blob: 809fc8d068cc151789f134376fc10adbabd12772 [file] [log] [blame]
Dan Gohmand27a0e02008-11-19 23:18:57 +00001//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAG class, which is a base class used by
11// scheduling implementation classes.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "pre-RA-sched"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/TargetInstrInfo.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Support/Debug.h"
Dan Gohmanae548182008-11-20 01:41:34 +000021#include <climits>
Dan Gohmand27a0e02008-11-19 23:18:57 +000022using namespace llvm;
23
24ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb,
25 const TargetMachine &tm)
26 : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) {
27 TII = TM.getInstrInfo();
28 MF = BB->getParent();
29 TRI = TM.getRegisterInfo();
30 TLI = TM.getTargetLowering();
31 ConstPool = MF->getConstantPool();
32}
33
34ScheduleDAG::~ScheduleDAG() {}
35
36/// CalculateDepths - compute depths using algorithms for the longest
37/// paths in the DAG
38void ScheduleDAG::CalculateDepths() {
39 unsigned DAGSize = SUnits.size();
40 std::vector<SUnit*> WorkList;
41 WorkList.reserve(DAGSize);
42
43 // Initialize the data structures
44 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
45 SUnit *SU = &SUnits[i];
46 unsigned Degree = SU->Preds.size();
47 // Temporarily use the Depth field as scratch space for the degree count.
48 SU->Depth = Degree;
49
50 // Is it a node without dependencies?
51 if (Degree == 0) {
Dan Gohmane07f4c02008-12-09 16:37:48 +000052 assert(SU->Preds.empty() && "SUnit should have no predecessors");
53 // Collect leaf nodes
54 WorkList.push_back(SU);
Dan Gohmand27a0e02008-11-19 23:18:57 +000055 }
56 }
57
58 // Process nodes in the topological order
59 while (!WorkList.empty()) {
60 SUnit *SU = WorkList.back();
61 WorkList.pop_back();
62 unsigned SUDepth = 0;
63
64 // Use dynamic programming:
65 // When current node is being processed, all of its dependencies
66 // are already processed.
67 // So, just iterate over all predecessors and take the longest path
68 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
69 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +000070 unsigned PredDepth = I->getSUnit()->Depth;
Dan Gohmand27a0e02008-11-19 23:18:57 +000071 if (PredDepth+1 > SUDepth) {
Dan Gohmane07f4c02008-12-09 16:37:48 +000072 SUDepth = PredDepth + 1;
Dan Gohmand27a0e02008-11-19 23:18:57 +000073 }
74 }
75
76 SU->Depth = SUDepth;
77
78 // Update degrees of all nodes depending on current SUnit
79 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
80 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +000081 SUnit *SU = I->getSUnit();
Dan Gohmand27a0e02008-11-19 23:18:57 +000082 if (!--SU->Depth)
83 // If all dependencies of the node are processed already,
84 // then the longest path for the node can be computed now
85 WorkList.push_back(SU);
86 }
87 }
88}
89
90/// CalculateHeights - compute heights using algorithms for the longest
91/// paths in the DAG
92void ScheduleDAG::CalculateHeights() {
93 unsigned DAGSize = SUnits.size();
94 std::vector<SUnit*> WorkList;
95 WorkList.reserve(DAGSize);
96
97 // Initialize the data structures
98 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
99 SUnit *SU = &SUnits[i];
100 unsigned Degree = SU->Succs.size();
101 // Temporarily use the Height field as scratch space for the degree count.
102 SU->Height = Degree;
103
104 // Is it a node without dependencies?
105 if (Degree == 0) {
Dan Gohmane07f4c02008-12-09 16:37:48 +0000106 assert(SU->Succs.empty() && "Something wrong");
107 assert(WorkList.empty() && "Should be empty");
108 // Collect leaf nodes
109 WorkList.push_back(SU);
Dan Gohmand27a0e02008-11-19 23:18:57 +0000110 }
111 }
112
113 // Process nodes in the topological order
114 while (!WorkList.empty()) {
115 SUnit *SU = WorkList.back();
116 WorkList.pop_back();
117 unsigned SUHeight = 0;
118
119 // Use dynamic programming:
120 // When current node is being processed, all of its dependencies
121 // are already processed.
