blob: 145c19f3e5ee231ce8ff3afc0aadcf95a1974238 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher6c7e8a02009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencer3921c742004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling987e7eb2009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling5e721d72010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling55ae5152010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling987e7eb2009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner5a2d8752009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling987e7eb2009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
Bill Wendlingf7f06102011-10-11 06:41:28 +000038 <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
Bill Wendling987e7eb2009-07-20 02:41:50 +000039 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Patelcd1fd252010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman556ca272009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Eli Friedman5b60e1b2011-07-20 21:35:53 +000056 <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
Eli Friedmanff030482011-07-28 21:48:00 +000057 <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000058 </ol>
59 </li>
Chris Lattner00950542001-06-06 20:29:01 +000060 <li><a href="#typesystem">Type System</a>
61 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000062 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +000063 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000064 <ol>
Nick Lewyckyec38da42009-09-27 00:45:11 +000065 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner4f69f462008-01-04 04:32:38 +000066 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen21fe99b2010-10-01 00:48:59 +000067 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner4f69f462008-01-04 04:32:38 +000068 <li><a href="#t_void">Void Type</a></li>
69 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000070 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </ol>
72 </li>
Chris Lattner00950542001-06-06 20:29:01 +000073 <li><a href="#t_derived">Derived Types</a>
74 <ol>
Chris Lattnerfdfeb692010-02-12 20:49:41 +000075 <li><a href="#t_aggregate">Aggregate Types</a>
76 <ol>
77 <li><a href="#t_array">Array Type</a></li>
78 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattner628ed392011-07-23 19:59:08 +000079 <li><a href="#t_opaque">Opaque Structure Types</a></li>
Chris Lattnerfdfeb692010-02-12 20:49:41 +000080 <li><a href="#t_vector">Vector Type</a></li>
81 </ol>
82 </li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#t_function">Function Type</a></li>
84 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 </ol>
86 </li>
87 </ol>
88 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000090 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanfff6c532010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattnerf9d078e2009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000098 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000099 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Patelcd1fd252010-01-11 19:35:55 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +0000104 </ol>
105 </li>
Chris Lattner857755c2009-07-20 05:55:19 +0000106 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
107 <ol>
108 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner401e10c2009-07-20 06:14:25 +0000109 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
110 Global Variable</a></li>
Chris Lattner857755c2009-07-20 05:55:19 +0000111 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
112 Global Variable</a></li>
113 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
114 Global Variable</a></li>
115 </ol>
116 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000117 <li><a href="#instref">Instruction Reference</a>
118 <ol>
119 <li><a href="#terminators">Terminator Instructions</a>
120 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000121 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
122 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000123 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerab21db72009-10-28 00:19:10 +0000124 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000125 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000126 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Bill Wendlingdccc03b2011-07-31 06:30:59 +0000127 <li><a href="#i_resume">'<tt>resume</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +0000128 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000129 </ol>
130 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000131 <li><a href="#binaryops">Binary Operations</a>
132 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000133 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000134 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000135 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000136 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000137 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000138 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +0000139 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
140 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
141 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000142 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
143 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
144 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000145 </ol>
146 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000147 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
148 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000149 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
150 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
151 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000152 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000154 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000155 </ol>
156 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000157 <li><a href="#vectorops">Vector Operations</a>
158 <ol>
159 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
160 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
161 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000162 </ol>
163 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000164 <li><a href="#aggregateops">Aggregate Operations</a>
165 <ol>
166 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
167 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
168 </ol>
169 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000170 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000171 <ol>
Eli Friedmanff030482011-07-28 21:48:00 +0000172 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
173 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
174 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
175 <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
176 <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
177 <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000178 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000179 </ol>
180 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000181 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000182 <ol>
183 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
184 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
185 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
186 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
187 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000188 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
189 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
190 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
191 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000192 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
193 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000194 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000195 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000196 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000197 <li><a href="#otherops">Other Operations</a>
198 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000199 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
200 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000201 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000202 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000203 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000204 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Bill Wendlingf78faf82011-08-02 21:52:38 +0000205 <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000206 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000207 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000208 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000209 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000210 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000211 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000212 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
213 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000214 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
215 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
216 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000217 </ol>
218 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000219 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
220 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000221 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
222 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
223 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000224 </ol>
225 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000226 <li><a href="#int_codegen">Code Generator Intrinsics</a>
227 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000228 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
229 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
230 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
231 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
232 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
233 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohman31f1af12010-05-26 21:56:15 +0000234 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000235 </ol>
236 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000237 <li><a href="#int_libc">Standard C Library Intrinsics</a>
238 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000239 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
241 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
242 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
243 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000244 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
245 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
246 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohman08b280b2011-05-27 00:36:31 +0000247 <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
248 <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
Cameron Zwarich33390842011-07-08 21:39:21 +0000249 <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000250 </ol>
251 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000252 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000253 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000254 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000255 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
256 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
257 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000258 </ol>
259 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000260 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
261 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000262 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
263 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
264 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
265 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
266 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000267 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000268 </ol>
269 </li>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +0000270 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
271 <ol>
Chris Lattner82c3dc62010-03-14 23:03:31 +0000272 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
273 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +0000274 </ol>
275 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000276 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000277 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands4a544a72011-09-06 13:37:06 +0000278 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000279 <ol>
280 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands4a544a72011-09-06 13:37:06 +0000281 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000282 </ol>
283 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000284 <li><a href="#int_atomics">Atomic intrinsics</a>
285 <ol>
286 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
287 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
288 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
289 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
290 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
291 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
292 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
293 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
294 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
295 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
296 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
297 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
298 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
299 </ol>
300 </li>
Nick Lewyckycc271862009-10-13 07:03:23 +0000301 <li><a href="#int_memorymarkers">Memory Use Markers</a>
302 <ol>
303 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
304 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
305 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
306 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
307 </ol>
308 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000309 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000310 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000311 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000312 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000313 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000314 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000315 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000316 '<tt>llvm.trap</tt>' Intrinsic</a></li>
317 <li><a href="#int_stackprotector">
318 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher0e671492009-11-30 08:03:53 +0000319 <li><a href="#int_objectsize">
320 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000321 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000322 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000323 </ol>
324 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000325</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000326
327<div class="doc_author">
328 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
329 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000330</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000331
Chris Lattner00950542001-06-06 20:29:01 +0000332<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000333<h2><a name="abstract">Abstract</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +0000334<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000335
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000336<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000337
338<p>This document is a reference manual for the LLVM assembly language. LLVM is
339 a Static Single Assignment (SSA) based representation that provides type
340 safety, low-level operations, flexibility, and the capability of representing
341 'all' high-level languages cleanly. It is the common code representation
342 used throughout all phases of the LLVM compilation strategy.</p>
343
Misha Brukman9d0919f2003-11-08 01:05:38 +0000344</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000345
Chris Lattner00950542001-06-06 20:29:01 +0000346<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000347<h2><a name="introduction">Introduction</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +0000348<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000349
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000350<div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000351
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000352<p>The LLVM code representation is designed to be used in three different forms:
353 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
354 for fast loading by a Just-In-Time compiler), and as a human readable
355 assembly language representation. This allows LLVM to provide a powerful
356 intermediate representation for efficient compiler transformations and
357 analysis, while providing a natural means to debug and visualize the
358 transformations. The three different forms of LLVM are all equivalent. This
359 document describes the human readable representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000360
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000361<p>The LLVM representation aims to be light-weight and low-level while being
362 expressive, typed, and extensible at the same time. It aims to be a
363 "universal IR" of sorts, by being at a low enough level that high-level ideas
364 may be cleanly mapped to it (similar to how microprocessors are "universal
365 IR's", allowing many source languages to be mapped to them). By providing
366 type information, LLVM can be used as the target of optimizations: for
367 example, through pointer analysis, it can be proven that a C automatic
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000368 variable is never accessed outside of the current function, allowing it to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000369 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000370
Chris Lattner00950542001-06-06 20:29:01 +0000371<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000372<h4>
373 <a name="wellformed">Well-Formedness</a>
374</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +0000375
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000376<div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000377
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000378<p>It is important to note that this document describes 'well formed' LLVM
379 assembly language. There is a difference between what the parser accepts and
380 what is considered 'well formed'. For example, the following instruction is
381 syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000382
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000383<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000385</pre>
386
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000387<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
388 LLVM infrastructure provides a verification pass that may be used to verify
389 that an LLVM module is well formed. This pass is automatically run by the
390 parser after parsing input assembly and by the optimizer before it outputs
391 bitcode. The violations pointed out by the verifier pass indicate bugs in
392 transformation passes or input to the parser.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000393
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000394</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000395
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000396</div>
397
Chris Lattnercc689392007-10-03 17:34:29 +0000398<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000399
Chris Lattner00950542001-06-06 20:29:01 +0000400<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000401<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner00950542001-06-06 20:29:01 +0000402<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000403
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000404<div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000405
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000406<p>LLVM identifiers come in two basic types: global and local. Global
407 identifiers (functions, global variables) begin with the <tt>'@'</tt>
408 character. Local identifiers (register names, types) begin with
409 the <tt>'%'</tt> character. Additionally, there are three different formats
410 for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000411
Chris Lattner00950542001-06-06 20:29:01 +0000412<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000413 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000414 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
415 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
416 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
417 other characters in their names can be surrounded with quotes. Special
418 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
419 ASCII code for the character in hexadecimal. In this way, any character
420 can be used in a name value, even quotes themselves.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000421
Reid Spencer2c452282007-08-07 14:34:28 +0000422 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000423 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424
Reid Spencercc16dc32004-12-09 18:02:53 +0000425 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000426 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000427</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428
Reid Spencer2c452282007-08-07 14:34:28 +0000429<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000430 don't need to worry about name clashes with reserved words, and the set of
431 reserved words may be expanded in the future without penalty. Additionally,
432 unnamed identifiers allow a compiler to quickly come up with a temporary
433 variable without having to avoid symbol table conflicts.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000434
Chris Lattner261efe92003-11-25 01:02:51 +0000435<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000436 languages. There are keywords for different opcodes
437 ('<tt><a href="#i_add">add</a></tt>',
438 '<tt><a href="#i_bitcast">bitcast</a></tt>',
439 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
440 ('<tt><a href="#t_void">void</a></tt>',
441 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
442 reserved words cannot conflict with variable names, because none of them
443 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000444
445<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000446 '<tt>%X</tt>' by 8:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000447
Misha Brukman9d0919f2003-11-08 01:05:38 +0000448<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000449
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000450<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000451%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000452</pre>
453
Misha Brukman9d0919f2003-11-08 01:05:38 +0000454<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000455
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000456<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000457%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000458</pre>
459
Misha Brukman9d0919f2003-11-08 01:05:38 +0000460<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000462<pre class="doc_code">
Gabor Greifec58f752009-10-28 13:05:07 +0000463%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
464%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000465%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000466</pre>
467
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000468<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
469 lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000470
Chris Lattner00950542001-06-06 20:29:01 +0000471<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000472 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000473 line.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000474
475 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000476 assigned to a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000477
Misha Brukman9d0919f2003-11-08 01:05:38 +0000478 <li>Unnamed temporaries are numbered sequentially</li>
479</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000481<p>It also shows a convention that we follow in this document. When
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000482 demonstrating instructions, we will follow an instruction with a comment that
483 defines the type and name of value produced. Comments are shown in italic
484 text.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000485
Misha Brukman9d0919f2003-11-08 01:05:38 +0000486</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000487
488<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000489<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattnerfa730212004-12-09 16:11:40 +0000490<!-- *********************************************************************** -->
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000491<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000492<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000493<h3>
494 <a name="modulestructure">Module Structure</a>
495</h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000496
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000497<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000498
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000499<p>LLVM programs are composed of "Module"s, each of which is a translation unit
500 of the input programs. Each module consists of functions, global variables,
501 and symbol table entries. Modules may be combined together with the LLVM
502 linker, which merges function (and global variable) definitions, resolves
503 forward declarations, and merges symbol table entries. Here is an example of
504 the "hello world" module:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000505
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000506<pre class="doc_code">
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000507<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckydb9cd762011-01-29 01:09:53 +0000508<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattnerfa730212004-12-09 16:11:40 +0000509
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000510<i>; External declaration of the puts function</i>&nbsp;
511<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattnerfa730212004-12-09 16:11:40 +0000512
513<i>; Definition of main function</i>
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000514define i32 @main() { <i>; i32()* </i>&nbsp;
515 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
516 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattnerfa730212004-12-09 16:11:40 +0000517
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000518 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
519 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
520 <a href="#i_ret">ret</a> i32 0&nbsp;
521}
Devang Patelcd1fd252010-01-11 19:35:55 +0000522
523<i>; Named metadata</i>
524!1 = metadata !{i32 41}
525!foo = !{!1, null}
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000526</pre>
Chris Lattnerfa730212004-12-09 16:11:40 +0000527
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000528<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Patelcd1fd252010-01-11 19:35:55 +0000529 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000530 a <a href="#functionstructure">function definition</a> for
Devang Patelcd1fd252010-01-11 19:35:55 +0000531 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
532 "<tt>foo"</tt>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000533
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000534<p>In general, a module is made up of a list of global values, where both
535 functions and global variables are global values. Global values are
536 represented by a pointer to a memory location (in this case, a pointer to an
537 array of char, and a pointer to a function), and have one of the
538 following <a href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000539
Chris Lattnere5d947b2004-12-09 16:36:40 +0000540</div>
541
542<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000543<h3>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000544 <a name="linkage">Linkage Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000545</h3>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000546
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000547<div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000548
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000549<p>All Global Variables and Functions have one of the following types of
550 linkage:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000551
552<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000553 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling5e721d72010-07-01 21:55:59 +0000554 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
555 by objects in the current module. In particular, linking code into a
556 module with an private global value may cause the private to be renamed as
557 necessary to avoid collisions. Because the symbol is private to the
558 module, all references can be updated. This doesn't show up in any symbol
559 table in the object file.</dd>
Rafael Espindolabb46f522009-01-15 20:18:42 +0000560
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000561 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling5e721d72010-07-01 21:55:59 +0000562 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
563 assembler and evaluated by the linker. Unlike normal strong symbols, they
564 are removed by the linker from the final linked image (executable or
565 dynamic library).</dd>
566
567 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
568 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
569 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
570 linker. The symbols are removed by the linker from the final linked image
571 (executable or dynamic library).</dd>
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000572
Bill Wendling55ae5152010-08-20 22:05:50 +0000573 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
574 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
575 of the object is not taken. For instance, functions that had an inline
576 definition, but the compiler decided not to inline it. Note,
577 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
578 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
579 visibility. The symbols are removed by the linker from the final linked
580 image (executable or dynamic library).</dd>
581
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000582 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling07d31772010-06-29 22:34:52 +0000583 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000584 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
585 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000586
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000587 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000588 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000589 into the object file corresponding to the LLVM module. They exist to
590 allow inlining and other optimizations to take place given knowledge of
591 the definition of the global, which is known to be somewhere outside the
592 module. Globals with <tt>available_externally</tt> linkage are allowed to
593 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
594 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000595
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000596 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattner4887bd82007-01-14 06:51:48 +0000597 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner873187c2010-01-09 19:15:14 +0000598 the same name when linkage occurs. This can be used to implement
599 some forms of inline functions, templates, or other code which must be
600 generated in each translation unit that uses it, but where the body may
601 be overridden with a more definitive definition later. Unreferenced
602 <tt>linkonce</tt> globals are allowed to be discarded. Note that
603 <tt>linkonce</tt> linkage does not actually allow the optimizer to
604 inline the body of this function into callers because it doesn't know if
605 this definition of the function is the definitive definition within the
606 program or whether it will be overridden by a stronger definition.
607 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
608 linkage.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000609
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000610 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattner26d054d2009-08-05 05:21:07 +0000611 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
612 <tt>linkonce</tt> linkage, except that unreferenced globals with
613 <tt>weak</tt> linkage may not be discarded. This is used for globals that
614 are declared "weak" in C source code.</dd>
615
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000616 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattner26d054d2009-08-05 05:21:07 +0000617 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
618 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
619 global scope.
620 Symbols with "<tt>common</tt>" linkage are merged in the same way as
621 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattnercd81f5d2009-08-05 05:41:44 +0000622 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher6c7e8a02009-12-05 02:46:03 +0000623 must have a zero initializer, and may not be marked '<a
Chris Lattnercd81f5d2009-08-05 05:41:44 +0000624 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
625 have common linkage.</dd>
Chris Lattner26d054d2009-08-05 05:21:07 +0000626
Chris Lattnere5d947b2004-12-09 16:36:40 +0000627
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000628 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000629 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000630 pointer to array type. When two global variables with appending linkage
631 are linked together, the two global arrays are appended together. This is
632 the LLVM, typesafe, equivalent of having the system linker append together
633 "sections" with identical names when .o files are linked.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000634
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000635 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000636 <dd>The semantics of this linkage follow the ELF object file model: the symbol
637 is weak until linked, if not linked, the symbol becomes null instead of
638 being an undefined reference.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000639
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000640 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
641 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000642 <dd>Some languages allow differing globals to be merged, such as two functions
643 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling5e721d72010-07-01 21:55:59 +0000644 that only equivalent globals are ever merged (the "one definition rule"
645 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000646 and <tt>weak_odr</tt> linkage types to indicate that the global will only
647 be merged with equivalent globals. These linkage types are otherwise the
648 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands667d4b82009-03-07 15:45:40 +0000649
Bill Wendlingf7f06102011-10-11 06:41:28 +0000650 <dt><tt><b><a name="linkage_external">external</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000651 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000652 visible, meaning that it participates in linkage and can be used to
653 resolve external symbol references.</dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000654</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000655
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000656<p>The next two types of linkage are targeted for Microsoft Windows platform
657 only. They are designed to support importing (exporting) symbols from (to)
658 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000659
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000660<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000661 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000662 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000663 or variable via a global pointer to a pointer that is set up by the DLL
664 exporting the symbol. On Microsoft Windows targets, the pointer name is
665 formed by combining <code>__imp_</code> and the function or variable
666 name.</dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000667
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000668 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000669 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000670 pointer to a pointer in a DLL, so that it can be referenced with the
671 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
672 name is formed by combining <code>__imp_</code> and the function or
673 variable name.</dd>
Chris Lattnerfa730212004-12-09 16:11:40 +0000674</dl>
675
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000676<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
677 another module defined a "<tt>.LC0</tt>" variable and was linked with this
678 one, one of the two would be renamed, preventing a collision. Since
679 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
680 declarations), they are accessible outside of the current module.</p>
681
682<p>It is illegal for a function <i>declaration</i> to have any linkage type
Bill Wendlingf7f06102011-10-11 06:41:28 +0000683 other than <tt>external</tt>, <tt>dllimport</tt>
684 or <tt>extern_weak</tt>.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000685
Duncan Sands667d4b82009-03-07 15:45:40 +0000686<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000687 or <tt>weak_odr</tt> linkages.</p>
688
Chris Lattnerfa730212004-12-09 16:11:40 +0000689</div>
690
691<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000692<h3>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000693 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000694</h3>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000695
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000696<div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000697
698<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000699 and <a href="#i_invoke">invokes</a> can all have an optional calling
700 convention specified for the call. The calling convention of any pair of
701 dynamic caller/callee must match, or the behavior of the program is
702 undefined. The following calling conventions are supported by LLVM, and more
703 may be added in the future:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000704
705<dl>
706 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000707 <dd>This calling convention (the default if no other calling convention is
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000708 specified) matches the target C calling conventions. This calling
709 convention supports varargs function calls and tolerates some mismatch in
710 the declared prototype and implemented declaration of the function (as
711 does normal C).</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000712
713 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000714 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000715 (e.g. by passing things in registers). This calling convention allows the
716 target to use whatever tricks it wants to produce fast code for the
717 target, without having to conform to an externally specified ABI
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +0000718 (Application Binary Interface).
719 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattner29689432010-03-11 00:22:57 +0000720 when this or the GHC convention is used.</a> This calling convention
721 does not support varargs and requires the prototype of all callees to
722 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000723
724 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000725 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000726 as possible under the assumption that the call is not commonly executed.
727 As such, these calls often preserve all registers so that the call does
728 not break any live ranges in the caller side. This calling convention
729 does not support varargs and requires the prototype of all callees to
730 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000731
Chris Lattner29689432010-03-11 00:22:57 +0000732 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
733 <dd>This calling convention has been implemented specifically for use by the
734 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
735 It passes everything in registers, going to extremes to achieve this by
736 disabling callee save registers. This calling convention should not be
737 used lightly but only for specific situations such as an alternative to
738 the <em>register pinning</em> performance technique often used when
739 implementing functional programming languages.At the moment only X86
740 supports this convention and it has the following limitations:
741 <ul>
742 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
743 floating point types are supported.</li>
744 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
745 6 floating point parameters.</li>
746 </ul>
747 This calling convention supports
748 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
749 requires both the caller and callee are using it.
750 </dd>
751
Chris Lattnercfe6b372005-05-07 01:46:40 +0000752 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000753 <dd>Any calling convention may be specified by number, allowing
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000754 target-specific calling conventions to be used. Target specific calling
755 conventions start at 64.</dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000756</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000757
758<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000759 support Pascal conventions or any other well-known target-independent
760 convention.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000761
762</div>
763
764<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000765<h3>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000766 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000767</h3>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000768
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000769<div>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000770
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000771<p>All Global Variables and Functions have one of the following visibility
772 styles:</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000773
774<dl>
775 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000776 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000777 that the declaration is visible to other modules and, in shared libraries,
778 means that the declared entity may be overridden. On Darwin, default
779 visibility means that the declaration is visible to other modules. Default
780 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000781
782 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000783 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000784 object if they are in the same shared object. Usually, hidden visibility
785 indicates that the symbol will not be placed into the dynamic symbol
786 table, so no other module (executable or shared library) can reference it
787 directly.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000788
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000789 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000790 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000791 the dynamic symbol table, but that references within the defining module
792 will bind to the local symbol. That is, the symbol cannot be overridden by
793 another module.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000794</dl>
795
796</div>
797
798<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000799<h3>
Chris Lattnere7886e42009-01-11 20:53:49 +0000800 <a name="namedtypes">Named Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000801</h3>
Chris Lattnere7886e42009-01-11 20:53:49 +0000802
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000803<div>
Chris Lattnere7886e42009-01-11 20:53:49 +0000804
805<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000806 it easier to read the IR and make the IR more condensed (particularly when
807 recursive types are involved). An example of a name specification is:</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000808
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000809<pre class="doc_code">
Chris Lattnere7886e42009-01-11 20:53:49 +0000810%mytype = type { %mytype*, i32 }
811</pre>
Chris Lattnere7886e42009-01-11 20:53:49 +0000812
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000813<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattnerdc65f222010-08-17 23:26:04 +0000814 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000815 is expected with the syntax "%mytype".</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000816
817<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000818 and that you can therefore specify multiple names for the same type. This
819 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
820 uses structural typing, the name is not part of the type. When printing out
821 LLVM IR, the printer will pick <em>one name</em> to render all types of a
822 particular shape. This means that if you have code where two different
823 source types end up having the same LLVM type, that the dumper will sometimes
824 print the "wrong" or unexpected type. This is an important design point and
825 isn't going to change.</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000826
827</div>
828
Chris Lattnere7886e42009-01-11 20:53:49 +0000829<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000830<h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000831 <a name="globalvars">Global Variables</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000832</h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000833
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000834<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000835
Chris Lattner3689a342005-02-12 19:30:21 +0000836<p>Global variables define regions of memory allocated at compilation time
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000837 instead of run-time. Global variables may optionally be initialized, may
838 have an explicit section to be placed in, and may have an optional explicit
839 alignment specified. A variable may be defined as "thread_local", which
840 means that it will not be shared by threads (each thread will have a
841 separated copy of the variable). A variable may be defined as a global
842 "constant," which indicates that the contents of the variable
843 will <b>never</b> be modified (enabling better optimization, allowing the
844 global data to be placed in the read-only section of an executable, etc).
845 Note that variables that need runtime initialization cannot be marked
846 "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000847
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000848<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
849 constant, even if the final definition of the global is not. This capability
850 can be used to enable slightly better optimization of the program, but
851 requires the language definition to guarantee that optimizations based on the
852 'constantness' are valid for the translation units that do not include the
853 definition.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000854
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000855<p>As SSA values, global variables define pointer values that are in scope
856 (i.e. they dominate) all basic blocks in the program. Global variables
857 always define a pointer to their "content" type because they describe a
858 region of memory, and all memory objects in LLVM are accessed through
859 pointers.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000860
Rafael Espindolabea46262011-01-08 16:42:36 +0000861<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
862 that the address is not significant, only the content. Constants marked
Rafael Espindolaa5eaa862011-01-15 08:20:57 +0000863 like this can be merged with other constants if they have the same
864 initializer. Note that a constant with significant address <em>can</em>
865 be merged with a <tt>unnamed_addr</tt> constant, the result being a
866 constant whose address is significant.</p>
Rafael Espindolabea46262011-01-08 16:42:36 +0000867
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000868<p>A global variable may be declared to reside in a target-specific numbered
869 address space. For targets that support them, address spaces may affect how
870 optimizations are performed and/or what target instructions are used to
871 access the variable. The default address space is zero. The address space
872 qualifier must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000873
Chris Lattner88f6c462005-11-12 00:45:07 +0000874<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000875 supports it, it will emit globals to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000876
Chris Lattnerce99fa92010-04-28 00:13:42 +0000877<p>An explicit alignment may be specified for a global, which must be a power
878 of 2. If not present, or if the alignment is set to zero, the alignment of
879 the global is set by the target to whatever it feels convenient. If an
880 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner2d4b8ee2010-04-28 00:31:12 +0000881 alignment. Targets and optimizers are not allowed to over-align the global
882 if the global has an assigned section. In this case, the extra alignment
883 could be observable: for example, code could assume that the globals are
884 densely packed in their section and try to iterate over them as an array,
885 alignment padding would break this iteration.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000886
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000887<p>For example, the following defines a global in a numbered address space with
888 an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000889
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000890<pre class="doc_code">
Dan Gohman398873c2009-01-11 00:40:00 +0000891@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000892</pre>
893
Chris Lattnerfa730212004-12-09 16:11:40 +0000894</div>
895
896
897<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000898<h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000899 <a name="functionstructure">Functions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000900</h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000901
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000902<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000903
Dan Gohmanb55a1ee2010-03-01 17:41:39 +0000904<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000905 optional <a href="#linkage">linkage type</a>, an optional
906 <a href="#visibility">visibility style</a>, an optional
Rafael Espindolabea46262011-01-08 16:42:36 +0000907 <a href="#callingconv">calling convention</a>,
908 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000909 <a href="#paramattrs">parameter attribute</a> for the return type, a function
910 name, a (possibly empty) argument list (each with optional
911 <a href="#paramattrs">parameter attributes</a>), optional
912 <a href="#fnattrs">function attributes</a>, an optional section, an optional
913 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
914 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000915
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000916<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
917 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher6c7e8a02009-12-05 02:46:03 +0000918 <a href="#visibility">visibility style</a>, an optional
Rafael Espindolabea46262011-01-08 16:42:36 +0000919 <a href="#callingconv">calling convention</a>,
920 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000921 <a href="#paramattrs">parameter attribute</a> for the return type, a function
922 name, a possibly empty list of arguments, an optional alignment, and an
923 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000924
Chris Lattnerd3eda892008-08-05 18:29:16 +0000925<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000926 (Control Flow Graph) for the function. Each basic block may optionally start
927 with a label (giving the basic block a symbol table entry), contains a list
928 of instructions, and ends with a <a href="#terminators">terminator</a>
929 instruction (such as a branch or function return).</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000930
Chris Lattner4a3c9012007-06-08 16:52:14 +0000931<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000932 executed on entrance to the function, and it is not allowed to have
933 predecessor basic blocks (i.e. there can not be any branches to the entry
934 block of a function). Because the block can have no predecessors, it also
935 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000936
Chris Lattner88f6c462005-11-12 00:45:07 +0000937<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000938 supports it, it will emit functions to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000939
Chris Lattner2cbdc452005-11-06 08:02:57 +0000940<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000941 the alignment is set to zero, the alignment of the function is set by the
942 target to whatever it feels convenient. If an explicit alignment is
943 specified, the function is forced to have at least that much alignment. All
944 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000945
Rafael Espindolabea46262011-01-08 16:42:36 +0000946<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
947 be significant and two identical functions can be merged</p>.
948
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000949<h5>Syntax:</h5>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000950<pre class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000951define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000952 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
953 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
954 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
955 [<a href="#gc">gc</a>] { ... }
956</pre>
Devang Patel307e8ab2008-10-07 17:48:33 +0000957
Chris Lattnerfa730212004-12-09 16:11:40 +0000958</div>
959
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000960<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000961<h3>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000962 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000963</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000964
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000965<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000966
967<p>Aliases act as "second name" for the aliasee value (which can be either
968 function, global variable, another alias or bitcast of global value). Aliases
969 may have an optional <a href="#linkage">linkage type</a>, and an
970 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000971
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000972<h5>Syntax:</h5>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000973<pre class="doc_code">
Duncan Sands0b23ac12008-09-12 20:48:21 +0000974@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000975</pre>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000976
977</div>
978
Chris Lattner4e9aba72006-01-23 23:23:47 +0000979<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000980<h3>
Devang Patelcd1fd252010-01-11 19:35:55 +0000981 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000982</h3>
Devang Patelcd1fd252010-01-11 19:35:55 +0000983
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000984<div>
Devang Patelcd1fd252010-01-11 19:35:55 +0000985
Chris Lattnere6a5ddd2010-01-15 21:50:19 +0000986<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman872814a2010-07-21 18:54:18 +0000987 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnere6a5ddd2010-01-15 21:50:19 +0000988 a named metadata.</p>
Devang Patelcd1fd252010-01-11 19:35:55 +0000989
990<h5>Syntax:</h5>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000991<pre class="doc_code">
Dan Gohman872814a2010-07-21 18:54:18 +0000992; Some unnamed metadata nodes, which are referenced by the named metadata.
993!0 = metadata !{metadata !"zero"}
Devang Patelcd1fd252010-01-11 19:35:55 +0000994!1 = metadata !{metadata !"one"}
Dan Gohman872814a2010-07-21 18:54:18 +0000995!2 = metadata !{metadata !"two"}
Dan Gohman1005bc52010-07-13 19:48:13 +0000996; A named metadata.
Dan Gohman872814a2010-07-21 18:54:18 +0000997!name = !{!0, !1, !2}
Devang Patelcd1fd252010-01-11 19:35:55 +0000998</pre>
Devang Patelcd1fd252010-01-11 19:35:55 +0000999
1000</div>
1001
1002<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001003<h3>
1004 <a name="paramattrs">Parameter Attributes</a>
1005</h3>
Reid Spencerca86e162006-12-31 07:07:53 +00001006
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001007<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001008
1009<p>The return type and each parameter of a function type may have a set of
1010 <i>parameter attributes</i> associated with them. Parameter attributes are
1011 used to communicate additional information about the result or parameters of
1012 a function. Parameter attributes are considered to be part of the function,
1013 not of the function type, so functions with different parameter attributes
1014 can have the same function type.</p>
1015
1016<p>Parameter attributes are simple keywords that follow the type specified. If
1017 multiple parameter attributes are needed, they are space separated. For
1018 example:</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001019
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001020<pre class="doc_code">
Nick Lewyckyb6a7d252009-02-15 23:06:14 +00001021declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +00001022declare i32 @atoi(i8 zeroext)
1023declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001024</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001025
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001026<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1027 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +00001028
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001029<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner47507de2008-01-11 06:20:47 +00001030
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001031<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001032 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001033 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichebe81732011-03-16 22:20:18 +00001034 should be zero-extended to the extent required by the target's ABI (which
1035 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1036 parameter) or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001037
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001038 <dt><tt><b>signext</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001039 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich9e69ff92011-03-17 14:21:58 +00001040 should be sign-extended to the extent required by the target's ABI (which
1041 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1042 return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001043
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001044 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001045 <dd>This indicates that this parameter or return value should be treated in a
1046 special target-dependent fashion during while emitting code for a function
1047 call or return (usually, by putting it in a register as opposed to memory,
1048 though some targets use it to distinguish between two different kinds of
1049 registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001050
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001051 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnera6fd81d2010-11-20 23:49:06 +00001052 <dd><p>This indicates that the pointer parameter should really be passed by
1053 value to the function. The attribute implies that a hidden copy of the
1054 pointee
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001055 is made between the caller and the callee, so the callee is unable to
1056 modify the value in the callee. This attribute is only valid on LLVM
1057 pointer arguments. It is generally used to pass structs and arrays by
1058 value, but is also valid on pointers to scalars. The copy is considered
1059 to belong to the caller not the callee (for example,
1060 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1061 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnera6fd81d2010-11-20 23:49:06 +00001062 values.</p>
1063
1064 <p>The byval attribute also supports specifying an alignment with
1065 the align attribute. It indicates the alignment of the stack slot to
1066 form and the known alignment of the pointer specified to the call site. If
1067 the alignment is not specified, then the code generator makes a
1068 target-specific assumption.</p></dd>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001069
Dan Gohmanff235352010-07-02 23:18:08 +00001070 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001071 <dd>This indicates that the pointer parameter specifies the address of a
1072 structure that is the return value of the function in the source program.
