *&CondUse,
179 const SCEVHandle *&CondStride);
180
181 unsigned CheckForIVReuse(const SCEVHandle&, IVExpr&, const Type*,
182 const std::vector<BasedUser>& UsersToProcess);
183
184 bool ValidStride(int64_t, const std::vector<BasedUser>& UsersToProcess);
185
186 void StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
187 IVUsersOfOneStride &Uses,
188 Loop *L, bool isOnlyStride);
189 void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
190 };
191 char LoopStrengthReduce::ID = 0;
192 RegisterPass<LoopStrengthReduce> X("loop-reduce", "Loop Strength Reduction");
193}
194
195LoopPass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
196 return new LoopStrengthReduce(TLI);
197}
198
199/// getCastedVersionOf - Return the specified value casted to uintptr_t. This
200/// assumes that the Value* V is of integer or pointer type only.
201///
202Value *LoopStrengthReduce::getCastedVersionOf(Instruction::CastOps opcode,
203 Value *V) {
204 if (V->getType() == UIntPtrTy) return V;
205 if (Constant *CB = dyn_cast<Constant>(V))
206 return ConstantExpr::getCast(opcode, CB, UIntPtrTy);
207
208 Value *&New = CastedPointers[V];
209 if (New) return New;
210
211 New = SCEVExpander::InsertCastOfTo(opcode, V, UIntPtrTy);
212 DeadInsts.insert(cast<Instruction>(New));
213 return New;
214}
215
216
217/// DeleteTriviallyDeadInstructions - If any of the instructions is the
218/// specified set are trivially dead, delete them and see if this makes any of
219/// their operands subsequently dead.
220void LoopStrengthReduce::
221DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
222 while (!Insts.empty()) {
223 Instruction *I = *Insts.begin();
224 Insts.erase(Insts.begin());
225 if (isInstructionTriviallyDead(I)) {
226 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
227 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
228 Insts.insert(U);
229 SE->deleteValueFromRecords(I);
230 I->eraseFromParent();
231 Changed = true;
232 }
233 }
234}
235
236
237/// GetExpressionSCEV - Compute and return the SCEV for the specified
238/// instruction.
239SCEVHandle LoopStrengthReduce::GetExpressionSCEV(Instruction *Exp, Loop *L) {
240 // Pointer to pointer bitcast instructions return the same value as their
241 // operand.
242 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Exp)) {
243 if (SE->hasSCEV(BCI) || !isa<Instruction>(BCI->getOperand(0)))
244 return SE->getSCEV(BCI);
245 SCEVHandle R = GetExpressionSCEV(cast<Instruction>(BCI->getOperand(0)), L);
246 SE->setSCEV(BCI, R);
247 return R;
248 }
249
250 // Scalar Evolutions doesn't know how to compute SCEV's for GEP instructions.
251 // If this is a GEP that SE doesn't know about, compute it now and insert it.
252 // If this is not a GEP, or if we have already done this computation, just let
253 // SE figure it out.
254 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Exp);
255 if (!GEP || SE->hasSCEV(GEP))
256 return SE->getSCEV(Exp);
257
258 // Analyze all of the subscripts of this getelementptr instruction, looking
259 // for uses that are determined by the trip count of L. First, skip all
260 // operands the are not dependent on the IV.
261
262 // Build up the base expression. Insert an LLVM cast of the pointer to
263 // uintptr_t first.
264 SCEVHandle GEPVal = SCEVUnknown::get(
265 getCastedVersionOf(Instruction::PtrToInt, GEP->getOperand(0)));
266
267 gep_type_iterator GTI = gep_type_begin(GEP);
268
269 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
270 // If this is a use of a recurrence that we can analyze, and it comes before
271 // Op does in the GEP operand list, we will handle this when we process this
272 // operand.
273 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
274 const StructLayout *SL = TD->getStructLayout(STy);
275 unsigned Idx = cast<ConstantInt>(GEP->getOperand(i))->getZExtValue();
276 uint64_t Offset = SL->getElementOffset(Idx);
277 GEPVal = SCEVAddExpr::get(GEPVal,
278 SCEVUnknown::getIntegerSCEV(Offset, UIntPtrTy));
279 } else {
280 unsigned GEPOpiBits =
281 GEP->getOperand(i)->getType()->getPrimitiveSizeInBits();
282 unsigned IntPtrBits = UIntPtrTy->getPrimitiveSizeInBits();
283 Instruction::CastOps opcode = (GEPOpiBits < IntPtrBits ?
284 Instruction::SExt : (GEPOpiBits > IntPtrBits ? Instruction::Trunc :
285 Instruction::BitCast));
286 Value *OpVal = getCastedVersionOf(opcode, GEP->getOperand(i));
287 SCEVHandle Idx = SE->getSCEV(OpVal);
288
289 uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
290 if (TypeSize != 1)
291 Idx = SCEVMulExpr::get(Idx,
292 SCEVConstant::get(ConstantInt::get(UIntPtrTy,
293 TypeSize)));
294 GEPVal = SCEVAddExpr::get(GEPVal, Idx);
295 }
296 }
297
298 SE->setSCEV(GEP, GEPVal);
299 return GEPVal;
300}
301
302/// getSCEVStartAndStride - Compute the start and stride of this expression,
303/// returning false if the expression is not a start/stride pair, or true if it
304/// is. The stride must be a loop invariant expression, but the start may be
305/// a mix of loop invariant and loop variant expressions.
306static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
307 SCEVHandle &Start, SCEVHandle &Stride) {
308 SCEVHandle TheAddRec = Start; // Initialize to zero.
309
310 // If the outer level is an AddExpr, the operands are all start values except
311 // for a nested AddRecExpr.
312 if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
313 for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
314 if (SCEVAddRecExpr *AddRec =
315 dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
316 if (AddRec->getLoop() == L)
317 TheAddRec = SCEVAddExpr::get(AddRec, TheAddRec);
318 else
319 return false; // Nested IV of some sort?
320 } else {
321 Start = SCEVAddExpr::get(Start, AE->getOperand(i));
322 }
323
324 } else if (isa<SCEVAddRecExpr>(SH)) {
325 TheAddRec = SH;
326 } else {
327 return false; // not analyzable.
328 }
329
330 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
331 if (!AddRec || AddRec->getLoop() != L) return false;
332
333 // FIXME: Generalize to non-affine IV's.
334 if (!AddRec->isAffine()) return false;
335
336 Start = SCEVAddExpr::get(Start, AddRec->getOperand(0));
337
338 if (!isa<SCEVConstant>(AddRec->getOperand(1)))
339 DOUT << "[" << L->getHeader()->getName()
340 << "] Variable stride: " << *AddRec << "\n";
341
342 Stride = AddRec->getOperand(1);
343 return true;
344}
345
346/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
347/// and now we need to decide whether the user should use the preinc or post-inc
348/// value. If this user should use the post-inc version of the IV, return true.