122 // So, just iterate over all successors and take the longest path
123 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
124 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000125 unsigned SuccHeight = I->getSUnit()->Height;
Dan Gohmand27a0e02008-11-19 23:18:57 +0000126 if (SuccHeight+1 > SUHeight) {
Dan Gohmane07f4c02008-12-09 16:37:48 +0000127 SUHeight = SuccHeight + 1;
Dan Gohmand27a0e02008-11-19 23:18:57 +0000128 }
129 }
130
131 SU->Height = SUHeight;
132
133 // Update degrees of all nodes depending on current SUnit
134 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
135 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000136 SUnit *SU = I->getSUnit();
Dan Gohmand27a0e02008-11-19 23:18:57 +0000137 if (!--SU->Height)
138 // If all dependencies of the node are processed already,
139 // then the longest path for the node can be computed now
140 WorkList.push_back(SU);
141 }
142 }
143}
144
145/// dump - dump the schedule.
146void ScheduleDAG::dumpSchedule() const {
147 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
148 if (SUnit *SU = Sequence[i])
149 SU->dump(this);
150 else
151 cerr << "**** NOOP ****\n";
152 }
153}
154
155
156/// Run - perform scheduling.
157///
158void ScheduleDAG::Run() {
159 Schedule();
160
161 DOUT << "*** Final schedule ***\n";
162 DEBUG(dumpSchedule());
163 DOUT << "\n";
164}
165
166/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
167/// a group of nodes flagged together.
168void SUnit::dump(const ScheduleDAG *G) const {
169 cerr << "SU(" << NodeNum << "): ";
170 G->dumpNode(this);
171}
172
173void SUnit::dumpAll(const ScheduleDAG *G) const {
174 dump(G);
175
176 cerr << " # preds left : " << NumPredsLeft << "\n";
177 cerr << " # succs left : " << NumSuccsLeft << "\n";
178 cerr << " Latency : " << Latency << "\n";
179 cerr << " Depth : " << Depth << "\n";
180 cerr << " Height : " << Height << "\n";
181
182 if (Preds.size() != 0) {
183 cerr << " Predecessors:\n";
184 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
185 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000186 cerr << " ";
187 switch (I->getKind()) {
188 case SDep::Data: cerr << "val "; break;
189 case SDep::Anti: cerr << "anti"; break;
190 case SDep::Output: cerr << "out "; break;
191 case SDep::Order: cerr << "ch "; break;
192 }
193 cerr << "#";
194 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
195 if (I->isArtificial())
Dan Gohmand27a0e02008-11-19 23:18:57 +0000196 cerr << " *";
197 cerr << "\n";
198 }
199 }
200 if (Succs.size() != 0) {
201 cerr << " Successors:\n";
202 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
203 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000204 cerr << " ";
205 switch (I->getKind()) {
206 case SDep::Data: cerr << "val "; break;
207 case SDep::Anti: cerr << "anti"; break;
208 case SDep::Output: cerr << "out "; break;
209 case SDep::Order: cerr << "ch "; break;
210 }
211 cerr << "#";
212 cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
213 if (I->isArtificial())
Dan Gohmand27a0e02008-11-19 23:18:57 +0000214 cerr << " *";
215 cerr << "\n";
216 }
217 }
218 cerr << "\n";
219}
Dan Gohmanf6e4a002008-11-20 01:26:25 +0000220
221#ifndef NDEBUG
222/// VerifySchedule - Verify that all SUnits were scheduled and that
223/// their state is consistent.