1073 This pointer must be guaranteed by the caller to be valid: loads and
1074 stores to the structure may be assumed by the callee to not to trap. This
1075 may only be applied to the first parameter. This is not a valid attribute
1076 for return values. </dd>
1077
Dan Gohmanff235352010-07-02 23:18:08 +00001078 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohman1e109622010-07-02 18:41:32 +00001079 <dd>This indicates that pointer values
1080 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmanefca7f92010-07-02 23:46:54 +00001081 value do not alias pointer values which are not <i>based</i> on it,
1082 ignoring certain "irrelevant" dependencies.
1083 For a call to the parent function, dependencies between memory
1084 references from before or after the call and from those during the call
1085 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1086 return value used in that call.
Dan Gohman1e109622010-07-02 18:41:32 +00001087 The caller shares the responsibility with the callee for ensuring that
1088 these requirements are met.
1089 For further details, please see the discussion of the NoAlias response in
Dan Gohmanff70fe42010-07-06 15:26:33 +00001090 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1091<br>
John McCall191d4ee2010-07-06 21:07:14 +00001092 Note that this definition of <tt>noalias</tt> is intentionally
1093 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner211244a2010-07-06 20:51:35 +00001094 arguments, though it is slightly weaker.
Dan Gohmanff70fe42010-07-06 15:26:33 +00001095<br>
1096 For function return values, C99's <tt>restrict</tt> is not meaningful,
1097 while LLVM's <tt>noalias</tt> is.
1098 </dd>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001099
Dan Gohmanff235352010-07-02 23:18:08 +00001100 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001101 <dd>This indicates that the callee does not make any copies of the pointer
1102 that outlive the callee itself. This is not a valid attribute for return
1103 values.</dd>
1104
Dan Gohmanff235352010-07-02 23:18:08 +00001105 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001106 <dd>This indicates that the pointer parameter can be excised using the
1107 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1108 attribute for return values.</dd>
1109</dl>
Reid Spencerca86e162006-12-31 07:07:53 +00001110
Reid Spencerca86e162006-12-31 07:07:53 +00001111</div>
1112
1113<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001114<h3>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001115 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001116</h3>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001117
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001118<div>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001119
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001120<p>Each function may specify a garbage collector name, which is simply a
1121 string:</p>
1122
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001123<pre class="doc_code">
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001124define void @f() gc "name" { ... }
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001125</pre>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001126
1127<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001128 collector which will cause the compiler to alter its output in order to
1129 support the named garbage collection algorithm.</p>
1130
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001131</div>
1132
1133<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001134<h3>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001135 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001136</h3>
Devang Patelf8b94812008-09-04 23:05:13 +00001137
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001138<div>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001139
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001140<p>Function attributes are set to communicate additional information about a
1141 function. Function attributes are considered to be part of the function, not
1142 of the function type, so functions with different parameter attributes can
1143 have the same function type.</p>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001144
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001145<p>Function attributes are simple keywords that follow the type specified. If
1146 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001147
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001148<pre class="doc_code">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001149define void @f() noinline { ... }
1150define void @f() alwaysinline { ... }
1151define void @f() alwaysinline optsize { ... }
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001152define void @f() optsize { ... }
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001153</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001154
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001155<dl>
Charles Davis1e063d12010-02-12 00:31:15 +00001156 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1157 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1158 the backend should forcibly align the stack pointer. Specify the
1159 desired alignment, which must be a power of two, in parentheses.
1160
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001161 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001162 <dd>This attribute indicates that the inliner should attempt to inline this
1163 function into callers whenever possible, ignoring any active inlining size
1164 threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001165
Dan Gohman129bd562011-06-16 16:03:13 +00001166 <dt><tt><b>nonlazybind</b></tt></dt>
1167 <dd>This attribute suppresses lazy symbol binding for the function. This
1168 may make calls to the function faster, at the cost of extra program
1169 startup time if the function is not called during program startup.</dd>
1170
Jakob Stoklund Olesen570a4a52010-02-06 01:16:28 +00001171 <dt><tt><b>inlinehint</b></tt></dt>
1172 <dd>This attribute indicates that the source code contained a hint that inlining
1173 this function is desirable (such as the "inline" keyword in C/C++). It
1174 is just a hint; it imposes no requirements on the inliner.</dd>
1175
Nick Lewycky76ec37a2010-07-06 18:24:09 +00001176 <dt><tt><b>naked</b></tt></dt>
1177 <dd>This attribute disables prologue / epilogue emission for the function.
1178 This can have very system-specific consequences.</dd>
1179
1180 <dt><tt><b>noimplicitfloat</b></tt></dt>
1181 <dd>This attributes disables implicit floating point instructions.</dd>
1182
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001183 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001184 <dd>This attribute indicates that the inliner should never inline this
1185 function in any situation. This attribute may not be used together with
1186 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001187
Nick Lewycky76ec37a2010-07-06 18:24:09 +00001188 <dt><tt><b>noredzone</b></tt></dt>
1189 <dd>This attribute indicates that the code generator should not use a red
1190 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001191
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001192 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001193 <dd>This function attribute indicates that the function never returns
1194 normally. This produces undefined behavior at runtime if the function
1195 ever does dynamically return.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001196
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001197 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001198 <dd>This function attribute indicates that the function never returns with an
1199 unwind or exceptional control flow. If the function does unwind, its
1200 runtime behavior is undefined.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001201
Nick Lewycky76ec37a2010-07-06 18:24:09 +00001202 <dt><tt><b>optsize</b></tt></dt>
1203 <dd>This attribute suggests that optimization passes and code generator passes
1204 make choices that keep the code size of this function low, and otherwise
1205 do optimizations specifically to reduce code size.</dd>
1206
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001207 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001208 <dd>This attribute indicates that the function computes its result (or decides
1209 to unwind an exception) based strictly on its arguments, without
1210 dereferencing any pointer arguments or otherwise accessing any mutable
1211 state (e.g. memory, control registers, etc) visible to caller functions.
1212 It does not write through any pointer arguments
1213 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1214 changes any state visible to callers. This means that it cannot unwind
1215 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1216 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001217
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001218 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001219 <dd>This attribute indicates that the function does not write through any
1220 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1221 arguments) or otherwise modify any state (e.g. memory, control registers,
1222 etc) visible to caller functions. It may dereference pointer arguments
1223 and read state that may be set in the caller. A readonly function always
1224 returns the same value (or unwinds an exception identically) when called
1225 with the same set of arguments and global state. It cannot unwind an
1226 exception by calling the <tt>C++</tt> exception throwing methods, but may
1227 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001228
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001229 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001230 <dd>This attribute indicates that the function should emit a stack smashing
1231 protector. It is in the form of a "canary"&mdash;a random value placed on
1232 the stack before the local variables that's checked upon return from the
1233 function to see if it has been overwritten. A heuristic is used to
1234 determine if a function needs stack protectors or not.<br>
1235<br>
1236 If a function that has an <tt>ssp</tt> attribute is inlined into a
1237 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1238 function will have an <tt>ssp</tt> attribute.</dd>
1239
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001240 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001241 <dd>This attribute indicates that the function should <em>always</em> emit a
1242 stack smashing protector. This overrides
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001243 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1244<br>
1245 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1246 function that doesn't have an <tt>sspreq</tt> attribute or which has
1247 an <tt>ssp</tt> attribute, then the resulting function will have
1248 an <tt>sspreq</tt> attribute.</dd>
Rafael Espindolafbff0ec2011-07-25 15:27:59 +00001249
1250 <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1251 <dd>This attribute indicates that the ABI being targeted requires that
1252 an unwind table entry be produce for this function even if we can
1253 show that no exceptions passes by it. This is normally the case for
1254 the ELF x86-64 abi, but it can be disabled for some compilation
1255 units.</dd>
1256
Rafael Espindola25456ef2011-10-03 14:45:37 +00001257 <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1258 <dd>This attribute indicates that this function can return
1259 twice. The C <code>setjmp</code> is an example of such a function.
1260 The compiler disables some optimizations (like tail calls) in the caller of
1261 these functions.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001262</dl>
1263
Devang Patelf8b94812008-09-04 23:05:13 +00001264</div>
1265
1266<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001267<h3>
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001268 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001269</h3>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001270
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001271<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001272
1273<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1274 the GCC "file scope inline asm" blocks. These blocks are internally
1275 concatenated by LLVM and treated as a single unit, but may be separated in
1276 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001277
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001278<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001279module asm "inline asm code goes here"
1280module asm "more can go here"
1281</pre>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001282
1283<p>The strings can contain any character by escaping non-printable characters.
1284 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001285 for the number.</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001286
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001287<p>The inline asm code is simply printed to the machine code .s file when
1288 assembly code is generated.</p>
1289
Chris Lattner4e9aba72006-01-23 23:23:47 +00001290</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001291
Reid Spencerde151942007-02-19 23:54:10 +00001292<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001293<h3>
Reid Spencerde151942007-02-19 23:54:10 +00001294 <a name="datalayout">Data Layout</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001295</h3>
Reid Spencerde151942007-02-19 23:54:10 +00001296
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001297<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001298
Reid Spencerde151942007-02-19 23:54:10 +00001299<p>A module may specify a target specific data layout string that specifies how
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001300 data is to be laid out in memory. The syntax for the data layout is
1301 simply:</p>
1302
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001303<pre class="doc_code">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001304target datalayout = "<i>layout specification</i>"
1305</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001306
1307<p>The <i>layout specification</i> consists of a list of specifications
1308 separated by the minus sign character ('-'). Each specification starts with
1309 a letter and may include other information after the letter to define some
1310 aspect of the data layout. The specifications accepted are as follows:</p>
1311
Reid Spencerde151942007-02-19 23:54:10 +00001312<dl>
1313 <dt><tt>E</tt></dt>
1314 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001315 bits with the most significance have the lowest address location.</dd>
1316
Reid Spencerde151942007-02-19 23:54:10 +00001317 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001318 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001319 the bits with the least significance have the lowest address
1320 location.</dd>
1321
Lang Hamesbb5b3f32011-10-10 23:42:08 +00001322 <dt><tt>S<i>size</i></tt></dt>
1323 <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1324 of stack variables is limited to the natural stack alignment to avoid
1325 dynamic stack realignment. The stack alignment must be a multiple of
Lang Hames5f119a62011-10-11 17:50:14 +00001326 8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1327 which does not prevent any alignment promotions.</dd>
Lang Hamesbb5b3f32011-10-10 23:42:08 +00001328
Reid Spencerde151942007-02-19 23:54:10 +00001329 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001330 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001331 <i>preferred</i> alignments. All sizes are in bits. Specifying
1332 the <i>pref</i> alignment is optional. If omitted, the
1333 preceding <tt>:</tt> should be omitted too.</dd>
1334
Reid Spencerde151942007-02-19 23:54:10 +00001335 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1336 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001337 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1338
Reid Spencerde151942007-02-19 23:54:10 +00001339 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001340 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001341 <i>size</i>.</dd>
1342
Reid Spencerde151942007-02-19 23:54:10 +00001343 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001344 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesen9d8d2212010-05-28 18:54:47 +00001345 <i>size</i>. Only values of <i>size</i> that are supported by the target
1346 will work. 32 (float) and 64 (double) are supported on all targets;
1347 80 or 128 (different flavors of long double) are also supported on some
1348 targets.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001349
Reid Spencerde151942007-02-19 23:54:10 +00001350 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1351 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001352 <i>size</i>.</dd>
1353
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001354 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1355 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001356 <i>size</i>.</dd>
Chris Lattnere82bdc42009-11-07 09:35:34 +00001357
1358 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1359 <dd>This specifies a set of native integer widths for the target CPU
1360 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1361 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001362 this set are considered to support most general arithmetic
Chris Lattnere82bdc42009-11-07 09:35:34 +00001363 operations efficiently.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001364</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001365
Reid Spencerde151942007-02-19 23:54:10 +00001366<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman1c70c002010-04-28 00:36:01 +00001367 default set of specifications which are then (possibly) overridden by the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001368 specifications in the <tt>datalayout</tt> keyword. The default specifications
1369 are given in this list:</p>
1370
Reid Spencerde151942007-02-19 23:54:10 +00001371<ul>
1372 <li><tt>E</tt> - big endian</li>
Dan Gohmanfdf2e8c2010-02-23 02:44:03 +00001373 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencerde151942007-02-19 23:54:10 +00001374 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1375 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1376 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1377 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001378 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001379 alignment of 64-bits</li>
1380 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1381 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1382 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1383 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1384 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001385 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001386</ul>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001387
1388<p>When LLVM is determining the alignment for a given type, it uses the
1389 following rules:</p>
1390
Reid Spencerde151942007-02-19 23:54:10 +00001391<ol>
1392 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001393 specification is used.</li>
1394
Reid Spencerde151942007-02-19 23:54:10 +00001395 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001396 smallest integer type that is larger than the bitwidth of the sought type
1397 is used. If none of the specifications are larger than the bitwidth then
1398 the the largest integer type is used. For example, given the default
1399 specifications above, the i7 type will use the alignment of i8 (next
1400 largest) while both i65 and i256 will use the alignment of i64 (largest
1401 specified).</li>
1402
Reid Spencerde151942007-02-19 23:54:10 +00001403 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001404 largest vector type that is smaller than the sought vector type will be
1405 used as a fall back. This happens because &lt;128 x double&gt; can be
1406 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001407</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001408
Reid Spencerde151942007-02-19 23:54:10 +00001409</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001410
Dan Gohman556ca272009-07-27 18:07:55 +00001411<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001412<h3>
Dan Gohman556ca272009-07-27 18:07:55 +00001413 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001414</h3>
Dan Gohman556ca272009-07-27 18:07:55 +00001415
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001416<div>
Dan Gohman556ca272009-07-27 18:07:55 +00001417
Andreas Bolka55e459a2009-07-29 00:02:05 +00001418<p>Any memory access must be done through a pointer value associated
Andreas Bolka99a82052009-07-27 20:37:10 +00001419with an address range of the memory access, otherwise the behavior
Dan Gohman556ca272009-07-27 18:07:55 +00001420is undefined. Pointer values are associated with address ranges
1421according to the following rules:</p>
1422
1423<ul>
Dan Gohman1e109622010-07-02 18:41:32 +00001424 <li>A pointer value is associated with the addresses associated with
1425 any value it is <i>based</i> on.
Andreas Bolka55e459a2009-07-29 00:02:05 +00001426 <li>An address of a global variable is associated with the address
Dan Gohman556ca272009-07-27 18:07:55 +00001427 range of the variable's storage.</li>
1428 <li>The result value of an allocation instruction is associated with
1429 the address range of the allocated storage.</li>
1430 <li>A null pointer in the default address-space is associated with
Andreas Bolka55e459a2009-07-29 00:02:05 +00001431 no address.</li>
Dan Gohman556ca272009-07-27 18:07:55 +00001432 <li>An integer constant other than zero or a pointer value returned
1433 from a function not defined within LLVM may be associated with address
1434 ranges allocated through mechanisms other than those provided by
Andreas Bolka55e459a2009-07-29 00:02:05 +00001435 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman556ca272009-07-27 18:07:55 +00001436 allocated by mechanisms provided by LLVM.</li>
Dan Gohman1e109622010-07-02 18:41:32 +00001437</ul>
1438
1439<p>A pointer value is <i>based</i> on another pointer value according
1440 to the following rules:</p>
1441
1442<ul>
1443 <li>A pointer value formed from a
1444 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1445 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1446 <li>The result value of a
1447 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1448 of the <tt>bitcast</tt>.</li>
1449 <li>A pointer value formed by an
1450 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1451 pointer values that contribute (directly or indirectly) to the
1452 computation of the pointer's value.</li>
1453 <li>The "<i>based</i> on" relationship is transitive.</li>
1454</ul>
1455
1456<p>Note that this definition of <i>"based"</i> is intentionally
1457 similar to the definition of <i>"based"</i> in C99, though it is
1458 slightly weaker.</p>
Dan Gohman556ca272009-07-27 18:07:55 +00001459
1460<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka55e459a2009-07-29 00:02:05 +00001461<tt><a href="#i_load">load</a></tt> merely indicates the size and
1462alignment of the memory from which to load, as well as the
Dan Gohmanc22c0f32010-06-17 19:23:50 +00001463interpretation of the value. The first operand type of a
Andreas Bolka55e459a2009-07-29 00:02:05 +00001464<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1465and alignment of the store.</p>
Dan Gohman556ca272009-07-27 18:07:55 +00001466
1467<p>Consequently, type-based alias analysis, aka TBAA, aka
1468<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1469LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1470additional information which specialized optimization passes may use
1471to implement type-based alias analysis.</p>
1472
1473</div>
1474
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001475<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001476<h3>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001477 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001478</h3>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001479
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001480<div>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001481
1482<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1483href="#i_store"><tt>store</tt></a>s, and <a
1484href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1485The optimizers must not change the number of volatile operations or change their
1486order of execution relative to other volatile operations. The optimizers
1487<i>may</i> change the order of volatile operations relative to non-volatile
1488operations. This is not Java's "volatile" and has no cross-thread
1489synchronization behavior.</p>
1490
1491</div>
1492
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001493<!-- ======================================================================= -->
1494<h3>
1495 <a name="memmodel">Memory Model for Concurrent Operations</a>
1496</h3>
1497
1498<div>
1499
1500<p>The LLVM IR does not define any way to start parallel threads of execution
1501or to register signal handlers. Nonetheless, there are platform-specific
1502ways to create them, and we define LLVM IR's behavior in their presence. This
1503model is inspired by the C++0x memory model.</p>
1504
Eli Friedman234bccd2011-08-22 21:35:27 +00001505<p>For a more informal introduction to this model, see the
1506<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1507
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001508<p>We define a <i>happens-before</i> partial order as the least partial order
1509that</p>
1510<ul>
1511 <li>Is a superset of single-thread program order, and</li>
1512 <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1513 <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1514 by platform-specific techniques, like pthread locks, thread
Eli Friedmanff030482011-07-28 21:48:00 +00001515 creation, thread joining, etc., and by atomic instructions.
1516 (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1517 </li>
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001518</ul>
1519
1520<p>Note that program order does not introduce <i>happens-before</i> edges
1521between a thread and signals executing inside that thread.</p>
1522
1523<p>Every (defined) read operation (load instructions, memcpy, atomic
1524loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1525(defined) write operations (store instructions, atomic
Eli Friedman118973a2011-07-22 03:04:45 +00001526stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1527initialized globals are considered to have a write of the initializer which is
1528atomic and happens before any other read or write of the memory in question.
1529For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1530any write to the same byte, except:</p>
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001531
1532<ul>
1533 <li>If <var>write<sub>1</sub></var> happens before
1534 <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1535 before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
Eli Friedman118973a2011-07-22 03:04:45 +00001536 does not see <var>write<sub>1</sub></var>.
Bill Wendling0246bb72011-07-31 06:45:03 +00001537 <li>If <var>R<sub>byte</sub></var> happens before
1538 <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1539 see <var>write<sub>3</sub></var>.
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001540</ul>
1541
1542<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1543<ul>
Eli Friedman234bccd2011-08-22 21:35:27 +00001544 <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1545 is supposed to give guarantees which can support
1546 <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1547 addresses which do not behave like normal memory. It does not generally
1548 provide cross-thread synchronization.)
1549 <li>Otherwise, if there is no write to the same byte that happens before
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001550 <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns
1551 <tt>undef</tt> for that byte.
Eli Friedman118973a2011-07-22 03:04:45 +00001552 <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001553 <var>R<sub>byte</sub></var> returns the value written by that
1554 write.</li>
Eli Friedman118973a2011-07-22 03:04:45 +00001555 <li>Otherwise, if <var>R</var> is atomic, and all the writes
1556 <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
Eli Friedmanff030482011-07-28 21:48:00 +00001557 values written. See the <a href="#ordering">Atomic Memory Ordering
1558 Constraints</a> section for additional constraints on how the choice
1559 is made.
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001560 <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1561</ul>
1562
1563<p><var>R</var> returns the value composed of the series of bytes it read.
1564This implies that some bytes within the value may be <tt>undef</tt>
1565<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1566defines the semantics of the operation; it doesn't mean that targets will
1567emit more than one instruction to read the series of bytes.</p>
1568
1569<p>Note that in cases where none of the atomic intrinsics are used, this model
1570places only one restriction on IR transformations on top of what is required
1571for single-threaded execution: introducing a store to a byte which might not
Eli Friedman101c81d2011-08-02 01:15:34 +00001572otherwise be stored is not allowed in general. (Specifically, in the case
1573where another thread might write to and read from an address, introducing a
1574store can change a load that may see exactly one write into a load that may
1575see multiple writes.)</p>
Eli Friedman5b60e1b2011-07-20 21:35:53 +00001576
1577<!-- FIXME: This model assumes all targets where concurrency is relevant have
1578a byte-size store which doesn't affect adjacent bytes. As far as I can tell,
1579none of the backends currently in the tree fall into this category; however,
1580there might be targets which care. If there are, we want a paragraph
1581like the following:
1582
1583Targets may specify that stores narrower than a certain width are not
1584available; on such a target, for the purposes of this model, treat any
1585non-atomic write with an alignment or width less than the minimum width
1586as if it writes to the relevant surrounding bytes.
1587-->
1588
1589</div>
1590
Eli Friedmanff030482011-07-28 21:48:00 +00001591<!-- ======================================================================= -->
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00001592<h3>
Eli Friedmanff030482011-07-28 21:48:00 +00001593 <a name="ordering">Atomic Memory Ordering Constraints</a>
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00001594</h3>
Eli Friedmanff030482011-07-28 21:48:00 +00001595
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00001596<div>
Eli Friedmanff030482011-07-28 21:48:00 +00001597
1598<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
Eli Friedman21006d42011-08-09 23:02:53 +00001599<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1600<a href="#i_fence"><code>fence</code></a>,
1601<a href="#i_load"><code>atomic load</code></a>, and
Eli Friedman8fa281a2011-08-09 23:26:12 +00001602<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
Eli Friedmanff030482011-07-28 21:48:00 +00001603that determines which other atomic instructions on the same address they
1604<i>synchronize with</i>. These semantics are borrowed from Java and C++0x,
1605but are somewhat more colloquial. If these descriptions aren't precise enough,
Eli Friedman234bccd2011-08-22 21:35:27 +00001606check those specs (see spec references in the
1607<a href="Atomic.html#introduction">atomics guide</a>).
1608<a href="#i_fence"><code>fence</code></a> instructions
Eli Friedmanff030482011-07-28 21:48:00 +00001609treat these orderings somewhat differently since they don't take an address.
1610See that instruction's documentation for details.</p>
1611
Eli Friedman234bccd2011-08-22 21:35:27 +00001612<p>For a simpler introduction to the ordering constraints, see the
1613<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1614
Eli Friedmanff030482011-07-28 21:48:00 +00001615<dl>
Eli Friedmanff030482011-07-28 21:48:00 +00001616<dt><code>unordered</code></dt>
1617<dd>The set of values that can be read is governed by the happens-before
1618partial order. A value cannot be read unless some operation wrote it.
1619This is intended to provide a guarantee strong enough to model Java's
1620non-volatile shared variables. This ordering cannot be specified for
1621read-modify-write operations; it is not strong enough to make them atomic
1622in any interesting way.</dd>
1623<dt><code>monotonic</code></dt>
1624<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1625total order for modifications by <code>monotonic</code> operations on each
1626address. All modification orders must be compatible with the happens-before
1627order. There is no guarantee that the modification orders can be combined to
1628a global total order for the whole program (and this often will not be
1629possible). The read in an atomic read-modify-write operation
1630(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1631<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1632reads the value in the modification order immediately before the value it
1633writes. If one atomic read happens before another atomic read of the same
1634address, the later read must see the same value or a later value in the
1635address's modification order. This disallows reordering of
1636<code>monotonic</code> (or stronger) operations on the same address. If an
1637address is written <code>monotonic</code>ally by one thread, and other threads
1638<code>monotonic</code>ally read that address repeatedly, the other threads must
Eli Friedman234bccd2011-08-22 21:35:27 +00001639eventually see the write. This corresponds to the C++0x/C1x
1640<code>memory_order_relaxed</code>.</dd>
Eli Friedmanff030482011-07-28 21:48:00 +00001641<dt><code>acquire</code></dt>
Eli Friedmanff030482011-07-28 21:48:00 +00001642<dd>In addition to the guarantees of <code>monotonic</code>,
Eli Friedmanc264b2f2011-08-24 20:28:39 +00001643a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1644operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1645<dt><code>release</code></dt>
1646<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1647writes a value which is subsequently read by an <code>acquire</code> operation,
1648it <i>synchronizes-with</i> that operation. (This isn't a complete
1649description; see the C++0x definition of a release sequence.) This corresponds
1650to the C++0x/C1x <code>memory_order_release</code>.</dd>
Eli Friedmanff030482011-07-28 21:48:00 +00001651<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
Eli Friedman234bccd2011-08-22 21:35:27 +00001652<code>acquire</code> and <code>release</code> operation on its address.
1653This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
Eli Friedmanff030482011-07-28 21:48:00 +00001654<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1655<dd>In addition to the guarantees of <code>acq_rel</code>
1656(<code>acquire</code> for an operation which only reads, <code>release</code>
1657for an operation which only writes), there is a global total order on all
1658sequentially-consistent operations on all addresses, which is consistent with
1659the <i>happens-before</i> partial order and with the modification orders of
1660all the affected addresses. Each sequentially-consistent read sees the last
Eli Friedman234bccd2011-08-22 21:35:27 +00001661preceding write to the same address in this global order. This corresponds
1662to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
Eli Friedmanff030482011-07-28 21:48:00 +00001663</dl>
1664
1665<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1666it only <i>synchronizes with</i> or participates in modification and seq_cst
1667total orderings with other operations running in the same thread (for example,
1668in signal handlers).</p>
1669
1670</div>
1671
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001672</div>
1673
Chris Lattner00950542001-06-06 20:29:01 +00001674<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001675<h2><a name="typesystem">Type System</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +00001676<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001677
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001678<div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001679
Misha Brukman9d0919f2003-11-08 01:05:38 +00001680<p>The LLVM type system is one of the most important features of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001681 intermediate representation. Being typed enables a number of optimizations
1682 to be performed on the intermediate representation directly, without having
1683 to do extra analyses on the side before the transformation. A strong type
1684 system makes it easier to read the generated code and enables novel analyses
1685 and transformations that are not feasible to perform on normal three address
1686 code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001687
Chris Lattner00950542001-06-06 20:29:01 +00001688<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001689<h3>
1690 <a name="t_classifications">Type Classifications</a>
1691</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001692
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001693<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001694
1695<p>The types fall into a few useful classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001696
1697<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001698 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001699 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001700 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001701 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001702 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001703 </tr>
1704 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001705 <td><a href="#t_floating">floating point</a></td>
1706 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001707 </tr>
1708 <tr>
1709 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001710 <td><a href="#t_integer">integer</a>,
1711 <a href="#t_floating">floating point</a>,
1712 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001713 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001714 <a href="#t_struct">structure</a>,
1715 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001716 <a href="#t_label">label</a>,
1717 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001718 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001719 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001720 <tr>
1721 <td><a href="#t_primitive">primitive</a></td>
1722 <td><a href="#t_label">label</a>,
1723 <a href="#t_void">void</a>,
Tobias Grosser05387292010-12-28 20:29:31 +00001724 <a href="#t_integer">integer</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001725 <a href="#t_floating">floating point</a>,
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001726 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001727 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001728 </tr>
1729 <tr>
1730 <td><a href="#t_derived">derived</a></td>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001731 <td><a href="#t_array">array</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001732 <a href="#t_function">function</a>,
1733 <a href="#t_pointer">pointer</a>,
1734 <a href="#t_struct">structure</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001735 <a href="#t_vector">vector</a>,
1736 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001737 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001738 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001739 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001740</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001741
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001742<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1743 important. Values of these types are the only ones which can be produced by
Nick Lewyckyec38da42009-09-27 00:45:11 +00001744 instructions.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001745
Misha Brukman9d0919f2003-11-08 01:05:38 +00001746</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001747
Chris Lattner00950542001-06-06 20:29:01 +00001748<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001749<h3>
1750 <a name="t_primitive">Primitive Types</a>
1751</h3>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001752
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001753<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001754
Chris Lattner4f69f462008-01-04 04:32:38 +00001755<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001756 system.</p>
Chris Lattner4f69f462008-01-04 04:32:38 +00001757
1758<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001759<h4>
1760 <a name="t_integer">Integer Type</a>
1761</h4>
Nick Lewyckyec38da42009-09-27 00:45:11 +00001762
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001763<div>
Nick Lewyckyec38da42009-09-27 00:45:11 +00001764
1765<h5>Overview:</h5>
1766<p>The integer type is a very simple type that simply specifies an arbitrary
1767 bit width for the integer type desired. Any bit width from 1 bit to
1768 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1769
1770<h5>Syntax:</h5>
1771<pre>
1772 iN
1773</pre>
1774
1775<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1776 value.</p>
1777
1778<h5>Examples:</h5>
1779<table class="layout">
1780 <tr class="layout">
1781 <td class="left"><tt>i1</tt></td>
1782 <td class="left">a single-bit integer.</td>
1783 </tr>
1784 <tr class="layout">
1785 <td class="left"><tt>i32</tt></td>
1786 <td class="left">a 32-bit integer.</td>
1787 </tr>
1788 <tr class="layout">
1789 <td class="left"><tt>i1942652</tt></td>
1790 <td class="left">a really big integer of over 1 million bits.</td>
1791 </tr>
1792</table>
1793
Nick Lewyckyec38da42009-09-27 00:45:11 +00001794</div>
1795
1796<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001797<h4>
1798 <a name="t_floating">Floating Point Types</a>
1799</h4>
Chris Lattner4f69f462008-01-04 04:32:38 +00001800
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001801<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001802
1803<table>
1804 <tbody>
1805 <tr><th>Type</th><th>Description</th></tr>
1806 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1807 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1808 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1809 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1810 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1811 </tbody>
1812</table>
1813
Chris Lattner4f69f462008-01-04 04:32:38 +00001814</div>
1815
1816<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001817<h4>
1818 <a name="t_x86mmx">X86mmx Type</a>
1819</h4>
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001820
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001821<div>
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001822
1823<h5>Overview:</h5>
1824<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1825
1826<h5>Syntax:</h5>
1827<pre>
Dale Johannesen473a8c82010-10-01 01:07:02 +00001828 x86mmx
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001829</pre>
1830
1831</div>
1832
1833<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001834<h4>
1835 <a name="t_void">Void Type</a>
1836</h4>
Chris Lattner4f69f462008-01-04 04:32:38 +00001837
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001838<div>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001839
Chris Lattner4f69f462008-01-04 04:32:38 +00001840<h5>Overview:</h5>
1841<p>The void type does not represent any value and has no size.</p>
1842
1843<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001844<pre>
1845 void
1846</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001847
Chris Lattner4f69f462008-01-04 04:32:38 +00001848</div>
1849
1850<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001851<h4>
1852 <a name="t_label">Label Type</a>
1853</h4>
Chris Lattner4f69f462008-01-04 04:32:38 +00001854
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001855<div>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001856
Chris Lattner4f69f462008-01-04 04:32:38 +00001857<h5>Overview:</h5>
1858<p>The label type represents code labels.</p>
1859
1860<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001861<pre>
1862 label
1863</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001864
Chris Lattner4f69f462008-01-04 04:32:38 +00001865</div>
1866
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001867<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001868<h4>
1869 <a name="t_metadata">Metadata Type</a>
1870</h4>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001871
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001872<div>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001873
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001874<h5>Overview:</h5>
Nick Lewyckyc261df92009-09-27 23:27:42 +00001875<p>The metadata type represents embedded metadata. No derived types may be
1876 created from metadata except for <a href="#t_function">function</a>
1877 arguments.
