blob: 3c49ed0a87741af69b003359d14f6f35ec0ced3d [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
114 %result = shl i32 %X, i8 3
115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
151 ; Declare the string constant as a global constant. 
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00" 
153
154 ; External declaration of the puts function 
155 declare i32 @puts(i8* nocapture) nounwind 
156
157 ; Definition of main function
158 define i32 @main() { ; i32()*  
159 ; Convert [13 x i8]* to i8 *... 
160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
162 ; Call puts function to write out the string to stdout. 
163 call i32 @puts(i8* %cast210)
164 ret i32 0 
165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
265 "one definition rule" — "ODR"). Such languages can use the
266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
468A variable may be defined as a global "constant," which indicates that
469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
472initialization cannot be marked "constant" as there is a store to the
473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
504An explicit alignment may be specified for a global, which must be a
505power of 2. If not present, or if the alignment is set to zero, the
506alignment of the global is set by the target to whatever it feels
507convenient. If an explicit alignment is specified, the global is forced
508to have exactly that alignment. Targets and optimizers are not allowed
509to over-align the global if the global has an assigned section. In this
510case, the extra alignment could be observable: for example, code could
511assume that the globals are densely packed in their section and try to
512iterate over them as an array, alignment padding would break this
513iteration.
514
515For example, the following defines a global in a numbered address space
516with an initializer, section, and alignment:
517
518.. code-block:: llvm
519
520 @G = addrspace(5) constant float 1.0, section "foo", align 4
521
522The following example defines a thread-local global with the
523``initialexec`` TLS model:
524
525.. code-block:: llvm
526
527 @G = thread_local(initialexec) global i32 0, align 4
528
529.. _functionstructure:
530
531Functions
532---------
533
534LLVM function definitions consist of the "``define``" keyword, an
535optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
536style <visibility>`, an optional :ref:`calling convention <callingconv>`,
537an optional ``unnamed_addr`` attribute, a return type, an optional
538:ref:`parameter attribute <paramattrs>` for the return type, a function
539name, a (possibly empty) argument list (each with optional :ref:`parameter
540attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
541an optional section, an optional alignment, an optional :ref:`garbage
542collector name <gc>`, an opening curly brace, a list of basic blocks,
543and a closing curly brace.
544
545LLVM function declarations consist of the "``declare``" keyword, an
546optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
547style <visibility>`, an optional :ref:`calling convention <callingconv>`,
548an optional ``unnamed_addr`` attribute, a return type, an optional
549:ref:`parameter attribute <paramattrs>` for the return type, a function
550name, a possibly empty list of arguments, an optional alignment, and an
551optional :ref:`garbage collector name <gc>`.
552
553A function definition contains a list of basic blocks, forming the CFG
554(Control Flow Graph) for the function. Each basic block may optionally
555start with a label (giving the basic block a symbol table entry),
556contains a list of instructions, and ends with a
557:ref:`terminator <terminators>` instruction (such as a branch or function
558return).
559
560The first basic block in a function is special in two ways: it is
561immediately executed on entrance to the function, and it is not allowed
562to have predecessor basic blocks (i.e. there can not be any branches to
563the entry block of a function). Because the block can have no
564predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
565
566LLVM allows an explicit section to be specified for functions. If the
567target supports it, it will emit functions to the section specified.
568
569An explicit alignment may be specified for a function. If not present,
570or if the alignment is set to zero, the alignment of the function is set
571by the target to whatever it feels convenient. If an explicit alignment
572is specified, the function is forced to have at least that much
573alignment. All alignments must be a power of 2.
574
575If the ``unnamed_addr`` attribute is given, the address is know to not
576be significant and two identical functions can be merged.
577
578Syntax::
579
580 define [linkage] [visibility]
581 [cconv] [ret attrs]
582 <ResultType> @<FunctionName> ([argument list])
583 [fn Attrs] [section "name"] [align N]
584 [gc] { ... }
585
586Aliases
587-------
588
589Aliases act as "second name" for the aliasee value (which can be either
590function, global variable, another alias or bitcast of global value).
591Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
592:ref:`visibility style <visibility>`.
593
594Syntax::
595
596 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
597
598.. _namedmetadatastructure:
599
600Named Metadata
601--------------
602
603Named metadata is a collection of metadata. :ref:`Metadata
604nodes <metadata>` (but not metadata strings) are the only valid
605operands for a named metadata.
606
607Syntax::
608
609 ; Some unnamed metadata nodes, which are referenced by the named metadata.
610 !0 = metadata !{metadata !"zero"}
611 !1 = metadata !{metadata !"one"}
612 !2 = metadata !{metadata !"two"}
613 ; A named metadata.
614 !name = !{!0, !1, !2}
615
616.. _paramattrs:
617
618Parameter Attributes
619--------------------
620
621The return type and each parameter of a function type may have a set of
622*parameter attributes* associated with them. Parameter attributes are
623used to communicate additional information about the result or
624parameters of a function. Parameter attributes are considered to be part
625of the function, not of the function type, so functions with different
626parameter attributes can have the same function type.
627
628Parameter attributes are simple keywords that follow the type specified.
629If multiple parameter attributes are needed, they are space separated.
630For example:
631
632.. code-block:: llvm
633
634 declare i32 @printf(i8* noalias nocapture, ...)
635 declare i32 @atoi(i8 zeroext)
636 declare signext i8 @returns_signed_char()
637
638Note that any attributes for the function result (``nounwind``,
639``readonly``) come immediately after the argument list.
640
641Currently, only the following parameter attributes are defined:
642
643``zeroext``
644 This indicates to the code generator that the parameter or return
645 value should be zero-extended to the extent required by the target's
646 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
647 the caller (for a parameter) or the callee (for a return value).
648``signext``
649 This indicates to the code generator that the parameter or return
650 value should be sign-extended to the extent required by the target's
651 ABI (which is usually 32-bits) by the caller (for a parameter) or
652 the callee (for a return value).
653``inreg``
654 This indicates that this parameter or return value should be treated
655 in a special target-dependent fashion during while emitting code for
656 a function call or return (usually, by putting it in a register as
657 opposed to memory, though some targets use it to distinguish between
658 two different kinds of registers). Use of this attribute is
659 target-specific.
660``byval``
661 This indicates that the pointer parameter should really be passed by
662 value to the function. The attribute implies that a hidden copy of
663 the pointee is made between the caller and the callee, so the callee
664 is unable to modify the value in the caller. This attribute is only
665 valid on LLVM pointer arguments. It is generally used to pass
666 structs and arrays by value, but is also valid on pointers to
667 scalars. The copy is considered to belong to the caller not the
668 callee (for example, ``readonly`` functions should not write to
669 ``byval`` parameters). This is not a valid attribute for return
670 values.
671
672 The byval attribute also supports specifying an alignment with the
673 align attribute. It indicates the alignment of the stack slot to
674 form and the known alignment of the pointer specified to the call
675 site. If the alignment is not specified, then the code generator
676 makes a target-specific assumption.