349///
350/// Choosing wrong here can break dominance properties (if we choose to use the
351/// post-inc value when we cannot) or it can end up adding extra live-ranges to
352/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
353/// should use the post-inc value).
354static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
355 Loop *L, DominatorTree *DT, Pass *P) {
356 // If the user is in the loop, use the preinc value.
357 if (L->contains(User->getParent())) return false;
358
359 BasicBlock *LatchBlock = L->getLoopLatch();
360
361 // Ok, the user is outside of the loop. If it is dominated by the latch
362 // block, use the post-inc value.
363 if (DT->dominates(LatchBlock, User->getParent()))
364 return true;
365
366 // There is one case we have to be careful of: PHI nodes. These little guys
367 // can live in blocks that do not dominate the latch block, but (since their
368 // uses occur in the predecessor block, not the block the PHI lives in) should
369 // still use the post-inc value. Check for this case now.
370 PHINode *PN = dyn_cast<PHINode>(User);
371 if (!PN) return false; // not a phi, not dominated by latch block.
372
373 // Look at all of the uses of IV by the PHI node. If any use corresponds to
374 // a block that is not dominated by the latch block, give up and use the
375 // preincremented value.
376 unsigned NumUses = 0;
377 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
378 if (PN->getIncomingValue(i) == IV) {
379 ++NumUses;
380 if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
381 return false;
382 }
383
384 // Okay, all uses of IV by PN are in predecessor blocks that really are
385 // dominated by the latch block. Split the critical edges and use the
386 // post-incremented value.
387 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
388 if (PN->getIncomingValue(i) == IV) {
389 SplitCriticalEdge(PN->getIncomingBlock(i), PN->getParent(), P,
390 true);
391 // Splitting the critical edge can reduce the number of entries in this
392 // PHI.
393 e = PN->getNumIncomingValues();
394 if (--NumUses == 0) break;
395 }
396
397 return true;
398}
399
400
401
402/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
403/// reducible SCEV, recursively add its users to the IVUsesByStride set and
404/// return true. Otherwise, return false.
405bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
406 std::set<Instruction*> &Processed) {
407 if (!I->getType()->isInteger() && !isa<PointerType>(I->getType()))
408 return false; // Void and FP expressions cannot be reduced.
409 if (!Processed.insert(I).second)
410 return true; // Instruction already handled.
411
412 // Get the symbolic expression for this instruction.
413 SCEVHandle ISE = GetExpressionSCEV(I, L);
414 if (isa<SCEVCouldNotCompute>(ISE)) return false;
415
416 // Get the start and stride for this expression.
417 SCEVHandle Start = SCEVUnknown::getIntegerSCEV(0, ISE->getType());
418 SCEVHandle Stride = Start;
419 if (!getSCEVStartAndStride(ISE, L, Start, Stride))
420 return false; // Non-reducible symbolic expression, bail out.
421
422 std::vector<Instruction *> IUsers;
423 // Collect all I uses now because IVUseShouldUsePostIncValue may
424 // invalidate use_iterator.
425 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
426 IUsers.push_back(cast<Instruction>(*UI));
427
428 for (unsigned iused_index = 0, iused_size = IUsers.size();
429 iused_index != iused_size; ++iused_index) {
430
431 Instruction *User = IUsers[iused_index];
432
433 // Do not infinitely recurse on PHI nodes.
434 if (isa<PHINode>(User) && Processed.count(User))
435 continue;
436
437 // If this is an instruction defined in a nested loop, or outside this loop,
438 // don't recurse into it.
439 bool AddUserToIVUsers = false;
440 if (LI->getLoopFor(User->getParent()) != L) {
441 DOUT << "FOUND USER in other loop: " << *User
442 << " OF SCEV: " << *ISE << "\n";
443 AddUserToIVUsers = true;
444 } else if (!AddUsersIfInteresting(User, L, Processed)) {
445 DOUT << "FOUND USER: " << *User
446 << " OF SCEV: " << *ISE << "\n";
447 AddUserToIVUsers = true;
448 }
449
450 if (AddUserToIVUsers) {
451 IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
452 if (StrideUses.Users.empty()) // First occurance of this stride?
453 StrideOrder.push_back(Stride);
454
455 // Okay, we found a user that we cannot reduce. Analyze the instruction
456 // and decide what to do with it. If we are a use inside of the loop, use
457 // the value before incrementation, otherwise use it after incrementation.
458 if (IVUseShouldUsePostIncValue(User, I, L, DT, this)) {
459 // The value used will be incremented by the stride more than we are
460 // expecting, so subtract this off.
461 SCEVHandle NewStart = SCEV::getMinusSCEV(Start, Stride);
462 StrideUses.addUser(NewStart, User, I);
463 StrideUses.Users.back().isUseOfPostIncrementedValue = true;
464 DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
465 } else {
466 StrideUses.addUser(Start, User, I);
467 }
468 }
469 }
470 return true;
471}
472
473namespace {
474 /// BasedUser - For a particular base value, keep information about how we've
475 /// partitioned the expression so far.
476 struct BasedUser {
477 /// Base - The Base value for the PHI node that needs to be inserted for
478 /// this use. As the use is processed, information gets moved from this
479 /// field to the Imm field (below). BasedUser values are sorted by this
480 /// field.
481 SCEVHandle Base;
482
483 /// Inst - The instruction using the induction variable.
484 Instruction *Inst;
485
486 /// OperandValToReplace - The operand value of Inst to replace with the
487 /// EmittedBase.
488 Value *OperandValToReplace;
489
490 /// Imm - The immediate value that should be added to the base immediately
491 /// before Inst, because it will be folded into the imm field of the
492 /// instruction.
493 SCEVHandle Imm;
494
495 /// EmittedBase - The actual value* to use for the base value of this
496 /// operation. This is null if we should just use zero so far.
497 Value *EmittedBase;
498
499 // isUseOfPostIncrementedValue - True if this should use the
500 // post-incremented version of this IV, not the preincremented version.
501 // This can only be set in special cases, such as the terminating setcc
502 // instruction for a loop and uses outside the loop that are dominated by
503 // the loop.
504 bool isUseOfPostIncrementedValue;
505
506 BasedUser(IVStrideUse &IVSU)
507 : Base(IVSU.Offset), Inst(IVSU.User),
508 OperandValToReplace(IVSU.OperandValToReplace),
509 Imm(SCEVUnknown::getIntegerSCEV(0, Base->getType())), EmittedBase(0),
510 isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
511
512 // Once we rewrite the code to insert the new IVs we want, update the
513 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
514 // to it.