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001878
1879<h5>Syntax:</h5>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001880<pre>
1881 metadata
1882</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001883
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001884</div>
1885
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001886</div>
Chris Lattner4f69f462008-01-04 04:32:38 +00001887
1888<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001889<h3>
1890 <a name="t_derived">Derived Types</a>
1891</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001892
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001893<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001894
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001895<p>The real power in LLVM comes from the derived types in the system. This is
1896 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewyckyec38da42009-09-27 00:45:11 +00001897 useful types. Each of these types contain one or more element types which
1898 may be a primitive type, or another derived type. For example, it is
1899 possible to have a two dimensional array, using an array as the element type
1900 of another array.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001901
Chris Lattner1afcace2011-07-09 17:41:24 +00001902</div>
1903
1904
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001905<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001906<h4>
1907 <a name="t_aggregate">Aggregate Types</a>
1908</h4>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001909
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001910<div>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001911
1912<p>Aggregate Types are a subset of derived types that can contain multiple
1913 member types. <a href="#t_array">Arrays</a>,
Chris Lattner61c70e92010-08-28 04:09:24 +00001914 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1915 aggregate types.</p>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001916
1917</div>
1918
Reid Spencer2b916312007-05-16 18:44:01 +00001919<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001920<h4>
1921 <a name="t_array">Array Type</a>
1922</h4>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001923
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001924<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001925
Chris Lattner00950542001-06-06 20:29:01 +00001926<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001927<p>The array type is a very simple derived type that arranges elements
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001928 sequentially in memory. The array type requires a size (number of elements)
1929 and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001930
Chris Lattner7faa8832002-04-14 06:13:44 +00001931<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001932<pre>
1933 [&lt;# elements&gt; x &lt;elementtype&gt;]
1934</pre>
1935
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001936<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1937 be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001938
Chris Lattner7faa8832002-04-14 06:13:44 +00001939<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001940<table class="layout">
1941 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001942 <td class="left"><tt>[40 x i32]</tt></td>
1943 <td class="left">Array of 40 32-bit integer values.</td>
1944 </tr>
1945 <tr class="layout">
1946 <td class="left"><tt>[41 x i32]</tt></td>
1947 <td class="left">Array of 41 32-bit integer values.</td>
1948 </tr>
1949 <tr class="layout">
1950 <td class="left"><tt>[4 x i8]</tt></td>
1951 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001952 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001953</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001954<p>Here are some examples of multidimensional arrays:</p>
1955<table class="layout">
1956 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001957 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1958 <td class="left">3x4 array of 32-bit integer values.</td>
1959 </tr>
1960 <tr class="layout">
1961 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1962 <td class="left">12x10 array of single precision floating point values.</td>
1963 </tr>
1964 <tr class="layout">
1965 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1966 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001967 </tr>
1968</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001969
Dan Gohman7657f6b2009-11-09 19:01:53 +00001970<p>There is no restriction on indexing beyond the end of the array implied by
1971 a static type (though there are restrictions on indexing beyond the bounds
1972 of an allocated object in some cases). This means that single-dimension
1973 'variable sized array' addressing can be implemented in LLVM with a zero
1974 length array type. An implementation of 'pascal style arrays' in LLVM could
1975 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001976
Misha Brukman9d0919f2003-11-08 01:05:38 +00001977</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001978
Chris Lattner00950542001-06-06 20:29:01 +00001979<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001980<h4>
1981 <a name="t_function">Function Type</a>
1982</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001983
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001984<div>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001985
Chris Lattner00950542001-06-06 20:29:01 +00001986<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001987<p>The function type can be thought of as a function signature. It consists of
1988 a return type and a list of formal parameter types. The return type of a
Chris Lattner61c70e92010-08-28 04:09:24 +00001989 function type is a first class type or a void type.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001990
Chris Lattner00950542001-06-06 20:29:01 +00001991<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001992<pre>
Nick Lewycky51386942009-09-27 07:55:32 +00001993 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001994</pre>
1995
John Criswell0ec250c2005-10-24 16:17:18 +00001996<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001997 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1998 which indicates that the function takes a variable number of arguments.
1999 Variable argument functions can access their arguments with
2000 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner0724fbd2010-03-02 06:36:51 +00002001 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewyckyc261df92009-09-27 23:27:42 +00002002 <a href="#t_label">label</a>.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002003
Chris Lattner00950542001-06-06 20:29:01 +00002004<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002005<table class="layout">
2006 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00002007 <td class="left"><tt>i32 (i32)</tt></td>
2008 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002009 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00002010 </tr><tr class="layout">
Chris Lattner0724fbd2010-03-02 06:36:51 +00002011 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00002012 </tt></td>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002013 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner0724fbd2010-03-02 06:36:51 +00002014 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2015 returning <tt>float</tt>.
Reid Spencer92f82302006-12-31 07:18:34 +00002016 </td>
2017 </tr><tr class="layout">
2018 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002019 <td class="left">A vararg function that takes at least one
2020 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2021 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer92f82302006-12-31 07:18:34 +00002022 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00002023 </td>
Devang Patela582f402008-03-24 05:35:41 +00002024 </tr><tr class="layout">
2025 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky51386942009-09-27 07:55:32 +00002026 <td class="left">A function taking an <tt>i32</tt>, returning a
2027 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patela582f402008-03-24 05:35:41 +00002028 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002029 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00002030</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002031
Misha Brukman9d0919f2003-11-08 01:05:38 +00002032</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002033
Chris Lattner00950542001-06-06 20:29:01 +00002034<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002035<h4>
2036 <a name="t_struct">Structure Type</a>
2037</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002038
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002039<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002040
Chris Lattner00950542001-06-06 20:29:01 +00002041<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002042<p>The structure type is used to represent a collection of data members together
Chris Lattner1afcace2011-07-09 17:41:24 +00002043 in memory. The elements of a structure may be any type that has a size.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002044
Jeffrey Yasskin7a088cf2010-01-11 19:19:26 +00002045<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2046 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2047 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2048 Structures in registers are accessed using the
2049 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2050 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattner1afcace2011-07-09 17:41:24 +00002051
2052<p>Structures may optionally be "packed" structures, which indicate that the
2053 alignment of the struct is one byte, and that there is no padding between
Chris Lattner2c38d652011-08-12 17:31:02 +00002054 the elements. In non-packed structs, padding between field types is inserted
2055 as defined by the TargetData string in the module, which is required to match
2056 what the underlying processor expects.</p>
Chris Lattner1afcace2011-07-09 17:41:24 +00002057
Chris Lattner2c38d652011-08-12 17:31:02 +00002058<p>Structures can either be "literal" or "identified". A literal structure is
2059 defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2060 types are always defined at the top level with a name. Literal types are
2061 uniqued by their contents and can never be recursive or opaque since there is
Chris Lattneraa175c32011-08-12 18:12:40 +00002062 no way to write one. Identified types can be recursive, can be opaqued, and are
Chris Lattner2c38d652011-08-12 17:31:02 +00002063 never uniqued.
Chris Lattner1afcace2011-07-09 17:41:24 +00002064</p>
2065
Chris Lattner00950542001-06-06 20:29:01 +00002066<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002067<pre>
Chris Lattner2c38d652011-08-12 17:31:02 +00002068 %T1 = type { &lt;type list&gt; } <i>; Identified normal struct type</i>
2069 %T2 = type &lt;{ &lt;type list&gt; }&gt; <i>; Identified packed struct type</i>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002070</pre>
Chris Lattner1afcace2011-07-09 17:41:24 +00002071
Chris Lattner00950542001-06-06 20:29:01 +00002072<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002073<table class="layout">
2074 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002075 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2076 <td class="left">A triple of three <tt>i32</tt> values</td>
Chris Lattner1afcace2011-07-09 17:41:24 +00002077 </tr>
2078 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002079 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2080 <td class="left">A pair, where the first element is a <tt>float</tt> and the
2081 second element is a <a href="#t_pointer">pointer</a> to a
2082 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2083 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002084 </tr>
Chris Lattner1afcace2011-07-09 17:41:24 +00002085 <tr class="layout">
2086 <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2087 <td class="left">A packed struct known to be 5 bytes in size.</td>
2088 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00002089</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00002090
Misha Brukman9d0919f2003-11-08 01:05:38 +00002091</div>
Chris Lattner1afcace2011-07-09 17:41:24 +00002092
Chris Lattner00950542001-06-06 20:29:01 +00002093<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002094<h4>
Chris Lattner628ed392011-07-23 19:59:08 +00002095 <a name="t_opaque">Opaque Structure Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002096</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002097
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002098<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002099
Andrew Lenharth75e10682006-12-08 17:13:00 +00002100<h5>Overview:</h5>
Chris Lattner628ed392011-07-23 19:59:08 +00002101<p>Opaque structure types are used to represent named structure types that do
2102 not have a body specified. This corresponds (for example) to the C notion of
2103 a forward declared structure.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002104
Andrew Lenharth75e10682006-12-08 17:13:00 +00002105<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002106<pre>
Chris Lattner1afcace2011-07-09 17:41:24 +00002107 %X = type opaque
2108 %52 = type opaque
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002109</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002110
Andrew Lenharth75e10682006-12-08 17:13:00 +00002111<h5>Examples:</h5>
2112<table class="layout">
2113 <tr class="layout">
Chris Lattner1afcace2011-07-09 17:41:24 +00002114 <td class="left"><tt>opaque</tt></td>
2115 <td class="left">An opaque type.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00002116 </tr>
2117</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002118
Andrew Lenharth75e10682006-12-08 17:13:00 +00002119</div>
2120
Chris Lattner1afcace2011-07-09 17:41:24 +00002121
2122
Andrew Lenharth75e10682006-12-08 17:13:00 +00002123<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002124<h4>
2125 <a name="t_pointer">Pointer Type</a>
2126</h4>
Chris Lattner0fd4a272009-02-08 19:53:29 +00002127
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002128<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002129
2130<h5>Overview:</h5>
Dan Gohmanff3ef322010-02-25 16:50:07 +00002131<p>The pointer type is used to specify memory locations.
2132 Pointers are commonly used to reference objects in memory.</p>
2133
2134<p>Pointer types may have an optional address space attribute defining the
2135 numbered address space where the pointed-to object resides. The default
2136 address space is number zero. The semantics of non-zero address
2137 spaces are target-specific.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002138
2139<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2140 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00002141
Chris Lattner7faa8832002-04-14 06:13:44 +00002142<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00002143<pre>
2144 &lt;type&gt; *
2145</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002146
Chris Lattner7faa8832002-04-14 06:13:44 +00002147<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002148<table class="layout">
2149 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00002150 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00002151 <td class="left">A <a href="#t_pointer">pointer</a> to <a
2152 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2153 </tr>
2154 <tr class="layout">
Dan Gohmanfe47aae2010-05-28 17:13:49 +00002155 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00002156 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00002157 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00002158 <tt>i32</tt>.</td>
2159 </tr>
2160 <tr class="layout">
2161 <td class="left"><tt>i32 addrspace(5)*</tt></td>
2162 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2163 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002164 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002165</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002166
Misha Brukman9d0919f2003-11-08 01:05:38 +00002167</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002168
Chris Lattnera58561b2004-08-12 19:12:28 +00002169<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002170<h4>
2171 <a name="t_vector">Vector Type</a>
2172</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002173
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002174<div>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002175
Chris Lattnera58561b2004-08-12 19:12:28 +00002176<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002177<p>A vector type is a simple derived type that represents a vector of elements.
2178 Vector types are used when multiple primitive data are operated in parallel
2179 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sandsd40d14e2009-11-27 13:38:03 +00002180 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002181 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002182
Chris Lattnera58561b2004-08-12 19:12:28 +00002183<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002184<pre>
2185 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2186</pre>
2187
Chris Lattner7d2e7be2010-10-10 18:20:35 +00002188<p>The number of elements is a constant integer value larger than 0; elementtype
2189 may be any integer or floating point type. Vectors of size zero are not
2190 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002191
Chris Lattnera58561b2004-08-12 19:12:28 +00002192<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002193<table class="layout">
2194 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00002195 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2196 <td class="left">Vector of 4 32-bit integer values.</td>
2197 </tr>
2198 <tr class="layout">
2199 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2200 <td class="left">Vector of 8 32-bit floating-point values.</td>
2201 </tr>
2202 <tr class="layout">
2203 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2204 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00002205 </tr>
2206</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00002207
Misha Brukman9d0919f2003-11-08 01:05:38 +00002208</div>
2209
Bill Wendlingaf75f0c2011-07-31 06:47:33 +00002210</div>
2211
Chris Lattnerc3f59762004-12-09 17:30:23 +00002212<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002213<h2><a name="constants">Constants</a></h2>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002214<!-- *********************************************************************** -->
2215
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002216<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002217
2218<p>LLVM has several different basic types of constants. This section describes
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002219 them all and their syntax.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002220
Chris Lattnerc3f59762004-12-09 17:30:23 +00002221<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002222<h3>
2223 <a name="simpleconstants">Simple Constants</a>
2224</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002225
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002226<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002227
2228<dl>
2229 <dt><b>Boolean constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002230 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewyckyec38da42009-09-27 00:45:11 +00002231 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002232
2233 <dt><b>Integer constants</b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002234 <dd>Standard integers (such as '4') are constants of
2235 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2236 with integer types.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002237
2238 <dt><b>Floating point constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002239 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002240 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2241 notation (see below). The assembler requires the exact decimal value of a
2242 floating-point constant. For example, the assembler accepts 1.25 but
2243 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2244 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002245
2246 <dt><b>Null pointer constants</b></dt>
John Criswell9e2485c2004-12-10 15:51:16 +00002247 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002248 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002249</dl>
2250
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002251<p>The one non-intuitive notation for constants is the hexadecimal form of
2252 floating point constants. For example, the form '<tt>double
2253 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2254 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2255 constants are required (and the only time that they are generated by the
2256 disassembler) is when a floating point constant must be emitted but it cannot
2257 be represented as a decimal floating point number in a reasonable number of
2258 digits. For example, NaN's, infinities, and other special values are
2259 represented in their IEEE hexadecimal format so that assembly and disassembly
2260 do not cause any bits to change in the constants.</p>
2261
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00002262<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002263 represented using the 16-digit form shown above (which matches the IEEE754
2264 representation for double); float values must, however, be exactly
2265 representable as IEE754 single precision. Hexadecimal format is always used
2266 for long double, and there are three forms of long double. The 80-bit format
2267 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2268 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2269 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2270 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2271 currently supported target uses this format. Long doubles will only work if
2272 they match the long double format on your target. All hexadecimal formats
2273 are big-endian (sign bit at the left).</p>
2274
Dale Johannesen21fe99b2010-10-01 00:48:59 +00002275<p>There are no constants of type x86mmx.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002276</div>
2277
2278<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002279<h3>
Bill Wendlingd9fe2982009-07-20 02:32:41 +00002280<a name="aggregateconstants"></a> <!-- old anchor -->
2281<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002282</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002283
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002284<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002285
Chris Lattner70882792009-02-28 18:32:25 +00002286<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002287 constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002288
2289<dl>
2290 <dt><b>Structure constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002291 <dd>Structure constants are represented with notation similar to structure
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002292 type definitions (a comma separated list of elements, surrounded by braces
2293 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2294 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2295 Structure constants must have <a href="#t_struct">structure type</a>, and
2296 the number and types of elements must match those specified by the
2297 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002298
2299 <dt><b>Array constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002300 <dd>Array constants are represented with notation similar to array type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002301 definitions (a comma separated list of elements, surrounded by square
2302 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2303 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2304 the number and types of elements must match those specified by the
2305 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002306
Reid Spencer485bad12007-02-15 03:07:05 +00002307 <dt><b>Vector constants</b></dt>
Reid Spencer485bad12007-02-15 03:07:05 +00002308 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002309 definitions (a comma separated list of elements, surrounded by
2310 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2311 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2312 have <a href="#t_vector">vector type</a>, and the number and types of
2313 elements must match those specified by the type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002314
2315 <dt><b>Zero initialization</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002316 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattnerfdfeb692010-02-12 20:49:41 +00002317 value to zero of <em>any</em> type, including scalar and
2318 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002319 This is often used to avoid having to print large zero initializers
2320 (e.g. for large arrays) and is always exactly equivalent to using explicit
2321 zero initializers.</dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002322
2323 <dt><b>Metadata node</b></dt>
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00002324 <dd>A metadata node is a structure-like constant with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002325 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2326 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2327 be interpreted as part of the instruction stream, metadata is a place to
2328 attach additional information such as debug info.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002329</dl>
2330
2331</div>
2332
2333<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002334<h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002335 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002336</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002337
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002338<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002339
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002340<p>The addresses of <a href="#globalvars">global variables</a>
2341 and <a href="#functionstructure">functions</a> are always implicitly valid
2342 (link-time) constants. These constants are explicitly referenced when
2343 the <a href="#identifiers">identifier for the global</a> is used and always
2344 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2345 legal LLVM file:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002346
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002347<pre class="doc_code">
Chris Lattnera18a4242007-06-06 18:28:13 +00002348@X = global i32 17
2349@Y = global i32 42
2350@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00002351</pre>
2352
2353</div>
2354
2355<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002356<h3>
2357 <a name="undefvalues">Undefined Values</a>
2358</h3>
2359
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002360<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002361
Chris Lattner48a109c2009-09-07 22:52:39 +00002362<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002363 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling1b383ba2010-10-27 01:07:41 +00002364 Undefined values may be of any type (other than '<tt>label</tt>'
2365 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002366
Chris Lattnerc608cb12009-09-11 01:49:31 +00002367<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattner48a109c2009-09-07 22:52:39 +00002368 program is well defined no matter what value is used. This gives the
2369 compiler more freedom to optimize. Here are some examples of (potentially
2370 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002371
Chris Lattner48a109c2009-09-07 22:52:39 +00002372
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002373<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002374 %A = add %X, undef
2375 %B = sub %X, undef
2376 %C = xor %X, undef
2377Safe:
2378 %A = undef
2379 %B = undef
2380 %C = undef
2381</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002382
2383<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling1b383ba2010-10-27 01:07:41 +00002384 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002385
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002386<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002387 %A = or %X, undef
2388 %B = and %X, undef
2389Safe:
2390 %A = -1
2391 %B = 0
2392Unsafe:
2393 %A = undef
2394 %B = undef
2395</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002396
2397<p>These logical operations have bits that are not always affected by the input.
Bill Wendling1b383ba2010-10-27 01:07:41 +00002398 For example, if <tt>%X</tt> has a zero bit, then the output of the
2399 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2400 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2401 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2402 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2403 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2404 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2405 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002406
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002407<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002408 %A = select undef, %X, %Y
2409 %B = select undef, 42, %Y
2410 %C = select %X, %Y, undef
2411Safe:
2412 %A = %X (or %Y)
2413 %B = 42 (or %Y)
2414 %C = %Y
2415Unsafe:
2416 %A = undef
2417 %B = undef
2418 %C = undef
2419</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002420
Bill Wendling1b383ba2010-10-27 01:07:41 +00002421<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2422 branch) conditions can go <em>either way</em>, but they have to come from one
2423 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2424 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2425 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2426 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2427 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2428 eliminated.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002429
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002430<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002431 %A = xor undef, undef
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002432
Chris Lattner48a109c2009-09-07 22:52:39 +00002433 %B = undef
2434 %C = xor %B, %B
2435
2436 %D = undef
2437 %E = icmp lt %D, 4
2438 %F = icmp gte %D, 4
2439
2440Safe:
2441 %A = undef
2442 %B = undef
2443 %C = undef
2444 %D = undef
2445 %E = undef
2446 %F = undef
2447</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002448
Bill Wendling1b383ba2010-10-27 01:07:41 +00002449<p>This example points out that two '<tt>undef</tt>' operands are not
2450 necessarily the same. This can be surprising to people (and also matches C
2451 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2452 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2453 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2454 its value over its "live range". This is true because the variable doesn't
2455 actually <em>have a live range</em>. Instead, the value is logically read
2456 from arbitrary registers that happen to be around when needed, so the value
2457 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2458 need to have the same semantics or the core LLVM "replace all uses with"
2459 concept would not hold.</p>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002460
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002461<pre class="doc_code">
Chris Lattner6e9057b2009-09-07 23:33:52 +00002462 %A = fdiv undef, %X
2463 %B = fdiv %X, undef
2464Safe:
2465 %A = undef
2466b: unreachable
2467</pre>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002468
2469<p>These examples show the crucial difference between an <em>undefined
Bill Wendling1b383ba2010-10-27 01:07:41 +00002470 value</em> and <em>undefined behavior</em>. An undefined value (like
2471 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2472 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2473 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2474 defined on SNaN's. However, in the second example, we can make a more
2475 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2476 arbitrary value, we are allowed to assume that it could be zero. Since a
2477 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2478 the operation does not execute at all. This allows us to delete the divide and
2479 all code after it. Because the undefined operation "can't happen", the
2480 optimizer can assume that it occurs in dead code.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002481
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002482<pre class="doc_code">
Chris Lattner6e9057b2009-09-07 23:33:52 +00002483a: store undef -> %X
2484b: store %X -> undef
2485Safe:
2486a: &lt;deleted&gt;
2487b: unreachable
2488</pre>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002489
Bill Wendling1b383ba2010-10-27 01:07:41 +00002490<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2491 undefined value can be assumed to not have any effect; we can assume that the
2492 value is overwritten with bits that happen to match what was already there.
2493 However, a store <em>to</em> an undefined location could clobber arbitrary
2494 memory, therefore, it has undefined behavior.</p>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002495
Chris Lattnerc3f59762004-12-09 17:30:23 +00002496</div>
2497
2498<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002499<h3>
2500 <a name="trapvalues">Trap Values</a>
2501</h3>
2502
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002503<div>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002504
Dan Gohmanc68ce062010-04-26 20:21:21 +00002505<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanfff6c532010-04-22 23:14:21 +00002506 instead of representing an unspecified bit pattern, they represent the
2507 fact that an instruction or constant expression which cannot evoke side
2508 effects has nevertheless detected a condition which results in undefined
Dan Gohmanc68ce062010-04-26 20:21:21 +00002509 behavior.</p>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002510
Dan Gohman34b3d992010-04-28 00:49:41 +00002511<p>There is currently no way of representing a trap value in the IR; they
Dan Gohman855abed2010-05-03 14:51:43 +00002512 only exist when produced by operations such as
Dan Gohman34b3d992010-04-28 00:49:41 +00002513 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002514
Dan Gohman34b3d992010-04-28 00:49:41 +00002515<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002516
Dan Gohman34b3d992010-04-28 00:49:41 +00002517<ul>
2518<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2519 their operands.</li>
2520
2521<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2522 to their dynamic predecessor basic block.</li>
2523
2524<li>Function arguments depend on the corresponding actual argument values in
2525 the dynamic callers of their functions.</li>
2526
2527<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2528 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2529 control back to them.</li>
2530
Dan Gohmanb5328162010-05-03 14:55:22 +00002531<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2532 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2533 or exception-throwing call instructions that dynamically transfer control
2534 back to them.</li>
2535
Dan Gohman34b3d992010-04-28 00:49:41 +00002536<li>Non-volatile loads and stores depend on the most recent stores to all of the
2537 referenced memory addresses, following the order in the IR
2538 (including loads and stores implied by intrinsics such as
2539 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2540
Dan Gohman7c24ff12010-05-03 14:59:34 +00002541<!-- TODO: In the case of multiple threads, this only applies if the store
2542 "happens-before" the load or store. -->
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002543
Dan Gohman34b3d992010-04-28 00:49:41 +00002544<!-- TODO: floating-point exception state -->
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002545
Dan Gohman34b3d992010-04-28 00:49:41 +00002546<li>An instruction with externally visible side effects depends on the most
2547 recent preceding instruction with externally visible side effects, following
Dan Gohmanff70fe42010-07-06 15:26:33 +00002548 the order in the IR. (This includes
2549 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002550
Dan Gohmanb5328162010-05-03 14:55:22 +00002551<li>An instruction <i>control-depends</i> on a
2552 <a href="#terminators">terminator instruction</a>
2553 if the terminator instruction has multiple successors and the instruction
2554 is always executed when control transfers to one of the successors, and
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002555 may not be executed when control is transferred to another.</li>
Dan Gohman34b3d992010-04-28 00:49:41 +00002556
Dan Gohmanca4cac42011-04-12 23:05:59 +00002557<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2558 instruction if the set of instructions it otherwise depends on would be
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002559 different if the terminator had transferred control to a different
Dan Gohmanca4cac42011-04-12 23:05:59 +00002560 successor.</li>
2561
Dan Gohman34b3d992010-04-28 00:49:41 +00002562<li>Dependence is transitive.</li>
2563
2564</ul>
Dan Gohman34b3d992010-04-28 00:49:41 +00002565
2566<p>Whenever a trap value is generated, all values which depend on it evaluate
2567 to trap. If they have side effects, the evoke their side effects as if each
2568 operand with a trap value were undef. If they have externally-visible side
2569 effects, the behavior is undefined.</p>
2570
2571<p>Here are some examples:</p>
Dan Gohmanc30f6e12010-04-26 20:54:53 +00002572
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002573<pre class="doc_code">
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002574entry:
2575 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman34b3d992010-04-28 00:49:41 +00002576 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2577 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2578 store i32 0, i32* %trap_yet_again ; undefined behavior
2579
2580 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2581 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2582
2583 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2584
2585 %narrowaddr = bitcast i32* @g to i16*
2586 %wideaddr = bitcast i32* @g to i64*
Nick Lewycky64f9fb12011-05-16 19:29:30 +00002587 %trap3 = load i16* %narrowaddr ; Returns a trap value.
2588 %trap4 = load i64* %wideaddr ; Returns a trap value.
Dan Gohman34b3d992010-04-28 00:49:41 +00002589
Nick Lewycky64f9fb12011-05-16 19:29:30 +00002590 %cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
2591 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002592
2593true:
Dan Gohman34b3d992010-04-28 00:49:41 +00002594 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2595 ; it has undefined behavior.
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002596 br label %end
2597
2598end:
2599 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2600 ; Both edges into this PHI are
2601 ; control-dependent on %cmp, so this
Dan Gohman34b3d992010-04-28 00:49:41 +00002602 ; always results in a trap value.
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002603
Dan Gohmanca4cac42011-04-12 23:05:59 +00002604 volatile store i32 0, i32* @g ; This would depend on the store in %true
2605 ; if %cmp is true, or the store in %entry
2606 ; otherwise, so this is undefined behavior.
2607
Nick Lewycky64f9fb12011-05-16 19:29:30 +00002608 br i1 %cmp, label %second_true, label %second_end
Dan Gohmanca4cac42011-04-12 23:05:59 +00002609 ; The same branch again, but this time the
2610 ; true block doesn't have side effects.
2611
2612second_true:
2613 ; No side effects!
Nick Lewycky64f9fb12011-05-16 19:29:30 +00002614 ret void
Dan Gohmanca4cac42011-04-12 23:05:59 +00002615
2616second_end:
2617 volatile store i32 0, i32* @g ; This time, the instruction always depends
2618 ; on the store in %end. Also, it is
2619 ; control-equivalent to %end, so this is
Nick Lewycky64f9fb12011-05-16 19:29:30 +00002620 ; well-defined (again, ignoring earlier
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002621 ; undefined behavior in this example).
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002622</pre>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002623
Dan Gohmanfff6c532010-04-22 23:14:21 +00002624</div>
2625
2626<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002627<h3>
2628 <a name="blockaddress">Addresses of Basic Blocks</a>
2629</h3>
2630
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002631<div>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002632
Chris Lattnercdfc9402009-11-01 01:27:45 +00002633<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002634
2635<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner2dfdf2a2009-10-27 21:49:40 +00002636 basic block in the specified function, and always has an i8* type. Taking
Chris Lattnercdfc9402009-11-01 01:27:45 +00002637 the address of the entry block is illegal.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002638
Chris Lattnerc6f44362009-10-27 21:01:34 +00002639<p>This value only has defined behavior when used as an operand to the
Bill Wendling1b383ba2010-10-27 01:07:41 +00002640 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2641 comparisons against null. Pointer equality tests between labels addresses
2642 results in undefined behavior &mdash; though, again, comparison against null
2643 is ok, and no label is equal to the null pointer. This may be passed around
2644 as an opaque pointer sized value as long as the bits are not inspected. This
2645 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2646 long as the original value is reconstituted before the <tt>indirectbr</tt>
2647 instruction.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002648
Bill Wendling1b383ba2010-10-27 01:07:41 +00002649<p>Finally, some targets may provide defined semantics when using the value as
2650 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002651
2652</div>
2653
2654
2655<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002656<h3>
2657 <a name="constantexprs">Constant Expressions</a>
2658</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002659
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002660<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002661
2662<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002663 to be used as constants. Constant expressions may be of
2664 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2665 operation that does not have side effects (e.g. load and call are not
Bill Wendling1b383ba2010-10-27 01:07:41 +00002666 supported). The following is the syntax for constant expressions:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002667
2668<dl>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002669 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002670 <dd>Truncate a constant to another type. The bit size of CST must be larger
2671 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002672
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002673 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002674 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sands28afd432010-07-13 12:06:14 +00002675 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002676
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002677 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002678 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sands28afd432010-07-13 12:06:14 +00002679 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002680
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002681 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002682 <dd>Truncate a floating point constant to another floating point type. The
2683 size of CST must be larger than the size of TYPE. Both types must be
2684 floating point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002685
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002686 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002687 <dd>Floating point extend a constant to another type. The size of CST must be
2688 smaller or equal to the size of TYPE. Both types must be floating
2689 point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002690
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002691 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002692 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002693 constant. TYPE must be a scalar or vector integer type. CST must be of
2694 scalar or vector floating point type. Both CST and TYPE must be scalars,
2695 or vectors of the same number of elements. If the value won't fit in the
2696 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002697
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002698 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002699 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002700 constant. TYPE must be a scalar or vector integer type. CST must be of
2701 scalar or vector floating point type. Both CST and TYPE must be scalars,
2702 or vectors of the same number of elements. If the value won't fit in the
2703 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002704
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002705 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002706 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002707 constant. TYPE must be a scalar or vector floating point type. CST must be
2708 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2709 vectors of the same number of elements. If the value won't fit in the
2710 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002711
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002712 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002713 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002714 constant. TYPE must be a scalar or vector floating point type. CST must be
2715 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2716 vectors of the same number of elements. If the value won't fit in the
2717 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002718
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002719 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002720 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002721 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2722 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2723 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002724
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002725 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002726 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2727 type. CST must be of integer type. The CST value is zero extended,
2728 truncated, or unchanged to make it fit in a pointer size. This one is
2729 <i>really</i> dangerous!</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002730
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002731 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002732 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2733 are the same as those for the <a href="#i_bitcast">bitcast
2734 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002735
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002736 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2737 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002738 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002739 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2740 instruction, the index list may have zero or more indexes, which are
2741 required to make sense for the type of "CSTPTR".</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002742
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002743 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002744 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer01c42592006-12-04 19:23:19 +00002745
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002746 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer01c42592006-12-04 19:23:19 +00002747 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2748
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002749 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer01c42592006-12-04 19:23:19 +00002750 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002751
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002752 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002753 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2754 constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002755
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002756 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002757 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2758 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002759
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002760 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002761 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2762 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002763
Nick Lewycky9e130ce2010-05-29 06:44:15 +00002764 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2765 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2766 constants. The index list is interpreted in a similar manner as indices in
2767 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2768 index value must be specified.</dd>
2769
2770 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2771 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2772 constants. The index list is interpreted in a similar manner as indices in
2773 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2774 index value must be specified.</dd>
2775
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002776 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002777 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2778 be any of the <a href="#binaryops">binary</a>
2779 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2780 on operands are the same as those for the corresponding instruction
2781 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002782</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002783
Chris Lattnerc3f59762004-12-09 17:30:23 +00002784</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002785
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002786</div>
2787
Chris Lattner00950542001-06-06 20:29:01 +00002788<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002789<h2><a name="othervalues">Other Values</a></h2>
Chris Lattnere87d6532006-01-25 23:47:57 +00002790<!-- *********************************************************************** -->
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002791<div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002792<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002793<h3>
Chris Lattnere87d6532006-01-25 23:47:57 +00002794<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002795</h3>
Chris Lattnere87d6532006-01-25 23:47:57 +00002796
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002797<div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002798
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002799<p>LLVM supports inline assembler expressions (as opposed
2800 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2801 a special value. This value represents the inline assembler as a string
2802 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen09fed252009-10-13 21:56:55 +00002803 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002804 expression has side effects, and a flag indicating whether the function
2805 containing the asm needs to align its stack conservatively. An example
2806 inline assembler expression is:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002807
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002808<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002809i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002810</pre>
2811
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002812<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2813 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2814 have:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002815
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002816<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002817%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002818</pre>
2819
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002820<p>Inline asms with side effects not visible in the constraint list must be
2821 marked as having side effects. This is done through the use of the
2822 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002823
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002824<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002825call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002826</pre>
2827
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002828<p>In some cases inline asms will contain code that will not work unless the
2829 stack is aligned in some way, such as calls or SSE instructions on x86,
2830 yet will not contain code that does that alignment within the asm.