677
678``sret``
679 This indicates that the pointer parameter specifies the address of a
680 structure that is the return value of the function in the source
681 program. This pointer must be guaranteed by the caller to be valid:
682 loads and stores to the structure may be assumed by the callee to
683 not to trap and to be properly aligned. This may only be applied to
684 the first parameter. This is not a valid attribute for return
685 values.
686``noalias``
687 This indicates that pointer values `*based* <pointeraliasing>` on
688 the argument or return value do not alias pointer values which are
689 not *based* on it, ignoring certain "irrelevant" dependencies. For a
690 call to the parent function, dependencies between memory references
691 from before or after the call and from those during the call are
692 "irrelevant" to the ``noalias`` keyword for the arguments and return
693 value used in that call. The caller shares the responsibility with
694 the callee for ensuring that these requirements are met. For further
695 details, please see the discussion of the NoAlias response in `alias
696 analysis <AliasAnalysis.html#MustMayNo>`_.
697
698 Note that this definition of ``noalias`` is intentionally similar
699 to the definition of ``restrict`` in C99 for function arguments,
700 though it is slightly weaker.
701
702 For function return values, C99's ``restrict`` is not meaningful,
703 while LLVM's ``noalias`` is.
704``nocapture``
705 This indicates that the callee does not make any copies of the
706 pointer that outlive the callee itself. This is not a valid
707 attribute for return values.
708
709.. _nest:
710
711``nest``
712 This indicates that the pointer parameter can be excised using the
713 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
714 attribute for return values.
715
716.. _gc:
717
718Garbage Collector Names
719-----------------------
720
721Each function may specify a garbage collector name, which is simply a
722string:
723
724.. code-block:: llvm
725
726 define void @f() gc "name" { ... }
727
728The compiler declares the supported values of *name*. Specifying a
729collector which will cause the compiler to alter its output in order to
730support the named garbage collection algorithm.
731
732.. _fnattrs:
733
734Function Attributes
735-------------------
736
737Function attributes are set to communicate additional information about
738a function. Function attributes are considered to be part of the
739function, not of the function type, so functions with different function
740attributes can have the same function type.
741
742Function attributes are simple keywords that follow the type specified.
743If multiple attributes are needed, they are space separated. For
744example:
745
746.. code-block:: llvm
747
748 define void @f() noinline { ... }
749 define void @f() alwaysinline { ... }
750 define void @f() alwaysinline optsize { ... }
751 define void @f() optsize { ... }
752
753``address_safety``
754 This attribute indicates that the address safety analysis is enabled
755 for this function.
756``alignstack(<n>)``
757 This attribute indicates that, when emitting the prologue and
758 epilogue, the backend should forcibly align the stack pointer.
759 Specify the desired alignment, which must be a power of two, in
760 parentheses.
761``alwaysinline``
762 This attribute indicates that the inliner should attempt to inline
763 this function into callers whenever possible, ignoring any active
764 inlining size threshold for this caller.
765``nonlazybind``
766 This attribute suppresses lazy symbol binding for the function. This
767 may make calls to the function faster, at the cost of extra program
768 startup time if the function is not called during program startup.
769``inlinehint``
770 This attribute indicates that the source code contained a hint that
771 inlining this function is desirable (such as the "inline" keyword in
772 C/C++). It is just a hint; it imposes no requirements on the
773 inliner.
774``naked``
775 This attribute disables prologue / epilogue emission for the
776 function. This can have very system-specific consequences.
777``noimplicitfloat``
778 This attributes disables implicit floating point instructions.
779``noinline``
780 This attribute indicates that the inliner should never inline this
781 function in any situation. This attribute may not be used together
782 with the ``alwaysinline`` attribute.
783``noredzone``
784 This attribute indicates that the code generator should not use a
785 red zone, even if the target-specific ABI normally permits it.
786``noreturn``
787 This function attribute indicates that the function never returns
788 normally. This produces undefined behavior at runtime if the
789 function ever does dynamically return.
790``nounwind``
791 This function attribute indicates that the function never returns
792 with an unwind or exceptional control flow. If the function does
793 unwind, its runtime behavior is undefined.
794``optsize``
795 This attribute suggests that optimization passes and code generator
796 passes make choices that keep the code size of this function low,
797 and otherwise do optimizations specifically to reduce code size.
798``readnone``
799 This attribute indicates that the function computes its result (or
800 decides to unwind an exception) based strictly on its arguments,
801 without dereferencing any pointer arguments or otherwise accessing
802 any mutable state (e.g. memory, control registers, etc) visible to
803 caller functions. It does not write through any pointer arguments
804 (including ``byval`` arguments) and never changes any state visible
805 to callers. This means that it cannot unwind exceptions by calling
806 the ``C++`` exception throwing methods.
807``readonly``
808 This attribute indicates that the function does not write through
809 any pointer arguments (including ``byval`` arguments) or otherwise
810 modify any state (e.g. memory, control registers, etc) visible to
811 caller functions. It may dereference pointer arguments and read
812 state that may be set in the caller. A readonly function always
813 returns the same value (or unwinds an exception identically) when
814 called with the same set of arguments and global state. It cannot
815 unwind an exception by calling the ``C++`` exception throwing
816 methods.
817``returns_twice``
818 This attribute indicates that this function can return twice. The C
819 ``setjmp`` is an example of such a function. The compiler disables
820 some optimizations (like tail calls) in the caller of these
821 functions.
822``ssp``
823 This attribute indicates that the function should emit a stack
824 smashing protector. It is in the form of a "canary"—a random value
825 placed on the stack before the local variables that's checked upon
826 return from the function to see if it has been overwritten. A
827 heuristic is used to determine if a function needs stack protectors
828 or not.
829
830 If a function that has an ``ssp`` attribute is inlined into a
831 function that doesn't have an ``ssp`` attribute, then the resulting
832 function will have an ``ssp`` attribute.
833``sspreq``
834 This attribute indicates that the function should *always* emit a
835 stack smashing protector. This overrides the ``ssp`` function
836 attribute.
837
838 If a function that has an ``sspreq`` attribute is inlined into a
839 function that doesn't have an ``sspreq`` attribute or which has an
840 ``ssp`` attribute, then the resulting function will have an
841 ``sspreq`` attribute.
842``uwtable``
843 This attribute indicates that the ABI being targeted requires that
844 an unwind table entry be produce for this function even if we can
845 show that no exceptions passes by it. This is normally the case for
846 the ELF x86-64 abi, but it can be disabled for some compilation
847 units.
James Molloy67ae1352012-12-20 16:04:27 +0000848``noduplicate``
849 This attribute indicates that calls to the function cannot be
850 duplicated. A call to a ``noduplicate`` function may be moved
851 within its parent function, but may not be duplicated within
852 its parent function.
853
854 A function containing a ``noduplicate`` call may still
855 be an inlining candidate, provided that the call is not
856 duplicated by inlining. That implies that the function has
857 internal linkage and only has one call site, so the original
858 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000859
860.. _moduleasm:
861
862Module-Level Inline Assembly
863----------------------------
864
865Modules may contain "module-level inline asm" blocks, which corresponds
866to the GCC "file scope inline asm" blocks. These blocks are internally
867concatenated by LLVM and treated as a single unit, but may be separated
868in the ``.ll`` file if desired. The syntax is very simple:
869
870.. code-block:: llvm
871
872 module asm "inline asm code goes here"
873 module asm "more can go here"
874
875The strings can contain any character by escaping non-printable
876characters. The escape sequence used is simply "\\xx" where "xx" is the
877two digit hex code for the number.