515 void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
516 SCEVExpander &Rewriter, Loop *L,
517 Pass *P);
518
519 Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
520 SCEVExpander &Rewriter,
521 Instruction *IP, Loop *L);
522 void dump() const;
523 };
524}
525
526void BasedUser::dump() const {
527 cerr << " Base=" << *Base;
528 cerr << " Imm=" << *Imm;
529 if (EmittedBase)
530 cerr << " EB=" << *EmittedBase;
531
532 cerr << " Inst: " << *Inst;
533}
534
535Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
536 SCEVExpander &Rewriter,
537 Instruction *IP, Loop *L) {
538 // Figure out where we *really* want to insert this code. In particular, if
539 // the user is inside of a loop that is nested inside of L, we really don't
540 // want to insert this expression before the user, we'd rather pull it out as
541 // many loops as possible.
542 LoopInfo &LI = Rewriter.getLoopInfo();
543 Instruction *BaseInsertPt = IP;
544
545 // Figure out the most-nested loop that IP is in.
546 Loop *InsertLoop = LI.getLoopFor(IP->getParent());
547
548 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
549 // the preheader of the outer-most loop where NewBase is not loop invariant.
550 while (InsertLoop && NewBase->isLoopInvariant(InsertLoop)) {
551 BaseInsertPt = InsertLoop->getLoopPreheader()->getTerminator();
552 InsertLoop = InsertLoop->getParentLoop();
553 }
554
555 // If there is no immediate value, skip the next part.
556 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm))
557 if (SC->getValue()->isZero())
558 return Rewriter.expandCodeFor(NewBase, BaseInsertPt);
559
560 Value *Base = Rewriter.expandCodeFor(NewBase, BaseInsertPt);
561
562 // If we are inserting the base and imm values in the same block, make sure to
563 // adjust the IP position if insertion reused a result.
564 if (IP == BaseInsertPt)
565 IP = Rewriter.getInsertionPoint();
566
567 // Always emit the immediate (if non-zero) into the same block as the user.
568 SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(Base), Imm);
569 return Rewriter.expandCodeFor(NewValSCEV, IP);
570
571}
572
573
574// Once we rewrite the code to insert the new IVs we want, update the
575// operands of Inst to use the new expression 'NewBase', with 'Imm' added
576// to it.
577void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
578 SCEVExpander &Rewriter,
579 Loop *L, Pass *P) {
580 if (!isa<PHINode>(Inst)) {
581 // By default, insert code at the user instruction.
582 BasicBlock::iterator InsertPt = Inst;
583
584 // However, if the Operand is itself an instruction, the (potentially
585 // complex) inserted code may be shared by many users. Because of this, we
586 // want to emit code for the computation of the operand right before its old
587 // computation. This is usually safe, because we obviously used to use the
588 // computation when it was computed in its current block. However, in some
589 // cases (e.g. use of a post-incremented induction variable) the NewBase
590 // value will be pinned to live somewhere after the original computation.
591 // In this case, we have to back off.
592 if (!isUseOfPostIncrementedValue) {
593 if (Instruction *OpInst = dyn_cast<Instruction>(OperandValToReplace)) {
594 InsertPt = OpInst;
595 while (isa<PHINode>(InsertPt)) ++InsertPt;
596 }
597 }
598 Value *NewVal = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);
Dan Gohman5d1dd952007-07-31 17:22:27 +0000599 // Adjust the type back to match the Inst. Note that we can't use InsertPt
600 // here because the SCEVExpander may have inserted the instructions after
601 // that point, in its efforts to avoid inserting redundant expressions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000602 if (isa<PointerType>(OperandValToReplace->getType())) {
Dan Gohman5d1dd952007-07-31 17:22:27 +0000603 NewVal = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr,
604 NewVal,
605 OperandValToReplace->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000606 }
607 // Replace the use of the operand Value with the new Phi we just created.
608 Inst->replaceUsesOfWith(OperandValToReplace, NewVal);
609 DOUT << " CHANGED: IMM =" << *Imm;
610 DOUT << " \tNEWBASE =" << *NewBase;
611 DOUT << " \tInst = " << *Inst;
612 return;
613 }
614
615 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
616 // expression into each operand block that uses it. Note that PHI nodes can
617 // have multiple entries for the same predecessor. We use a map to make sure
618 // that a PHI node only has a single Value* for each predecessor (which also
619 // prevents us from inserting duplicate code in some blocks).
620 std::map<BasicBlock*, Value*> InsertedCode;
621 PHINode *PN = cast<PHINode>(Inst);
622 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
623 if (PN->getIncomingValue(i) == OperandValToReplace) {
624 // If this is a critical edge, split the edge so that we do not insert the
625 // code on all predecessor/successor paths. We do this unless this is the
626 // canonical backedge for this loop, as this can make some inserted code
627 // be in an illegal position.
628 BasicBlock *PHIPred = PN->getIncomingBlock(i);
629 if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
630 (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
631
632 // First step, split the critical edge.
633 SplitCriticalEdge(PHIPred, PN->getParent(), P, true);
634
635 // Next step: move the basic block. In particular, if the PHI node
636 // is outside of the loop, and PredTI is in the loop, we want to
637 // move the block to be immediately before the PHI block, not
638 // immediately after PredTI.
639 if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
640 BasicBlock *NewBB = PN->getIncomingBlock(i);
641 NewBB->moveBefore(PN->getParent());
642 }
643
644 // Splitting the edge can reduce the number of PHI entries we have.
645 e = PN->getNumIncomingValues();
646 }
647
648 Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
649 if (!Code) {
650 // Insert the code into the end of the predecessor block.
651 Instruction *InsertPt = PN->getIncomingBlock(i)->getTerminator();
652 Code = InsertCodeForBaseAtPosition(NewBase, Rewriter, InsertPt, L);
653
Dan Gohman5d1dd952007-07-31 17:22:27 +0000654 // Adjust the type back to match the PHI. Note that we can't use InsertPt
655 // here because the SCEVExpander may have inserted its instructions after
656 // that point, in its efforts to avoid inserting redundant expressions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000657 if (isa<PointerType>(PN->getType())) {
Dan Gohman5d1dd952007-07-31 17:22:27 +0000658 Code = SCEVExpander::InsertCastOfTo(Instruction::IntToPtr,
659 Code,
660 PN->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000661 }
662 }
663
664 // Replace the use of the operand Value with the new Phi we just created.
665 PN->setIncomingValue(i, Code);
666 Rewriter.clear();
667 }
668 }
669 DOUT << " CHANGED: IMM =" << *Imm << " Inst = " << *Inst;
670}
671
672
673/// isTargetConstant - Return true if the following can be referenced by the
674/// immediate field of a target instruction.
675static bool isTargetConstant(const SCEVHandle &V, const Type *UseTy,
676 const TargetLowering *TLI) {
677 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
678 int64_t VC = SC->getValue()->getSExtValue();
679 if (TLI) {
680 TargetLowering::AddrMode AM;
681 AM.BaseOffs = VC;
682 return TLI->isLegalAddressingMode(AM, UseTy);
683 } else {
684 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
685 return (VC > -(1 << 16) && VC < (1 << 16)-1);
686 }
687 }
688
689 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
690 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
691 if (TLI && CE->getOpcode() == Instruction::PtrToInt) {
692 Constant *Op0 = CE->getOperand(0);
693 if (GlobalValue *GV = dyn_cast<GlobalValue>(Op0)) {
694 TargetLowering::AddrMode AM;
695 AM.BaseGV = GV;
696 return TLI->isLegalAddressingMode(AM, UseTy);
697 }
698 }
699 return false;
700}
701
702/// MoveLoopVariantsToImediateField - Move any subexpressions from Val that are
703/// loop varying to the Imm operand.