2831 The compiler should make conservative assumptions about what the asm might
2832 contain and should generate its usual stack alignment code in the prologue
2833 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen09fed252009-10-13 21:56:55 +00002834
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002835<pre class="doc_code">
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002836call void asm alignstack "eieio", ""()
Dale Johannesen09fed252009-10-13 21:56:55 +00002837</pre>
Dale Johannesen09fed252009-10-13 21:56:55 +00002838
2839<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2840 first.</p>
2841
Chris Lattnere87d6532006-01-25 23:47:57 +00002842<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002843 documented here. Constraints on what can be done (e.g. duplication, moving,
2844 etc need to be documented). This is probably best done by reference to
2845 another document that covers inline asm from a holistic perspective.</p>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002846
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002847<h4>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002848<a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002849</h4>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002850
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002851<div>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002852
2853<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattnerce1b9ad2010-11-17 08:20:42 +00002854 attached to it that contains a list of constant integers. If present, the
2855 code generator will use the integer as the location cookie value when report
Chris Lattnercf9a4152010-04-07 05:38:05 +00002856 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman1c70c002010-04-28 00:36:01 +00002857 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattnercf9a4152010-04-07 05:38:05 +00002858 source code that produced it. For example:</p>
2859
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002860<pre class="doc_code">
Chris Lattnercf9a4152010-04-07 05:38:05 +00002861call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2862...
2863!42 = !{ i32 1234567 }
2864</pre>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002865
2866<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattnerce1b9ad2010-11-17 08:20:42 +00002867 IR. If the MDNode contains multiple constants, the code generator will use
2868 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002869
2870</div>
2871
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002872</div>
2873
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002874<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002875<h3>
2876 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2877</h3>
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002878
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002879<div>
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002880
2881<p>LLVM IR allows metadata to be attached to instructions in the program that
2882 can convey extra information about the code to the optimizers and code
2883 generator. One example application of metadata is source-level debug
2884 information. There are two metadata primitives: strings and nodes. All
2885 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2886 preceding exclamation point ('<tt>!</tt>').</p>
2887
2888<p>A metadata string is a string surrounded by double quotes. It can contain
2889 any character by escaping non-printable characters with "\xx" where "xx" is
2890 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2891
2892<p>Metadata nodes are represented with notation similar to structure constants
2893 (a comma separated list of elements, surrounded by braces and preceded by an
2894 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2895 10}</tt>". Metadata nodes can have any values as their operand.</p>
2896
2897<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2898 metadata nodes, which can be looked up in the module symbol table. For
2899 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2900
Devang Patele1d50cd2010-03-04 23:44:48 +00002901<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002902 function is using two metadata arguments.</p>
Devang Patele1d50cd2010-03-04 23:44:48 +00002903
Bill Wendling9ff5de92011-03-02 02:17:11 +00002904<div class="doc_code">
2905<pre>
2906call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2907</pre>
2908</div>
Devang Patele1d50cd2010-03-04 23:44:48 +00002909
2910<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002911 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patele1d50cd2010-03-04 23:44:48 +00002912
Bill Wendling9ff5de92011-03-02 02:17:11 +00002913<div class="doc_code">
2914<pre>
2915%indvar.next = add i64 %indvar, 1, !dbg !21
2916</pre>
2917</div>
2918
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002919</div>
2920
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002921</div>
Chris Lattner857755c2009-07-20 05:55:19 +00002922
2923<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002924<h2>
Chris Lattner857755c2009-07-20 05:55:19 +00002925 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002926</h2>
Chris Lattner857755c2009-07-20 05:55:19 +00002927<!-- *********************************************************************** -->
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002928<div>
Chris Lattner857755c2009-07-20 05:55:19 +00002929<p>LLVM has a number of "magic" global variables that contain data that affect
2930code generation or other IR semantics. These are documented here. All globals
Chris Lattner401e10c2009-07-20 06:14:25 +00002931of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2932section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2933by LLVM.</p>
Chris Lattner857755c2009-07-20 05:55:19 +00002934
2935<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002936<h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002937<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002938</h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002939
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002940<div>
Chris Lattner857755c2009-07-20 05:55:19 +00002941
2942<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2943href="#linkage_appending">appending linkage</a>. This array contains a list of
2944pointers to global variables and functions which may optionally have a pointer
2945cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2946
2947<pre>
2948 @X = global i8 4
2949 @Y = global i32 123
2950
2951 @llvm.used = appending global [2 x i8*] [
2952 i8* @X,
2953 i8* bitcast (i32* @Y to i8*)
2954 ], section "llvm.metadata"
2955</pre>
2956
2957<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2958compiler, assembler, and linker are required to treat the symbol as if there is
2959a reference to the global that it cannot see. For example, if a variable has
2960internal linkage and no references other than that from the <tt>@llvm.used</tt>
2961list, it cannot be deleted. This is commonly used to represent references from
2962inline asms and other things the compiler cannot "see", and corresponds to
2963"attribute((used))" in GNU C.</p>
2964
2965<p>On some targets, the code generator must emit a directive to the assembler or
2966object file to prevent the assembler and linker from molesting the symbol.</p>
2967
2968</div>
2969
2970<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002971<h3>
2972 <a name="intg_compiler_used">
2973 The '<tt>llvm.compiler.used</tt>' Global Variable
2974 </a>
2975</h3>
Chris Lattner401e10c2009-07-20 06:14:25 +00002976
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002977<div>
Chris Lattner401e10c2009-07-20 06:14:25 +00002978
2979<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2980<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2981touching the symbol. On targets that support it, this allows an intelligent
2982linker to optimize references to the symbol without being impeded as it would be
2983by <tt>@llvm.used</tt>.</p>
2984
2985<p>This is a rare construct that should only be used in rare circumstances, and
2986should not be exposed to source languages.</p>
2987
2988</div>
2989
2990<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002991<h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002992<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002993</h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002994
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002995<div>
David Chisnalle31e9962010-04-30 19:23:49 +00002996<pre>
2997%0 = type { i32, void ()* }
David Chisnall27195a52010-04-30 19:27:35 +00002998@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalle31e9962010-04-30 19:23:49 +00002999</pre>
3000<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
3001</p>
Chris Lattner857755c2009-07-20 05:55:19 +00003002
3003</div>
3004
3005<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003006<h3>
Chris Lattner857755c2009-07-20 05:55:19 +00003007<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003008</h3>
Chris Lattner857755c2009-07-20 05:55:19 +00003009
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003010<div>
David Chisnalle31e9962010-04-30 19:23:49 +00003011<pre>
3012%0 = type { i32, void ()* }
David Chisnall27195a52010-04-30 19:27:35 +00003013@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalle31e9962010-04-30 19:23:49 +00003014</pre>
Chris Lattner857755c2009-07-20 05:55:19 +00003015
David Chisnalle31e9962010-04-30 19:23:49 +00003016<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
3017</p>
Chris Lattner857755c2009-07-20 05:55:19 +00003018
3019</div>
3020
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003021</div>
Chris Lattner857755c2009-07-20 05:55:19 +00003022
Chris Lattnere87d6532006-01-25 23:47:57 +00003023<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003024<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +00003025<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00003026
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003027<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00003028
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003029<p>The LLVM instruction set consists of several different classifications of
3030 instructions: <a href="#terminators">terminator
3031 instructions</a>, <a href="#binaryops">binary instructions</a>,
3032 <a href="#bitwiseops">bitwise binary instructions</a>,
3033 <a href="#memoryops">memory instructions</a>, and
3034 <a href="#otherops">other instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00003035
Chris Lattner00950542001-06-06 20:29:01 +00003036<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003037<h3>
3038 <a name="terminators">Terminator Instructions</a>
3039</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00003040
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003041<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00003042
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003043<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3044 in a program ends with a "Terminator" instruction, which indicates which
3045 block should be executed after the current block is finished. These
3046 terminator instructions typically yield a '<tt>void</tt>' value: they produce
3047 control flow, not values (the one exception being the
3048 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3049
Chris Lattner6445ecb2011-08-02 20:29:13 +00003050<p>The terminator instructions are:
3051 '<a href="#i_ret"><tt>ret</tt></a>',
3052 '<a href="#i_br"><tt>br</tt></a>',
3053 '<a href="#i_switch"><tt>switch</tt></a>',
3054 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3055 '<a href="#i_invoke"><tt>invoke</tt></a>',
3056 '<a href="#i_unwind"><tt>unwind</tt></a>',
3057 '<a href="#i_resume"><tt>resume</tt></a>', and
3058 '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00003059
Chris Lattner00950542001-06-06 20:29:01 +00003060<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003061<h4>
3062 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3063</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003064
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003065<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003066
Chris Lattner00950542001-06-06 20:29:01 +00003067<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00003068<pre>
3069 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00003070 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00003071</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00003072
Chris Lattner00950542001-06-06 20:29:01 +00003073<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003074<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3075 a value) from a function back to the caller.</p>
3076
3077<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3078 value and then causes control flow, and one that just causes control flow to
3079 occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00003080
Chris Lattner00950542001-06-06 20:29:01 +00003081<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003082<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3083 return value. The type of the return value must be a
3084 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00003085
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003086<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3087 non-void return type and contains a '<tt>ret</tt>' instruction with no return
3088 value or a return value with a type that does not match its type, or if it
3089 has a void return type and contains a '<tt>ret</tt>' instruction with a
3090 return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00003091
Chris Lattner00950542001-06-06 20:29:01 +00003092<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003093<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3094 the calling function's context. If the caller is a
3095 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3096 instruction after the call. If the caller was an
3097 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3098 the beginning of the "normal" destination block. If the instruction returns
3099 a value, that value shall set the call or invoke instruction's return
3100 value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00003101
Chris Lattner00950542001-06-06 20:29:01 +00003102<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00003103<pre>
3104 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00003105 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00003106 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00003107</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003108
Misha Brukman9d0919f2003-11-08 01:05:38 +00003109</div>
Chris Lattner00950542001-06-06 20:29:01 +00003110<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003111<h4>
3112 <a name="i_br">'<tt>br</tt>' Instruction</a>
3113</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003114
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003115<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003116
Chris Lattner00950542001-06-06 20:29:01 +00003117<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003118<pre>
Bill Wendlingb3aa4712011-07-26 10:41:15 +00003119 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3120 br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00003121</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003122
Chris Lattner00950542001-06-06 20:29:01 +00003123<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003124<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3125 different basic block in the current function. There are two forms of this
3126 instruction, corresponding to a conditional branch and an unconditional
3127 branch.</p>
3128
Chris Lattner00950542001-06-06 20:29:01 +00003129<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003130<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3131 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
3132 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3133 target.</p>
3134
Chris Lattner00950542001-06-06 20:29:01 +00003135<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00003136<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003137 argument is evaluated. If the value is <tt>true</tt>, control flows to the
3138 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
3139 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3140
Chris Lattner00950542001-06-06 20:29:01 +00003141<h5>Example:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00003142<pre>
3143Test:
3144 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3145 br i1 %cond, label %IfEqual, label %IfUnequal
3146IfEqual:
3147 <a href="#i_ret">ret</a> i32 1
3148IfUnequal:
3149 <a href="#i_ret">ret</a> i32 0
3150</pre>
3151
Misha Brukman9d0919f2003-11-08 01:05:38 +00003152</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003153
Chris Lattner00950542001-06-06 20:29:01 +00003154<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003155<h4>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003156 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003157</h4>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003158
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003159<div>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003160
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003161<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003162<pre>
3163 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3164</pre>
3165
Chris Lattner00950542001-06-06 20:29:01 +00003166<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003167<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003168 several different places. It is a generalization of the '<tt>br</tt>'
3169 instruction, allowing a branch to occur to one of many possible
3170 destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003171
Chris Lattner00950542001-06-06 20:29:01 +00003172<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003173<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003174 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3175 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3176 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003177
Chris Lattner00950542001-06-06 20:29:01 +00003178<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003179<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003180 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3181 is searched for the given value. If the value is found, control flow is
Benjamin Kramer8040cd32009-10-12 14:46:08 +00003182 transferred to the corresponding destination; otherwise, control flow is
3183 transferred to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003184
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003185<h5>Implementation:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003186<p>Depending on properties of the target machine and the particular
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003187 <tt>switch</tt> instruction, this instruction may be code generated in
3188 different ways. For example, it could be generated as a series of chained
3189 conditional branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003190
3191<h5>Example:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003192<pre>
3193 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003194 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00003195 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003196
3197 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003198 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003199
3200 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00003201 switch i32 %val, label %otherwise [ i32 0, label %onzero
3202 i32 1, label %onone
3203 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00003204</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003205
Misha Brukman9d0919f2003-11-08 01:05:38 +00003206</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003207
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003208
3209<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003210<h4>
Chris Lattnerab21db72009-10-28 00:19:10 +00003211 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003212</h4>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003213
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003214<div>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003215
3216<h5>Syntax:</h5>
3217<pre>
Chris Lattnerab21db72009-10-28 00:19:10 +00003218 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003219</pre>
3220
3221<h5>Overview:</h5>
3222
Chris Lattnerab21db72009-10-28 00:19:10 +00003223<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003224 within the current function, whose address is specified by
Chris Lattnerc6f44362009-10-27 21:01:34 +00003225 "<tt>address</tt>". Address must be derived from a <a
3226 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003227
3228<h5>Arguments:</h5>
3229
3230<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3231 rest of the arguments indicate the full set of possible destinations that the
3232 address may point to. Blocks are allowed to occur multiple times in the
3233 destination list, though this isn't particularly useful.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003234
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003235<p>This destination list is required so that dataflow analysis has an accurate
3236 understanding of the CFG.</p>
3237
3238<h5>Semantics:</h5>
3239
3240<p>Control transfers to the block specified in the address argument. All
3241 possible destination blocks must be listed in the label list, otherwise this
3242 instruction has undefined behavior. This implies that jumps to labels
3243 defined in other functions have undefined behavior as well.</p>
3244
3245<h5>Implementation:</h5>
3246
3247<p>This is typically implemented with a jump through a register.</p>
3248
3249<h5>Example:</h5>
3250<pre>
Chris Lattnerab21db72009-10-28 00:19:10 +00003251 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003252</pre>
3253
3254</div>
3255
3256
Chris Lattner00950542001-06-06 20:29:01 +00003257<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003258<h4>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003259 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003260</h4>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003261
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003262<div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003263
Chris Lattner00950542001-06-06 20:29:01 +00003264<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003265<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00003266 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00003267 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003268</pre>
3269
Chris Lattner6536cfe2002-05-06 22:08:29 +00003270<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003271<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003272 function, with the possibility of control flow transfer to either the
3273 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3274 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3275 control flow will return to the "normal" label. If the callee (or any
3276 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3277 instruction, control is interrupted and continued at the dynamically nearest
3278 "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003279
Bill Wendlingf78faf82011-08-02 21:52:38 +00003280<p>The '<tt>exception</tt>' label is a
3281 <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3282 exception. As such, '<tt>exception</tt>' label is required to have the
3283 "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
3284 the information about about the behavior of the program after unwinding
3285 happens, as its first non-PHI instruction. The restrictions on the
3286 "<tt>landingpad</tt>" instruction's tightly couples it to the
3287 "<tt>invoke</tt>" instruction, so that the important information contained
3288 within the "<tt>landingpad</tt>" instruction can't be lost through normal
3289 code motion.</p>
3290
Chris Lattner00950542001-06-06 20:29:01 +00003291<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003292<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003293
Chris Lattner00950542001-06-06 20:29:01 +00003294<ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003295 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3296 convention</a> the call should use. If none is specified, the call
3297 defaults to using C calling conventions.</li>
Devang Patelf642f472008-10-06 18:50:38 +00003298
3299 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003300 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3301 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelf642f472008-10-06 18:50:38 +00003302
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003303 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003304 function value being invoked. In most cases, this is a direct function
3305 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3306 off an arbitrary pointer to function value.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003307
3308 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003309 function to be invoked. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003310
3311 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner0724fbd2010-03-02 06:36:51 +00003312 signature argument types and parameter attributes. All arguments must be
3313 of <a href="#t_firstclass">first class</a> type. If the function
3314 signature indicates the function accepts a variable number of arguments,
3315 the extra arguments can be specified.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003316
3317 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003318 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003319
3320 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003321 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003322
Devang Patel307e8ab2008-10-07 17:48:33 +00003323 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003324 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3325 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00003326</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003327
Chris Lattner00950542001-06-06 20:29:01 +00003328<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003329<p>This instruction is designed to operate as a standard
3330 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3331 primary difference is that it establishes an association with a label, which
3332 is used by the runtime library to unwind the stack.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003333
3334<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003335 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3336 exception. Additionally, this is important for implementation of
3337 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003338
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003339<p>For the purposes of the SSA form, the definition of the value returned by the
3340 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3341 block to the "normal" label. If the callee unwinds then no return value is
3342 available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00003343
Chris Lattnerdf7a6802010-01-15 18:08:37 +00003344<p>Note that the code generator does not yet completely support unwind, and
3345that the invoke/unwind semantics are likely to change in future versions.</p>
3346
Chris Lattner00950542001-06-06 20:29:01 +00003347<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003348<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00003349 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003350 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00003351 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003352 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00003353</pre>
Chris Lattner35eca582004-10-16 18:04:13 +00003354
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003355</div>
Chris Lattner35eca582004-10-16 18:04:13 +00003356
Chris Lattner27f71f22003-09-03 00:41:47 +00003357<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00003358
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003359<h4>
3360 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3361</h4>
Chris Lattner35eca582004-10-16 18:04:13 +00003362
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003363<div>
Chris Lattner35eca582004-10-16 18:04:13 +00003364
Chris Lattner27f71f22003-09-03 00:41:47 +00003365<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003366<pre>
3367 unwind
3368</pre>
3369
Chris Lattner27f71f22003-09-03 00:41:47 +00003370<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003371<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003372 at the first callee in the dynamic call stack which used
3373 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3374 This is primarily used to implement exception handling.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00003375
Chris Lattner27f71f22003-09-03 00:41:47 +00003376<h5>Semantics:</h5>
Chris Lattner72ed2002008-04-19 21:01:16 +00003377<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003378 immediately halt. The dynamic call stack is then searched for the
3379 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3380 Once found, execution continues at the "exceptional" destination block
3381 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3382 instruction in the dynamic call chain, undefined behavior results.</p>
3383
Chris Lattnerdf7a6802010-01-15 18:08:37 +00003384<p>Note that the code generator does not yet completely support unwind, and
3385that the invoke/unwind semantics are likely to change in future versions.</p>
3386
Misha Brukman9d0919f2003-11-08 01:05:38 +00003387</div>
Chris Lattner35eca582004-10-16 18:04:13 +00003388
Bill Wendlingdccc03b2011-07-31 06:30:59 +00003389 <!-- _______________________________________________________________________ -->
3390
3391<h4>
3392 <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3393</h4>
3394
3395<div>
3396
3397<h5>Syntax:</h5>
3398<pre>
3399 resume &lt;type&gt; &lt;value&gt;
3400</pre>
3401
3402<h5>Overview:</h5>
3403<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3404 successors.</p>
3405
3406<h5>Arguments:</h5>
Bill Wendlingf78faf82011-08-02 21:52:38 +00003407<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
Bill Wendlinge4ad50b2011-08-03 18:37:32 +00003408 same type as the result of any '<tt>landingpad</tt>' instruction in the same
3409 function.</p>
Bill Wendlingdccc03b2011-07-31 06:30:59 +00003410
3411<h5>Semantics:</h5>
3412<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3413 (in-flight) exception whose unwinding was interrupted with
Bill Wendlingf78faf82011-08-02 21:52:38 +00003414 a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
Bill Wendlingdccc03b2011-07-31 06:30:59 +00003415
3416<h5>Example:</h5>
3417<pre>
Bill Wendlingf78faf82011-08-02 21:52:38 +00003418 resume { i8*, i32 } %exn
Bill Wendlingdccc03b2011-07-31 06:30:59 +00003419</pre>
3420
3421</div>
3422
Chris Lattner35eca582004-10-16 18:04:13 +00003423<!-- _______________________________________________________________________ -->
3424
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003425<h4>
3426 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3427</h4>
Chris Lattner35eca582004-10-16 18:04:13 +00003428
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003429<div>
Chris Lattner35eca582004-10-16 18:04:13 +00003430
3431<h5>Syntax:</h5>
3432<pre>
3433 unreachable
3434</pre>
3435
3436<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003437<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003438 instruction is used to inform the optimizer that a particular portion of the
3439 code is not reachable. This can be used to indicate that the code after a
3440 no-return function cannot be reached, and other facts.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00003441
3442<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003443<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003444
Chris Lattner35eca582004-10-16 18:04:13 +00003445</div>
3446
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003447</div>
3448
Chris Lattner00950542001-06-06 20:29:01 +00003449<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003450<h3>
3451 <a name="binaryops">Binary Operations</a>
3452</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003453
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003454<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003455
3456<p>Binary operators are used to do most of the computation in a program. They
3457 require two operands of the same type, execute an operation on them, and
3458 produce a single value. The operands might represent multiple data, as is
3459 the case with the <a href="#t_vector">vector</a> data type. The result value
3460 has the same type as its operands.</p>
3461
Misha Brukman9d0919f2003-11-08 01:05:38 +00003462<p>There are several different binary operators:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003463
Chris Lattner00950542001-06-06 20:29:01 +00003464<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003465<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003466 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003467</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003468
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003469<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003470
Chris Lattner00950542001-06-06 20:29:01 +00003471<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003472<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003473 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003474 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3475 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3476 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003477</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003478
Chris Lattner00950542001-06-06 20:29:01 +00003479<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003480<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003481
Chris Lattner00950542001-06-06 20:29:01 +00003482<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003483<p>The two arguments to the '<tt>add</tt>' instruction must
3484 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3485 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003486
Chris Lattner00950542001-06-06 20:29:01 +00003487<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003488<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003489
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003490<p>If the sum has unsigned overflow, the result returned is the mathematical
3491 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003492
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003493<p>Because LLVM integers use a two's complement representation, this instruction
3494 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003495
Dan Gohman08d012e2009-07-22 22:44:56 +00003496<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3497 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3498 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanfff6c532010-04-22 23:14:21 +00003499 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3500 respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003501
Chris Lattner00950542001-06-06 20:29:01 +00003502<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003503<pre>
3504 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003505</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003506
Misha Brukman9d0919f2003-11-08 01:05:38 +00003507</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003508
Chris Lattner00950542001-06-06 20:29:01 +00003509<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003510<h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003511 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003512</h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003513
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003514<div>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003515
3516<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003517<pre>
3518 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3519</pre>
3520
3521<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003522<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3523
3524<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003525<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003526 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3527 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003528
3529<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003530<p>The value produced is the floating point sum of the two operands.</p>
3531
3532<h5>Example:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003533<pre>
3534 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3535</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003536
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003537</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003538
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003539<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003540<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003541 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003542</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003543
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003544<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003545
Chris Lattner00950542001-06-06 20:29:01 +00003546<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003547<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00003548 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003549 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3550 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3551 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003552</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003553
Chris Lattner00950542001-06-06 20:29:01 +00003554<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003555<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003556 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003557
3558<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003559 '<tt>neg</tt>' instruction present in most other intermediate
3560 representations.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003561
Chris Lattner00950542001-06-06 20:29:01 +00003562<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003563<p>The two arguments to the '<tt>sub</tt>' instruction must
3564 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3565 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003566
Chris Lattner00950542001-06-06 20:29:01 +00003567<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003568<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003569
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003570<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003571 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3572 result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003573
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003574<p>Because LLVM integers use a two's complement representation, this instruction
3575 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003576
Dan Gohman08d012e2009-07-22 22:44:56 +00003577<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3578 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3579 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanfff6c532010-04-22 23:14:21 +00003580 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3581 respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003582
Chris Lattner00950542001-06-06 20:29:01 +00003583<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00003584<pre>
3585 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003586 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003587</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003588
Misha Brukman9d0919f2003-11-08 01:05:38 +00003589</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003590
Chris Lattner00950542001-06-06 20:29:01 +00003591<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003592<h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003593 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003594</h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003595
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003596<div>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003597
3598<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003599<pre>
3600 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3601</pre>
3602
3603<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003604<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003605 operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003606
3607<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003608 '<tt>fneg</tt>' instruction present in most other intermediate
3609 representations.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003610
3611<h5>Arguments:</h5>
Bill Wendlingd9fe2982009-07-20 02:32:41 +00003612<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003613 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3614 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003615
3616<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003617<p>The value produced is the floating point difference of the two operands.</p>
3618
3619<h5>Example:</h5>
3620<pre>
3621 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3622 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3623</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003624
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003625</div>
3626
3627<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003628<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003629 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003630</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003631
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003632<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003633
Chris Lattner00950542001-06-06 20:29:01 +00003634<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003635<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00003636 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003637 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3638 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3639 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003640</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003641
Chris Lattner00950542001-06-06 20:29:01 +00003642<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003643<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003644
Chris Lattner00950542001-06-06 20:29:01 +00003645<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003646<p>The two arguments to the '<tt>mul</tt>' instruction must
3647 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3648 integer values. Both arguments must have identical types.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003649
Chris Lattner00950542001-06-06 20:29:01 +00003650<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003651<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003652
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003653<p>If the result of the multiplication has unsigned overflow, the result
3654 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3655 width of the result.</p>
3656
3657<p>Because LLVM integers use a two's complement representation, and the result
3658 is the same width as the operands, this instruction returns the correct
3659 result for both signed and unsigned integers. If a full product
3660 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3661 be sign-extended or zero-extended as appropriate to the width of the full
3662 product.</p>
3663
Dan Gohman08d012e2009-07-22 22:44:56 +00003664<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3665 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3666 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanfff6c532010-04-22 23:14:21 +00003667 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3668 respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003669
Chris Lattner00950542001-06-06 20:29:01 +00003670<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003671<pre>
3672 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003673</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003674
Misha Brukman9d0919f2003-11-08 01:05:38 +00003675</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003676
Chris Lattner00950542001-06-06 20:29:01 +00003677<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003678<h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003679 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003680</h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003681
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003682<div>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003683
3684<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003685<pre>
3686 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003687</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003688
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003689<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003690<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003691
3692<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003693<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003694 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3695 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003696
3697<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003698<p>The value produced is the floating point product of the two operands.</p>
3699
3700<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003701<pre>
3702 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003703</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003704
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003705</div>
3706
3707<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003708<h4>
3709 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3710</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003711
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003712<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003713
Reid Spencer1628cec2006-10-26 06:15:43 +00003714<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003715<pre>
Chris Lattner35bda892011-02-06 21:44:57 +00003716 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3717 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003718</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003719
Reid Spencer1628cec2006-10-26 06:15:43 +00003720<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003721<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003722
Reid Spencer1628cec2006-10-26 06:15:43 +00003723<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003724<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003725 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3726 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003727
Reid Spencer1628cec2006-10-26 06:15:43 +00003728<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00003729<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003730
Chris Lattner5ec89832008-01-28 00:36:27 +00003731<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003732 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3733
Chris Lattner5ec89832008-01-28 00:36:27 +00003734<p>Division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003735
Chris Lattner35bda892011-02-06 21:44:57 +00003736<p>If the <tt>exact</tt> keyword is present, the result value of the
3737 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3738 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3739
3740
Reid Spencer1628cec2006-10-26 06:15:43 +00003741<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003742<pre>
3743 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003744</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003745
Reid Spencer1628cec2006-10-26 06:15:43 +00003746</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003747
Reid Spencer1628cec2006-10-26 06:15:43 +00003748<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003749<h4>
3750 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3751</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003752
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003753<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003754
Reid Spencer1628cec2006-10-26 06:15:43 +00003755<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003756<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003757 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003758 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003759</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003760
Reid Spencer1628cec2006-10-26 06:15:43 +00003761<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003762<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003763
Reid Spencer1628cec2006-10-26 06:15:43 +00003764<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003765<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003766 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3767 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003768
Reid Spencer1628cec2006-10-26 06:15:43 +00003769<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003770<p>The value produced is the signed integer quotient of the two operands rounded
3771 towards zero.</p>
3772
Chris Lattner5ec89832008-01-28 00:36:27 +00003773<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003774 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3775
Chris Lattner5ec89832008-01-28 00:36:27 +00003776<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003777 undefined behavior; this is a rare case, but can occur, for example, by doing
3778 a 32-bit division of -2147483648 by -1.</p>
3779
Dan Gohman9c5beed2009-07-22 00:04:19 +00003780<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman27ef9972010-04-23 15:23:32 +00003781 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohman38da9272010-07-11 00:08:34 +00003782 be rounded.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003783
Reid Spencer1628cec2006-10-26 06:15:43 +00003784<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003785<pre>
3786 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003787</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003788
Reid Spencer1628cec2006-10-26 06:15:43 +00003789</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003790
Reid Spencer1628cec2006-10-26 06:15:43 +00003791<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003792<h4>
3793 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3794</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003795
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003796<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003797
Chris Lattner00950542001-06-06 20:29:01 +00003798<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003799<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003800 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003801</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003802
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003803<h5>Overview:</h5>
3804<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003805
Chris Lattner261efe92003-11-25 01:02:51 +00003806<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003807<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003808 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3809 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003810
Chris Lattner261efe92003-11-25 01:02:51 +00003811<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00003812<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003813
Chris Lattner261efe92003-11-25 01:02:51 +00003814<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003815<pre>
3816 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003817</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003818
Chris Lattner261efe92003-11-25 01:02:51 +00003819</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003820
Chris Lattner261efe92003-11-25 01:02:51 +00003821<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003822<h4>
3823 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3824</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003825
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003826<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003827
Reid Spencer0a783f72006-11-02 01:53:59 +00003828<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003829<pre>
3830 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003831</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003832
Reid Spencer0a783f72006-11-02 01:53:59 +00003833<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003834<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3835 division of its two arguments.</p>
3836
Reid Spencer0a783f72006-11-02 01:53:59 +00003837<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003838<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003839 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3840 values. Both arguments must have identical types.</p>
3841
Reid Spencer0a783f72006-11-02 01:53:59 +00003842<h5>Semantics:</h5>
3843<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003844 This instruction always performs an unsigned division to get the
3845 remainder.</p>
3846
Chris Lattner5ec89832008-01-28 00:36:27 +00003847<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003848 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3849
Chris Lattner5ec89832008-01-28 00:36:27 +00003850<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003851
Reid Spencer0a783f72006-11-02 01:53:59 +00003852<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003853<pre>
3854 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003855</pre>
3856
3857</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003858
Reid Spencer0a783f72006-11-02 01:53:59 +00003859<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003860<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003861 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003862</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003863
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003864<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003865
Chris Lattner261efe92003-11-25 01:02:51 +00003866<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003867<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003868 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003869</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003870
Chris Lattner261efe92003-11-25 01:02:51 +00003871<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003872<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3873 division of its two operands. This instruction can also take
3874 <a href="#t_vector">vector</a> versions of the values in which case the
3875 elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00003876
Chris Lattner261efe92003-11-25 01:02:51 +00003877<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003878<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003879 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3880 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003881
Chris Lattner261efe92003-11-25 01:02:51 +00003882<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00003883<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sandsdea3a5e2011-03-07 09:12:24 +00003884 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3885 <i>modulo</i> operator (where the result is either zero or has the same sign
3886 as the divisor, <tt>op2</tt>) of a value.