878
879The inline asm code is simply printed to the machine code .s file when
880assembly code is generated.
881
882Data Layout
883-----------
884
885A module may specify a target specific data layout string that specifies
886how data is to be laid out in memory. The syntax for the data layout is
887simply:
888
889.. code-block:: llvm
890
891 target datalayout = "layout specification"
892
893The *layout specification* consists of a list of specifications
894separated by the minus sign character ('-'). Each specification starts
895with a letter and may include other information after the letter to
896define some aspect of the data layout. The specifications accepted are
897as follows:
898
899``E``
900 Specifies that the target lays out data in big-endian form. That is,
901 the bits with the most significance have the lowest address
902 location.
903``e``
904 Specifies that the target lays out data in little-endian form. That
905 is, the bits with the least significance have the lowest address
906 location.
907``S<size>``
908 Specifies the natural alignment of the stack in bits. Alignment
909 promotion of stack variables is limited to the natural stack
910 alignment to avoid dynamic stack realignment. The stack alignment
911 must be a multiple of 8-bits. If omitted, the natural stack
912 alignment defaults to "unspecified", which does not prevent any
913 alignment promotions.
914``p[n]:<size>:<abi>:<pref>``
915 This specifies the *size* of a pointer and its ``<abi>`` and
916 ``<pref>``\erred alignments for address space ``n``. All sizes are in
917 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
918 preceding ``:`` should be omitted too. The address space, ``n`` is
919 optional, and if not specified, denotes the default address space 0.
920 The value of ``n`` must be in the range [1,2^23).
921``i<size>:<abi>:<pref>``
922 This specifies the alignment for an integer type of a given bit
923 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
924``v<size>:<abi>:<pref>``
925 This specifies the alignment for a vector type of a given bit
926 ``<size>``.
927``f<size>:<abi>:<pref>``
928 This specifies the alignment for a floating point type of a given bit
929 ``<size>``. Only values of ``<size>`` that are supported by the target
930 will work. 32 (float) and 64 (double) are supported on all targets; 80
931 or 128 (different flavors of long double) are also supported on some
932 targets.
933``a<size>:<abi>:<pref>``
934 This specifies the alignment for an aggregate type of a given bit
935 ``<size>``.
936``s<size>:<abi>:<pref>``
937 This specifies the alignment for a stack object of a given bit
938 ``<size>``.
939``n<size1>:<size2>:<size3>...``
940 This specifies a set of native integer widths for the target CPU in
941 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
942 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
943 this set are considered to support most general arithmetic operations
944 efficiently.
945
946When constructing the data layout for a given target, LLVM starts with a
947default set of specifications which are then (possibly) overridden by
948the specifications in the ``datalayout`` keyword. The default
949specifications are given in this list:
950
951- ``E`` - big endian
952- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
953- ``p1:32:32:32`` - 32-bit pointers with 32-bit alignment for address
954 space 1
955- ``p2:16:32:32`` - 16-bit pointers with 32-bit alignment for address
956 space 2
957- ``i1:8:8`` - i1 is 8-bit (byte) aligned
958- ``i8:8:8`` - i8 is 8-bit (byte) aligned
959- ``i16:16:16`` - i16 is 16-bit aligned
960- ``i32:32:32`` - i32 is 32-bit aligned
961- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
962 alignment of 64-bits
963- ``f32:32:32`` - float is 32-bit aligned
964- ``f64:64:64`` - double is 64-bit aligned
965- ``v64:64:64`` - 64-bit vector is 64-bit aligned
966- ``v128:128:128`` - 128-bit vector is 128-bit aligned
967- ``a0:0:1`` - aggregates are 8-bit aligned
968- ``s0:64:64`` - stack objects are 64-bit aligned
969
970When LLVM is determining the alignment for a given type, it uses the
971following rules:
972
973#. If the type sought is an exact match for one of the specifications,
974 that specification is used.
975#. If no match is found, and the type sought is an integer type, then
976 the smallest integer type that is larger than the bitwidth of the
977 sought type is used. If none of the specifications are larger than
978 the bitwidth then the largest integer type is used. For example,
979 given the default specifications above, the i7 type will use the
980 alignment of i8 (next largest) while both i65 and i256 will use the
981 alignment of i64 (largest specified).
982#. If no match is found, and the type sought is a vector type, then the
983 largest vector type that is smaller than the sought vector type will
984 be used as a fall back. This happens because <128 x double> can be
985 implemented in terms of 64 <2 x double>, for example.
986
987The function of the data layout string may not be what you expect.
988Notably, this is not a specification from the frontend of what alignment
989the code generator should use.
990
991Instead, if specified, the target data layout is required to match what
992the ultimate *code generator* expects. This string is used by the
993mid-level optimizers to improve code, and this only works if it matches
994what the ultimate code generator uses. If you would like to generate IR
995that does not embed this target-specific detail into the IR, then you
996don't have to specify the string. This will disable some optimizations
997that require precise layout information, but this also prevents those
998optimizations from introducing target specificity into the IR.
999
1000.. _pointeraliasing:
1001
1002Pointer Aliasing Rules
1003----------------------
1004
1005Any memory access must be done through a pointer value associated with
1006an address range of the memory access, otherwise the behavior is
1007undefined. Pointer values are associated with address ranges according
1008to the following rules:
1009
1010- A pointer value is associated with the addresses associated with any
1011 value it is *based* on.
1012- An address of a global variable is associated with the address range
1013 of the variable's storage.
1014- The result value of an allocation instruction is associated with the
1015 address range of the allocated storage.
1016- A null pointer in the default address-space is associated with no
1017 address.
1018- An integer constant other than zero or a pointer value returned from
1019 a function not defined within LLVM may be associated with address
1020 ranges allocated through mechanisms other than those provided by
1021 LLVM. Such ranges shall not overlap with any ranges of addresses
1022 allocated by mechanisms provided by LLVM.
1023
1024A pointer value is *based* on another pointer value according to the
1025following rules:
1026
1027- A pointer value formed from a ``getelementptr`` operation is *based*
1028 on the first operand of the ``getelementptr``.
1029- The result value of a ``bitcast`` is *based* on the operand of the
1030 ``bitcast``.
1031- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1032 values that contribute (directly or indirectly) to the computation of
1033 the pointer's value.
1034- The "*based* on" relationship is transitive.
1035
1036Note that this definition of *"based"* is intentionally similar to the
1037definition of *"based"* in C99, though it is slightly weaker.
1038
1039LLVM IR does not associate types with memory. The result type of a
1040``load`` merely indicates the size and alignment of the memory from
1041which to load, as well as the interpretation of the value. The first
1042operand type of a ``store`` similarly only indicates the size and
1043alignment of the store.