704static void MoveLoopVariantsToImediateField(SCEVHandle &Val, SCEVHandle &Imm,
705 Loop *L) {
706 if (Val->isLoopInvariant(L)) return; // Nothing to do.
707
708 if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
709 std::vector<SCEVHandle> NewOps;
710 NewOps.reserve(SAE->getNumOperands());
711
712 for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
713 if (!SAE->getOperand(i)->isLoopInvariant(L)) {
714 // If this is a loop-variant expression, it must stay in the immediate
715 // field of the expression.
716 Imm = SCEVAddExpr::get(Imm, SAE->getOperand(i));
717 } else {
718 NewOps.push_back(SAE->getOperand(i));
719 }
720
721 if (NewOps.empty())
722 Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
723 else
724 Val = SCEVAddExpr::get(NewOps);
725 } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
726 // Try to pull immediates out of the start value of nested addrec's.
727 SCEVHandle Start = SARE->getStart();
728 MoveLoopVariantsToImediateField(Start, Imm, L);
729
730 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
731 Ops[0] = Start;
732 Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
733 } else {
734 // Otherwise, all of Val is variant, move the whole thing over.
735 Imm = SCEVAddExpr::get(Imm, Val);
736 Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
737 }
738}
739
740
741/// MoveImmediateValues - Look at Val, and pull out any additions of constants
742/// that can fit into the immediate field of instructions in the target.
743/// Accumulate these immediate values into the Imm value.
744static void MoveImmediateValues(const TargetLowering *TLI,
745 Instruction *User,
746 SCEVHandle &Val, SCEVHandle &Imm,
747 bool isAddress, Loop *L) {
748 const Type *UseTy = User->getType();
749 if (StoreInst *SI = dyn_cast<StoreInst>(User))
750 UseTy = SI->getOperand(0)->getType();
751
752 if (SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
753 std::vector<SCEVHandle> NewOps;
754 NewOps.reserve(SAE->getNumOperands());
755
756 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
757 SCEVHandle NewOp = SAE->getOperand(i);
758 MoveImmediateValues(TLI, User, NewOp, Imm, isAddress, L);
759
760 if (!NewOp->isLoopInvariant(L)) {
761 // If this is a loop-variant expression, it must stay in the immediate
762 // field of the expression.
763 Imm = SCEVAddExpr::get(Imm, NewOp);
764 } else {
765 NewOps.push_back(NewOp);
766 }
767 }
768
769 if (NewOps.empty())
770 Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
771 else
772 Val = SCEVAddExpr::get(NewOps);
773 return;
774 } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
775 // Try to pull immediates out of the start value of nested addrec's.
776 SCEVHandle Start = SARE->getStart();
777 MoveImmediateValues(TLI, User, Start, Imm, isAddress, L);
778
779 if (Start != SARE->getStart()) {
780 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
781 Ops[0] = Start;
782 Val = SCEVAddRecExpr::get(Ops, SARE->getLoop());
783 }
784 return;
785 } else if (SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
786 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
787 if (isAddress && isTargetConstant(SME->getOperand(0), UseTy, TLI) &&
788 SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {
789
790 SCEVHandle SubImm = SCEVUnknown::getIntegerSCEV(0, Val->getType());
791 SCEVHandle NewOp = SME->getOperand(1);
792 MoveImmediateValues(TLI, User, NewOp, SubImm, isAddress, L);
793
794 // If we extracted something out of the subexpressions, see if we can
795 // simplify this!
796 if (NewOp != SME->getOperand(1)) {
797 // Scale SubImm up by "8". If the result is a target constant, we are
798 // good.
799 SubImm = SCEVMulExpr::get(SubImm, SME->getOperand(0));
800 if (isTargetConstant(SubImm, UseTy, TLI)) {
801 // Accumulate the immediate.
802 Imm = SCEVAddExpr::get(Imm, SubImm);
803
804 // Update what is left of 'Val'.
805 Val = SCEVMulExpr::get(SME->getOperand(0), NewOp);
806 return;
807 }
808 }
809 }
810 }
811
812 // Loop-variant expressions must stay in the immediate field of the
813 // expression.
814 if ((isAddress && isTargetConstant(Val, UseTy, TLI)) ||
815 !Val->isLoopInvariant(L)) {
816 Imm = SCEVAddExpr::get(Imm, Val);
817 Val = SCEVUnknown::getIntegerSCEV(0, Val->getType());
818 return;
819 }
820
821 // Otherwise, no immediates to move.
822}
823
824
825/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
826/// added together. This is used to reassociate common addition subexprs
827/// together for maximal sharing when rewriting bases.
828static void SeparateSubExprs(std::vector<SCEVHandle> &SubExprs,
829 SCEVHandle Expr) {
830 if (SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
831 for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
832 SeparateSubExprs(SubExprs, AE->getOperand(j));
833 } else if (SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
834 SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Expr->getType());
835 if (SARE->getOperand(0) == Zero) {
836 SubExprs.push_back(Expr);
837 } else {
838 // Compute the addrec with zero as its base.
839 std::vector<SCEVHandle> Ops(SARE->op_begin(), SARE->op_end());
840 Ops[0] = Zero; // Start with zero base.
841 SubExprs.push_back(SCEVAddRecExpr::get(Ops, SARE->getLoop()));
842
843
844 SeparateSubExprs(SubExprs, SARE->getOperand(0));
845 }
846 } else if (!isa<SCEVConstant>(Expr) ||
847 !cast<SCEVConstant>(Expr)->getValue()->isZero()) {
848 // Do not add zero.
849 SubExprs.push_back(Expr);
850 }
851}
852
853
854/// RemoveCommonExpressionsFromUseBases - Look through all of the uses in Bases,
855/// removing any common subexpressions from it. Anything truly common is
856/// removed, accumulated, and returned. This looks for things like (a+b+c) and
857/// (a+c+d) -> (a+c). The common expression is *removed* from the Bases.
858static SCEVHandle
859RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses) {
860 unsigned NumUses = Uses.size();
861
862 // Only one use? Use its base, regardless of what it is!
863 SCEVHandle Zero = SCEVUnknown::getIntegerSCEV(0, Uses[0].Base->getType());
864 SCEVHandle Result = Zero;
865 if (NumUses == 1) {
866 std::swap(Result, Uses[0].Base);
867 return Result;
868 }
869
870 // To find common subexpressions, count how many of Uses use each expression.
871 // If any subexpressions are used Uses.size() times, they are common.