3887 For more information about the difference,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003888 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3889 Math Forum</a>. For a table of how this is implemented in various languages,
3890 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3891 Wikipedia: modulo operation</a>.</p>
3892
Chris Lattner5ec89832008-01-28 00:36:27 +00003893<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003894 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3895
Chris Lattner5ec89832008-01-28 00:36:27 +00003896<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003897 Overflow also leads to undefined behavior; this is a rare case, but can
3898 occur, for example, by taking the remainder of a 32-bit division of
3899 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3900 lets srem be implemented using instructions that return both the result of
3901 the division and the remainder.)</p>
3902
Chris Lattner261efe92003-11-25 01:02:51 +00003903<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003904<pre>
3905 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003906</pre>
3907
3908</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003909
Reid Spencer0a783f72006-11-02 01:53:59 +00003910<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003911<h4>
3912 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
3913</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003914
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003915<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003916
Reid Spencer0a783f72006-11-02 01:53:59 +00003917<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003918<pre>
3919 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003920</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003921
Reid Spencer0a783f72006-11-02 01:53:59 +00003922<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003923<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3924 its two operands.</p>
3925
Reid Spencer0a783f72006-11-02 01:53:59 +00003926<h5>Arguments:</h5>
3927<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003928 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3929 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003930
Reid Spencer0a783f72006-11-02 01:53:59 +00003931<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003932<p>This instruction returns the <i>remainder</i> of a division. The remainder
3933 has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003934
Reid Spencer0a783f72006-11-02 01:53:59 +00003935<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003936<pre>
3937 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003938</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003939
Misha Brukman9d0919f2003-11-08 01:05:38 +00003940</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00003941
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003942</div>
3943
Reid Spencer8e11bf82007-02-02 13:57:07 +00003944<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003945<h3>
3946 <a name="bitwiseops">Bitwise Binary Operations</a>
3947</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003948
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003949<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003950
3951<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3952 program. They are generally very efficient instructions and can commonly be
3953 strength reduced from other instructions. They require two operands of the
3954 same type, execute an operation on them, and produce a single value. The
3955 resulting value is the same type as its operands.</p>
3956
Reid Spencer569f2fa2007-01-31 21:39:12 +00003957<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003958<h4>
3959 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
3960</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003961
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003962<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003963
Reid Spencer569f2fa2007-01-31 21:39:12 +00003964<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003965<pre>
Chris Lattnerf067d582011-02-07 16:40:21 +00003966 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3967 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3968 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3969 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003970</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003971
Reid Spencer569f2fa2007-01-31 21:39:12 +00003972<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003973<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3974 a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003975
Reid Spencer569f2fa2007-01-31 21:39:12 +00003976<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003977<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3978 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3979 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003980
Reid Spencer569f2fa2007-01-31 21:39:12 +00003981<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003982<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3983 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3984 is (statically or dynamically) negative or equal to or larger than the number
3985 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3986 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3987 shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003988
Chris Lattnerf067d582011-02-07 16:40:21 +00003989<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
3990 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattner66298c12011-02-09 16:44:44 +00003991 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnerf067d582011-02-07 16:40:21 +00003992 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
3993 with the resultant sign bit. As such, NUW/NSW have the same semantics as
3994 they would if the shift were expressed as a mul instruction with the same
3995 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
3996
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003997<h5>Example:</h5>
3998<pre>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003999 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
4000 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
4001 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00004002 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00004003 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004004</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004005
Reid Spencer569f2fa2007-01-31 21:39:12 +00004006</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004007
Reid Spencer569f2fa2007-01-31 21:39:12 +00004008<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004009<h4>
4010 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4011</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004012
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004013<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004014
Reid Spencer569f2fa2007-01-31 21:39:12 +00004015<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004016<pre>
Chris Lattnerf067d582011-02-07 16:40:21 +00004017 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4018 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004019</pre>
4020
4021<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004022<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4023 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004024
4025<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004026<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004027 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4028 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004029
4030<h5>Semantics:</h5>
4031<p>This instruction always performs a logical shift right operation. The most
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004032 significant bits of the result will be filled with zero bits after the shift.
4033 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4034 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4035 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4036 shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004037
Chris Lattnerf067d582011-02-07 16:40:21 +00004038<p>If the <tt>exact</tt> keyword is present, the result value of the
4039 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4040 shifted out are non-zero.</p>
4041
4042
Reid Spencer569f2fa2007-01-31 21:39:12 +00004043<h5>Example:</h5>
4044<pre>
4045 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
4046 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
4047 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
4048 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00004049 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00004050 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004051</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004052
Reid Spencer569f2fa2007-01-31 21:39:12 +00004053</div>
4054
Reid Spencer8e11bf82007-02-02 13:57:07 +00004055<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004056<h4>
4057 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4058</h4>
4059
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004060<div>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004061
4062<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004063<pre>
Chris Lattnerf067d582011-02-07 16:40:21 +00004064 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4065 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004066</pre>
4067
4068<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004069<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4070 operand shifted to the right a specified number of bits with sign
4071 extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004072
4073<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004074<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004075 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4076 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004077
4078<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004079<p>This instruction always performs an arithmetic shift right operation, The
4080 most significant bits of the result will be filled with the sign bit
4081 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
4082 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4083 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4084 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004085
Chris Lattnerf067d582011-02-07 16:40:21 +00004086<p>If the <tt>exact</tt> keyword is present, the result value of the
4087 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
4088 shifted out are non-zero.</p>
4089
Reid Spencer569f2fa2007-01-31 21:39:12 +00004090<h5>Example:</h5>
4091<pre>
4092 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
4093 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
4094 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
4095 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00004096 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00004097 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00004098</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004099
Reid Spencer569f2fa2007-01-31 21:39:12 +00004100</div>
4101
Chris Lattner00950542001-06-06 20:29:01 +00004102<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004103<h4>
4104 <a name="i_and">'<tt>and</tt>' Instruction</a>
4105</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00004106
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004107<div>
Chris Lattner5568e942008-05-20 20:48:21 +00004108
Chris Lattner00950542001-06-06 20:29:01 +00004109<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004110<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00004111 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00004112</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004113
Chris Lattner00950542001-06-06 20:29:01 +00004114<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004115<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4116 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004117
Chris Lattner00950542001-06-06 20:29:01 +00004118<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004119<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004120 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4121 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004122
Chris Lattner00950542001-06-06 20:29:01 +00004123<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004124<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004125
Misha Brukman9d0919f2003-11-08 01:05:38 +00004126<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00004127 <tbody>
4128 <tr>
4129 <td>In0</td>
4130 <td>In1</td>
4131 <td>Out</td>
4132 </tr>
4133 <tr>
4134 <td>0</td>
4135 <td>0</td>
4136 <td>0</td>
4137 </tr>
4138 <tr>
4139 <td>0</td>
4140 <td>1</td>
4141 <td>0</td>
4142 </tr>
4143 <tr>
4144 <td>1</td>
4145 <td>0</td>
4146 <td>0</td>
4147 </tr>
4148 <tr>
4149 <td>1</td>
4150 <td>1</td>
4151 <td>1</td>
4152 </tr>
4153 </tbody>
4154</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004155
Chris Lattner00950542001-06-06 20:29:01 +00004156<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004157<pre>
4158 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004159 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
4160 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00004161</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004162</div>
Chris Lattner00950542001-06-06 20:29:01 +00004163<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004164<h4>
4165 <a name="i_or">'<tt>or</tt>' Instruction</a>
4166</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00004167
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004168<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004169
4170<h5>Syntax:</h5>
4171<pre>
4172 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
4173</pre>
4174
4175<h5>Overview:</h5>
4176<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4177 two operands.</p>
4178
4179<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004180<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004181 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4182 values. Both arguments must have identical types.</p>
4183
Chris Lattner00950542001-06-06 20:29:01 +00004184<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004185<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004186
Chris Lattner261efe92003-11-25 01:02:51 +00004187<table border="1" cellspacing="0" cellpadding="4">
4188 <tbody>
4189 <tr>
4190 <td>In0</td>
4191 <td>In1</td>
4192 <td>Out</td>
4193 </tr>
4194 <tr>
4195 <td>0</td>
4196 <td>0</td>
4197 <td>0</td>
4198 </tr>
4199 <tr>
4200 <td>0</td>
4201 <td>1</td>
4202 <td>1</td>
4203 </tr>
4204 <tr>
4205 <td>1</td>
4206 <td>0</td>
4207 <td>1</td>
4208 </tr>
4209 <tr>
4210 <td>1</td>
4211 <td>1</td>
4212 <td>1</td>
4213 </tr>
4214 </tbody>
4215</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004216
Chris Lattner00950542001-06-06 20:29:01 +00004217<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004218<pre>
4219 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004220 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4221 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00004222</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004223
Misha Brukman9d0919f2003-11-08 01:05:38 +00004224</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004225
Chris Lattner00950542001-06-06 20:29:01 +00004226<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004227<h4>
4228 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4229</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004230
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004231<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004232
Chris Lattner00950542001-06-06 20:29:01 +00004233<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004234<pre>
4235 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00004236</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004237
Chris Lattner00950542001-06-06 20:29:01 +00004238<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004239<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4240 its two operands. The <tt>xor</tt> is used to implement the "one's
4241 complement" operation, which is the "~" operator in C.</p>
4242
Chris Lattner00950542001-06-06 20:29:01 +00004243<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004244<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004245 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4246 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004247
Chris Lattner00950542001-06-06 20:29:01 +00004248<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004249<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004250
Chris Lattner261efe92003-11-25 01:02:51 +00004251<table border="1" cellspacing="0" cellpadding="4">
4252 <tbody>
4253 <tr>
4254 <td>In0</td>
4255 <td>In1</td>
4256 <td>Out</td>
4257 </tr>
4258 <tr>
4259 <td>0</td>
4260 <td>0</td>
4261 <td>0</td>
4262 </tr>
4263 <tr>
4264 <td>0</td>
4265 <td>1</td>
4266 <td>1</td>
4267 </tr>
4268 <tr>
4269 <td>1</td>
4270 <td>0</td>
4271 <td>1</td>
4272 </tr>
4273 <tr>
4274 <td>1</td>
4275 <td>1</td>
4276 <td>0</td>
4277 </tr>
4278 </tbody>
4279</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004280
Chris Lattner00950542001-06-06 20:29:01 +00004281<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004282<pre>
4283 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004284 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4285 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4286 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00004287</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004288
Misha Brukman9d0919f2003-11-08 01:05:38 +00004289</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004290
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004291</div>
4292
Chris Lattner00950542001-06-06 20:29:01 +00004293<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004294<h3>
Chris Lattner3df241e2006-04-08 23:07:04 +00004295 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004296</h3>
Chris Lattner3df241e2006-04-08 23:07:04 +00004297
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004298<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004299
4300<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004301 target-independent manner. These instructions cover the element-access and
4302 vector-specific operations needed to process vectors effectively. While LLVM
4303 does directly support these vector operations, many sophisticated algorithms
4304 will want to use target-specific intrinsics to take full advantage of a
4305 specific target.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004306
Chris Lattner3df241e2006-04-08 23:07:04 +00004307<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004308<h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004309 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004310</h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004311
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004312<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004313
4314<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004315<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004316 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004317</pre>
4318
4319<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004320<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4321 from a vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004322
4323
4324<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004325<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4326 of <a href="#t_vector">vector</a> type. The second operand is an index
4327 indicating the position from which to extract the element. The index may be
4328 a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004329
4330<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004331<p>The result is a scalar of the same type as the element type of
4332 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4333 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4334 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004335
4336<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004337<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00004338 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004339</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00004340
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004341</div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004342
4343<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004344<h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004345 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004346</h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004347
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004348<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004349
4350<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004351<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00004352 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004353</pre>
4354
4355<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004356<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4357 vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004358
4359<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004360<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4361 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4362 whose type must equal the element type of the first operand. The third
4363 operand is an index indicating the position at which to insert the value.
4364 The index may be a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004365
4366<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004367<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4368 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4369 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4370 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004371
4372<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004373<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00004374 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004375</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004376
Chris Lattner3df241e2006-04-08 23:07:04 +00004377</div>
4378
4379<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004380<h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004381 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004382</h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004383
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004384<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004385
4386<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004387<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00004388 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004389</pre>
4390
4391<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004392<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4393 from two input vectors, returning a vector with the same element type as the
4394 input and length that is the same as the shuffle mask.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004395
4396<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004397<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4398 with types that match each other. The third argument is a shuffle mask whose
4399 element type is always 'i32'. The result of the instruction is a vector
4400 whose length is the same as the shuffle mask and whose element type is the
4401 same as the element type of the first two operands.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004402
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004403<p>The shuffle mask operand is required to be a constant vector with either
4404 constant integer or undef values.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004405
4406<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004407<p>The elements of the two input vectors are numbered from left to right across
4408 both of the vectors. The shuffle mask operand specifies, for each element of
4409 the result vector, which element of the two input vectors the result element
4410 gets. The element selector may be undef (meaning "don't care") and the
4411 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004412
4413<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004414<pre>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004415 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004416 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004417 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerca86e162006-12-31 07:07:53 +00004418 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004419 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wangaeb06d22008-11-10 04:46:22 +00004420 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004421 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wangaeb06d22008-11-10 04:46:22 +00004422 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004423</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00004424
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004425</div>
Tanya Lattner09474292006-04-14 19:24:33 +00004426
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004427</div>
4428
Chris Lattner3df241e2006-04-08 23:07:04 +00004429<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004430<h3>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004431 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004432</h3>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004433
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004434<div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004435
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004436<p>LLVM supports several instructions for working with
4437 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004438
Dan Gohmana334d5f2008-05-12 23:51:09 +00004439<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004440<h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004441 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004442</h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004443
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004444<div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004445
4446<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004447<pre>
4448 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4449</pre>
4450
4451<h5>Overview:</h5>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004452<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4453 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004454
4455<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004456<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner61c70e92010-08-28 04:09:24 +00004457 of <a href="#t_struct">struct</a> or
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004458 <a href="#t_array">array</a> type. The operands are constant indices to
4459 specify which value to extract in a similar manner as indices in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004460 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel13242892010-12-05 20:54:38 +00004461 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4462 <ul>
4463 <li>Since the value being indexed is not a pointer, the first index is
4464 omitted and assumed to be zero.</li>
4465 <li>At least one index must be specified.</li>
4466 <li>Not only struct indices but also array indices must be in
4467 bounds.</li>
4468 </ul>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004469
4470<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004471<p>The result is the value at the position in the aggregate specified by the
4472 index operands.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004473
4474<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004475<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00004476 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004477</pre>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004478
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004479</div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004480
4481<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004482<h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004483 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004484</h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004485
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004486<div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004487
4488<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004489<pre>
Bill Wendling194229e2011-07-26 20:42:28 +00004490 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}* <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004491</pre>
4492
4493<h5>Overview:</h5>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004494<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4495 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004496
4497<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004498<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner61c70e92010-08-28 04:09:24 +00004499 of <a href="#t_struct">struct</a> or
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004500 <a href="#t_array">array</a> type. The second operand is a first-class
4501 value to insert. The following operands are constant indices indicating
4502 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel13242892010-12-05 20:54:38 +00004503 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004504 value to insert must have the same type as the value identified by the
4505 indices.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004506
4507<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004508<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4509 that of <tt>val</tt> except that the value at the position specified by the
4510 indices is that of <tt>elt</tt>.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004511
4512<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004513<pre>
Chris Lattner8645d1a2011-05-22 07:18:08 +00004514 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4515 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4516 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 <i>; yields {i32 1, float %val}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004517</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004518
Dan Gohmana334d5f2008-05-12 23:51:09 +00004519</div>
4520
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004521</div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004522
4523<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004524<h3>
Chris Lattner884a9702006-08-15 00:45:58 +00004525 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004526</h3>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004527
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004528<div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004529
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004530<p>A key design point of an SSA-based representation is how it represents
4531 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandez2fee2942009-10-26 23:44:29 +00004532 very simple. This section describes how to read, write, and allocate
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004533 memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004534
Chris Lattner00950542001-06-06 20:29:01 +00004535<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004536<h4>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004537 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004538</h4>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004539
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004540<div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004541
Chris Lattner00950542001-06-06 20:29:01 +00004542<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004543<pre>
Dan Gohmanf75a7d32010-05-28 01:14:11 +00004544 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00004545</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004546
Chris Lattner00950542001-06-06 20:29:01 +00004547<h5>Overview:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004548<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004549 currently executing function, to be automatically released when this function
4550 returns to its caller. The object is always allocated in the generic address
4551 space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004552
Chris Lattner00950542001-06-06 20:29:01 +00004553<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004554<p>The '<tt>alloca</tt>' instruction
4555 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4556 runtime stack, returning a pointer of the appropriate type to the program.
4557 If "NumElements" is specified, it is the number of elements allocated,
4558 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4559 specified, the value result of the allocation is guaranteed to be aligned to
4560 at least that boundary. If not specified, or if zero, the target can choose
4561 to align the allocation on any convenient boundary compatible with the
4562 type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004563
Misha Brukman9d0919f2003-11-08 01:05:38 +00004564<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004565
Chris Lattner00950542001-06-06 20:29:01 +00004566<h5>Semantics:</h5>
Bill Wendling871eb0a2009-05-08 20:49:29 +00004567<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004568 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4569 memory is automatically released when the function returns. The
4570 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4571 variables that must have an address available. When the function returns
4572 (either with the <tt><a href="#i_ret">ret</a></tt>
4573 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4574 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004575
Chris Lattner00950542001-06-06 20:29:01 +00004576<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004577<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00004578 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4579 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4580 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4581 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00004582</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004583
Misha Brukman9d0919f2003-11-08 01:05:38 +00004584</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004585
Chris Lattner00950542001-06-06 20:29:01 +00004586<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004587<h4>
4588 <a name="i_load">'<tt>load</tt>' Instruction</a>
4589</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004590
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004591<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004592
Chris Lattner2b7d3202002-05-06 03:03:22 +00004593<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004594<pre>
Eli Friedmanf03bb262011-08-12 22:50:01 +00004595 &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4596 &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004597 !&lt;index&gt; = !{ i32 1 }
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004598</pre>
4599
Chris Lattner2b7d3202002-05-06 03:03:22 +00004600<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004601<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004602
Chris Lattner2b7d3202002-05-06 03:03:22 +00004603<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004604<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4605 from which to load. The pointer must point to
4606 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4607 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00004608 number or order of execution of this <tt>load</tt> with other <a
4609 href="#volatile">volatile operations</a>.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004610
Eli Friedman21006d42011-08-09 23:02:53 +00004611<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
4612 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4613 argument. The <code>release</code> and <code>acq_rel</code> orderings are
4614 not valid on <code>load</code> instructions. Atomic loads produce <a
4615 href="#memorymodel">defined</a> results when they may see multiple atomic
4616 stores. The type of the pointee must be an integer type whose bit width
4617 is a power of two greater than or equal to eight and less than or equal
4618 to a target-specific size limit. <code>align</code> must be explicitly
4619 specified on atomic loads, and the load has undefined behavior if the
4620 alignment is not set to a value which is at least the size in bytes of
4621 the pointee. <code>!nontemporal</code> does not have any defined semantics
4622 for atomic loads.</p>
4623
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004624<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004625 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004626 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004627 alignment for the target. It is the responsibility of the code emitter to
4628 ensure that the alignment information is correct. Overestimating the
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004629 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004630 produce less efficient code. An alignment of 1 is always safe.</p>
4631
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004632<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4633 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004634 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004635 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4636 and code generator that this load is not expected to be reused in the cache.
4637 The code generator may select special instructions to save cache bandwidth,
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004638 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene8939b0d2010-02-16 20:50:18 +00004639
Chris Lattner2b7d3202002-05-06 03:03:22 +00004640<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004641<p>The location of memory pointed to is loaded. If the value being loaded is of
4642 scalar type then the number of bytes read does not exceed the minimum number
4643 of bytes needed to hold all bits of the type. For example, loading an
4644 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4645 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4646 is undefined if the value was not originally written using a store of the
4647 same type.</p>
4648
Chris Lattner2b7d3202002-05-06 03:03:22 +00004649<h5>Examples:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004650<pre>
4651 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4652 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004653 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004654</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004655
Misha Brukman9d0919f2003-11-08 01:05:38 +00004656</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004657
Chris Lattner2b7d3202002-05-06 03:03:22 +00004658<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004659<h4>
4660 <a name="i_store">'<tt>store</tt>' Instruction</a>
4661</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004662
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004663<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004664
Chris Lattner2b7d3202002-05-06 03:03:22 +00004665<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004666<pre>
Eli Friedmanf03bb262011-08-12 22:50:01 +00004667 store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4668 store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt; <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004669</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004670
Chris Lattner2b7d3202002-05-06 03:03:22 +00004671<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004672<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004673
Chris Lattner2b7d3202002-05-06 03:03:22 +00004674<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004675<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4676 and an address at which to store it. The type of the
4677 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4678 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00004679 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4680 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4681 order of execution of this <tt>store</tt> with other <a
4682 href="#volatile">volatile operations</a>.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004683
Eli Friedman21006d42011-08-09 23:02:53 +00004684<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
4685 <a href="#ordering">ordering</a> and optional <code>singlethread</code>
4686 argument. The <code>acquire</code> and <code>acq_rel</code> orderings aren't
4687 valid on <code>store</code> instructions. Atomic loads produce <a
4688 href="#memorymodel">defined</a> results when they may see multiple atomic
4689 stores. The type of the pointee must be an integer type whose bit width
4690 is a power of two greater than or equal to eight and less than or equal
4691 to a target-specific size limit. <code>align</code> must be explicitly
4692 specified on atomic stores, and the store has undefined behavior if the
4693 alignment is not set to a value which is at least the size in bytes of
4694 the pointee. <code>!nontemporal</code> does not have any defined semantics
4695 for atomic stores.</p>
4696
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004697<p>The optional constant "align" argument specifies the alignment of the
4698 operation (that is, the alignment of the memory address). A value of 0 or an
4699 omitted "align" argument means that the operation has the preferential
4700 alignment for the target. It is the responsibility of the code emitter to
4701 ensure that the alignment information is correct. Overestimating the
4702 alignment results in an undefined behavior. Underestimating the alignment may
4703 produce less efficient code. An alignment of 1 is always safe.</p>
4704
David Greene8939b0d2010-02-16 20:50:18 +00004705<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00004706 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004707 value 1. The existence of the !nontemporal metatadata on the
David Greene8939b0d2010-02-16 20:50:18 +00004708 instruction tells the optimizer and code generator that this load is
4709 not expected to be reused in the cache. The code generator may
4710 select special instructions to save cache bandwidth, such as the
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004711 MOVNT instruction on x86.</p>
David Greene8939b0d2010-02-16 20:50:18 +00004712
4713
Chris Lattner261efe92003-11-25 01:02:51 +00004714<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004715<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4716 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4717 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4718 does not exceed the minimum number of bytes needed to hold all bits of the
4719 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4720 writing a value of a type like <tt>i20</tt> with a size that is not an
4721 integral number of bytes, it is unspecified what happens to the extra bits
4722 that do not belong to the type, but they will typically be overwritten.</p>
4723
Chris Lattner2b7d3202002-05-06 03:03:22 +00004724<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004725<pre>
4726 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00004727 store i32 3, i32* %ptr <i>; yields {void}</i>
4728 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004729</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004730
Reid Spencer47ce1792006-11-09 21:15:49 +00004731</div>
4732
Chris Lattner2b7d3202002-05-06 03:03:22 +00004733<!-- _______________________________________________________________________ -->
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00004734<h4>
4735<a name="i_fence">'<tt>fence</tt>' Instruction</a>
4736</h4>
Eli Friedman47f35132011-07-25 23:16:38 +00004737
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00004738<div>
Eli Friedman47f35132011-07-25 23:16:38 +00004739
4740<h5>Syntax:</h5>
4741<pre>
4742 fence [singlethread] &lt;ordering&gt; <i>; yields {void}</i>
4743</pre>
4744
4745<h5>Overview:</h5>
4746<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
4747between operations.</p>
4748
4749<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
4750href="#ordering">ordering</a> argument which defines what
4751<i>synchronizes-with</i> edges they add. They can only be given
4752<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
4753<code>seq_cst</code> orderings.</p>
4754
4755<h5>Semantics:</h5>
4756<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
4757semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
4758<code>acquire</code> ordering semantics if and only if there exist atomic
4759operations <var>X</var> and <var>Y</var>, both operating on some atomic object
4760<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
4761<var>X</var> modifies <var>M</var> (either directly or through some side effect
4762of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
4763<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
4764<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
4765than an explicit <code>fence</code>, one (but not both) of the atomic operations
4766<var>X</var> or <var>Y</var> might provide a <code>release</code> or
4767<code>acquire</code> (resp.) ordering constraint and still
4768<i>synchronize-with</i> the explicit <code>fence</code> and establish the
4769<i>happens-before</i> edge.</p>
4770
4771<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
4772having both <code>acquire</code> and <code>release</code> semantics specified
4773above, participates in the global program order of other <code>seq_cst</code>
4774operations and/or fences.</p>
4775
4776<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
4777specifies that the fence only synchronizes with other fences in the same
4778thread. (This is useful for interacting with signal handlers.)</p>
4779
Eli Friedman47f35132011-07-25 23:16:38 +00004780<h5>Example:</h5>
4781<pre>
4782 fence acquire <i>; yields {void}</i>
4783 fence singlethread seq_cst <i>; yields {void}</i>
4784</pre>
4785
4786</div>
4787
4788<!-- _______________________________________________________________________ -->
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00004789<h4>
4790<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
4791</h4>
Eli Friedmanff030482011-07-28 21:48:00 +00004792
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00004793<div>
Eli Friedmanff030482011-07-28 21:48:00 +00004794
4795<h5>Syntax:</h5>
4796<pre>
Eli Friedmanf03bb262011-08-12 22:50:01 +00004797 cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanff030482011-07-28 21:48:00 +00004798</pre>
4799
4800<h5>Overview:</h5>
4801<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
4802It loads a value in memory and compares it to a given value. If they are
4803equal, it stores a new value into the memory.</p>
4804
4805<h5>Arguments:</h5>
4806<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
4807address to operate on, a value to compare to the value currently be at that
4808address, and a new value to place at that address if the compared values are
4809equal. The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
4810bit width is a power of two greater than or equal to eight and less than
4811or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
4812'<var>&lt;new&gt;</var>' must have the same type, and the type of
4813'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
4814<code>cmpxchg</code> is marked as <code>volatile</code>, then the
4815optimizer is not allowed to modify the number or order of execution
4816of this <code>cmpxchg</code> with other <a href="#volatile">volatile
4817operations</a>.</p>
4818
4819<!-- FIXME: Extend allowed types. -->
4820
4821<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
4822<code>cmpxchg</code> synchronizes with other atomic operations.</p>
4823
4824<p>The optional "<code>singlethread</code>" argument declares that the
4825<code>cmpxchg</code> is only atomic with respect to code (usually signal
4826handlers) running in the same thread as the <code>cmpxchg</code>. Otherwise the
4827cmpxchg is atomic with respect to all other code in the system.</p>
4828
4829<p>The pointer passed into cmpxchg must have alignment greater than or equal to
4830the size in memory of the operand.
4831
4832<h5>Semantics:</h5>
4833<p>The contents of memory at the location specified by the
4834'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
4835'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
4836'<tt>&lt;new&gt;</tt>' is written. The original value at the location
4837is returned.
4838
4839<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
4840purpose of identifying <a href="#release_sequence">release sequences</a>. A
4841failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
4842parameter determined by dropping any <code>release</code> part of the
4843<code>cmpxchg</code>'s ordering.</p>
4844
4845<!--
4846FIXME: Is compare_exchange_weak() necessary? (Consider after we've done
4847optimization work on ARM.)
4848
4849FIXME: Is a weaker ordering constraint on failure helpful in practice?
4850-->
4851
4852<h5>Example:</h5>
4853<pre>
4854entry:
4855 %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered <i>; yields {i32}</i>
4856 <a href="#i_br">br</a> label %loop
4857
4858loop:
4859 %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
4860 %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
4861 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared <i>; yields {i32}</i>
4862 %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
4863 <a href="#i_br">br</a> i1 %success, label %done, label %loop
4864
4865done:
4866 ...
4867</pre>
4868
4869</div>
4870
4871<!-- _______________________________________________________________________ -->
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00004872<h4>
4873<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
4874</h4>
Eli Friedmanff030482011-07-28 21:48:00 +00004875
NAKAMURA Takumib5bb29c2011-08-12 06:17:17 +00004876<div>
Eli Friedmanff030482011-07-28 21:48:00 +00004877
4878<h5>Syntax:</h5>
4879<pre>
Eli Friedmanf03bb262011-08-12 22:50:01 +00004880 atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt; <i>; yields {ty}</i>
Eli Friedmanff030482011-07-28 21:48:00 +00004881</pre>
4882
4883<h5>Overview:</h5>
4884<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
4885
4886<h5>Arguments:</h5>
4887<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
4888operation to apply, an address whose value to modify, an argument to the
4889operation. The operation must be one of the following keywords:</p>
4890<ul>
4891 <li>xchg</li>
4892 <li>add</li>
4893 <li>sub</li>
4894 <li>and</li>
4895 <li>nand</li>
4896 <li>or</li>
4897 <li>xor</li>
4898 <li>max</li>
4899 <li>min</li>
4900 <li>umax</li>
4901 <li>umin</li>
4902</ul>
4903
4904<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
4905bit width is a power of two greater than or equal to eight and less than
4906or equal to a target-specific size limit. The type of the
4907'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
4908If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
4909optimizer is not allowed to modify the number or order of execution of this
4910<code>atomicrmw</code> with other <a href="#volatile">volatile
4911 operations</a>.</p>
4912
4913<!-- FIXME: Extend allowed types. -->
4914
4915<h5>Semantics:</h5>
4916<p>The contents of memory at the location specified by the
4917'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
4918back. The original value at the location is returned. The modification is
4919specified by the <var>operation</var> argument:</p>
4920
4921<ul>
4922 <li>xchg: <code>*ptr = val</code></li>
4923 <li>add: <code>*ptr = *ptr + val</code></li>
4924 <li>sub: <code>*ptr = *ptr - val</code></li>
4925 <li>and: <code>*ptr = *ptr &amp; val</code></li>
4926 <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
4927 <li>or: <code>*ptr = *ptr | val</code></li>
4928 <li>xor: <code>*ptr = *ptr ^ val</code></li>
4929 <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
4930 <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
4931 <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
4932 <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
4933</ul>
4934
4935<h5>Example:</h5>
4936<pre>
4937 %old = atomicrmw add i32* %ptr, i32 1 acquire <i>; yields {i32}</i>
4938</pre>
4939
4940</div>
4941
4942<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004943<h4>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004944 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004945</h4>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004946
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004947<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004948
Chris Lattner7faa8832002-04-14 06:13:44 +00004949<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004950<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004951 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmandd8004d2009-07-27 21:53:46 +00004952 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004953</pre>
4954
Chris Lattner7faa8832002-04-14 06:13:44 +00004955<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004956<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004957 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4958 It performs address calculation only and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004959
Chris Lattner7faa8832002-04-14 06:13:44 +00004960<h5>Arguments:</h5>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004961<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnerc8eef442009-07-29 06:44:13 +00004962 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004963 elements of the aggregate object are indexed. The interpretation of each
4964 index is dependent on the type being indexed into. The first index always
4965 indexes the pointer value given as the first argument, the second index
4966 indexes a value of the type pointed to (not necessarily the value directly
4967 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004968 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner61c70e92010-08-28 04:09:24 +00004969 vectors, and structs. Note that subsequent types being indexed into
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004970 can never be pointers, since that would require loading the pointer before
4971 continuing calculation.</p>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004972
4973<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner61c70e92010-08-28 04:09:24 +00004974 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004975 integer <b>constants</b> are allowed. When indexing into an array, pointer
4976 or vector, integers of any width are allowed, and they are not required to be
Eli Friedman266246c2011-08-12 23:37:55 +00004977 constant. These integers are treated as signed values where relevant.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004978
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004979<p>For example, let's consider a C code fragment and how it gets compiled to
4980 LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004981
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00004982<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004983struct RT {
4984 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00004985 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004986 char C;
4987};
4988struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00004989 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004990 double Y;
4991 struct RT Z;
4992};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004993
Chris Lattnercabc8462007-05-29 15:43:56 +00004994int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004995 return &amp;s[1].Z.B[5][13];
4996}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004997</pre>
4998
Misha Brukman9d0919f2003-11-08 01:05:38 +00004999<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005000
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00005001<pre class="doc_code">
Chris Lattnere7886e42009-01-11 20:53:49 +00005002%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
5003%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005004
Dan Gohman4df605b2009-07-25 02:23:48 +00005005define i32* @foo(%ST* %s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00005006entry:
5007 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
5008 ret i32* %reg
5009}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005010</pre>
5011
Chris Lattner7faa8832002-04-14 06:13:44 +00005012<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005013<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005014 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
5015 }</tt>' type, a structure. The second index indexes into the third element
5016 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
5017 i8 }</tt>' type, another structure. The third index indexes into the second
5018 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
5019 array. The two dimensions of the array are subscripted into, yielding an
5020 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
5021 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005022
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005023<p>Note that it is perfectly legal to index partially through a structure,
5024 returning a pointer to an inner element. Because of this, the LLVM code for
5025 the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005026
5027<pre>
Dan Gohman4df605b2009-07-25 02:23:48 +00005028 define i32* @foo(%ST* %s) {
Reid Spencerca86e162006-12-31 07:07:53 +00005029 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00005030 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
5031 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00005032 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
5033 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
5034 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005035 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00005036</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00005037
Dan Gohmandd8004d2009-07-27 21:53:46 +00005038<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman27ef9972010-04-23 15:23:32 +00005039 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
5040 base pointer is not an <i>in bounds</i> address of an allocated object,
5041 or if any of the addresses that would be formed by successive addition of
5042 the offsets implied by the indices to the base address with infinitely
Eli Friedman266246c2011-08-12 23:37:55 +00005043 precise signed arithmetic are not an <i>in bounds</i> address of that
5044 allocated object. The <i>in bounds</i> addresses for an allocated object
5045 are all the addresses that point into the object, plus the address one
5046 byte past the end.</p>
Dan Gohmandd8004d2009-07-27 21:53:46 +00005047
5048<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
Eli Friedman266246c2011-08-12 23:37:55 +00005049 the base address with silently-wrapping two's complement arithmetic. If the
5050 offsets have a different width from the pointer, they are sign-extended or
5051 truncated to the width of the pointer. The result value of the
5052 <tt>getelementptr</tt> may be outside the object pointed to by the base
5053 pointer. The result value may not necessarily be used to access memory
5054 though, even if it happens to point into allocated storage. See the
5055 <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5056 information.</p>
Dan Gohmandd8004d2009-07-27 21:53:46 +00005057
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005058<p>The getelementptr instruction is often confusing. For some more insight into
5059 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner884a9702006-08-15 00:45:58 +00005060
Chris Lattner7faa8832002-04-14 06:13:44 +00005061<h5>Example:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005062<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00005063 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00005064 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5065 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005066 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00005067 <i>; yields i8*:eptr</i>
5068 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00005069 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00005070 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005071</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005072
Chris Lattnerf74d5c72004-04-05 01:30:49 +00005073</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00005074
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005075</div>
5076
Chris Lattner00950542001-06-06 20:29:01 +00005077<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005078<h3>
5079 <a name="convertops">Conversion Operations</a>
5080</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005081
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005082<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005083
Reid Spencer2fd21e62006-11-08 01:18:52 +00005084<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005085 which all take a single operand and a type. They perform various bit
5086 conversions on the operand.</p>
5087
Chris Lattner6536cfe2002-05-06 22:08:29 +00005088<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005089<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005090 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005091</h4>
5092
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005093<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005094
5095<h5>Syntax:</h5>
5096<pre>
5097 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5098</pre>
5099
5100<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005101<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5102 type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005103
5104<h5>Arguments:</h5>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00005105<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5106 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5107 of the same number of integers.