1044
1045Consequently, type-based alias analysis, aka TBAA, aka
1046``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1047:ref:`Metadata <metadata>` may be used to encode additional information
1048which specialized optimization passes may use to implement type-based
1049alias analysis.
1050
1051.. _volatile:
1052
1053Volatile Memory Accesses
1054------------------------
1055
1056Certain memory accesses, such as :ref:`load <i_load>`'s,
1057:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1058marked ``volatile``. The optimizers must not change the number of
1059volatile operations or change their order of execution relative to other
1060volatile operations. The optimizers *may* change the order of volatile
1061operations relative to non-volatile operations. This is not Java's
1062"volatile" and has no cross-thread synchronization behavior.
1063
1064.. _memmodel:
1065
1066Memory Model for Concurrent Operations
1067--------------------------------------
1068
1069The LLVM IR does not define any way to start parallel threads of
1070execution or to register signal handlers. Nonetheless, there are
1071platform-specific ways to create them, and we define LLVM IR's behavior
1072in their presence. This model is inspired by the C++0x memory model.
1073
1074For a more informal introduction to this model, see the :doc:`Atomics`.
1075
1076We define a *happens-before* partial order as the least partial order
1077that
1078
1079- Is a superset of single-thread program order, and
1080- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1081 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1082 techniques, like pthread locks, thread creation, thread joining,
1083 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1084 Constraints <ordering>`).
1085
1086Note that program order does not introduce *happens-before* edges
1087between a thread and signals executing inside that thread.
1088
1089Every (defined) read operation (load instructions, memcpy, atomic
1090loads/read-modify-writes, etc.) R reads a series of bytes written by
1091(defined) write operations (store instructions, atomic
1092stores/read-modify-writes, memcpy, etc.). For the purposes of this
1093section, initialized globals are considered to have a write of the
1094initializer which is atomic and happens before any other read or write
1095of the memory in question. For each byte of a read R, R\ :sub:`byte`
1096may see any write to the same byte, except:
1097
1098- If write\ :sub:`1` happens before write\ :sub:`2`, and
1099 write\ :sub:`2` happens before R\ :sub:`byte`, then
1100 R\ :sub:`byte` does not see write\ :sub:`1`.
1101- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1102 R\ :sub:`byte` does not see write\ :sub:`3`.
1103
1104Given that definition, R\ :sub:`byte` is defined as follows:
1105
1106- If R is volatile, the result is target-dependent. (Volatile is
1107 supposed to give guarantees which can support ``sig_atomic_t`` in
1108 C/C++, and may be used for accesses to addresses which do not behave
1109 like normal memory. It does not generally provide cross-thread
1110 synchronization.)
1111- Otherwise, if there is no write to the same byte that happens before
1112 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1113- Otherwise, if R\ :sub:`byte` may see exactly one write,
1114 R\ :sub:`byte` returns the value written by that write.
1115- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1116 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1117 Memory Ordering Constraints <ordering>` section for additional
1118 constraints on how the choice is made.
1119- Otherwise R\ :sub:`byte` returns ``undef``.
1120
1121R returns the value composed of the series of bytes it read. This
1122implies that some bytes within the value may be ``undef`` **without**
1123the entire value being ``undef``. Note that this only defines the
1124semantics of the operation; it doesn't mean that targets will emit more
1125than one instruction to read the series of bytes.
1126
1127Note that in cases where none of the atomic intrinsics are used, this
1128model places only one restriction on IR transformations on top of what
1129is required for single-threaded execution: introducing a store to a byte
1130which might not otherwise be stored is not allowed in general.
1131(Specifically, in the case where another thread might write to and read
1132from an address, introducing a store can change a load that may see
1133exactly one write into a load that may see multiple writes.)
1134
1135.. _ordering:
1136
1137Atomic Memory Ordering Constraints
1138----------------------------------
1139
1140Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1141:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1142:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1143an ordering parameter that determines which other atomic instructions on
1144the same address they *synchronize with*. These semantics are borrowed
1145from Java and C++0x, but are somewhat more colloquial. If these
1146descriptions aren't precise enough, check those specs (see spec
1147references in the :doc:`atomics guide <Atomics>`).
1148:ref:`fence <i_fence>` instructions treat these orderings somewhat
1149differently since they don't take an address. See that instruction's
1150documentation for details.
1151
1152For a simpler introduction to the ordering constraints, see the
1153:doc:`Atomics`.
1154
1155``unordered``
1156 The set of values that can be read is governed by the happens-before
1157 partial order. A value cannot be read unless some operation wrote
1158 it. This is intended to provide a guarantee strong enough to model
1159 Java's non-volatile shared variables. This ordering cannot be
1160 specified for read-modify-write operations; it is not strong enough
1161 to make them atomic in any interesting way.
1162``monotonic``
1163 In addition to the guarantees of ``unordered``, there is a single
1164 total order for modifications by ``monotonic`` operations on each
1165 address. All modification orders must be compatible with the
1166 happens-before order. There is no guarantee that the modification
1167 orders can be combined to a global total order for the whole program
1168 (and this often will not be possible). The read in an atomic
1169 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1170 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1171 order immediately before the value it writes. If one atomic read
1172 happens before another atomic read of the same address, the later
1173 read must see the same value or a later value in the address's
1174 modification order. This disallows reordering of ``monotonic`` (or
1175 stronger) operations on the same address. If an address is written
1176 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1177 read that address repeatedly, the other threads must eventually see
1178 the write. This corresponds to the C++0x/C1x
1179 ``memory_order_relaxed``.
1180``acquire``
1181 In addition to the guarantees of ``monotonic``, a
1182 *synchronizes-with* edge may be formed with a ``release`` operation.
1183 This is intended to model C++'s ``memory_order_acquire``.
1184``release``
1185 In addition to the guarantees of ``monotonic``, if this operation
1186 writes a value which is subsequently read by an ``acquire``
1187 operation, it *synchronizes-with* that operation. (This isn't a
1188 complete description; see the C++0x definition of a release
1189 sequence.) This corresponds to the C++0x/C1x
1190 ``memory_order_release``.
1191``acq_rel`` (acquire+release)
1192 Acts as both an ``acquire`` and ``release`` operation on its
1193 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1194``seq_cst`` (sequentially consistent)
1195 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1196 operation which only reads, ``release`` for an operation which only
1197 writes), there is a global total order on all
1198 sequentially-consistent operations on all addresses, which is
1199 consistent with the *happens-before* partial order and with the
1200 modification orders of all the affected addresses. Each
1201 sequentially-consistent read sees the last preceding write to the
1202 same address in this global order. This corresponds to the C++0x/C1x
1203 ``memory_order_seq_cst`` and Java volatile.
1204
1205.. _singlethread:
1206
1207If an atomic operation is marked ``singlethread``, it only *synchronizes
1208with* or participates in modification and seq\_cst total orderings with
1209other operations running in the same thread (for example, in signal
1210handlers).