872 std::map<SCEVHandle, unsigned> SubExpressionUseCounts;
873
874 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
875 // order we see them.
876 std::vector<SCEVHandle> UniqueSubExprs;
877
878 std::vector<SCEVHandle> SubExprs;
879 for (unsigned i = 0; i != NumUses; ++i) {
880 // If the base is zero (which is common), return zero now, there are no
881 // CSEs we can find.
882 if (Uses[i].Base == Zero) return Zero;
883
884 // Split the expression into subexprs.
885 SeparateSubExprs(SubExprs, Uses[i].Base);
886 // Add one to SubExpressionUseCounts for each subexpr present.
887 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
888 if (++SubExpressionUseCounts[SubExprs[j]] == 1)
889 UniqueSubExprs.push_back(SubExprs[j]);
890 SubExprs.clear();
891 }
892
893 // Now that we know how many times each is used, build Result. Iterate over
894 // UniqueSubexprs so that we have a stable ordering.
895 for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
896 std::map<SCEVHandle, unsigned>::iterator I =
897 SubExpressionUseCounts.find(UniqueSubExprs[i]);
898 assert(I != SubExpressionUseCounts.end() && "Entry not found?");
899 if (I->second == NumUses) { // Found CSE!
900 Result = SCEVAddExpr::get(Result, I->first);
901 } else {
902 // Remove non-cse's from SubExpressionUseCounts.
903 SubExpressionUseCounts.erase(I);
904 }
905 }
906
907 // If we found no CSE's, return now.
908 if (Result == Zero) return Result;
909
910 // Otherwise, remove all of the CSE's we found from each of the base values.
911 for (unsigned i = 0; i != NumUses; ++i) {
912 // Split the expression into subexprs.
913 SeparateSubExprs(SubExprs, Uses[i].Base);
914
915 // Remove any common subexpressions.
916 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
917 if (SubExpressionUseCounts.count(SubExprs[j])) {
918 SubExprs.erase(SubExprs.begin()+j);
919 --j; --e;
920 }
921
922 // Finally, the non-shared expressions together.
923 if (SubExprs.empty())
924 Uses[i].Base = Zero;
925 else
926 Uses[i].Base = SCEVAddExpr::get(SubExprs);
927 SubExprs.clear();
928 }
929
930 return Result;
931}
932
933/// isZero - returns true if the scalar evolution expression is zero.
934///
935static bool isZero(SCEVHandle &V) {
936 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V))
937 return SC->getValue()->isZero();
938 return false;
939}
940
941/// ValidStride - Check whether the given Scale is valid for all loads and
942/// stores in UsersToProcess.
943///
944bool LoopStrengthReduce::ValidStride(int64_t Scale,
945 const std::vector<BasedUser>& UsersToProcess) {
946 for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
947 // If this is a load or other access, pass the type of the access in.
948 const Type *AccessTy = Type::VoidTy;
949 if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst))
950 AccessTy = SI->getOperand(0)->getType();
951 else if (LoadInst *LI = dyn_cast<LoadInst>(UsersToProcess[i].Inst))
952 AccessTy = LI->getType();
953
954 TargetLowering::AddrMode AM;
955 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
956 AM.BaseOffs = SC->getValue()->getSExtValue();
957 AM.Scale = Scale;
958
959 // If load[imm+r*scale] is illegal, bail out.
960 if (!TLI->isLegalAddressingMode(AM, AccessTy))
961 return false;
962 }
963 return true;
964}
965
966/// CheckForIVReuse - Returns the multiple if the stride is the multiple
967/// of a previous stride and it is a legal value for the target addressing
968/// mode scale component. This allows the users of this stride to be rewritten
969/// as prev iv * factor. It returns 0 if no reuse is possible.
970unsigned LoopStrengthReduce::CheckForIVReuse(const SCEVHandle &Stride,
971 IVExpr &IV, const Type *Ty,
972 const std::vector<BasedUser>& UsersToProcess) {
973 if (!TLI) return 0;
974
975 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
976 int64_t SInt = SC->getValue()->getSExtValue();
977 if (SInt == 1) return 0;
978
979 for (std::map<SCEVHandle, IVsOfOneStride>::iterator SI= IVsByStride.begin(),
980 SE = IVsByStride.end(); SI != SE; ++SI) {
981 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
982 if (SInt != -SSInt &&
983 (unsigned(abs(SInt)) < SSInt || (SInt % SSInt) != 0))
984 continue;
985 int64_t Scale = SInt / SSInt;
986 // Check that this stride is valid for all the types used for loads and
987 // stores; if it can be used for some and not others, we might as well use
988 // the original stride everywhere, since we have to create the IV for it
989 // anyway.
990 if (ValidStride(Scale, UsersToProcess))
991 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
992 IE = SI->second.IVs.end(); II != IE; ++II)
993 // FIXME: Only handle base == 0 for now.
994 // Only reuse previous IV if it would not require a type conversion.
995 if (isZero(II->Base) && II->Base->getType() == Ty) {
996 IV = *II;
997 return Scale;
998 }
999 }
1000 }
1001 return 0;
1002}
1003
1004/// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1005/// returns true if Val's isUseOfPostIncrementedValue is true.
1006static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) {
1007 return Val.isUseOfPostIncrementedValue;
1008}
1009
1010/// isNonConstantNegative - REturn true if the specified scev is negated, but
1011/// not a constant.
1012static bool isNonConstantNegative(const SCEVHandle &Expr) {
1013 SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr);
1014 if (!Mul) return false;
1015
1016 // If there is a constant factor, it will be first.
1017 SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
1018 if (!SC) return false;
1019
1020 // Return true if the value is negative, this matches things like (-42 * V).
1021 return SC->getValue()->getValue().isNegative();
1022}
1023
1024/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1025/// stride of IV. All of the users may have different starting values, and this
1026/// may not be the only stride (we know it is if isOnlyStride is true).
1027void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
1028 IVUsersOfOneStride &Uses,
1029 Loop *L,
1030 bool isOnlyStride) {
1031 // Transform our list of users and offsets to a bit more complex table. In
1032 // this new vector, each 'BasedUser' contains 'Base' the base of the
1033 // strided accessas well as the old information from Uses. We progressively
1034 // move information from the Base field to the Imm field, until we eventually
1035 // have the full access expression to rewrite the use.
1036 std::vector<BasedUser> UsersToProcess;
1037 UsersToProcess.reserve(Uses.Users.size());
1038 for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
1039 UsersToProcess.push_back(Uses.Users[i]);
1040
1041 // Move any loop invariant operands from the offset field to the immediate
1042 // field of the use, so that we don't try to use something before it is
1043 // computed.
1044 MoveLoopVariantsToImediateField(UsersToProcess.back().Base,
1045 UsersToProcess.back().Imm, L);
1046 assert(UsersToProcess.back().Base->isLoopInvariant(L) &&
1047 "Base value is not loop invariant!");
1048 }
1049
1050 // We now have a whole bunch of uses of like-strided induction variables, but
1051 // they might all have different bases. We want to emit one PHI node for this
1052 // stride which we fold as many common expressions (between the IVs) into as
1053 // possible. Start by identifying the common expressions in the base values
1054 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1055 // "A+B"), emit it to the preheader, then remove the expression from the
1056 // UsersToProcess base values.