5108 The bit size of the <tt>value</tt> must be larger than
5109 the bit size of the destination type, <tt>ty2</tt>.
5110 Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005111
5112<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005113<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5114 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5115 source size must be larger than the destination size, <tt>trunc</tt> cannot
5116 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005117
5118<h5>Example:</h5>
5119<pre>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00005120 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
5121 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
5122 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
5123 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005124</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005125
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005126</div>
5127
5128<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005129<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005130 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005131</h4>
5132
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005133<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005134
5135<h5>Syntax:</h5>
5136<pre>
5137 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5138</pre>
5139
5140<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005141<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005142 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005143
5144
5145<h5>Arguments:</h5>
Nadav Rotemed9b9342011-02-20 12:37:50 +00005146<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5147 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5148 of the same number of integers.
5149 The bit size of the <tt>value</tt> must be smaller than
5150 the bit size of the destination type,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005151 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005152
5153<h5>Semantics:</h5>
5154<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005155 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005156
Reid Spencerb5929522007-01-12 15:46:11 +00005157<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005158
5159<h5>Example:</h5>
5160<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00005161 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00005162 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotemed9b9342011-02-20 12:37:50 +00005163 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005164</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005165
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005166</div>
5167
5168<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005169<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005170 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005171</h4>
5172
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005173<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005174
5175<h5>Syntax:</h5>
5176<pre>
5177 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5178</pre>
5179
5180<h5>Overview:</h5>
5181<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5182
5183<h5>Arguments:</h5>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00005184<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5185 Both types must be of <a href="#t_integer">integer</a> types, or vectors
5186 of the same number of integers.
5187 The bit size of the <tt>value</tt> must be smaller than
5188 the bit size of the destination type,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005189 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005190
5191<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005192<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5193 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5194 of the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005195
Reid Spencerc78f3372007-01-12 03:35:51 +00005196<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005197
5198<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005199<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00005200 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00005201 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00005202 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005203</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005204
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005205</div>
5206
5207<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005208<h4>
Reid Spencer3fa91b02006-11-09 21:48:10 +00005209 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005210</h4>
Reid Spencer3fa91b02006-11-09 21:48:10 +00005211
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005212<div>
Reid Spencer3fa91b02006-11-09 21:48:10 +00005213
5214<h5>Syntax:</h5>
Reid Spencer3fa91b02006-11-09 21:48:10 +00005215<pre>
5216 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5217</pre>
5218
5219<h5>Overview:</h5>
5220<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005221 <tt>ty2</tt>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00005222
5223<h5>Arguments:</h5>
5224<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005225 point</a> value to cast and a <a href="#t_floating">floating point</a> type
5226 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005227 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005228 <i>no-op cast</i>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00005229
5230<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005231<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005232 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005233 <a href="#t_floating">floating point</a> type. If the value cannot fit
5234 within the destination type, <tt>ty2</tt>, then the results are
5235 undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00005236
5237<h5>Example:</h5>
5238<pre>
5239 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
5240 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
5241</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005242
Reid Spencer3fa91b02006-11-09 21:48:10 +00005243</div>
5244
5245<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005246<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005247 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005248</h4>
5249
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005250<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005251
5252<h5>Syntax:</h5>
5253<pre>
5254 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5255</pre>
5256
5257<h5>Overview:</h5>
5258<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005259 floating point value.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005260
5261<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005262<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005263 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5264 a <a href="#t_floating">floating point</a> type to cast it to. The source
5265 type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005266
5267<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00005268<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005269 <a href="#t_floating">floating point</a> type to a larger
5270 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5271 used to make a <i>no-op cast</i> because it always changes bits. Use
5272 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005273
5274<h5>Example:</h5>
5275<pre>
Nick Lewycky5bb3ece2011-03-31 18:20:19 +00005276 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
5277 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005278</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005279
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005280</div>
5281
5282<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005283<h4>
Reid Spencer24d6da52007-01-21 00:29:26 +00005284 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005285</h4>
5286
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005287<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005288
5289<h5>Syntax:</h5>
5290<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00005291 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005292</pre>
5293
5294<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00005295<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005296 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005297
5298<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005299<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5300 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5301 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5302 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5303 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005304
5305<h5>Semantics:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005306<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005307 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5308 towards zero) unsigned integer value. If the value cannot fit
5309 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005310
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005311<h5>Example:</h5>
5312<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00005313 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00005314 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greif6a292012009-10-28 09:21:30 +00005315 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005316</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005317
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005318</div>
5319
5320<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005321<h4>
Reid Spencerd4448792006-11-09 23:03:26 +00005322 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005323</h4>
5324
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005325<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005326
5327<h5>Syntax:</h5>
5328<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00005329 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005330</pre>
5331
5332<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005333<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005334 <a href="#t_floating">floating point</a> <tt>value</tt> to
5335 type <tt>ty2</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005336
Chris Lattner6536cfe2002-05-06 22:08:29 +00005337<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005338<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5339 scalar or vector <a href="#t_floating">floating point</a> value, and a type
5340 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5341 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5342 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005343
Chris Lattner6536cfe2002-05-06 22:08:29 +00005344<h5>Semantics:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005345<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005346 <a href="#t_floating">floating point</a> operand into the nearest (rounding
5347 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5348 the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005349
Chris Lattner33ba0d92001-07-09 00:26:23 +00005350<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005351<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00005352 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00005353 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greif6a292012009-10-28 09:21:30 +00005354 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005355</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005356
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005357</div>
5358
5359<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005360<h4>
Reid Spencerd4448792006-11-09 23:03:26 +00005361 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005362</h4>
5363
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005364<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005365
5366<h5>Syntax:</h5>
5367<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00005368 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005369</pre>
5370
5371<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00005372<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005373 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005374
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005375<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00005376<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005377 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5378 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5379 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5380 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005381
5382<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00005383<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005384 integer quantity and converts it to the corresponding floating point
5385 value. If the value cannot fit in the floating point value, the results are
5386 undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005387
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005388<h5>Example:</h5>
5389<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00005390 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005391 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005392</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005393
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005394</div>
5395
5396<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005397<h4>
Reid Spencerd4448792006-11-09 23:03:26 +00005398 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005399</h4>
5400
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005401<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005402
5403<h5>Syntax:</h5>
5404<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00005405 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005406</pre>
5407
5408<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005409<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5410 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005411
5412<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00005413<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005414 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5415 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5416 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5417 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005418
5419<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005420<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5421 quantity and converts it to the corresponding floating point value. If the
5422 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005423
5424<h5>Example:</h5>
5425<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00005426 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005427 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005428</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005429
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005430</div>
5431
5432<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005433<h4>
Reid Spencer72679252006-11-11 21:00:47 +00005434 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005435</h4>
5436
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005437<div>
Reid Spencer72679252006-11-11 21:00:47 +00005438
5439<h5>Syntax:</h5>
5440<pre>
5441 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5442</pre>
5443
5444<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005445<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
5446 the integer type <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005447
5448<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005449<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5450 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
5451 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005452
5453<h5>Semantics:</h5>
5454<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005455 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5456 truncating or zero extending that value to the size of the integer type. If
5457 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5458 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5459 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5460 change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005461
5462<h5>Example:</h5>
5463<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005464 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
5465 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00005466</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005467
Reid Spencer72679252006-11-11 21:00:47 +00005468</div>
5469
5470<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005471<h4>
Reid Spencer72679252006-11-11 21:00:47 +00005472 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005473</h4>
5474
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005475<div>
Reid Spencer72679252006-11-11 21:00:47 +00005476
5477<h5>Syntax:</h5>
5478<pre>
5479 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5480</pre>
5481
5482<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005483<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5484 pointer type, <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005485
5486<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00005487<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005488 value to cast, and a type to cast it to, which must be a
5489 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005490
5491<h5>Semantics:</h5>
5492<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005493 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5494 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5495 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5496 than the size of a pointer then a zero extension is done. If they are the
5497 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencer72679252006-11-11 21:00:47 +00005498
5499<h5>Example:</h5>
5500<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005501 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greif6a292012009-10-28 09:21:30 +00005502 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5503 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00005504</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005505
Reid Spencer72679252006-11-11 21:00:47 +00005506</div>
5507
5508<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005509<h4>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005510 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005511</h4>
5512
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005513<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005514
5515<h5>Syntax:</h5>
5516<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005517 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005518</pre>
5519
5520<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005521<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005522 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005523
5524<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005525<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5526 non-aggregate first class value, and a type to cast it to, which must also be
5527 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5528 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5529 identical. If the source type is a pointer, the destination type must also be
5530 a pointer. This instruction supports bitwise conversion of vectors to
5531 integers and to vectors of other types (as long as they have the same
5532 size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005533
5534<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005535<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005536 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5537 this conversion. The conversion is done as if the <tt>value</tt> had been
5538 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5539 be converted to other pointer types with this instruction. To convert
5540 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5541 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005542
5543<h5>Example:</h5>
5544<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005545 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00005546 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005547 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00005548</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005549
Misha Brukman9d0919f2003-11-08 01:05:38 +00005550</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005551
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005552</div>
5553
Reid Spencer2fd21e62006-11-08 01:18:52 +00005554<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005555<h3>
5556 <a name="otherops">Other Operations</a>
5557</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005558
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005559<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005560
5561<p>The instructions in this category are the "miscellaneous" instructions, which
5562 defy better classification.</p>
5563
Reid Spencerf3a70a62006-11-18 21:50:54 +00005564<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005565<h4>
5566 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5567</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005568
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005569<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005570
Reid Spencerf3a70a62006-11-18 21:50:54 +00005571<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005572<pre>
5573 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005574</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005575
Reid Spencerf3a70a62006-11-18 21:50:54 +00005576<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005577<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5578 boolean values based on comparison of its two integer, integer vector, or
5579 pointer operands.</p>
5580
Reid Spencerf3a70a62006-11-18 21:50:54 +00005581<h5>Arguments:</h5>
5582<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005583 the condition code indicating the kind of comparison to perform. It is not a
5584 value, just a keyword. The possible condition code are:</p>
5585
Reid Spencerf3a70a62006-11-18 21:50:54 +00005586<ol>
5587 <li><tt>eq</tt>: equal</li>
5588 <li><tt>ne</tt>: not equal </li>
5589 <li><tt>ugt</tt>: unsigned greater than</li>
5590 <li><tt>uge</tt>: unsigned greater or equal</li>
5591 <li><tt>ult</tt>: unsigned less than</li>
5592 <li><tt>ule</tt>: unsigned less or equal</li>
5593 <li><tt>sgt</tt>: signed greater than</li>
5594 <li><tt>sge</tt>: signed greater or equal</li>
5595 <li><tt>slt</tt>: signed less than</li>
5596 <li><tt>sle</tt>: signed less or equal</li>
5597</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005598
Chris Lattner3b19d652007-01-15 01:54:13 +00005599<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005600 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5601 typed. They must also be identical types.</p>
5602
Reid Spencerf3a70a62006-11-18 21:50:54 +00005603<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005604<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5605 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewyckyec38da42009-09-27 00:45:11 +00005606 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005607 result, as follows:</p>
5608
Reid Spencerf3a70a62006-11-18 21:50:54 +00005609<ol>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005610 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005611 <tt>false</tt> otherwise. No sign interpretation is necessary or
5612 performed.</li>
5613
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005614 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005615 <tt>false</tt> otherwise. No sign interpretation is necessary or
5616 performed.</li>
5617
Reid Spencerf3a70a62006-11-18 21:50:54 +00005618 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005619 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5620
Reid Spencerf3a70a62006-11-18 21:50:54 +00005621 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005622 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5623 to <tt>op2</tt>.</li>
5624
Reid Spencerf3a70a62006-11-18 21:50:54 +00005625 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005626 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5627
Reid Spencerf3a70a62006-11-18 21:50:54 +00005628 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005629 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5630
Reid Spencerf3a70a62006-11-18 21:50:54 +00005631 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005632 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5633
Reid Spencerf3a70a62006-11-18 21:50:54 +00005634 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005635 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5636 to <tt>op2</tt>.</li>
5637
Reid Spencerf3a70a62006-11-18 21:50:54 +00005638 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005639 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5640
Reid Spencerf3a70a62006-11-18 21:50:54 +00005641 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005642 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005643</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005644
Reid Spencerf3a70a62006-11-18 21:50:54 +00005645<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005646 values are compared as if they were integers.</p>
5647
5648<p>If the operands are integer vectors, then they are compared element by
5649 element. The result is an <tt>i1</tt> vector with the same number of elements
5650 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005651
5652<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005653<pre>
5654 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerca86e162006-12-31 07:07:53 +00005655 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5656 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5657 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5658 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5659 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005660</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005661
5662<p>Note that the code generator does not yet support vector types with
5663 the <tt>icmp</tt> instruction.</p>
5664
Reid Spencerf3a70a62006-11-18 21:50:54 +00005665</div>
5666
5667<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005668<h4>
5669 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5670</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005671
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005672<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005673
Reid Spencerf3a70a62006-11-18 21:50:54 +00005674<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005675<pre>
5676 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005677</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005678
Reid Spencerf3a70a62006-11-18 21:50:54 +00005679<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005680<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5681 values based on comparison of its operands.</p>
5682
5683<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewyckyec38da42009-09-27 00:45:11 +00005684(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005685
5686<p>If the operands are floating point vectors, then the result type is a vector
5687 of boolean with the same number of elements as the operands being
5688 compared.</p>
5689
Reid Spencerf3a70a62006-11-18 21:50:54 +00005690<h5>Arguments:</h5>
5691<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005692 the condition code indicating the kind of comparison to perform. It is not a
5693 value, just a keyword. The possible condition code are:</p>
5694
Reid Spencerf3a70a62006-11-18 21:50:54 +00005695<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00005696 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005697 <li><tt>oeq</tt>: ordered and equal</li>
5698 <li><tt>ogt</tt>: ordered and greater than </li>
5699 <li><tt>oge</tt>: ordered and greater than or equal</li>
5700 <li><tt>olt</tt>: ordered and less than </li>
5701 <li><tt>ole</tt>: ordered and less than or equal</li>
5702 <li><tt>one</tt>: ordered and not equal</li>
5703 <li><tt>ord</tt>: ordered (no nans)</li>
5704 <li><tt>ueq</tt>: unordered or equal</li>
5705 <li><tt>ugt</tt>: unordered or greater than </li>
5706 <li><tt>uge</tt>: unordered or greater than or equal</li>
5707 <li><tt>ult</tt>: unordered or less than </li>
5708 <li><tt>ule</tt>: unordered or less than or equal</li>
5709 <li><tt>une</tt>: unordered or not equal</li>
5710 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00005711 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005712</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005713
Jeff Cohenb627eab2007-04-29 01:07:00 +00005714<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005715 <i>unordered</i> means that either operand may be a QNAN.</p>
5716
5717<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5718 a <a href="#t_floating">floating point</a> type or
5719 a <a href="#t_vector">vector</a> of floating point type. They must have
5720 identical types.</p>
5721
Reid Spencerf3a70a62006-11-18 21:50:54 +00005722<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00005723<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005724 according to the condition code given as <tt>cond</tt>. If the operands are
5725 vectors, then the vectors are compared element by element. Each comparison
Nick Lewyckyec38da42009-09-27 00:45:11 +00005726 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005727 follows:</p>
5728
Reid Spencerf3a70a62006-11-18 21:50:54 +00005729<ol>
5730 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005731
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005732 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005733 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5734
Reid Spencerb7f26282006-11-19 03:00:14 +00005735 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005736 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005737
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005738 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005739 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5740
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005741 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005742 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5743
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005744 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005745 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5746
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005747 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005748 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5749
Reid Spencerb7f26282006-11-19 03:00:14 +00005750 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005751
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005752 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005753 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5754
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005755 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005756 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5757
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005758 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005759 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5760
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005761 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005762 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5763
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005764 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005765 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5766
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005767 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005768 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5769
Reid Spencerb7f26282006-11-19 03:00:14 +00005770 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005771
Reid Spencerf3a70a62006-11-18 21:50:54 +00005772 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5773</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005774
5775<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005776<pre>
5777 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00005778 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5779 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5780 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005781</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005782
5783<p>Note that the code generator does not yet support vector types with
5784 the <tt>fcmp</tt> instruction.</p>
5785
Reid Spencerf3a70a62006-11-18 21:50:54 +00005786</div>
5787
Reid Spencer2fd21e62006-11-08 01:18:52 +00005788<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005789<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00005790 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005791</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00005792
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005793<div>
Chris Lattner5568e942008-05-20 20:48:21 +00005794
Reid Spencer2fd21e62006-11-08 01:18:52 +00005795<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005796<pre>
5797 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5798</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00005799
Reid Spencer2fd21e62006-11-08 01:18:52 +00005800<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005801<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5802 SSA graph representing the function.</p>
5803
Reid Spencer2fd21e62006-11-08 01:18:52 +00005804<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005805<p>The type of the incoming values is specified with the first type field. After
5806 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5807 one pair for each predecessor basic block of the current block. Only values
5808 of <a href="#t_firstclass">first class</a> type may be used as the value
5809 arguments to the PHI node. Only labels may be used as the label
5810 arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005811
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005812<p>There must be no non-phi instructions between the start of a basic block and
5813 the PHI instructions: i.e. PHI instructions must be first in a basic
5814 block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005815
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005816<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5817 occur on the edge from the corresponding predecessor block to the current
5818 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5819 value on the same edge).</p>
Jay Foadd2449092009-06-03 10:20:10 +00005820
Reid Spencer2fd21e62006-11-08 01:18:52 +00005821<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005822<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005823 specified by the pair corresponding to the predecessor basic block that
5824 executed just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005825
Reid Spencer2fd21e62006-11-08 01:18:52 +00005826<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00005827<pre>
5828Loop: ; Infinite loop that counts from 0 on up...
5829 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5830 %nextindvar = add i32 %indvar, 1
5831 br label %Loop
5832</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005833
Reid Spencer2fd21e62006-11-08 01:18:52 +00005834</div>
5835
Chris Lattnercc37aae2004-03-12 05:50:16 +00005836<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005837<h4>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005838 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005839</h4>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005840
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005841<div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005842
5843<h5>Syntax:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005844<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00005845 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5846
Dan Gohman0e451ce2008-10-14 16:51:45 +00005847 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00005848</pre>
5849
5850<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005851<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5852 condition, without branching.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005853
5854
5855<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005856<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5857 values indicating the condition, and two values of the
5858 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5859 vectors and the condition is a scalar, then entire vectors are selected, not
5860 individual elements.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005861
5862<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005863<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5864 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005865
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005866<p>If the condition is a vector of i1, then the value arguments must be vectors
5867 of the same size, and the selection is done element by element.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005868
5869<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005870<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00005871 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005872</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005873
5874<p>Note that the code generator does not yet support conditions
5875 with vector type.</p>
5876
Chris Lattnercc37aae2004-03-12 05:50:16 +00005877</div>
5878
Robert Bocchino05ccd702006-01-15 20:48:27 +00005879<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005880<h4>
Chris Lattner2bff5242005-05-06 05:47:36 +00005881 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005882</h4>
Chris Lattner2bff5242005-05-06 05:47:36 +00005883
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005884<div>
Chris Lattner2bff5242005-05-06 05:47:36 +00005885
Chris Lattner00950542001-06-06 20:29:01 +00005886<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00005887<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00005888 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00005889</pre>
5890
Chris Lattner00950542001-06-06 20:29:01 +00005891<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005892<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005893
Chris Lattner00950542001-06-06 20:29:01 +00005894<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005895<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005896
Chris Lattner6536cfe2002-05-06 22:08:29 +00005897<ol>
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005898 <li>The optional "tail" marker indicates that the callee function does not
5899 access any allocas or varargs in the caller. Note that calls may be
5900 marked "tail" even if they do not occur before
5901 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5902 present, the function call is eligible for tail call optimization,
5903 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Chengdc444e92010-03-08 21:05:02 +00005904 optimized into a jump</a>. The code generator may optimize calls marked
5905 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5906 sibling call optimization</a> when the caller and callee have
5907 matching signatures, or 2) forced tail call optimization when the
5908 following extra requirements are met:
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005909 <ul>
5910 <li>Caller and callee both have the calling
5911 convention <tt>fastcc</tt>.</li>
5912 <li>The call is in tail position (ret immediately follows call and ret
5913 uses value of call or is void).</li>
5914 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohmanfbbee8d2010-03-02 01:08:11 +00005915 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005916 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5917 constraints are met.</a></li>
5918 </ul>
5919 </li>
Devang Patelf642f472008-10-06 18:50:38 +00005920
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005921 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5922 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005923 defaults to using C calling conventions. The calling convention of the
5924 call must match the calling convention of the target function, or else the
5925 behavior is undefined.</li>
Devang Patelf642f472008-10-06 18:50:38 +00005926
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005927 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5928 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5929 '<tt>inreg</tt>' attributes are valid here.</li>
5930
5931 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5932 type of the return value. Functions that return no value are marked
5933 <tt><a href="#t_void">void</a></tt>.</li>
5934
5935 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5936 being invoked. The argument types must match the types implied by this
5937 signature. This type can be omitted if the function is not varargs and if
5938 the function type does not return a pointer to a function.</li>
5939
5940 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5941 be invoked. In most cases, this is a direct function invocation, but
5942 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5943 to function value.</li>
5944
5945 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner0724fbd2010-03-02 06:36:51 +00005946 signature argument types and parameter attributes. All arguments must be
5947 of <a href="#t_firstclass">first class</a> type. If the function
5948 signature indicates the function accepts a variable number of arguments,
5949 the extra arguments can be specified.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005950
5951 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5952 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5953 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00005954</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00005955
Chris Lattner00950542001-06-06 20:29:01 +00005956<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005957<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5958 a specified function, with its incoming arguments bound to the specified
5959 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5960 function, control flow continues with the instruction after the function
5961 call, and the return value of the function is bound to the result
5962 argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005963
Chris Lattner00950542001-06-06 20:29:01 +00005964<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00005965<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00005966 %retval = call i32 @test(i32 %argc)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00005967 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattner772fccf2008-03-21 17:24:17 +00005968 %X = tail call i32 @foo() <i>; yields i32</i>
5969 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5970 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00005971
5972 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00005973 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00005974 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5975 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00005976 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00005977 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00005978</pre>
5979
Dale Johannesen07de8d12009-09-24 18:38:21 +00005980<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen9f8380b2009-09-25 17:04:42 +00005981standard C99 library as being the C99 library functions, and may perform
5982optimizations or generate code for them under that assumption. This is
5983something we'd like to change in the future to provide better support for
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005984freestanding environments and non-C-based languages.</p>
Dale Johannesen07de8d12009-09-24 18:38:21 +00005985
Misha Brukman9d0919f2003-11-08 01:05:38 +00005986</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005987
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005988<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005989<h4>
Chris Lattnerfb6977d2006-01-13 23:26:01 +00005990 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005991</h4>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005992
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005993<div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005994
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005995<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005996<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005997 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00005998</pre>
5999
Chris Lattner8d1a81d2003-10-18 05:51:36 +00006000<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00006001<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006002 the "variable argument" area of a function call. It is used to implement the
6003 <tt>va_arg</tt> macro in C.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00006004
Chris Lattner8d1a81d2003-10-18 05:51:36 +00006005<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006006<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6007 argument. It returns a value of the specified argument type and increments
6008 the <tt>va_list</tt> to point to the next argument. The actual type
6009 of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00006010
Chris Lattner8d1a81d2003-10-18 05:51:36 +00006011<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006012<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6013 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6014 to the next argument. For more information, see the variable argument
6015 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00006016
6017<p>It is legal for this instruction to be called in a function which does not
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006018 take a variable number of arguments, for example, the <tt>vfprintf</tt>
6019 function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00006020
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006021<p><tt>va_arg</tt> is an LLVM instruction instead of
6022 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6023 argument.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00006024
Chris Lattner8d1a81d2003-10-18 05:51:36 +00006025<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00006026<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6027
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006028<p>Note that the code generator does not yet fully support va_arg on many
6029 targets. Also, it does not currently support va_arg with aggregate types on
6030 any target.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00006031
Misha Brukman9d0919f2003-11-08 01:05:38 +00006032</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00006033
Bill Wendlingf78faf82011-08-02 21:52:38 +00006034<!-- _______________________________________________________________________ -->
6035<h4>
6036 <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6037</h4>
6038
6039<div>
6040
6041<h5>Syntax:</h5>
6042<pre>
Bill Wendlingbf13ee12011-08-08 08:06:05 +00006043 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6044 &lt;resultval&gt; = landingpad &lt;somety&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
6045
Bill Wendlingf78faf82011-08-02 21:52:38 +00006046 &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
Bill Wendlinge6e88262011-08-12 20:24:12 +00006047 &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
Bill Wendlingf78faf82011-08-02 21:52:38 +00006048</pre>
6049
6050<h5>Overview:</h5>
6051<p>The '<tt>landingpad</tt>' instruction is used by
6052 <a href="ExceptionHandling.html#overview">LLVM's exception handling
6053 system</a> to specify that a basic block is a landing pad &mdash; one where
6054 the exception lands, and corresponds to the code found in the
6055 <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6056 defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6057 re-entry to the function. The <tt>resultval</tt> has the
6058 type <tt>somety</tt>.</p>
6059
6060<h5>Arguments:</h5>
6061<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6062 function associated with the unwinding mechanism. The optional
6063 <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6064
6065<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
Bill Wendlinge6e88262011-08-12 20:24:12 +00006066 or <tt>filter</tt> &mdash; and contains the global variable representing the
6067 "type" that may be caught or filtered respectively. Unlike the
6068 <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6069 its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6070 throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
Bill Wendlingf78faf82011-08-02 21:52:38 +00006071 one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6072
6073<h5>Semantics:</h5>
6074<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6075 personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6076 therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6077 calling conventions, how the personality function results are represented in
6078 LLVM IR is target specific.</p>
6079
Bill Wendlingb7a01352011-08-03 17:17:06 +00006080<p>The clauses are applied in order from top to bottom. If two
6081 <tt>landingpad</tt> instructions are merged together through inlining, the
Bill Wendling2905c322011-08-08 07:58:58 +00006082 clauses from the calling function are appended to the list of clauses.</p>
Bill Wendlingb7a01352011-08-03 17:17:06 +00006083
Bill Wendlingf78faf82011-08-02 21:52:38 +00006084<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6085
6086<ul>
6087 <li>A landing pad block is a basic block which is the unwind destination of an
6088 '<tt>invoke</tt>' instruction.</li>
6089 <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6090 first non-PHI instruction.</li>
6091 <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6092 pad block.</li>
6093 <li>A basic block that is not a landing pad block may not include a
6094 '<tt>landingpad</tt>' instruction.</li>
6095 <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6096 personality function.</li>
6097</ul>
6098
6099<h5>Example:</h5>
6100<pre>
6101 ;; A landing pad which can catch an integer.
6102 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6103 catch i8** @_ZTIi
6104 ;; A landing pad that is a cleanup.
6105 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
Bill Wendlinge6e88262011-08-12 20:24:12 +00006106 cleanup
Bill Wendlingf78faf82011-08-02 21:52:38 +00006107 ;; A landing pad which can catch an integer and can only throw a double.