1211
1212.. _fastmath:
1213
1214Fast-Math Flags
1215---------------
1216
1217LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1218:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1219:ref:`frem <i_frem>`) have the following flags that can set to enable
1220otherwise unsafe floating point operations
1221
1222``nnan``
1223 No NaNs - Allow optimizations to assume the arguments and result are not
1224 NaN. Such optimizations are required to retain defined behavior over
1225 NaNs, but the value of the result is undefined.
1226
1227``ninf``
1228 No Infs - Allow optimizations to assume the arguments and result are not
1229 +/-Inf. Such optimizations are required to retain defined behavior over
1230 +/-Inf, but the value of the result is undefined.
1231
1232``nsz``
1233 No Signed Zeros - Allow optimizations to treat the sign of a zero
1234 argument or result as insignificant.
1235
1236``arcp``
1237 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1238 argument rather than perform division.
1239
1240``fast``
1241 Fast - Allow algebraically equivalent transformations that may
1242 dramatically change results in floating point (e.g. reassociate). This
1243 flag implies all the others.
1244
1245.. _typesystem:
1246
1247Type System
1248===========
1249
1250The LLVM type system is one of the most important features of the
1251intermediate representation. Being typed enables a number of
1252optimizations to be performed on the intermediate representation
1253directly, without having to do extra analyses on the side before the
1254transformation. A strong type system makes it easier to read the
1255generated code and enables novel analyses and transformations that are
1256not feasible to perform on normal three address code representations.
1257
1258Type Classifications
1259--------------------
1260
1261The types fall into a few useful classifications:
1262
1263
1264.. list-table::
1265 :header-rows: 1
1266
1267 * - Classification
1268 - Types
1269
1270 * - :ref:`integer <t_integer>`
1271 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1272 ``i64``, ...
1273
1274 * - :ref:`floating point <t_floating>`
1275 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1276 ``ppc_fp128``
1277
1278
1279 * - first class
1280
1281 .. _t_firstclass:
1282
1283 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1284 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1285 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1286 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1287
1288 * - :ref:`primitive <t_primitive>`
1289 - :ref:`label <t_label>`,
1290 :ref:`void <t_void>`,
1291 :ref:`integer <t_integer>`,
1292 :ref:`floating point <t_floating>`,
1293 :ref:`x86mmx <t_x86mmx>`,
1294 :ref:`metadata <t_metadata>`.
1295
1296 * - :ref:`derived <t_derived>`
1297 - :ref:`array <t_array>`,
1298 :ref:`function <t_function>`,
1299 :ref:`pointer <t_pointer>`,
1300 :ref:`structure <t_struct>`,
1301 :ref:`vector <t_vector>`,
1302 :ref:`opaque <t_opaque>`.
1303
1304The :ref:`first class <t_firstclass>` types are perhaps the most important.
1305Values of these types are the only ones which can be produced by
1306instructions.
1307
1308.. _t_primitive:
1309
1310Primitive Types
1311---------------
1312
1313The primitive types are the fundamental building blocks of the LLVM
1314system.
1315
1316.. _t_integer:
1317
1318Integer Type
1319^^^^^^^^^^^^
1320
1321Overview:
1322"""""""""
1323
1324The integer type is a very simple type that simply specifies an
1325arbitrary bit width for the integer type desired. Any bit width from 1
1326bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1327
1328Syntax:
1329"""""""
1330
1331::
1332
1333 iN
1334
1335The number of bits the integer will occupy is specified by the ``N``
1336value.
1337
1338Examples:
1339"""""""""
1340
1341+----------------+------------------------------------------------+
1342| ``i1`` | a single-bit integer. |
1343+----------------+------------------------------------------------+
1344| ``i32`` | a 32-bit integer. |
1345+----------------+------------------------------------------------+
1346| ``i1942652`` | a really big integer of over 1 million bits. |
1347+----------------+------------------------------------------------+
1348
1349.. _t_floating:
1350
1351Floating Point Types
1352^^^^^^^^^^^^^^^^^^^^
1353
1354.. list-table::
1355 :header-rows: 1
1356
1357 * - Type
1358 - Description
1359
1360 * - ``half``
1361 - 16-bit floating point value
1362
1363 * - ``float``
1364 - 32-bit floating point value
1365
1366 * - ``double``
1367 - 64-bit floating point value
1368
1369 * - ``fp128``
1370 - 128-bit floating point value (112-bit mantissa)
1371
1372 * - ``x86_fp80``
1373 - 80-bit floating point value (X87)
1374
1375 * - ``ppc_fp128``
1376 - 128-bit floating point value (two 64-bits)
1377
1378.. _t_x86mmx:
1379
1380X86mmx Type
1381^^^^^^^^^^^
1382
1383Overview:
1384"""""""""
1385
1386The x86mmx type represents a value held in an MMX register on an x86
1387machine. The operations allowed on it are quite limited: parameters and
1388return values, load and store, and bitcast. User-specified MMX
1389instructions are represented as intrinsic or asm calls with arguments
1390and/or results of this type. There are no arrays, vectors or constants
1391of this type.
1392
1393Syntax:
1394"""""""
1395
1396::
1397
1398 x86mmx
1399
1400.. _t_void:
1401
1402Void Type
1403^^^^^^^^^
1404
1405Overview:
1406"""""""""
1407
1408The void type does not represent any value and has no size.
1409
1410Syntax:
1411"""""""
1412
1413::
1414
1415 void
1416
1417.. _t_label:
1418
1419Label Type
1420^^^^^^^^^^
1421
1422Overview:
1423"""""""""
1424
1425The label type represents code labels.
1426
1427Syntax:
1428"""""""
1429
1430::
1431
1432 label
1433
1434.. _t_metadata:
1435
1436Metadata Type
1437^^^^^^^^^^^^^
1438
1439Overview:
1440"""""""""
1441
1442The metadata type represents embedded metadata. No derived types may be
1443created from metadata except for :ref:`function <t_function>` arguments.
1444
1445Syntax:
1446"""""""
1447
1448::
1449
1450 metadata
1451
1452.. _t_derived:
1453
1454Derived Types
1455-------------
1456
1457The real power in LLVM comes from the derived types in the system. This
1458is what allows a programmer to represent arrays, functions, pointers,
1459and other useful types. Each of these types contain one or more element
1460types which may be a primitive type, or another derived type. For
1461example, it is possible to have a two dimensional array, using an array
1462as the element type of another array.
1463
1464.. _t_aggregate:
1465
1466Aggregate Types
1467^^^^^^^^^^^^^^^
1468
1469Aggregate Types are a subset of derived types that can contain multiple
1470member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1471aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1472aggregate types.
1473
1474.. _t_array:
1475
1476Array Type
1477^^^^^^^^^^
1478
1479Overview:
1480"""""""""
1481
1482The array type is a very simple derived type that arranges elements
1483sequentially in memory. The array type requires a size (number of
1484elements) and an underlying data type.
1485
1486Syntax:
1487"""""""
1488
1489::
1490
1491 [<# elements> x <elementtype>]
1492
1493The number of elements is a constant integer value; ``elementtype`` may
1494be any type with a size.