1057 SCEVHandle CommonExprs =
1058 RemoveCommonExpressionsFromUseBases(UsersToProcess);
1059
1060 // Next, figure out what we can represent in the immediate fields of
1061 // instructions. If we can represent anything there, move it to the imm
1062 // fields of the BasedUsers. We do this so that it increases the commonality
1063 // of the remaining uses.
1064 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1065 // If the user is not in the current loop, this means it is using the exit
1066 // value of the IV. Do not put anything in the base, make sure it's all in
1067 // the immediate field to allow as much factoring as possible.
1068 if (!L->contains(UsersToProcess[i].Inst->getParent())) {
1069 UsersToProcess[i].Imm = SCEVAddExpr::get(UsersToProcess[i].Imm,
1070 UsersToProcess[i].Base);
1071 UsersToProcess[i].Base =
1072 SCEVUnknown::getIntegerSCEV(0, UsersToProcess[i].Base->getType());
1073 } else {
1074
1075 // Addressing modes can be folded into loads and stores. Be careful that
1076 // the store is through the expression, not of the expression though.
1077 bool isAddress = isa<LoadInst>(UsersToProcess[i].Inst);
1078 if (StoreInst *SI = dyn_cast<StoreInst>(UsersToProcess[i].Inst)) {
1079 if (SI->getOperand(1) == UsersToProcess[i].OperandValToReplace)
1080 isAddress = true;
1081 } else if (IntrinsicInst *II =
1082 dyn_cast<IntrinsicInst>(UsersToProcess[i].Inst)) {
1083 // Addressing modes can also be folded into prefetches.
1084 if (II->getIntrinsicID() == Intrinsic::prefetch &&
1085 II->getOperand(1) == UsersToProcess[i].OperandValToReplace)
1086 isAddress = true;
1087 }
1088
1089 MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base,
1090 UsersToProcess[i].Imm, isAddress, L);
1091 }
1092 }
1093
1094 // Check if it is possible to reuse a IV with stride that is factor of this
1095 // stride. And the multiple is a number that can be encoded in the scale
1096 // field of the target addressing mode. And we will have a valid
1097 // instruction after this substition, including the immediate field, if any.
1098 PHINode *NewPHI = NULL;
1099 Value *IncV = NULL;
1100 IVExpr ReuseIV;
1101 unsigned RewriteFactor = CheckForIVReuse(Stride, ReuseIV,
1102 CommonExprs->getType(),
1103 UsersToProcess);
1104 if (RewriteFactor != 0) {
1105 DOUT << "BASED ON IV of STRIDE " << *ReuseIV.Stride
1106 << " and BASE " << *ReuseIV.Base << " :\n";
1107 NewPHI = ReuseIV.PHI;
1108 IncV = ReuseIV.IncV;
1109 }
1110
1111 const Type *ReplacedTy = CommonExprs->getType();
1112
1113 // Now that we know what we need to do, insert the PHI node itself.
1114 //
1115 DOUT << "INSERTING IV of TYPE " << *ReplacedTy << " of STRIDE "
1116 << *Stride << " and BASE " << *CommonExprs << ": ";
1117
1118 SCEVExpander Rewriter(*SE, *LI);
1119 SCEVExpander PreheaderRewriter(*SE, *LI);
1120
1121 BasicBlock *Preheader = L->getLoopPreheader();
1122 Instruction *PreInsertPt = Preheader->getTerminator();
1123 Instruction *PhiInsertBefore = L->getHeader()->begin();
1124
1125 BasicBlock *LatchBlock = L->getLoopLatch();
1126
1127
1128 // Emit the initial base value into the loop preheader.
1129 Value *CommonBaseV
1130 = PreheaderRewriter.expandCodeFor(CommonExprs, PreInsertPt);
1131
1132 if (RewriteFactor == 0) {
1133 // Create a new Phi for this base, and stick it in the loop header.
1134 NewPHI = new PHINode(ReplacedTy, "iv.", PhiInsertBefore);
1135 ++NumInserted;
1136
1137 // Add common base to the new Phi node.
1138 NewPHI->addIncoming(CommonBaseV, Preheader);
1139
1140 // If the stride is negative, insert a sub instead of an add for the
1141 // increment.
1142 bool isNegative = isNonConstantNegative(Stride);
1143 SCEVHandle IncAmount = Stride;
1144 if (isNegative)
1145 IncAmount = SCEV::getNegativeSCEV(Stride);
1146
1147 // Insert the stride into the preheader.
1148 Value *StrideV = PreheaderRewriter.expandCodeFor(IncAmount, PreInsertPt);
1149 if (!isa<ConstantInt>(StrideV)) ++NumVariable;
1150
1151 // Emit the increment of the base value before the terminator of the loop
1152 // latch block, and add it to the Phi node.
1153 SCEVHandle IncExp = SCEVUnknown::get(StrideV);
1154 if (isNegative)
1155 IncExp = SCEV::getNegativeSCEV(IncExp);
1156 IncExp = SCEVAddExpr::get(SCEVUnknown::get(NewPHI), IncExp);
1157
1158 IncV = Rewriter.expandCodeFor(IncExp, LatchBlock->getTerminator());
1159 IncV->setName(NewPHI->getName()+".inc");
1160 NewPHI->addIncoming(IncV, LatchBlock);
1161
1162 // Remember this in case a later stride is multiple of this.
1163 IVsByStride[Stride].addIV(Stride, CommonExprs, NewPHI, IncV);
1164
1165 DOUT << " IV=%" << NewPHI->getNameStr() << " INC=%" << IncV->getNameStr();
1166 } else {
1167 Constant *C = dyn_cast<Constant>(CommonBaseV);
1168 if (!C ||
1169 (!C->isNullValue() &&
1170 !isTargetConstant(SCEVUnknown::get(CommonBaseV), ReplacedTy, TLI)))
1171 // We want the common base emitted into the preheader! This is just
1172 // using cast as a copy so BitCast (no-op cast) is appropriate
1173 CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(),
1174 "commonbase", PreInsertPt);
1175 }
1176 DOUT << "\n";
1177
1178 // We want to emit code for users inside the loop first. To do this, we
1179 // rearrange BasedUser so that the entries at the end have
1180 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1181 // vector (so we handle them first).
1182 std::partition(UsersToProcess.begin(), UsersToProcess.end(),
1183 PartitionByIsUseOfPostIncrementedValue);
1184
1185 // Sort this by base, so that things with the same base are handled
1186 // together. By partitioning first and stable-sorting later, we are
1187 // guaranteed that within each base we will pop off users from within the
1188 // loop before users outside of the loop with a particular base.