6108 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6109 catch i8** @_ZTIi
Bill Wendlinge6e88262011-08-12 20:24:12 +00006110 filter [1 x i8**] [@_ZTId]
Bill Wendlingf78faf82011-08-02 21:52:38 +00006111</pre>
6112
6113</div>
6114
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006115</div>
6116
6117</div>
6118
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006119<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006120<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +00006121<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00006122
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006123<div>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006124
6125<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006126 well known names and semantics and are required to follow certain
6127 restrictions. Overall, these intrinsics represent an extension mechanism for
6128 the LLVM language that does not require changing all of the transformations
6129 in LLVM when adding to the language (or the bitcode reader/writer, the
6130 parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006131
John Criswellfc6b8952005-05-16 16:17:45 +00006132<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006133 prefix is reserved in LLVM for intrinsic names; thus, function names may not
6134 begin with this prefix. Intrinsic functions must always be external
6135 functions: you cannot define the body of intrinsic functions. Intrinsic
6136 functions may only be used in call or invoke instructions: it is illegal to
6137 take the address of an intrinsic function. Additionally, because intrinsic
6138 functions are part of the LLVM language, it is required if any are added that
6139 they be documented here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006140
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006141<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6142 family of functions that perform the same operation but on different data
6143 types. Because LLVM can represent over 8 million different integer types,
6144 overloading is used commonly to allow an intrinsic function to operate on any
6145 integer type. One or more of the argument types or the result type can be
6146 overloaded to accept any integer type. Argument types may also be defined as
6147 exactly matching a previous argument's type or the result type. This allows
6148 an intrinsic function which accepts multiple arguments, but needs all of them
6149 to be of the same type, to only be overloaded with respect to a single
6150 argument or the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006151
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006152<p>Overloaded intrinsics will have the names of its overloaded argument types
6153 encoded into its function name, each preceded by a period. Only those types
6154 which are overloaded result in a name suffix. Arguments whose type is matched
6155 against another type do not. For example, the <tt>llvm.ctpop</tt> function
6156 can take an integer of any width and returns an integer of exactly the same
6157 integer width. This leads to a family of functions such as
6158 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6159 %val)</tt>. Only one type, the return type, is overloaded, and only one type
6160 suffix is required. Because the argument's type is matched against the return
6161 type, it does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00006162
Eric Christopher6c7e8a02009-12-05 02:46:03 +00006163<p>To learn how to add an intrinsic function, please see the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006164 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006165
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006166<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006167<h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00006168 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006169</h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00006170
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006171<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00006172
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006173<p>Variable argument support is defined in LLVM with
6174 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6175 intrinsic functions. These functions are related to the similarly named
6176 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006177
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006178<p>All of these functions operate on arguments that use a target-specific value
6179 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
6180 not define what this type is, so all transformations should be prepared to
6181 handle these functions regardless of the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006182
Chris Lattner374ab302006-05-15 17:26:46 +00006183<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006184 instruction and the variable argument handling intrinsic functions are
6185 used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006186
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00006187<pre class="doc_code">
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00006188define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00006189 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00006190 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00006191 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00006192 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00006193
6194 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00006195 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00006196
6197 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00006198 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00006199 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00006200 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00006201 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00006202
6203 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00006204 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00006205 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00006206}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00006207
6208declare void @llvm.va_start(i8*)
6209declare void @llvm.va_copy(i8*, i8*)
6210declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00006211</pre>
Chris Lattner8ff75902004-01-06 05:31:32 +00006212
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006213<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006214<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006215 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006216</h4>
Chris Lattner8ff75902004-01-06 05:31:32 +00006217
6218
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006219<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006220
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006221<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006222<pre>
6223 declare void %llvm.va_start(i8* &lt;arglist&gt;)
6224</pre>
6225
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006226<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006227<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6228 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00006229
6230<h5>Arguments:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006231<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00006232
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006233<h5>Semantics:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006234<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006235 macro available in C. In a target-dependent way, it initializes
6236 the <tt>va_list</tt> element to which the argument points, so that the next
6237 call to <tt>va_arg</tt> will produce the first variable argument passed to
6238 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6239 need to know the last argument of the function as the compiler can figure
6240 that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00006241
Misha Brukman9d0919f2003-11-08 01:05:38 +00006242</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00006243
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006244<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006245<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006246 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006247</h4>
Chris Lattner8ff75902004-01-06 05:31:32 +00006248
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006249<div>
Chris Lattnerb75137d2007-01-08 07:55:15 +00006250
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006251<h5>Syntax:</h5>
6252<pre>
6253 declare void @llvm.va_end(i8* &lt;arglist&gt;)
6254</pre>
6255
6256<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00006257<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006258 which has been initialized previously
6259 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6260 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00006261
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006262<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00006263<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00006264
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006265<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00006266<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006267 macro available in C. In a target-dependent way, it destroys
6268 the <tt>va_list</tt> element to which the argument points. Calls
6269 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6270 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6271 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00006272
Misha Brukman9d0919f2003-11-08 01:05:38 +00006273</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00006274
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006275<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006276<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006277 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006278</h4>
Chris Lattner8ff75902004-01-06 05:31:32 +00006279
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006280<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00006281
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006282<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006283<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006284 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00006285</pre>
6286
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006287<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00006288<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006289 from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006290
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006291<h5>Arguments:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00006292<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006293 The second argument is a pointer to a <tt>va_list</tt> element to copy
6294 from.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006295
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00006296<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00006297<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006298 macro available in C. In a target-dependent way, it copies the
6299 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6300 element. This intrinsic is necessary because
6301 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6302 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006303
Misha Brukman9d0919f2003-11-08 01:05:38 +00006304</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00006305
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006306</div>
6307
Bill Wendling0246bb72011-07-31 06:45:03 +00006308</div>
6309
Chris Lattner33aec9e2004-02-12 17:01:32 +00006310<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006311<h3>
Chris Lattnerd7923912004-05-23 21:06:01 +00006312 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006313</h3>
Chris Lattnerd7923912004-05-23 21:06:01 +00006314
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006315<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00006316
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006317<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00006318Collection</a> (GC) requires the implementation and generation of these
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006319intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6320roots on the stack</a>, as well as garbage collector implementations that
6321require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6322barriers. Front-ends for type-safe garbage collected languages should generate
6323these intrinsics to make use of the LLVM garbage collectors. For more details,
6324see <a href="GarbageCollection.html">Accurate Garbage Collection with
6325LLVM</a>.</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00006326
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006327<p>The garbage collection intrinsics only operate on objects in the generic
6328 address space (address space zero).</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00006329
Chris Lattnerd7923912004-05-23 21:06:01 +00006330<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006331<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006332 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006333</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +00006334
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006335<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00006336
6337<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006338<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00006339 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00006340</pre>
6341
6342<h5>Overview:</h5>
John Criswell9e2485c2004-12-10 15:51:16 +00006343<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006344 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006345
6346<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006347<p>The first argument specifies the address of a stack object that contains the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006348 root pointer. The second pointer (which must be either a constant or a
6349 global value address) contains the meta-data to be associated with the
6350 root.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006351
6352<h5>Semantics:</h5>
Chris Lattner05d67092008-04-24 05:59:56 +00006353<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006354 location. At compile-time, the code generator generates information to allow
6355 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6356 intrinsic may only be used in a function which <a href="#gc">specifies a GC
6357 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006358
6359</div>
6360
Chris Lattnerd7923912004-05-23 21:06:01 +00006361<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006362<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006363 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006364</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +00006365
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006366<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00006367
6368<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006369<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00006370 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00006371</pre>
6372
6373<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006374<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006375 locations, allowing garbage collector implementations that require read
6376 barriers.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006377
6378<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00006379<p>The second argument is the address to read from, which should be an address
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006380 allocated from the garbage collector. The first object is a pointer to the
6381 start of the referenced object, if needed by the language runtime (otherwise
6382 null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006383
6384<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006385<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006386 instruction, but may be replaced with substantially more complex code by the
6387 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6388 may only be used in a function which <a href="#gc">specifies a GC
6389 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006390
6391</div>
6392
Chris Lattnerd7923912004-05-23 21:06:01 +00006393<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006394<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006395 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006396</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +00006397
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006398<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00006399
6400<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006401<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00006402 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00006403</pre>
6404
6405<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006406<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006407 locations, allowing garbage collector implementations that require write
6408 barriers (such as generational or reference counting collectors).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006409
6410<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00006411<p>The first argument is the reference to store, the second is the start of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006412 object to store it to, and the third is the address of the field of Obj to
6413 store to. If the runtime does not require a pointer to the object, Obj may
6414 be null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006415
6416<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00006417<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006418 instruction, but may be replaced with substantially more complex code by the
6419 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6420 may only be used in a function which <a href="#gc">specifies a GC
6421 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00006422
6423</div>
6424
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006425</div>
6426
Chris Lattnerd7923912004-05-23 21:06:01 +00006427<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006428<h3>
Chris Lattner10610642004-02-14 04:08:35 +00006429 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006430</h3>
Chris Lattner10610642004-02-14 04:08:35 +00006431
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006432<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006433
6434<p>These intrinsics are provided by LLVM to expose special features that may
6435 only be implemented with code generator support.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006436
Chris Lattner10610642004-02-14 04:08:35 +00006437<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006438<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006439 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006440</h4>
Chris Lattner10610642004-02-14 04:08:35 +00006441
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006442<div>
Chris Lattner10610642004-02-14 04:08:35 +00006443
6444<h5>Syntax:</h5>
6445<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006446 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00006447</pre>
6448
6449<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006450<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6451 target-specific value indicating the return address of the current function
6452 or one of its callers.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006453
6454<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006455<p>The argument to this intrinsic indicates which function to return the address
6456 for. Zero indicates the calling function, one indicates its caller, etc.
6457 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006458
6459<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006460<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6461 indicating the return address of the specified call frame, or zero if it
6462 cannot be identified. The value returned by this intrinsic is likely to be
6463 incorrect or 0 for arguments other than zero, so it should only be used for
6464 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006465
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006466<p>Note that calling this intrinsic does not prevent function inlining or other
6467 aggressive transformations, so the value returned may not be that of the
6468 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006469
Chris Lattner10610642004-02-14 04:08:35 +00006470</div>
6471
Chris Lattner10610642004-02-14 04:08:35 +00006472<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006473<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006474 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006475</h4>
Chris Lattner10610642004-02-14 04:08:35 +00006476
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006477<div>
Chris Lattner10610642004-02-14 04:08:35 +00006478
6479<h5>Syntax:</h5>
6480<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006481 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00006482</pre>
6483
6484<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006485<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6486 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006487
6488<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006489<p>The argument to this intrinsic indicates which function to return the frame
6490 pointer for. Zero indicates the calling function, one indicates its caller,
6491 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006492
6493<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006494<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6495 indicating the frame address of the specified call frame, or zero if it
6496 cannot be identified. The value returned by this intrinsic is likely to be
6497 incorrect or 0 for arguments other than zero, so it should only be used for
6498 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006499
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006500<p>Note that calling this intrinsic does not prevent function inlining or other
6501 aggressive transformations, so the value returned may not be that of the
6502 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006503
Chris Lattner10610642004-02-14 04:08:35 +00006504</div>
6505
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006506<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006507<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006508 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006509</h4>
Chris Lattner57e1f392006-01-13 02:03:13 +00006510
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006511<div>
Chris Lattner57e1f392006-01-13 02:03:13 +00006512
6513<h5>Syntax:</h5>
6514<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006515 declare i8* @llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00006516</pre>
6517
6518<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006519<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6520 of the function stack, for use
6521 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6522 useful for implementing language features like scoped automatic variable
6523 sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006524
6525<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006526<p>This intrinsic returns a opaque pointer value that can be passed
6527 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6528 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6529 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6530 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6531 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6532 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006533
6534</div>
6535
6536<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006537<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006538 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006539</h4>
Chris Lattner57e1f392006-01-13 02:03:13 +00006540
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006541<div>
Chris Lattner57e1f392006-01-13 02:03:13 +00006542
6543<h5>Syntax:</h5>
6544<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006545 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00006546</pre>
6547
6548<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006549<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6550 the function stack to the state it was in when the
6551 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6552 executed. This is useful for implementing language features like scoped
6553 automatic variable sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006554
6555<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006556<p>See the description
6557 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006558
6559</div>
6560
Chris Lattner57e1f392006-01-13 02:03:13 +00006561<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006562<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006563 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006564</h4>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006565
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006566<div>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006567
6568<h5>Syntax:</h5>
6569<pre>
Bruno Cardoso Lopes9a767332011-06-14 04:58:37 +00006570 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006571</pre>
6572
6573<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006574<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6575 insert a prefetch instruction if supported; otherwise, it is a noop.
6576 Prefetches have no effect on the behavior of the program but can change its
6577 performance characteristics.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006578
6579<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006580<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6581 specifier determining if the fetch should be for a read (0) or write (1),
6582 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Bruno Cardoso Lopes9a767332011-06-14 04:58:37 +00006583 locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
6584 specifies whether the prefetch is performed on the data (1) or instruction (0)
6585 cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
6586 must be constant integers.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006587
6588<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006589<p>This intrinsic does not modify the behavior of the program. In particular,
6590 prefetches cannot trap and do not produce a value. On targets that support
6591 this intrinsic, the prefetch can provide hints to the processor cache for
6592 better performance.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006593
6594</div>
6595
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006596<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006597<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006598 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006599</h4>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006600
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006601<div>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006602
6603<h5>Syntax:</h5>
6604<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00006605 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006606</pre>
6607
6608<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006609<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6610 Counter (PC) in a region of code to simulators and other tools. The method
6611 is target specific, but it is expected that the marker will use exported
6612 symbols to transmit the PC of the marker. The marker makes no guarantees
6613 that it will remain with any specific instruction after optimizations. It is
6614 possible that the presence of a marker will inhibit optimizations. The
6615 intended use is to be inserted after optimizations to allow correlations of
6616 simulation runs.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006617
6618<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006619<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006620
6621<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006622<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006623 not support this intrinsic may ignore it.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006624
6625</div>
6626
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006627<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006628<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006629 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006630</h4>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006631
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006632<div>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006633
6634<h5>Syntax:</h5>
6635<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00006636 declare i64 @llvm.readcyclecounter()
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006637</pre>
6638
6639<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006640<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6641 counter register (or similar low latency, high accuracy clocks) on those
6642 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6643 should map to RPCC. As the backing counters overflow quickly (on the order
6644 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006645
6646<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006647<p>When directly supported, reading the cycle counter should not modify any
6648 memory. Implementations are allowed to either return a application specific
6649 value or a system wide value. On backends without support, this is lowered
6650 to a constant 0.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006651
6652</div>
6653
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006654</div>
6655
Chris Lattner10610642004-02-14 04:08:35 +00006656<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006657<h3>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006658 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006659</h3>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006660
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006661<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006662
6663<p>LLVM provides intrinsics for a few important standard C library functions.
6664 These intrinsics allow source-language front-ends to pass information about
6665 the alignment of the pointer arguments to the code generator, providing
6666 opportunity for more efficient code generation.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006667
Chris Lattner33aec9e2004-02-12 17:01:32 +00006668<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006669<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006670 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006671</h4>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006672
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006673<div>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006674
6675<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006676<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wange88909b2010-04-07 06:35:53 +00006677 integer bit width and for different address spaces. Not all targets support
6678 all bit widths however.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006679
Chris Lattner33aec9e2004-02-12 17:01:32 +00006680<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006681 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006682 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006683 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006684 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00006685</pre>
6686
6687<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006688<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6689 source location to the destination location.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006690
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006691<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattner9f636de2010-04-08 00:53:57 +00006692 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6693 and the pointers can be in specified address spaces.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006694
6695<h5>Arguments:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006696
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006697<p>The first argument is a pointer to the destination, the second is a pointer
6698 to the source. The third argument is an integer argument specifying the
Chris Lattner9f636de2010-04-08 00:53:57 +00006699 number of bytes to copy, the fourth argument is the alignment of the
6700 source and destination locations, and the fifth is a boolean indicating a
6701 volatile access.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006702
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006703<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006704 then the caller guarantees that both the source and destination pointers are
6705 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00006706
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00006707<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6708 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6709 The detailed access behavior is not very cleanly specified and it is unwise
6710 to depend on it.</p>
Chris Lattner9f636de2010-04-08 00:53:57 +00006711
Chris Lattner33aec9e2004-02-12 17:01:32 +00006712<h5>Semantics:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006713
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006714<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6715 source location to the destination location, which are not allowed to
6716 overlap. It copies "len" bytes of memory over. If the argument is known to
6717 be aligned to some boundary, this can be specified as the fourth argument,
6718 otherwise it should be set to 0 or 1.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006719
Chris Lattner33aec9e2004-02-12 17:01:32 +00006720</div>
6721
Chris Lattner0eb51b42004-02-12 18:10:10 +00006722<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006723<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006724 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006725</h4>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006726
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006727<div>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006728
6729<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00006730<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wange88909b2010-04-07 06:35:53 +00006731 width and for different address space. Not all targets support all bit
6732 widths however.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006733
Chris Lattner0eb51b42004-02-12 18:10:10 +00006734<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006735 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006736 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006737 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006738 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00006739</pre>
6740
6741<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006742<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6743 source location to the destination location. It is similar to the
6744 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6745 overlap.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006746
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006747<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattner9f636de2010-04-08 00:53:57 +00006748 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6749 and the pointers can be in specified address spaces.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006750
6751<h5>Arguments:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006752
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006753<p>The first argument is a pointer to the destination, the second is a pointer
6754 to the source. The third argument is an integer argument specifying the
Chris Lattner9f636de2010-04-08 00:53:57 +00006755 number of bytes to copy, the fourth argument is the alignment of the
6756 source and destination locations, and the fifth is a boolean indicating a
6757 volatile access.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006758
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006759<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006760 then the caller guarantees that the source and destination pointers are
6761 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00006762
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00006763<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6764 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6765 The detailed access behavior is not very cleanly specified and it is unwise
6766 to depend on it.</p>
Chris Lattner9f636de2010-04-08 00:53:57 +00006767
Chris Lattner0eb51b42004-02-12 18:10:10 +00006768<h5>Semantics:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006769
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006770<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6771 source location to the destination location, which may overlap. It copies
6772 "len" bytes of memory over. If the argument is known to be aligned to some
6773 boundary, this can be specified as the fourth argument, otherwise it should
6774 be set to 0 or 1.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006775
Chris Lattner0eb51b42004-02-12 18:10:10 +00006776</div>
6777
Chris Lattner10610642004-02-14 04:08:35 +00006778<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006779<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006780 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006781</h4>
Chris Lattner10610642004-02-14 04:08:35 +00006782
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006783<div>
Chris Lattner10610642004-02-14 04:08:35 +00006784
6785<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00006786<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellcdcbbfc2010-07-30 16:30:28 +00006787 width and for different address spaces. However, not all targets support all
6788 bit widths.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006789
Chris Lattner10610642004-02-14 04:08:35 +00006790<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006791 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattnerff35c3f2010-04-08 00:54:34 +00006792 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006793 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattnerff35c3f2010-04-08 00:54:34 +00006794 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00006795</pre>
6796
6797<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006798<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6799 particular byte value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006800
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006801<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellcdcbbfc2010-07-30 16:30:28 +00006802 intrinsic does not return a value and takes extra alignment/volatile
6803 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006804
6805<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006806<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellcdcbbfc2010-07-30 16:30:28 +00006807 byte value with which to fill it, the third argument is an integer argument
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006808 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellcdcbbfc2010-07-30 16:30:28 +00006809 alignment of the destination location.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006810
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006811<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006812 then the caller guarantees that the destination pointer is aligned to that
6813 boundary.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006814
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00006815<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6816 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6817 The detailed access behavior is not very cleanly specified and it is unwise
6818 to depend on it.</p>
Chris Lattner9f636de2010-04-08 00:53:57 +00006819
Chris Lattner10610642004-02-14 04:08:35 +00006820<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006821<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6822 at the destination location. If the argument is known to be aligned to some
6823 boundary, this can be specified as the fourth argument, otherwise it should
6824 be set to 0 or 1.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006825
Chris Lattner10610642004-02-14 04:08:35 +00006826</div>
6827
Chris Lattner32006282004-06-11 02:28:03 +00006828<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006829<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006830 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006831</h4>
Chris Lattnera4d74142005-07-21 01:29:16 +00006832
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006833<div>
Chris Lattnera4d74142005-07-21 01:29:16 +00006834
6835<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006836<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6837 floating point or vector of floating point type. Not all targets support all
6838 types however.</p>
6839
Chris Lattnera4d74142005-07-21 01:29:16 +00006840<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00006841 declare float @llvm.sqrt.f32(float %Val)
6842 declare double @llvm.sqrt.f64(double %Val)
6843 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6844 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6845 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00006846</pre>
6847
6848<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006849<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6850 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6851 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6852 behavior for negative numbers other than -0.0 (which allows for better
6853 optimization, because there is no need to worry about errno being
6854 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006855
6856<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006857<p>The argument and return value are floating point numbers of the same
6858 type.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006859
6860<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006861<p>This function returns the sqrt of the specified operand if it is a
6862 nonnegative floating point number.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006863
Chris Lattnera4d74142005-07-21 01:29:16 +00006864</div>
6865
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006866<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006867<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006868 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006869</h4>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006870
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006871<div>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006872
6873<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006874<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6875 floating point or vector of floating point type. Not all targets support all
6876 types however.</p>
6877
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006878<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00006879 declare float @llvm.powi.f32(float %Val, i32 %power)
6880 declare double @llvm.powi.f64(double %Val, i32 %power)
6881 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6882 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6883 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006884</pre>
6885
6886<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006887<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6888 specified (positive or negative) power. The order of evaluation of
6889 multiplications is not defined. When a vector of floating point type is
6890 used, the second argument remains a scalar integer value.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006891
6892<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006893<p>The second argument is an integer power, and the first is a value to raise to
6894 that power.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006895
6896<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006897<p>This function returns the first value raised to the second power with an
6898 unspecified sequence of rounding operations.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006899
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006900</div>
6901
Dan Gohman91c284c2007-10-15 20:30:11 +00006902<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006903<h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006904 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006905</h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006906
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006907<div>
Dan Gohman91c284c2007-10-15 20:30:11 +00006908
6909<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006910<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6911 floating point or vector of floating point type. Not all targets support all
6912 types however.</p>
6913
Dan Gohman91c284c2007-10-15 20:30:11 +00006914<pre>
6915 declare float @llvm.sin.f32(float %Val)
6916 declare double @llvm.sin.f64(double %Val)
6917 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6918 declare fp128 @llvm.sin.f128(fp128 %Val)
6919 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6920</pre>
6921
6922<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006923<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006924
6925<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006926<p>The argument and return value are floating point numbers of the same
6927 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006928
6929<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006930<p>This function returns the sine of the specified operand, returning the same
6931 values as the libm <tt>sin</tt> functions would, and handles error conditions
6932 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006933
Dan Gohman91c284c2007-10-15 20:30:11 +00006934</div>
6935
6936<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006937<h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006938 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006939</h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006940
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006941<div>
Dan Gohman91c284c2007-10-15 20:30:11 +00006942
6943<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006944<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6945 floating point or vector of floating point type. Not all targets support all
6946 types however.</p>
6947
Dan Gohman91c284c2007-10-15 20:30:11 +00006948<pre>
6949 declare float @llvm.cos.f32(float %Val)
6950 declare double @llvm.cos.f64(double %Val)
6951 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6952 declare fp128 @llvm.cos.f128(fp128 %Val)
6953 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6954</pre>
6955
6956<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006957<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006958
6959<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006960<p>The argument and return value are floating point numbers of the same
6961 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006962
6963<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006964<p>This function returns the cosine of the specified operand, returning the same
6965 values as the libm <tt>cos</tt> functions would, and handles error conditions
6966 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006967
Dan Gohman91c284c2007-10-15 20:30:11 +00006968</div>
6969
6970<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006971<h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006972 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006973</h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006974
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006975<div>
Dan Gohman91c284c2007-10-15 20:30:11 +00006976
6977<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006978<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6979 floating point or vector of floating point type. Not all targets support all
6980 types however.</p>
6981
Dan Gohman91c284c2007-10-15 20:30:11 +00006982<pre>
6983 declare float @llvm.pow.f32(float %Val, float %Power)
6984 declare double @llvm.pow.f64(double %Val, double %Power)
6985 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6986 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6987 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6988</pre>
6989
6990<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006991<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6992 specified (positive or negative) power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006993
6994<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006995<p>The second argument is a floating point power, and the first is a value to
6996 raise to that power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006997
6998<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006999<p>This function returns the first value raised to the second power, returning
7000 the same values as the libm <tt>pow</tt> functions would, and handles error
7001 conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00007002
Dan Gohman91c284c2007-10-15 20:30:11 +00007003</div>
7004
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007005</div>
7006
Dan Gohman4e9011c2011-05-23 21:13:03 +00007007<!-- _______________________________________________________________________ -->
7008<h4>
7009 <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7010</h4>
7011
7012<div>
7013
7014<h5>Syntax:</h5>
7015<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7016 floating point or vector of floating point type. Not all targets support all
7017 types however.</p>
7018
7019<pre>
7020 declare float @llvm.exp.f32(float %Val)
7021 declare double @llvm.exp.f64(double %Val)
7022 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7023 declare fp128 @llvm.exp.f128(fp128 %Val)
7024 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7025</pre>
7026
7027<h5>Overview:</h5>
7028<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7029
7030<h5>Arguments:</h5>
7031<p>The argument and return value are floating point numbers of the same
7032 type.</p>
7033
7034<h5>Semantics:</h5>
7035<p>This function returns the same values as the libm <tt>exp</tt> functions
7036 would, and handles error conditions in the same way.</p>
7037
7038</div>
7039
7040<!-- _______________________________________________________________________ -->
7041<h4>
7042 <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7043</h4>
7044
7045<div>
7046
7047<h5>Syntax:</h5>
7048<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7049 floating point or vector of floating point type. Not all targets support all
7050 types however.</p>
7051
7052<pre>
7053 declare float @llvm.log.f32(float %Val)
7054 declare double @llvm.log.f64(double %Val)
7055 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7056 declare fp128 @llvm.log.f128(fp128 %Val)
7057 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7058</pre>
7059
7060<h5>Overview:</h5>
7061<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7062
7063<h5>Arguments:</h5>
7064<p>The argument and return value are floating point numbers of the same
7065 type.</p>
7066
7067<h5>Semantics:</h5>
7068<p>This function returns the same values as the libm <tt>log</tt> functions
7069 would, and handles error conditions in the same way.</p>
7070
Cameron Zwarich33390842011-07-08 21:39:21 +00007071<h4>
7072 <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7073</h4>
7074
7075<div>
7076
7077<h5>Syntax:</h5>
7078<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7079 floating point or vector of floating point type. Not all targets support all
7080 types however.</p>
7081
7082<pre>
7083 declare float @llvm.fma.f32(float %a, float %b, float %c)
7084 declare double @llvm.fma.f64(double %a, double %b, double %c)
7085 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7086 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7087 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7088</pre>
7089
7090<h5>Overview:</h5>
Cameron Zwarichabc43e62011-07-08 22:13:55 +00007091<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
Cameron Zwarich33390842011-07-08 21:39:21 +00007092 operation.</p>
7093
7094<h5>Arguments:</h5>
7095<p>The argument and return value are floating point numbers of the same
7096 type.</p>
7097
7098<h5>Semantics:</h5>
7099<p>This function returns the same values as the libm <tt>fma</tt> functions
7100 would.</p>
7101
Dan Gohman4e9011c2011-05-23 21:13:03 +00007102</div>
7103
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007104<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007105<h3>
Nate Begeman7e36c472006-01-13 23:26:38 +00007106 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007107</h3>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007108
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007109<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007110
7111<p>LLVM provides intrinsics for a few important bit manipulation operations.
7112 These allow efficient code generation for some algorithms.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007113
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007114<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007115<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00007116 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007117</h4>
Nate Begeman7e36c472006-01-13 23:26:38 +00007118
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007119<div>
Nate Begeman7e36c472006-01-13 23:26:38 +00007120
7121<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00007122<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007123 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7124
Nate Begeman7e36c472006-01-13 23:26:38 +00007125<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00007126 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7127 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7128 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00007129</pre>
7130
7131<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007132<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7133 values with an even number of bytes (positive multiple of 16 bits). These
7134 are useful for performing operations on data that is not in the target's
7135 native byte order.</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00007136
7137<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007138<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7139 and low byte of the input i16 swapped. Similarly,
7140 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7141 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7142 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7143 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7144 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7145 more, respectively).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00007146
7147</div>
7148
7149<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007150<h4>
Reid Spencer0b118202006-01-16 21:12:35 +00007151 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007152</h4>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007153
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007154<div>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007155
7156<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00007157<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Owen Andersonf1ac4652011-07-01 21:52:38 +00007158 width, or on any vector with integer elements. Not all targets support all
7159 bit widths or vector types, however.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007160
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007161<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007162 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00007163 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00007164 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00007165 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7166 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Owen Andersonf1ac4652011-07-01 21:52:38 +00007167 declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007168</pre>
7169
7170<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007171<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7172 in a value.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007173
7174<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007175<p>The only argument is the value to be counted. The argument may be of any
Owen Andersonf1ac4652011-07-01 21:52:38 +00007176 integer type, or a vector with integer elements.
7177 The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007178
7179<h5>Semantics:</h5>
Owen Andersonf1ac4652011-07-01 21:52:38 +00007180<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7181 element of a vector.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007182
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007183</div>
7184
7185<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007186<h4>
Chris Lattner8a886be2006-01-16 22:34:14 +00007187 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007188</h4>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007189
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007190<div>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007191
7192<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007193<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Owen Andersonf1ac4652011-07-01 21:52:38 +00007194 integer bit width, or any vector whose elements are integers. Not all
7195 targets support all bit widths or vector types, however.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007196
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007197<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00007198 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
7199 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00007200 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00007201 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
7202 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Owen Andersonf1ac4652011-07-01 21:52:38 +00007203 declare &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src;gt)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007204</pre>
7205
7206<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007207<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7208 leading zeros in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007209
7210<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007211<p>The only argument is the value to be counted. The argument may be of any
Owen Andersonf1ac4652011-07-01 21:52:38 +00007212 integer type, or any vector type with integer element type.
7213 The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007214
7215<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007216<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
Owen Andersonf1ac4652011-07-01 21:52:38 +00007217 zeros in a variable, or within each element of the vector if the operation
7218 is of vector type. If the src == 0 then the result is the size in bits of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007219 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007220
Andrew Lenharthec370fd2005-05-03 18:01:48 +00007221</div>
Chris Lattner32006282004-06-11 02:28:03 +00007222
Chris Lattnereff29ab2005-05-15 19:39:26 +00007223<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007224<h4>
Chris Lattner8a886be2006-01-16 22:34:14 +00007225 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007226</h4>
Chris Lattnereff29ab2005-05-15 19:39:26 +00007227
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007228<div>
Chris Lattnereff29ab2005-05-15 19:39:26 +00007229
7230<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007231<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Owen Andersonf1ac4652011-07-01 21:52:38 +00007232 integer bit width, or any vector of integer elements. Not all targets
7233 support all bit widths or vector types, however.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007234
Chris Lattnereff29ab2005-05-15 19:39:26 +00007235<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00007236 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
7237 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00007238 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00007239 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
7240 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Owen Andersonf1ac4652011-07-01 21:52:38 +00007241 declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00007242</pre>
7243
7244<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007245<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7246 trailing zeros.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00007247
7248<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007249<p>The only argument is the value to be counted. The argument may be of any
Owen Andersonf1ac4652011-07-01 21:52:38 +00007250 integer type, or a vectory with integer element type.. The return type
7251 must match the argument type.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00007252
7253<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007254<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
Owen Andersonf1ac4652011-07-01 21:52:38 +00007255 zeros in a variable, or within each element of a vector.