1495
1496Examples:
1497"""""""""
1498
1499+------------------+--------------------------------------+
1500| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1501+------------------+--------------------------------------+
1502| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1503+------------------+--------------------------------------+
1504| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1505+------------------+--------------------------------------+
1506
1507Here are some examples of multidimensional arrays:
1508
1509+-----------------------------+----------------------------------------------------------+
1510| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1511+-----------------------------+----------------------------------------------------------+
1512| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1513+-----------------------------+----------------------------------------------------------+
1514| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1515+-----------------------------+----------------------------------------------------------+
1516
1517There is no restriction on indexing beyond the end of the array implied
1518by a static type (though there are restrictions on indexing beyond the
1519bounds of an allocated object in some cases). This means that
1520single-dimension 'variable sized array' addressing can be implemented in
1521LLVM with a zero length array type. An implementation of 'pascal style
1522arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1523example.
1524
1525.. _t_function:
1526
1527Function Type
1528^^^^^^^^^^^^^
1529
1530Overview:
1531"""""""""
1532
1533The function type can be thought of as a function signature. It consists
1534of a return type and a list of formal parameter types. The return type
1535of a function type is a first class type or a void type.
1536
1537Syntax:
1538"""""""
1539
1540::
1541
1542 <returntype> (<parameter list>)
1543
1544...where '``<parameter list>``' is a comma-separated list of type
1545specifiers. Optionally, the parameter list may include a type ``...``,
1546which indicates that the function takes a variable number of arguments.
1547Variable argument functions can access their arguments with the
1548:ref:`variable argument handling intrinsic <int_varargs>` functions.
1549'``<returntype>``' is any type except :ref:`label <t_label>`.
1550
1551Examples:
1552"""""""""
1553
1554+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1555| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1556+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1557| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1558+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1559| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1560+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1561| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1562+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1563
1564.. _t_struct:
1565
1566Structure Type
1567^^^^^^^^^^^^^^
1568
1569Overview:
1570"""""""""
1571
1572The structure type is used to represent a collection of data members
1573together in memory. The elements of a structure may be any type that has
1574a size.
1575
1576Structures in memory are accessed using '``load``' and '``store``' by
1577getting a pointer to a field with the '``getelementptr``' instruction.
1578Structures in registers are accessed using the '``extractvalue``' and
1579'``insertvalue``' instructions.
1580
1581Structures may optionally be "packed" structures, which indicate that
1582the alignment of the struct is one byte, and that there is no padding
1583between the elements. In non-packed structs, padding between field types
1584is inserted as defined by the DataLayout string in the module, which is
1585required to match what the underlying code generator expects.
1586
1587Structures can either be "literal" or "identified". A literal structure
1588is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1589identified types are always defined at the top level with a name.
1590Literal types are uniqued by their contents and can never be recursive
1591or opaque since there is no way to write one. Identified types can be
1592recursive, can be opaqued, and are never uniqued.
1593
1594Syntax:
1595"""""""
1596
1597::
1598
1599 %T1 = type { <type list> } ; Identified normal struct type
1600 %T2 = type <{ <type list> }> ; Identified packed struct type
1601
1602Examples:
1603"""""""""
1604
1605+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1606| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1607+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1608| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
1609+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1610| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1611+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1612
1613.. _t_opaque:
1614
1615Opaque Structure Types
1616^^^^^^^^^^^^^^^^^^^^^^
1617
1618Overview:
1619"""""""""
1620
1621Opaque structure types are used to represent named structure types that
1622do not have a body specified. This corresponds (for example) to the C
1623notion of a forward declared structure.
1624
1625Syntax:
1626"""""""
1627
1628::
1629
1630 %X = type opaque
1631 %52 = type opaque
1632
1633Examples:
1634"""""""""
1635
1636+--------------+-------------------+
1637| ``opaque`` | An opaque type. |
1638+--------------+-------------------+
1639
1640.. _t_pointer:
1641
1642Pointer Type
1643^^^^^^^^^^^^
1644
1645Overview:
1646"""""""""
1647
1648The pointer type is used to specify memory locations. Pointers are
1649commonly used to reference objects in memory.
1650
1651Pointer types may have an optional address space attribute defining the
1652numbered address space where the pointed-to object resides. The default
1653address space is number zero. The semantics of non-zero address spaces
1654are target-specific.
1655
1656Note that LLVM does not permit pointers to void (``void*``) nor does it
1657permit pointers to labels (``label*``). Use ``i8*`` instead.
1658
1659Syntax:
1660"""""""
1661
1662::
1663
1664 <type> *
1665
1666Examples:
1667"""""""""
1668
1669+-------------------------+--------------------------------------------------------------------------------------------------------------+
1670| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1671+-------------------------+--------------------------------------------------------------------------------------------------------------+
1672| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1673+-------------------------+--------------------------------------------------------------------------------------------------------------+
1674| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1675+-------------------------+--------------------------------------------------------------------------------------------------------------+
1676
1677.. _t_vector:
1678
1679Vector Type
1680^^^^^^^^^^^
1681
1682Overview:
1683"""""""""
1684
1685A vector type is a simple derived type that represents a vector of
1686elements. Vector types are used when multiple primitive data are
1687operated in parallel using a single instruction (SIMD). A vector type
1688requires a size (number of elements) and an underlying primitive data
1689type. Vector types are considered :ref:`first class <t_firstclass>`.
1690
1691Syntax:
1692"""""""
1693
1694::
1695
1696 < <# elements> x <elementtype> >
1697
1698The number of elements is a constant integer value larger than 0;
1699elementtype may be any integer or floating point type, or a pointer to
1700these types. Vectors of size zero are not allowed.
1701
1702Examples:
1703"""""""""
1704
1705+-------------------+--------------------------------------------------+
1706| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1707+-------------------+--------------------------------------------------+
1708| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1709+-------------------+--------------------------------------------------+
1710| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1711+-------------------+--------------------------------------------------+
1712| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1713+-------------------+--------------------------------------------------+
1714
1715Constants
1716=========
1717
1718LLVM has several different basic types of constants. This section
1719describes them all and their syntax.
1720
1721Simple Constants
1722----------------
1723
1724**Boolean constants**
1725 The two strings '``true``' and '``false``' are both valid constants
1726 of the ``i1`` type.
1727**Integer constants**
1728 Standard integers (such as '4') are constants of the
1729 :ref:`integer <t_integer>` type. Negative numbers may be used with
1730 integer types.
1731**Floating point constants**
1732 Floating point constants use standard decimal notation (e.g.
1733 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1734 hexadecimal notation (see below). The assembler requires the exact
1735 decimal value of a floating-point constant. For example, the
1736 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1737 decimal in binary. Floating point constants must have a :ref:`floating
1738 point <t_floating>` type.
1739**Null pointer constants**
1740 The identifier '``null``' is recognized as a null pointer constant
1741 and must be of :ref:`pointer type <t_pointer>`.
1742
1743The one non-intuitive notation for constants is the hexadecimal form of
1744floating point constants. For example, the form
1745'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1746than) '``double 4.5e+15``'. The only time hexadecimal floating point
1747constants are required (and the only time that they are generated by the
1748disassembler) is when a floating point constant must be emitted but it
1749cannot be represented as a decimal floating point number in a reasonable
1750number of digits. For example, NaN's, infinities, and other special
1751values are represented in their IEEE hexadecimal format so that assembly
1752and disassembly do not cause any bits to change in the constants.