1189 //
1190 // We would like to use stable_sort here, but we can't. The problem is that
1191 // SCEVHandle's don't have a deterministic ordering w.r.t to each other, so
1192 // we don't have anything to do a '<' comparison on. Because we think the
1193 // number of uses is small, do a horrible bubble sort which just relies on
1194 // ==.
1195 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
1196 // Get a base value.
1197 SCEVHandle Base = UsersToProcess[i].Base;
1198
1199 // Compact everything with this base to be consequetive with this one.
1200 for (unsigned j = i+1; j != e; ++j) {
1201 if (UsersToProcess[j].Base == Base) {
1202 std::swap(UsersToProcess[i+1], UsersToProcess[j]);
1203 ++i;
1204 }
1205 }
1206 }
1207
1208 // Process all the users now. This outer loop handles all bases, the inner
1209 // loop handles all users of a particular base.
1210 while (!UsersToProcess.empty()) {
1211 SCEVHandle Base = UsersToProcess.back().Base;
1212
1213 // Emit the code for Base into the preheader.
1214 Value *BaseV = PreheaderRewriter.expandCodeFor(Base, PreInsertPt);
1215
1216 DOUT << " INSERTING code for BASE = " << *Base << ":";
1217 if (BaseV->hasName())
1218 DOUT << " Result value name = %" << BaseV->getNameStr();
1219 DOUT << "\n";
1220
1221 // If BaseV is a constant other than 0, make sure that it gets inserted into
1222 // the preheader, instead of being forward substituted into the uses. We do
1223 // this by forcing a BitCast (noop cast) to be inserted into the preheader
1224 // in this case.
1225 if (Constant *C = dyn_cast<Constant>(BaseV)) {
1226 if (!C->isNullValue() && !isTargetConstant(Base, ReplacedTy, TLI)) {
1227 // We want this constant emitted into the preheader! This is just
1228 // using cast as a copy so BitCast (no-op cast) is appropriate
1229 BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert",
1230 PreInsertPt);
1231 }
1232 }
1233
1234 // Emit the code to add the immediate offset to the Phi value, just before
1235 // the instructions that we identified as using this stride and base.
1236 do {
1237 // FIXME: Use emitted users to emit other users.
1238 BasedUser &User = UsersToProcess.back();
1239
1240 // If this instruction wants to use the post-incremented value, move it
1241 // after the post-inc and use its value instead of the PHI.
1242 Value *RewriteOp = NewPHI;
1243 if (User.isUseOfPostIncrementedValue) {
1244 RewriteOp = IncV;
1245
1246 // If this user is in the loop, make sure it is the last thing in the
1247 // loop to ensure it is dominated by the increment.
1248 if (L->contains(User.Inst->getParent()))
1249 User.Inst->moveBefore(LatchBlock->getTerminator());
1250 }
1251 if (RewriteOp->getType() != ReplacedTy) {
1252 Instruction::CastOps opcode = Instruction::Trunc;
1253 if (ReplacedTy->getPrimitiveSizeInBits() ==
1254 RewriteOp->getType()->getPrimitiveSizeInBits())
1255 opcode = Instruction::BitCast;
1256 RewriteOp = SCEVExpander::InsertCastOfTo(opcode, RewriteOp, ReplacedTy);
1257 }
1258
1259 SCEVHandle RewriteExpr = SCEVUnknown::get(RewriteOp);
1260
1261 // Clear the SCEVExpander's expression map so that we are guaranteed
1262 // to have the code emitted where we expect it.
1263 Rewriter.clear();
1264
1265 // If we are reusing the iv, then it must be multiplied by a constant
1266 // factor take advantage of addressing mode scale component.
1267 if (RewriteFactor != 0) {
1268 RewriteExpr =
1269 SCEVMulExpr::get(SCEVUnknown::getIntegerSCEV(RewriteFactor,
1270 RewriteExpr->getType()),
1271 RewriteExpr);
1272
1273 // The common base is emitted in the loop preheader. But since we
1274 // are reusing an IV, it has not been used to initialize the PHI node.
1275 // Add it to the expression used to rewrite the uses.
1276 if (!isa<ConstantInt>(CommonBaseV) ||
1277 !cast<ConstantInt>(CommonBaseV)->isZero())
1278 RewriteExpr = SCEVAddExpr::get(RewriteExpr,
1279 SCEVUnknown::get(CommonBaseV));
1280 }
1281
1282 // Now that we know what we need to do, insert code before User for the
1283 // immediate and any loop-variant expressions.
1284 if (!isa<ConstantInt>(BaseV) || !cast<ConstantInt>(BaseV)->isZero())
1285 // Add BaseV to the PHI value if needed.
1286 RewriteExpr = SCEVAddExpr::get(RewriteExpr, SCEVUnknown::get(BaseV));
1287
1288 User.RewriteInstructionToUseNewBase(RewriteExpr, Rewriter, L, this);
1289
1290 // Mark old value we replaced as possibly dead, so that it is elminated
1291 // if we just replaced the last use of that value.
1292 DeadInsts.insert(cast<Instruction>(User.OperandValToReplace));
1293
1294 UsersToProcess.pop_back();
1295 ++NumReduced;
1296
1297 // If there are any more users to process with the same base, process them
1298 // now. We sorted by base above, so we just have to check the last elt.
1299 } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base);
1300 // TODO: Next, find out which base index is the most common, pull it out.
1301 }
1302
1303 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1304 // different starting values, into different PHIs.
1305}
1306
1307/// FindIVForUser - If Cond has an operand that is an expression of an IV,
1308/// set the IV user and stride information and return true, otherwise return
1309/// false.
1310bool LoopStrengthReduce::FindIVForUser(ICmpInst *Cond, IVStrideUse *&CondUse,
1311 const SCEVHandle *&CondStride) {
1312 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
1313 ++Stride) {
1314 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1315 IVUsesByStride.find(StrideOrder[Stride]);
1316 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
1317
1318 for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
1319 E = SI->second.Users.end(); UI != E; ++UI)
1320 if (UI->User == Cond) {
1321 // NOTE: we could handle setcc instructions with multiple uses here, but
1322 // InstCombine does it as well for simple uses, it's not clear that it
1323 // occurs enough in real life to handle.
1324 CondUse = &*UI;
1325 CondStride = &SI->first;
1326 return true;
1327 }
1328 }
1329 return false;
1330}
1331
1332// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
1333// uses in the loop, look to see if we can eliminate some, in favor of using
1334// common indvars for the different uses.
1335void LoopStrengthReduce::OptimizeIndvars(Loop *L) {
1336 // TODO: implement optzns here.
1337
1338 // Finally, get the terminating condition for the loop if possible. If we
1339 // can, we want to change it to use a post-incremented version of its
1340 // induction variable, to allow coalescing the live ranges for the IV into
1341 // one register value.