224///
225void ScheduleDAG::VerifySchedule(bool isBottomUp) {
226 bool AnyNotSched = false;
227 unsigned DeadNodes = 0;
228 unsigned Noops = 0;
229 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
230 if (!SUnits[i].isScheduled) {
231 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
232 ++DeadNodes;
233 continue;
234 }
235 if (!AnyNotSched)
236 cerr << "*** Scheduling failed! ***\n";
237 SUnits[i].dump(this);
238 cerr << "has not been scheduled!\n";
239 AnyNotSched = true;
240 }
241 if (SUnits[i].isScheduled && SUnits[i].Cycle > (unsigned)INT_MAX) {
242 if (!AnyNotSched)
243 cerr << "*** Scheduling failed! ***\n";
244 SUnits[i].dump(this);
245 cerr << "has an unexpected Cycle value!\n";
246 AnyNotSched = true;
247 }
248 if (isBottomUp) {
249 if (SUnits[i].NumSuccsLeft != 0) {
250 if (!AnyNotSched)
251 cerr << "*** Scheduling failed! ***\n";
252 SUnits[i].dump(this);
253 cerr << "has successors left!\n";
254 AnyNotSched = true;
255 }
256 } else {
257 if (SUnits[i].NumPredsLeft != 0) {
258 if (!AnyNotSched)
259 cerr << "*** Scheduling failed! ***\n";
260 SUnits[i].dump(this);
261 cerr << "has predecessors left!\n";
262 AnyNotSched = true;
263 }
264 }
265 }
266 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
267 if (!Sequence[i])
268 ++Noops;
269 assert(!AnyNotSched);
270 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
271 "The number of nodes scheduled doesn't match the expected number!");
272}
273#endif
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000274
275/// InitDAGTopologicalSorting - create the initial topological
276/// ordering from the DAG to be scheduled.
277///
278/// The idea of the algorithm is taken from
279/// "Online algorithms for managing the topological order of
280/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
281/// This is the MNR algorithm, which was first introduced by
282/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
283/// "Maintaining a topological order under edge insertions".
284///
285/// Short description of the algorithm:
286///
287/// Topological ordering, ord, of a DAG maps each node to a topological
288/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
289///
290/// This means that if there is a path from the node X to the node Z,
291/// then ord(X) < ord(Z).
292///
293/// This property can be used to check for reachability of nodes:
294/// if Z is reachable from X, then an insertion of the edge Z->X would
295/// create a cycle.
296///
297/// The algorithm first computes a topological ordering for the DAG by
298/// initializing the Index2Node and Node2Index arrays and then tries to keep
299/// the ordering up-to-date after edge insertions by reordering the DAG.
300///
301/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
302/// the nodes reachable from Y, and then shifts them using Shift to lie
303/// immediately after X in Index2Node.
304void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
305 unsigned DAGSize = SUnits.size();
306 std::vector<SUnit*> WorkList;
307 WorkList.reserve(DAGSize);
308
309 Index2Node.resize(DAGSize);
310 Node2Index.resize(DAGSize);
311
312 // Initialize the data structures.
313 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
314 SUnit *SU = &SUnits[i];
315 int NodeNum = SU->NodeNum;
316 unsigned Degree = SU->Succs.size();
317 // Temporarily use the Node2Index array as scratch space for degree counts.
318 Node2Index[NodeNum] = Degree;
319
320 // Is it a node without dependencies?
321 if (Degree == 0) {
322 assert(SU->Succs.empty() && "SUnit should have no successors");
323 // Collect leaf nodes.
324 WorkList.push_back(SU);
325 }
326 }
327
328 int Id = DAGSize;
329 while (!WorkList.empty()) {
330 SUnit *SU = WorkList.back();
331 WorkList.pop_back();
332 Allocate(SU->NodeNum, --Id);
333 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
334 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000335 SUnit *SU = I->getSUnit();
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000336 if (!--Node2Index[SU->NodeNum])
337 // If all dependencies of the node are processed already,
338 // then the node can be computed now.
339 WorkList.push_back(SU);
340 }
341 }
342
343 Visited.resize(DAGSize);
344
345#ifndef NDEBUG
346 // Check correctness of the ordering
347 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
348 SUnit *SU = &SUnits[i];
349 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
350 I != E; ++I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000351 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000352 "Wrong topological sorting");
353 }
354 }
355#endif
356}
357
358/// AddPred - Updates the topological ordering to accomodate an edge
359/// to be added from SUnit X to SUnit Y.