1753
1754When using the hexadecimal form, constants of types half, float, and
1755double are represented using the 16-digit form shown above (which
1756matches the IEEE754 representation for double); half and float values
1757must, however, be exactly representable as IEE754 half and single
1758precision, respectively. Hexadecimal format is always used for long
1759double, and there are three forms of long double. The 80-bit format used
1760by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1761128-bit format used by PowerPC (two adjacent doubles) is represented by
1762``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
1763represented by ``0xL`` followed by 32 hexadecimal digits; no currently
1764supported target uses this format. Long doubles will only work if they
1765match the long double format on your target. The IEEE 16-bit format
1766(half precision) is represented by ``0xH`` followed by 4 hexadecimal
1767digits. All hexadecimal formats are big-endian (sign bit at the left).
1768
1769There are no constants of type x86mmx.
1770
1771Complex Constants
1772-----------------
1773
1774Complex constants are a (potentially recursive) combination of simple
1775constants and smaller complex constants.
1776
1777**Structure constants**
1778 Structure constants are represented with notation similar to
1779 structure type definitions (a comma separated list of elements,
1780 surrounded by braces (``{}``)). For example:
1781 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1782 "``@G = external global i32``". Structure constants must have
1783 :ref:`structure type <t_struct>`, and the number and types of elements
1784 must match those specified by the type.
1785**Array constants**
1786 Array constants are represented with notation similar to array type
1787 definitions (a comma separated list of elements, surrounded by
1788 square brackets (``[]``)). For example:
1789 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1790 :ref:`array type <t_array>`, and the number and types of elements must
1791 match those specified by the type.
1792**Vector constants**
1793 Vector constants are represented with notation similar to vector
1794 type definitions (a comma separated list of elements, surrounded by
1795 less-than/greater-than's (``<>``)). For example:
1796 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1797 must have :ref:`vector type <t_vector>`, and the number and types of
1798 elements must match those specified by the type.
1799**Zero initialization**
1800 The string '``zeroinitializer``' can be used to zero initialize a
1801 value to zero of *any* type, including scalar and
1802 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1803 having to print large zero initializers (e.g. for large arrays) and
1804 is always exactly equivalent to using explicit zero initializers.
1805**Metadata node**
1806 A metadata node is a structure-like constant with :ref:`metadata
1807 type <t_metadata>`. For example:
1808 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1809 constants that are meant to be interpreted as part of the
1810 instruction stream, metadata is a place to attach additional
1811 information such as debug info.
1812
1813Global Variable and Function Addresses
1814--------------------------------------
1815
1816The addresses of :ref:`global variables <globalvars>` and
1817:ref:`functions <functionstructure>` are always implicitly valid
1818(link-time) constants. These constants are explicitly referenced when
1819the :ref:`identifier for the global <identifiers>` is used and always have
1820:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1821file:
1822
1823.. code-block:: llvm
1824
1825 @X = global i32 17
1826 @Y = global i32 42
1827 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1828
1829.. _undefvalues:
1830
1831Undefined Values
1832----------------
1833
1834The string '``undef``' can be used anywhere a constant is expected, and
1835indicates that the user of the value may receive an unspecified
1836bit-pattern. Undefined values may be of any type (other than '``label``'
1837or '``void``') and be used anywhere a constant is permitted.
1838
1839Undefined values are useful because they indicate to the compiler that
1840the program is well defined no matter what value is used. This gives the
1841compiler more freedom to optimize. Here are some examples of
1842(potentially surprising) transformations that are valid (in pseudo IR):
1843
1844.. code-block:: llvm
1845
1846 %A = add %X, undef
1847 %B = sub %X, undef
1848 %C = xor %X, undef
1849 Safe:
1850 %A = undef
1851 %B = undef
1852 %C = undef
1853
1854This is safe because all of the output bits are affected by the undef
1855bits. Any output bit can have a zero or one depending on the input bits.
1856
1857.. code-block:: llvm
1858
1859 %A = or %X, undef
1860 %B = and %X, undef
1861 Safe:
1862 %A = -1
1863 %B = 0
1864 Unsafe:
1865 %A = undef
1866 %B = undef
1867
1868These logical operations have bits that are not always affected by the
1869input. For example, if ``%X`` has a zero bit, then the output of the
1870'``and``' operation will always be a zero for that bit, no matter what
1871the corresponding bit from the '``undef``' is. As such, it is unsafe to
1872optimize or assume that the result of the '``and``' is '``undef``'.
1873However, it is safe to assume that all bits of the '``undef``' could be
18740, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1875all the bits of the '``undef``' operand to the '``or``' could be set,
1876allowing the '``or``' to be folded to -1.
1877
1878.. code-block:: llvm
1879
1880 %A = select undef, %X, %Y
1881 %B = select undef, 42, %Y
1882 %C = select %X, %Y, undef
1883 Safe:
1884 %A = %X (or %Y)
1885 %B = 42 (or %Y)
1886 %C = %Y
1887 Unsafe:
1888 %A = undef
1889 %B = undef
1890 %C = undef
1891
1892This set of examples shows that undefined '``select``' (and conditional
1893branch) conditions can go *either way*, but they have to come from one
1894of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1895both known to have a clear low bit, then ``%A`` would have to have a
1896cleared low bit. However, in the ``%C`` example, the optimizer is
1897allowed to assume that the '``undef``' operand could be the same as
1898``%Y``, allowing the whole '``select``' to be eliminated.
1899
1900.. code-block:: llvm
1901
1902 %A = xor undef, undef
1903
1904 %B = undef
1905 %C = xor %B, %B
1906
1907 %D = undef
1908 %E = icmp lt %D, 4
1909 %F = icmp gte %D, 4
1910
1911 Safe:
1912 %A = undef
1913 %B = undef
1914 %C = undef
1915 %D = undef
1916 %E = undef
1917 %F = undef
1918
1919This example points out that two '``undef``' operands are not
1920necessarily the same. This can be surprising to people (and also matches
1921C semantics) where they assume that "``X^X``" is always zero, even if
1922``X`` is undefined. This isn't true for a number of reasons, but the
1923short answer is that an '``undef``' "variable" can arbitrarily change
1924its value over its "live range". This is true because the variable
1925doesn't actually *have a live range*. Instead, the value is logically
1926read from arbitrary registers that happen to be around when needed, so
1927the value is not necessarily consistent over time. In fact, ``%A`` and
1928``%C`` need to have the same semantics or the core LLVM "replace all
1929uses with" concept would not hold.
1930
1931.. code-block:: llvm
1932
1933 %A = fdiv undef, %X
1934 %B = fdiv %X, undef
1935 Safe:
1936 %A = undef
1937 b: unreachable
1938
1939These examples show the crucial difference between an *undefined value*
1940and *undefined behavior*. An undefined value (like '``undef``') is
1941allowed to have an arbitrary bit-pattern. This means that the ``%A``
1942operation can be constant folded to '``undef``', because the '``undef``'
1943could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
1944However, in the second example, we can make a more aggressive
1945assumption: because the ``undef`` is allowed to be an arbitrary value,
1946we are allowed to assume that it could be zero. Since a divide by zero
1947has *undefined behavior*, we are allowed to assume that the operation
1948does not execute at all. This allows us to delete the divide and all
1949code after it. Because the undefined operation "can't happen", the
1950optimizer can assume that it occurs in dead code.