1342 PHINode *SomePHI = cast<PHINode>(L->getHeader()->begin());
1343 BasicBlock *Preheader = L->getLoopPreheader();
1344 BasicBlock *LatchBlock =
1345 SomePHI->getIncomingBlock(SomePHI->getIncomingBlock(0) == Preheader);
1346 BranchInst *TermBr = dyn_cast<BranchInst>(LatchBlock->getTerminator());
1347 if (!TermBr || TermBr->isUnconditional() ||
1348 !isa<ICmpInst>(TermBr->getCondition()))
1349 return;
1350 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1351
1352 // Search IVUsesByStride to find Cond's IVUse if there is one.
1353 IVStrideUse *CondUse = 0;
1354 const SCEVHandle *CondStride = 0;
1355
1356 if (!FindIVForUser(Cond, CondUse, CondStride))
1357 return; // setcc doesn't use the IV.
1358
1359
1360 // It's possible for the setcc instruction to be anywhere in the loop, and
1361 // possible for it to have multiple users. If it is not immediately before
1362 // the latch block branch, move it.
1363 if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) {
1364 if (Cond->hasOneUse()) { // Condition has a single use, just move it.
1365 Cond->moveBefore(TermBr);
1366 } else {
1367 // Otherwise, clone the terminating condition and insert into the loopend.
1368 Cond = cast<ICmpInst>(Cond->clone());
1369 Cond->setName(L->getHeader()->getName() + ".termcond");
1370 LatchBlock->getInstList().insert(TermBr, Cond);
1371
1372 // Clone the IVUse, as the old use still exists!
1373 IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
1374 CondUse->OperandValToReplace);
1375 CondUse = &IVUsesByStride[*CondStride].Users.back();
1376 }
1377 }
1378
1379 // If we get to here, we know that we can transform the setcc instruction to
1380 // use the post-incremented version of the IV, allowing us to coalesce the
1381 // live ranges for the IV correctly.
1382 CondUse->Offset = SCEV::getMinusSCEV(CondUse->Offset, *CondStride);
1383 CondUse->isUseOfPostIncrementedValue = true;
1384}
1385
1386namespace {
1387 // Constant strides come first which in turns are sorted by their absolute
1388 // values. If absolute values are the same, then positive strides comes first.
1389 // e.g.
1390 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1391 struct StrideCompare {
1392 bool operator()(const SCEVHandle &LHS, const SCEVHandle &RHS) {
1393 SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS);
1394 SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
1395 if (LHSC && RHSC) {
1396 int64_t LV = LHSC->getValue()->getSExtValue();
1397 int64_t RV = RHSC->getValue()->getSExtValue();
1398 uint64_t ALV = (LV < 0) ? -LV : LV;
1399 uint64_t ARV = (RV < 0) ? -RV : RV;
1400 if (ALV == ARV)
1401 return LV > RV;
1402 else
1403 return ALV < ARV;
1404 }
1405 return (LHSC && !RHSC);
1406 }
1407 };
1408}
1409
1410bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
1411
1412 LI = &getAnalysis<LoopInfo>();
1413 DT = &getAnalysis<DominatorTree>();
1414 SE = &getAnalysis<ScalarEvolution>();
1415 TD = &getAnalysis<TargetData>();
1416 UIntPtrTy = TD->getIntPtrType();
1417
1418 // Find all uses of induction variables in this loop, and catagorize
1419 // them by stride. Start by finding all of the PHI nodes in the header for
1420 // this loop. If they are induction variables, inspect their uses.
1421 std::set<Instruction*> Processed; // Don't reprocess instructions.
1422 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
1423 AddUsersIfInteresting(I, L, Processed);
1424
1425 // If we have nothing to do, return.
1426 if (IVUsesByStride.empty()) return false;
1427
1428 // Optimize induction variables. Some indvar uses can be transformed to use
1429 // strides that will be needed for other purposes. A common example of this
1430 // is the exit test for the loop, which can often be rewritten to use the
1431 // computation of some other indvar to decide when to terminate the loop.
1432 OptimizeIndvars(L);
1433
1434
1435 // FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
1436 // doing computation in byte values, promote to 32-bit values if safe.
1437
1438 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
1439 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
1440 // codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. Need
1441 // to be careful that IV's are all the same type. Only works for intptr_t
1442 // indvars.
1443
1444 // If we only have one stride, we can more aggressively eliminate some things.
1445 bool HasOneStride = IVUsesByStride.size() == 1;
1446
1447#ifndef NDEBUG
1448 DOUT << "\nLSR on ";
1449 DEBUG(L->dump());
1450#endif
1451
1452 // IVsByStride keeps IVs for one particular loop.
1453 IVsByStride.clear();
1454
1455 // Sort the StrideOrder so we process larger strides first.
1456 std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare());
1457
1458 // Note: this processes each stride/type pair individually. All users passed
1459 // into StrengthReduceStridedIVUsers have the same type AND stride. Also,
1460 // node that we iterate over IVUsesByStride indirectly by using StrideOrder.
1461 // This extra layer of indirection makes the ordering of strides deterministic
1462 // - not dependent on map order.
1463 for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
1464 std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
1465 IVUsesByStride.find(StrideOrder[Stride]);
1466 assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
1467 StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
1468 }
1469
1470 // Clean up after ourselves
1471 if (!DeadInsts.empty()) {
1472 DeleteTriviallyDeadInstructions(DeadInsts);
1473
1474 BasicBlock::iterator I = L->getHeader()->begin();
1475 PHINode *PN;
1476 while ((PN = dyn_cast<PHINode>(I))) {
1477 ++I; // Preincrement iterator to avoid invalidating it when deleting PN.
1478
1479 // At this point, we know that we have killed one or more GEP
1480 // instructions. It is worth checking to see if the cann indvar is also
1481 // dead, so that we can remove it as well. The requirements for the cann
1482 // indvar to be considered dead are:
1483 // 1. the cann indvar has one use
1484 // 2. the use is an add instruction
1485 // 3. the add has one use
1486 // 4. the add is used by the cann indvar
1487 // If all four cases above are true, then we can remove both the add and
1488 // the cann indvar.
1489 // FIXME: this needs to eliminate an induction variable even if it's being
1490 // compared against some value to decide loop termination.
1491 if (PN->hasOneUse()) {
1492 Instruction *BO = dyn_cast<Instruction>(*PN->use_begin());
1493 if (BO && (isa<BinaryOperator>(BO) || isa<CmpInst>(BO))) {
1494 if (BO->hasOneUse() && PN == *(BO->use_begin())) {
1495 DeadInsts.insert(BO);
1496 // Break the cycle, then delete the PHI.
1497 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1498 SE->deleteValueFromRecords(PN);
1499 PN->eraseFromParent();
1500 }
1501 }
1502 }
1503 }
1504 DeleteTriviallyDeadInstructions(DeadInsts);
1505 }
1506
1507 CastedPointers.clear();
1508 IVUsesByStride.clear();
1509 StrideOrder.clear();
1510 return false;
1511}