7256 If the src == 0 then the result is the size in bits of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007257 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00007258
Chris Lattnereff29ab2005-05-15 19:39:26 +00007259</div>
7260
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007261</div>
7262
Bill Wendlingda01af72009-02-08 04:04:40 +00007263<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007264<h3>
Bill Wendlingda01af72009-02-08 04:04:40 +00007265 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007266</h3>
Bill Wendlingda01af72009-02-08 04:04:40 +00007267
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007268<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007269
7270<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingda01af72009-02-08 04:04:40 +00007271
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007272<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007273<h4>
7274 <a name="int_sadd_overflow">
7275 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7276 </a>
7277</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007278
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007279<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007280
7281<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007282<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007283 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007284
7285<pre>
7286 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7287 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7288 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7289</pre>
7290
7291<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007292<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007293 a signed addition of the two arguments, and indicate whether an overflow
7294 occurred during the signed summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007295
7296<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007297<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007298 be of integer types of any bit width, but they must have the same bit
7299 width. The second element of the result structure must be of
7300 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7301 undergo signed addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007302
7303<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007304<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007305 a signed addition of the two variables. They return a structure &mdash; the
7306 first element of which is the signed summation, and the second element of
7307 which is a bit specifying if the signed summation resulted in an
7308 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007309
7310<h5>Examples:</h5>
7311<pre>
7312 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7313 %sum = extractvalue {i32, i1} %res, 0
7314 %obit = extractvalue {i32, i1} %res, 1
7315 br i1 %obit, label %overflow, label %normal
7316</pre>
7317
7318</div>
7319
7320<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007321<h4>
7322 <a name="int_uadd_overflow">
7323 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7324 </a>
7325</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007326
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007327<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007328
7329<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007330<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007331 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007332
7333<pre>
7334 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7335 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7336 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7337</pre>
7338
7339<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007340<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007341 an unsigned addition of the two arguments, and indicate whether a carry
7342 occurred during the unsigned summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007343
7344<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007345<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007346 be of integer types of any bit width, but they must have the same bit
7347 width. The second element of the result structure must be of
7348 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7349 undergo unsigned addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007350
7351<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007352<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007353 an unsigned addition of the two arguments. They return a structure &mdash;
7354 the first element of which is the sum, and the second element of which is a
7355 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007356
7357<h5>Examples:</h5>
7358<pre>
7359 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7360 %sum = extractvalue {i32, i1} %res, 0
7361 %obit = extractvalue {i32, i1} %res, 1
7362 br i1 %obit, label %carry, label %normal
7363</pre>
7364
7365</div>
7366
7367<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007368<h4>
7369 <a name="int_ssub_overflow">
7370 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7371 </a>
7372</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007373
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007374<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007375
7376<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007377<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007378 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007379
7380<pre>
7381 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7382 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7383 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7384</pre>
7385
7386<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007387<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007388 a signed subtraction of the two arguments, and indicate whether an overflow
7389 occurred during the signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007390
7391<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007392<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007393 be of integer types of any bit width, but they must have the same bit
7394 width. The second element of the result structure must be of
7395 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7396 undergo signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007397
7398<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007399<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007400 a signed subtraction of the two arguments. They return a structure &mdash;
7401 the first element of which is the subtraction, and the second element of
7402 which is a bit specifying if the signed subtraction resulted in an
7403 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007404
7405<h5>Examples:</h5>
7406<pre>
7407 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7408 %sum = extractvalue {i32, i1} %res, 0
7409 %obit = extractvalue {i32, i1} %res, 1
7410 br i1 %obit, label %overflow, label %normal
7411</pre>
7412
7413</div>
7414
7415<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007416<h4>
7417 <a name="int_usub_overflow">
7418 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7419 </a>
7420</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007421
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007422<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007423
7424<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007425<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007426 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007427
7428<pre>
7429 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7430 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7431 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7432</pre>
7433
7434<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007435<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007436 an unsigned subtraction of the two arguments, and indicate whether an
7437 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007438
7439<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007440<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007441 be of integer types of any bit width, but they must have the same bit
7442 width. The second element of the result structure must be of
7443 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7444 undergo unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007445
7446<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007447<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007448 an unsigned subtraction of the two arguments. They return a structure &mdash;
7449 the first element of which is the subtraction, and the second element of
7450 which is a bit specifying if the unsigned subtraction resulted in an
7451 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007452
7453<h5>Examples:</h5>
7454<pre>
7455 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7456 %sum = extractvalue {i32, i1} %res, 0
7457 %obit = extractvalue {i32, i1} %res, 1
7458 br i1 %obit, label %overflow, label %normal
7459</pre>
7460
7461</div>
7462
7463<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007464<h4>
7465 <a name="int_smul_overflow">
7466 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
7467 </a>
7468</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007469
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007470<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007471
7472<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007473<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007474 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007475
7476<pre>
7477 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7478 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7479 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7480</pre>
7481
7482<h5>Overview:</h5>
7483
7484<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007485 a signed multiplication of the two arguments, and indicate whether an
7486 overflow occurred during the signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007487
7488<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007489<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007490 be of integer types of any bit width, but they must have the same bit
7491 width. The second element of the result structure must be of
7492 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7493 undergo signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007494
7495<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007496<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007497 a signed multiplication of the two arguments. They return a structure &mdash;
7498 the first element of which is the multiplication, and the second element of
7499 which is a bit specifying if the signed multiplication resulted in an
7500 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00007501
7502<h5>Examples:</h5>
7503<pre>
7504 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7505 %sum = extractvalue {i32, i1} %res, 0
7506 %obit = extractvalue {i32, i1} %res, 1
7507 br i1 %obit, label %overflow, label %normal
7508</pre>
7509
Reid Spencerf86037f2007-04-11 23:23:49 +00007510</div>
7511
Bill Wendling41b485c2009-02-08 23:00:09 +00007512<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007513<h4>
7514 <a name="int_umul_overflow">
7515 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
7516 </a>
7517</h4>
Bill Wendling41b485c2009-02-08 23:00:09 +00007518
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007519<div>
Bill Wendling41b485c2009-02-08 23:00:09 +00007520
7521<h5>Syntax:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00007522<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007523 on any integer bit width.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00007524
7525<pre>
7526 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7527 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7528 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7529</pre>
7530
7531<h5>Overview:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00007532<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007533 a unsigned multiplication of the two arguments, and indicate whether an
7534 overflow occurred during the unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00007535
7536<h5>Arguments:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00007537<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007538 be of integer types of any bit width, but they must have the same bit
7539 width. The second element of the result structure must be of
7540 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7541 undergo unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00007542
7543<h5>Semantics:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00007544<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007545 an unsigned multiplication of the two arguments. They return a structure
7546 &mdash; the first element of which is the multiplication, and the second
7547 element of which is a bit specifying if the unsigned multiplication resulted
7548 in an overflow.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00007549
7550<h5>Examples:</h5>
7551<pre>
7552 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7553 %sum = extractvalue {i32, i1} %res, 0
7554 %obit = extractvalue {i32, i1} %res, 1
7555 br i1 %obit, label %overflow, label %normal
7556</pre>
7557
7558</div>
7559
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007560</div>
7561
Chris Lattner8ff75902004-01-06 05:31:32 +00007562<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007563<h3>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007564 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007565</h3>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007566
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007567<div>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007568
Chris Lattner0cec9c82010-03-15 04:12:21 +00007569<p>Half precision floating point is a storage-only format. This means that it is
7570 a dense encoding (in memory) but does not support computation in the
7571 format.</p>
Chris Lattner82c3dc62010-03-14 23:03:31 +00007572
Chris Lattner0cec9c82010-03-15 04:12:21 +00007573<p>This means that code must first load the half-precision floating point
Chris Lattner82c3dc62010-03-14 23:03:31 +00007574 value as an i16, then convert it to float with <a
7575 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
7576 Computation can then be performed on the float value (including extending to
Chris Lattner0cec9c82010-03-15 04:12:21 +00007577 double etc). To store the value back to memory, it is first converted to
7578 float if needed, then converted to i16 with
Chris Lattner82c3dc62010-03-14 23:03:31 +00007579 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
7580 storing as an i16 value.</p>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007581
7582<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007583<h4>
7584 <a name="int_convert_to_fp16">
7585 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
7586 </a>
7587</h4>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007588
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007589<div>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007590
7591<h5>Syntax:</h5>
7592<pre>
7593 declare i16 @llvm.convert.to.fp16(f32 %a)
7594</pre>
7595
7596<h5>Overview:</h5>
7597<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7598 a conversion from single precision floating point format to half precision
7599 floating point format.</p>
7600
7601<h5>Arguments:</h5>
7602<p>The intrinsic function contains single argument - the value to be
7603 converted.</p>
7604
7605<h5>Semantics:</h5>
7606<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
7607 a conversion from single precision floating point format to half precision
Chris Lattner0cec9c82010-03-15 04:12:21 +00007608 floating point format. The return value is an <tt>i16</tt> which
Chris Lattner82c3dc62010-03-14 23:03:31 +00007609 contains the converted number.</p>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007610
7611<h5>Examples:</h5>
7612<pre>
7613 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7614 store i16 %res, i16* @x, align 2
7615</pre>
7616
7617</div>
7618
7619<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007620<h4>
7621 <a name="int_convert_from_fp16">
7622 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7623 </a>
7624</h4>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007625
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007626<div>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007627
7628<h5>Syntax:</h5>
7629<pre>
7630 declare f32 @llvm.convert.from.fp16(i16 %a)
7631</pre>
7632
7633<h5>Overview:</h5>
7634<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7635 a conversion from half precision floating point format to single precision
7636 floating point format.</p>
7637
7638<h5>Arguments:</h5>
7639<p>The intrinsic function contains single argument - the value to be
7640 converted.</p>
7641
7642<h5>Semantics:</h5>
7643<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner0cec9c82010-03-15 04:12:21 +00007644 conversion from half single precision floating point format to single
Chris Lattner82c3dc62010-03-14 23:03:31 +00007645 precision floating point format. The input half-float value is represented by
7646 an <tt>i16</tt> value.</p>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007647
7648<h5>Examples:</h5>
7649<pre>
7650 %a = load i16* @x, align 2
7651 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7652</pre>
7653
7654</div>
7655
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007656</div>
7657
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007658<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007659<h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00007660 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007661</h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00007662
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007663<div>
Chris Lattner8ff75902004-01-06 05:31:32 +00007664
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007665<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7666 prefix), are described in
7667 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7668 Level Debugging</a> document.</p>
7669
7670</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00007671
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007672<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007673<h3>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007674 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007675</h3>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007676
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007677<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007678
7679<p>The LLVM exception handling intrinsics (which all start with
7680 <tt>llvm.eh.</tt> prefix), are described in
7681 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7682 Handling</a> document.</p>
7683
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007684</div>
7685
Tanya Lattner6d806e92007-06-15 20:50:54 +00007686<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007687<h3>
Duncan Sands4a544a72011-09-06 13:37:06 +00007688 <a name="int_trampoline">Trampoline Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007689</h3>
Duncan Sands36397f52007-07-27 12:58:54 +00007690
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007691<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007692
Duncan Sands4a544a72011-09-06 13:37:06 +00007693<p>These intrinsics make it possible to excise one parameter, marked with
Dan Gohmanff235352010-07-02 23:18:08 +00007694 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7695 The result is a callable
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007696 function pointer lacking the nest parameter - the caller does not need to
7697 provide a value for it. Instead, the value to use is stored in advance in a
7698 "trampoline", a block of memory usually allocated on the stack, which also
7699 contains code to splice the nest value into the argument list. This is used
7700 to implement the GCC nested function address extension.</p>
7701
7702<p>For example, if the function is
7703 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7704 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7705 follows:</p>
7706
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00007707<pre class="doc_code">
Duncan Sandsf7331b32007-09-11 14:10:23 +00007708 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7709 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Duncan Sands4a544a72011-09-06 13:37:06 +00007710 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7711 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
Duncan Sandsf7331b32007-09-11 14:10:23 +00007712 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00007713</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007714
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007715<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7716 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007717
Duncan Sands36397f52007-07-27 12:58:54 +00007718<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007719<h4>
7720 <a name="int_it">
7721 '<tt>llvm.init.trampoline</tt>' Intrinsic
7722 </a>
7723</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007724
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007725<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007726
Duncan Sands36397f52007-07-27 12:58:54 +00007727<h5>Syntax:</h5>
7728<pre>
Duncan Sands4a544a72011-09-06 13:37:06 +00007729 declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00007730</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007731
Duncan Sands36397f52007-07-27 12:58:54 +00007732<h5>Overview:</h5>
Duncan Sands4a544a72011-09-06 13:37:06 +00007733<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
7734 turning it into a trampoline.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007735
Duncan Sands36397f52007-07-27 12:58:54 +00007736<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007737<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7738 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7739 sufficiently aligned block of memory; this memory is written to by the
7740 intrinsic. Note that the size and the alignment are target-specific - LLVM
7741 currently provides no portable way of determining them, so a front-end that
7742 generates this intrinsic needs to have some target-specific knowledge.
7743 The <tt>func</tt> argument must hold a function bitcast to
7744 an <tt>i8*</tt>.</p>
7745
Duncan Sands36397f52007-07-27 12:58:54 +00007746<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007747<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands4a544a72011-09-06 13:37:06 +00007748 dependent code, turning it into a function. Then <tt>tramp</tt> needs to be
7749 passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
7750 which can be <a href="#int_trampoline">bitcast (to a new function) and
7751 called</a>. The new function's signature is the same as that of
7752 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
7753 removed. At most one such <tt>nest</tt> argument is allowed, and it must be of
7754 pointer type. Calling the new function is equivalent to calling <tt>func</tt>
7755 with the same argument list, but with <tt>nval</tt> used for the missing
7756 <tt>nest</tt> argument. If, after calling <tt>llvm.init.trampoline</tt>, the
7757 memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
7758 to the returned function pointer is undefined.</p>
7759</div>
7760
7761<!-- _______________________________________________________________________ -->
7762<h4>
7763 <a name="int_at">
7764 '<tt>llvm.adjust.trampoline</tt>' Intrinsic
7765 </a>
7766</h4>
7767
7768<div>
7769
7770<h5>Syntax:</h5>
7771<pre>
7772 declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
7773</pre>
7774
7775<h5>Overview:</h5>
7776<p>This performs any required machine-specific adjustment to the address of a
7777 trampoline (passed as <tt>tramp</tt>).</p>
7778
7779<h5>Arguments:</h5>
7780<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
7781 filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
7782 </a>.</p>
7783
7784<h5>Semantics:</h5>
7785<p>On some architectures the address of the code to be executed needs to be
7786 different to the address where the trampoline is actually stored. This
7787 intrinsic returns the executable address corresponding to <tt>tramp</tt>
7788 after performing the required machine specific adjustments.
7789 The pointer returned can then be <a href="#int_trampoline"> bitcast and
7790 executed</a>.
7791</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007792
Duncan Sands36397f52007-07-27 12:58:54 +00007793</div>
7794
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007795</div>
7796
Duncan Sands36397f52007-07-27 12:58:54 +00007797<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007798<h3>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007799 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007800</h3>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007801
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007802<div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007803
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007804<p>These intrinsic functions expand the "universal IR" of LLVM to represent
7805 hardware constructs for atomic operations and memory synchronization. This
7806 provides an interface to the hardware, not an interface to the programmer. It
7807 is aimed at a low enough level to allow any programming models or APIs
7808 (Application Programming Interfaces) which need atomic behaviors to map
7809 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7810 hardware provides a "universal IR" for source languages, it also provides a
7811 starting point for developing a "universal" atomic operation and
7812 synchronization IR.</p>
7813
7814<p>These do <em>not</em> form an API such as high-level threading libraries,
7815 software transaction memory systems, atomic primitives, and intrinsic
7816 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7817 application libraries. The hardware interface provided by LLVM should allow
7818 a clean implementation of all of these APIs and parallel programming models.
7819 No one model or paradigm should be selected above others unless the hardware
7820 itself ubiquitously does so.</p>
7821
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007822<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007823<h4>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007824 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007825</h4>
7826
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007827<div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007828<h5>Syntax:</h5>
7829<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007830 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007831</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007832
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007833<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007834<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7835 specific pairs of memory access types.</p>
7836
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007837<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007838<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7839 The first four arguments enables a specific barrier as listed below. The
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00007840 fifth argument specifies that the barrier applies to io or device or uncached
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007841 memory.</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007842
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007843<ul>
7844 <li><tt>ll</tt>: load-load barrier</li>
7845 <li><tt>ls</tt>: load-store barrier</li>
7846 <li><tt>sl</tt>: store-load barrier</li>
7847 <li><tt>ss</tt>: store-store barrier</li>
7848 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7849</ul>
7850
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007851<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007852<p>This intrinsic causes the system to enforce some ordering constraints upon
7853 the loads and stores of the program. This barrier does not
7854 indicate <em>when</em> any events will occur, it only enforces
7855 an <em>order</em> in which they occur. For any of the specified pairs of load
7856 and store operations (f.ex. load-load, or store-load), all of the first
7857 operations preceding the barrier will complete before any of the second
7858 operations succeeding the barrier begin. Specifically the semantics for each
7859 pairing is as follows:</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007860
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007861<ul>
7862 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7863 after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007864 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007865 store after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007866 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007867 store after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007868 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007869 load after the barrier begins.</li>
7870</ul>
7871
7872<p>These semantics are applied with a logical "and" behavior when more than one
7873 is enabled in a single memory barrier intrinsic.</p>
7874
7875<p>Backends may implement stronger barriers than those requested when they do
7876 not support as fine grained a barrier as requested. Some architectures do
7877 not need all types of barriers and on such architectures, these become
7878 noops.</p>
7879
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007880<h5>Example:</h5>
7881<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007882%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7883%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007884 store i32 4, %ptr
7885
7886%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
Evan Cheng0b0669a2011-06-29 17:14:00 +00007887 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false, i1 true)
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007888 <i>; guarantee the above finishes</i>
7889 store i32 8, %ptr <i>; before this begins</i>
7890</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007891
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007892</div>
7893
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007894<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007895<h4>
Mon P Wang28873102008-06-25 08:15:39 +00007896 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007897</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007898
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007899<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007900
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007901<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007902<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7903 any integer bit width and for different address spaces. Not all targets
7904 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007905
7906<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007907 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7908 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7909 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7910 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007911</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007912
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007913<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007914<p>This loads a value in memory and compares it to a given value. If they are
7915 equal, it stores a new value into the memory.</p>
7916
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007917<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007918<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7919 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7920 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7921 this integer type. While any bit width integer may be used, targets may only
7922 lower representations they support in hardware.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007923
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007924<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007925<p>This entire intrinsic must be executed atomically. It first loads the value
7926 in memory pointed to by <tt>ptr</tt> and compares it with the
7927 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7928 memory. The loaded value is yielded in all cases. This provides the
7929 equivalent of an atomic compare-and-swap operation within the SSA
7930 framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007931
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007932<h5>Examples:</h5>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007933<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007934%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7935%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007936 store i32 4, %ptr
7937
7938%val1 = add i32 4, 4
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007939%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007940 <i>; yields {i32}:result1 = 4</i>
7941%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7942%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7943
7944%val2 = add i32 1, 1
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007945%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007946 <i>; yields {i32}:result2 = 8</i>
7947%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7948
7949%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7950</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007951
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007952</div>
7953
7954<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007955<h4>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007956 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007957</h4>
7958
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007959<div>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007960<h5>Syntax:</h5>
7961
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007962<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7963 integer bit width. Not all targets support all bit widths however.</p>
7964
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007965<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007966 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7967 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7968 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7969 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007970</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007971
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007972<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007973<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7974 the value from memory. It then stores the value in <tt>val</tt> in the memory
7975 at <tt>ptr</tt>.</p>
7976
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007977<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007978<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7979 the <tt>val</tt> argument and the result must be integers of the same bit
7980 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7981 integer type. The targets may only lower integer representations they
7982 support.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007983
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007984<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007985<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7986 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7987 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007988
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007989<h5>Examples:</h5>
7990<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007991%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7992%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007993 store i32 4, %ptr
7994
7995%val1 = add i32 4, 4
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007996%result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007997 <i>; yields {i32}:result1 = 4</i>
7998%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7999%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
8000
8001%val2 = add i32 1, 1
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008002%result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008003 <i>; yields {i32}:result2 = 8</i>
8004
8005%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
8006%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
8007</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008008
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008009</div>
8010
8011<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008012<h4>
Mon P Wang28873102008-06-25 08:15:39 +00008013 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008014</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008015
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008016<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008017
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008018<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008019<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
8020 any integer bit width. Not all targets support all bit widths however.</p>
8021
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008022<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008023 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8024 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8025 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8026 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008027</pre>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008028
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008029<h5>Overview:</h5>
8030<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
8031 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
8032
8033<h5>Arguments:</h5>
8034<p>The intrinsic takes two arguments, the first a pointer to an integer value
8035 and the second an integer value. The result is also an integer value. These
8036 integer types can have any bit width, but they must all have the same bit
8037 width. The targets may only lower integer representations they support.</p>
8038
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008039<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008040<p>This intrinsic does a series of operations atomically. It first loads the
8041 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
8042 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008043
8044<h5>Examples:</h5>
8045<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00008046%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
8047%ptr = bitcast i8* %mallocP to i32*
8048 store i32 4, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008049%result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008050 <i>; yields {i32}:result1 = 4</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008051%result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008052 <i>; yields {i32}:result2 = 8</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008053%result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008054 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00008055%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008056</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008057
Andrew Lenharthab0b9492008-02-21 06:45:13 +00008058</div>
8059
Mon P Wang28873102008-06-25 08:15:39 +00008060<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008061<h4>
Mon P Wang28873102008-06-25 08:15:39 +00008062 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008063</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008064
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008065<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008066
Mon P Wang28873102008-06-25 08:15:39 +00008067<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008068<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
8069 any integer bit width and for different address spaces. Not all targets
8070 support all bit widths however.</p>
8071
Mon P Wang28873102008-06-25 08:15:39 +00008072<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008073 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8074 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8075 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8076 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008077</pre>
Mon P Wang28873102008-06-25 08:15:39 +00008078
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008079<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00008080<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008081 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
8082
8083<h5>Arguments:</h5>
8084<p>The intrinsic takes two arguments, the first a pointer to an integer value
8085 and the second an integer value. The result is also an integer value. These
8086 integer types can have any bit width, but they must all have the same bit
8087 width. The targets may only lower integer representations they support.</p>
8088
Mon P Wang28873102008-06-25 08:15:39 +00008089<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008090<p>This intrinsic does a series of operations atomically. It first loads the
8091 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
8092 result to <tt>ptr</tt>. It yields the original value stored
8093 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00008094
8095<h5>Examples:</h5>
8096<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00008097%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
8098%ptr = bitcast i8* %mallocP to i32*
8099 store i32 8, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008100%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
Mon P Wang28873102008-06-25 08:15:39 +00008101 <i>; yields {i32}:result1 = 8</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008102%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
Mon P Wang28873102008-06-25 08:15:39 +00008103 <i>; yields {i32}:result2 = 4</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008104%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
Mon P Wang28873102008-06-25 08:15:39 +00008105 <i>; yields {i32}:result3 = 2</i>
8106%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
8107</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008108
Mon P Wang28873102008-06-25 08:15:39 +00008109</div>
8110
8111<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008112<h4>
8113 <a name="int_atomic_load_and">
8114 '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
8115 </a>
8116 <br>
8117 <a name="int_atomic_load_nand">
8118 '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
8119 </a>
8120 <br>
8121 <a name="int_atomic_load_or">
8122 '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
8123 </a>
8124 <br>
8125 <a name="int_atomic_load_xor">
8126 '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
8127 </a>
8128</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008129
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008130<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008131
Mon P Wang28873102008-06-25 08:15:39 +00008132<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008133<p>These are overloaded intrinsics. You can
8134 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
8135 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
8136 bit width and for different address spaces. Not all targets support all bit
8137 widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00008138
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008139<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008140 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8141 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8142 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8143 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008144</pre>
8145
8146<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008147 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8148 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8149 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8150 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008151</pre>
8152
8153<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008154 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8155 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8156 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8157 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008158</pre>
8159
8160<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008161 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8162 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8163 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8164 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008165</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008166
Mon P Wang28873102008-06-25 08:15:39 +00008167<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008168<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
8169 the value stored in memory at <tt>ptr</tt>. It yields the original value
8170 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00008171
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008172<h5>Arguments:</h5>
8173<p>These intrinsics take two arguments, the first a pointer to an integer value
8174 and the second an integer value. The result is also an integer value. These
8175 integer types can have any bit width, but they must all have the same bit
8176 width. The targets may only lower integer representations they support.</p>
8177
Mon P Wang28873102008-06-25 08:15:39 +00008178<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008179<p>These intrinsics does a series of operations atomically. They first load the
8180 value stored at <tt>ptr</tt>. They then do the bitwise
8181 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
8182 original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00008183
8184<h5>Examples:</h5>
8185<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00008186%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
8187%ptr = bitcast i8* %mallocP to i32*
8188 store i32 0x0F0F, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008189%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang28873102008-06-25 08:15:39 +00008190 <i>; yields {i32}:result0 = 0x0F0F</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008191%result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang28873102008-06-25 08:15:39 +00008192 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008193%result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang28873102008-06-25 08:15:39 +00008194 <i>; yields {i32}:result2 = 0xF0</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008195%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang28873102008-06-25 08:15:39 +00008196 <i>; yields {i32}:result3 = FF</i>
8197%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
8198</pre>
Mon P Wang28873102008-06-25 08:15:39 +00008199
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008200</div>
Mon P Wang28873102008-06-25 08:15:39 +00008201
8202<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008203<h4>
8204 <a name="int_atomic_load_max">
8205 '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
8206 </a>
8207 <br>
8208 <a name="int_atomic_load_min">
8209 '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
8210 </a>
8211 <br>
8212 <a name="int_atomic_load_umax">
8213 '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
8214 </a>
8215 <br>
8216 <a name="int_atomic_load_umin">
8217 '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
8218 </a>
8219</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008220
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008221<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008222
Mon P Wang28873102008-06-25 08:15:39 +00008223<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008224<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
8225 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
8226 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
8227 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00008228
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008229<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008230 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8231 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8232 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8233 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008234</pre>
8235
8236<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008237 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8238 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8239 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8240 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008241</pre>
8242
8243<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008244 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8245 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8246 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8247 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008248</pre>
8249
8250<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008251 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
8252 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
8253 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
8254 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00008255</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008256
Mon P Wang28873102008-06-25 08:15:39 +00008257<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00008258<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008259 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
8260 original value at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00008261
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008262<h5>Arguments:</h5>
8263<p>These intrinsics take two arguments, the first a pointer to an integer value
8264 and the second an integer value. The result is also an integer value. These
8265 integer types can have any bit width, but they must all have the same bit
8266 width. The targets may only lower integer representations they support.</p>
8267
Mon P Wang28873102008-06-25 08:15:39 +00008268<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008269<p>These intrinsics does a series of operations atomically. They first load the
8270 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
8271 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
8272 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00008273
8274<h5>Examples:</h5>
8275<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00008276%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
8277%ptr = bitcast i8* %mallocP to i32*
8278 store i32 7, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008279%result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
Mon P Wang28873102008-06-25 08:15:39 +00008280 <i>; yields {i32}:result0 = 7</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008281%result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
Mon P Wang28873102008-06-25 08:15:39 +00008282 <i>; yields {i32}:result1 = -2</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008283%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
Mon P Wang28873102008-06-25 08:15:39 +00008284 <i>; yields {i32}:result2 = 8</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008285%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
Mon P Wang28873102008-06-25 08:15:39 +00008286 <i>; yields {i32}:result3 = 8</i>
8287%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
8288</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008289
Mon P Wang28873102008-06-25 08:15:39 +00008290</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00008291
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008292</div>
Nick Lewyckycc271862009-10-13 07:03:23 +00008293
8294<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008295<h3>
Nick Lewyckycc271862009-10-13 07:03:23 +00008296 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008297</h3>
Nick Lewyckycc271862009-10-13 07:03:23 +00008298
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008299<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00008300
8301<p>This class of intrinsics exists to information about the lifetime of memory
8302 objects and ranges where variables are immutable.</p>
8303
Nick Lewyckycc271862009-10-13 07:03:23 +00008304<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008305<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008306 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008307</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008308
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008309<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00008310
8311<h5>Syntax:</h5>
8312<pre>
8313 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8314</pre>
8315
8316<h5>Overview:</h5>
8317<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
8318 object's lifetime.</p>
8319
8320<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00008321<p>The first argument is a constant integer representing the size of the
8322 object, or -1 if it is variable sized. The second argument is a pointer to
8323 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00008324
8325<h5>Semantics:</h5>
8326<p>This intrinsic indicates that before this point in the code, the value of the
8327 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewycky8d336592009-10-27 16:56:58 +00008328 never be used and has an undefined value. A load from the pointer that
8329 precedes this intrinsic can be replaced with
Nick Lewyckycc271862009-10-13 07:03:23 +00008330 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
8331
8332</div>
8333
8334<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008335<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008336 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008337</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008338
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008339<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00008340
8341<h5>Syntax:</h5>
8342<pre>
8343 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8344</pre>
8345
8346<h5>Overview:</h5>
8347<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
8348 object's lifetime.</p>
8349
8350<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00008351<p>The first argument is a constant integer representing the size of the
8352 object, or -1 if it is variable sized. The second argument is a pointer to
8353 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00008354
8355<h5>Semantics:</h5>
8356<p>This intrinsic indicates that after this point in the code, the value of the
8357 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
8358 never be used and has an undefined value. Any stores into the memory object
8359 following this intrinsic may be removed as dead.
8360
8361</div>
8362
8363<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008364<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008365 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008366</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008367
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008368<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00008369
8370<h5>Syntax:</h5>
8371<pre>
Nick Lewycky29b6cb42010-11-30 04:13:41 +00008372 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewyckycc271862009-10-13 07:03:23 +00008373</pre>
8374
8375<h5>Overview:</h5>
8376<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
8377 a memory object will not change.</p>
8378
8379<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00008380<p>The first argument is a constant integer representing the size of the
8381 object, or -1 if it is variable sized. The second argument is a pointer to
8382 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00008383
8384<h5>Semantics:</h5>
8385<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
8386 the return value, the referenced memory location is constant and
8387 unchanging.</p>
8388
8389</div>
8390
8391<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008392<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008393 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008394</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00008395
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008396<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00008397
8398<h5>Syntax:</h5>
8399<pre>
8400 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8401</pre>
8402
8403<h5>Overview:</h5>
8404<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8405 a memory object are mutable.</p>
8406
8407<h5>Arguments:</h5>
8408<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky321333e2009-10-13 07:57:33 +00008409 The second argument is a constant integer representing the size of the
8410 object, or -1 if it is variable sized and the third argument is a pointer
8411 to the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00008412
8413<h5>Semantics:</h5>
8414<p>This intrinsic indicates that the memory is mutable again.</p>
8415
8416</div>
8417
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008418</div>
8419
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00008420<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008421<h3>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008422 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008423</h3>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008424
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008425<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008426
8427<p>This class of intrinsics is designed to be generic and has no specific
8428 purpose.</p>
8429
Tanya Lattner6d806e92007-06-15 20:50:54 +00008430<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008431<h4>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008432 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008433</h4>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008434
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008435<div>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008436
8437<h5>Syntax:</h5>
8438<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008439 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner6d806e92007-06-15 20:50:54 +00008440</pre>
8441
8442<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008443<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008444
8445<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008446<p>The first argument is a pointer to a value, the second is a pointer to a
8447 global string, the third is a pointer to a global string which is the source
8448 file name, and the last argument is the line number.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008449
8450<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008451<p>This intrinsic allows annotation of local variables with arbitrary strings.
8452 This can be useful for special purpose optimizations that want to look for
John Criswelle865c032011-08-19 16:57:55 +00008453 these annotations. These have no other defined use; they are ignored by code
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008454 generation and optimization.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00008455
Tanya Lattner6d806e92007-06-15 20:50:54 +00008456</div>
8457
Tanya Lattnerb6367882007-09-21 22:59:12 +00008458<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008459<h4>
Tanya Lattnere1a8da02007-09-21 23:57:59 +00008460 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008461</h4>
Tanya Lattnerb6367882007-09-21 22:59:12 +00008462
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008463<div>
Tanya Lattnerb6367882007-09-21 22:59:12 +00008464
8465<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008466<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8467 any integer bit width.</p>
8468
Tanya Lattnerb6367882007-09-21 22:59:12 +00008469<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008470 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8471 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8472 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8473 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
8474 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnerb6367882007-09-21 22:59:12 +00008475</pre>
8476
8477<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008478<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00008479
8480<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008481<p>The first argument is an integer value (result of some expression), the
8482 second is a pointer to a global string, the third is a pointer to a global
8483 string which is the source file name, and the last argument is the line
8484 number. It returns the value of the first argument.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00008485
8486<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008487<p>This intrinsic allows annotations to be put on arbitrary expressions with
8488 arbitrary strings. This can be useful for special purpose optimizations that
John Criswelle865c032011-08-19 16:57:55 +00008489 want to look for these annotations. These have no other defined use; they
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008490 are ignored by code generation and optimization.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00008491
Tanya Lattnerb6367882007-09-21 22:59:12 +00008492</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00008493
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008494<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008495<h4>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008496 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008497</h4>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008498
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008499<div>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008500
8501<h5>Syntax:</h5>
8502<pre>
8503 declare void @llvm.trap()
8504</pre>
8505
8506<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008507<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008508
8509<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008510<p>None.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008511
8512<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008513<p>This intrinsics is lowered to the target dependent trap instruction. If the
8514 target does not have a trap instruction, this intrinsic will be lowered to
8515 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008516
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00008517</div>
8518
Bill Wendling69e4adb2008-11-19 05:56:17 +00008519<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008520<h4>
Misha Brukmandccb0252008-11-22 23:55:29 +00008521 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008522</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008523
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008524<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008525
Bill Wendling69e4adb2008-11-19 05:56:17 +00008526<h5>Syntax:</h5>
8527<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008528 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling69e4adb2008-11-19 05:56:17 +00008529</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008530
Bill Wendling69e4adb2008-11-19 05:56:17 +00008531<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008532<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8533 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8534 ensure that it is placed on the stack before local variables.</p>
8535
Bill Wendling69e4adb2008-11-19 05:56:17 +00008536<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008537<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8538 arguments. The first argument is the value loaded from the stack
8539 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8540 that has enough space to hold the value of the guard.</p>
8541
Bill Wendling69e4adb2008-11-19 05:56:17 +00008542<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008543<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8544 the <tt>AllocaInst</tt> stack slot to be before local variables on the
8545 stack. This is to ensure that if a local variable on the stack is
8546 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling1b383ba2010-10-27 01:07:41 +00008547 the guard on the stack is checked against the original guard. If they are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00008548 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8549 function.</p>
8550
Bill Wendling69e4adb2008-11-19 05:56:17 +00008551</div>
8552
Eric Christopher0e671492009-11-30 08:03:53 +00008553<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008554<h4>
Eric Christopher0e671492009-11-30 08:03:53 +00008555 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00008556</h4>
Eric Christopher0e671492009-11-30 08:03:53 +00008557
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008558<div>
Eric Christopher0e671492009-11-30 08:03:53 +00008559
8560<h5>Syntax:</h5>
8561<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00008562 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
8563 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher0e671492009-11-30 08:03:53 +00008564</pre>
8565
8566<h5>Overview:</h5>
Bill Wendling1b383ba2010-10-27 01:07:41 +00008567<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8568 the optimizers to determine at compile time whether a) an operation (like
8569 memcpy) will overflow a buffer that corresponds to an object, or b) that a
8570 runtime check for overflow isn't necessary. An object in this context means
8571 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher0e671492009-11-30 08:03:53 +00008572
8573<h5>Arguments:</h5>
Bill Wendling1b383ba2010-10-27 01:07:41 +00008574<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher8295a0a2009-12-23 00:29:49 +00008575 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling1b383ba2010-10-27 01:07:41 +00008576 is a boolean 0 or 1. This argument determines whether you want the
8577 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher8295a0a2009-12-23 00:29:49 +00008578 1, variables are not allowed.</p>
8579
Eric Christopher0e671492009-11-30 08:03:53 +00008580<h5>Semantics:</h5>
8581<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling1b383ba2010-10-27 01:07:41 +00008582 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
8583 depending on the <tt>type</tt> argument, if the size cannot be determined at
8584 compile time.</p>
Eric Christopher0e671492009-11-30 08:03:53 +00008585
8586</div>
8587
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00008588</div>
8589
8590</div>
8591
Chris Lattner00950542001-06-06 20:29:01 +00008592<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00008593<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00008594<address>
8595 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00008596 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00008597 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00008598 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00008599
8600 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumib9a33632011-04-09 02:13:37 +00008601 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00008602 Last modified: $Date$
8603</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00008604
Misha Brukman9d0919f2003-11-08 01:05:38 +00008605</body>
8606</html>