360void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
361 int UpperBound, LowerBound;
362 LowerBound = Node2Index[Y->NodeNum];
363 UpperBound = Node2Index[X->NodeNum];
364 bool HasLoop = false;
365 // Is Ord(X) < Ord(Y) ?
366 if (LowerBound < UpperBound) {
367 // Update the topological order.
368 Visited.reset();
369 DFS(Y, UpperBound, HasLoop);
370 assert(!HasLoop && "Inserted edge creates a loop!");
371 // Recompute topological indexes.
372 Shift(Visited, LowerBound, UpperBound);
373 }
374}
375
376/// RemovePred - Updates the topological ordering to accomodate an
377/// an edge to be removed from the specified node N from the predecessors
378/// of the current node M.
379void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
380 // InitDAGTopologicalSorting();
381}
382
383/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
384/// all nodes affected by the edge insertion. These nodes will later get new
385/// topological indexes by means of the Shift method.
Dan Gohmane07f4c02008-12-09 16:37:48 +0000386void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
387 bool& HasLoop) {
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000388 std::vector<const SUnit*> WorkList;
389 WorkList.reserve(SUnits.size());
390
391 WorkList.push_back(SU);
392 while (!WorkList.empty()) {
393 SU = WorkList.back();
394 WorkList.pop_back();
395 Visited.set(SU->NodeNum);
396 for (int I = SU->Succs.size()-1; I >= 0; --I) {
Dan Gohman604394b2008-12-09 22:54:47 +0000397 int s = SU->Succs[I].getSUnit()->NodeNum;
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000398 if (Node2Index[s] == UpperBound) {
399 HasLoop = true;
400 return;
401 }
402 // Visit successors if not already and in affected region.
403 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
Dan Gohman604394b2008-12-09 22:54:47 +0000404 WorkList.push_back(SU->Succs[I].getSUnit());
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000405 }
406 }
407 }
408}
409
410/// Shift - Renumber the nodes so that the topological ordering is
411/// preserved.
412void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
Dan Gohmane07f4c02008-12-09 16:37:48 +0000413 int UpperBound) {
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000414 std::vector<int> L;
415 int shift = 0;
416 int i;
417
418 for (i = LowerBound; i <= UpperBound; ++i) {
419 // w is node at topological index i.
420 int w = Index2Node[i];
421 if (Visited.test(w)) {
422 // Unmark.
423 Visited.reset(w);
424 L.push_back(w);
425 shift = shift + 1;
426 } else {
427 Allocate(w, i - shift);
428 }
429 }
430
431 for (unsigned j = 0; j < L.size(); ++j) {
432 Allocate(L[j], i - shift);
433 i = i + 1;
434 }
435}
436
437
438/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
439/// create a cycle.
440bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
441 if (IsReachable(TargetSU, SU))
442 return true;
443 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
444 I != E; ++I)
Dan Gohman604394b2008-12-09 22:54:47 +0000445 if (I->isAssignedRegDep() &&
446 IsReachable(TargetSU, I->getSUnit()))
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000447 return true;
448 return false;
449}
450
451/// IsReachable - Checks if SU is reachable from TargetSU.
Dan Gohmane07f4c02008-12-09 16:37:48 +0000452bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
453 const SUnit *TargetSU) {
Dan Gohmanc2c90e22008-11-25 00:52:40 +0000454 // If insertion of the edge SU->TargetSU would create a cycle
455 // then there is a path from TargetSU to SU.
456 int UpperBound, LowerBound;
457 LowerBound = Node2Index[TargetSU->NodeNum];
458 UpperBound = Node2Index[SU->NodeNum];
459 bool HasLoop = false;
460 // Is Ord(TargetSU) < Ord(SU) ?
461 if (LowerBound < UpperBound) {
462 Visited.reset();
463 // There may be a path from TargetSU to SU. Check for it.
464 DFS(TargetSU, UpperBound, HasLoop);
465 }
466 return HasLoop;
467}
468
469/// Allocate - assign the topological index to the node n.
470void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
471 Node2Index[n] = index;
472 Index2Node[index] = n;
473}
474
475ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort(
476 std::vector<SUnit> &sunits)
477 : SUnits(sunits) {}