1951
1952.. code-block:: llvm
1953
1954 a: store undef -> %X
1955 b: store %X -> undef
1956 Safe:
1957 a: <deleted>
1958 b: unreachable
1959
1960These examples reiterate the ``fdiv`` example: a store *of* an undefined
1961value can be assumed to not have any effect; we can assume that the
1962value is overwritten with bits that happen to match what was already
1963there. However, a store *to* an undefined location could clobber
1964arbitrary memory, therefore, it has undefined behavior.
1965
1966.. _poisonvalues:
1967
1968Poison Values
1969-------------
1970
1971Poison values are similar to :ref:`undef values <undefvalues>`, however
1972they also represent the fact that an instruction or constant expression
1973which cannot evoke side effects has nevertheless detected a condition
1974which results in undefined behavior.
1975
1976There is currently no way of representing a poison value in the IR; they
1977only exist when produced by operations such as :ref:`add <i_add>` with
1978the ``nsw`` flag.
1979
1980Poison value behavior is defined in terms of value *dependence*:
1981
1982- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
1983- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
1984 their dynamic predecessor basic block.
1985- Function arguments depend on the corresponding actual argument values
1986 in the dynamic callers of their functions.
1987- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
1988 instructions that dynamically transfer control back to them.
1989- :ref:`Invoke <i_invoke>` instructions depend on the
1990 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
1991 call instructions that dynamically transfer control back to them.
1992- Non-volatile loads and stores depend on the most recent stores to all
1993 of the referenced memory addresses, following the order in the IR
1994 (including loads and stores implied by intrinsics such as
1995 :ref:`@llvm.memcpy <int_memcpy>`.)
1996- An instruction with externally visible side effects depends on the
1997 most recent preceding instruction with externally visible side
1998 effects, following the order in the IR. (This includes :ref:`volatile
1999 operations <volatile>`.)
2000- An instruction *control-depends* on a :ref:`terminator
2001 instruction <terminators>` if the terminator instruction has
2002 multiple successors and the instruction is always executed when
2003 control transfers to one of the successors, and may not be executed
2004 when control is transferred to another.
2005- Additionally, an instruction also *control-depends* on a terminator
2006 instruction if the set of instructions it otherwise depends on would
2007 be different if the terminator had transferred control to a different
2008 successor.
2009- Dependence is transitive.
2010
2011Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2012with the additional affect that any instruction which has a *dependence*
2013on a poison value has undefined behavior.
2014
2015Here are some examples:
2016
2017.. code-block:: llvm
2018
2019 entry:
2020 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2021 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2022 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2023 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2024
2025 store i32 %poison, i32* @g ; Poison value stored to memory.
2026 %poison2 = load i32* @g ; Poison value loaded back from memory.
2027
2028 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2029
2030 %narrowaddr = bitcast i32* @g to i16*
2031 %wideaddr = bitcast i32* @g to i64*
2032 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2033 %poison4 = load i64* %wideaddr ; Returns a poison value.
2034
2035 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2036 br i1 %cmp, label %true, label %end ; Branch to either destination.
2037
2038 true:
2039 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2040 ; it has undefined behavior.
2041 br label %end
2042
2043 end:
2044 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2045 ; Both edges into this PHI are
2046 ; control-dependent on %cmp, so this
2047 ; always results in a poison value.
2048
2049 store volatile i32 0, i32* @g ; This would depend on the store in %true
2050 ; if %cmp is true, or the store in %entry
2051 ; otherwise, so this is undefined behavior.
2052
2053 br i1 %cmp, label %second_true, label %second_end
2054 ; The same branch again, but this time the
2055 ; true block doesn't have side effects.
2056
2057 second_true:
2058 ; No side effects!
2059 ret void
2060
2061 second_end:
2062 store volatile i32 0, i32* @g ; This time, the instruction always depends
2063 ; on the store in %end. Also, it is
2064 ; control-equivalent to %end, so this is
2065 ; well-defined (ignoring earlier undefined
2066 ; behavior in this example).
2067
2068.. _blockaddress:
2069
2070Addresses of Basic Blocks
2071-------------------------
2072
2073``blockaddress(@function, %block)``
2074
2075The '``blockaddress``' constant computes the address of the specified
2076basic block in the specified function, and always has an ``i8*`` type.
2077Taking the address of the entry block is illegal.
2078
2079This value only has defined behavior when used as an operand to the
2080':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2081against null. Pointer equality tests between labels addresses results in
2082undefined behavior — though, again, comparison against null is ok, and
2083no label is equal to the null pointer. This may be passed around as an
2084opaque pointer sized value as long as the bits are not inspected. This
2085allows ``ptrtoint`` and arithmetic to be performed on these values so
2086long as the original value is reconstituted before the ``indirectbr``
2087instruction.
2088
2089Finally, some targets may provide defined semantics when using the value
2090as the operand to an inline assembly, but that is target specific.
2091
2092Constant Expressions
2093--------------------
2094
2095Constant expressions are used to allow expressions involving other
2096constants to be used as constants. Constant expressions may be of any
2097:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2098that does not have side effects (e.g. load and call are not supported).
2099The following is the syntax for constant expressions:
2100
2101``trunc (CST to TYPE)``
2102 Truncate a constant to another type. The bit size of CST must be
2103 larger than the bit size of TYPE. Both types must be integers.
2104``zext (CST to TYPE)``
2105 Zero extend a constant to another type. The bit size of CST must be
2106 smaller than the bit size of TYPE. Both types must be integers.
2107``sext (CST to TYPE)``
2108 Sign extend a constant to another type. The bit size of CST must be
2109 smaller than the bit size of TYPE. Both types must be integers.
2110``fptrunc (CST to TYPE)``
2111 Truncate a floating point constant to another floating point type.
2112 The size of CST must be larger than the size of TYPE. Both types
2113 must be floating point.
2114``fpext (CST to TYPE)``
2115 Floating point extend a constant to another type. The size of CST
2116 must be smaller or equal to the size of TYPE. Both types must be
2117 floating point.
2118``fptoui (CST to TYPE)``
2119 Convert a floating point constant to the corresponding unsigned
2120 integer constant. TYPE must be a scalar or vector integer type. CST
2121 must be of scalar or vector floating point type. Both CST and TYPE
2122 must be scalars, or vectors of the same number of elements. If the
2123 value won't fit in the integer type, the results are undefined.
2124``fptosi (CST to TYPE)``
2125 Convert a floating point constant to the corresponding signed
2126 integer constant. TYPE must be a scalar or vector integer type. CST
2127 must be of scalar or vector floating point type. Both CST and TYPE
2128 must be scalars, or vectors of the same number of elements. If the
2129 value won't fit in the integer type, the results are undefined.
2130``uitofp (CST to TYPE)``
2131 Convert an unsigned integer constant to the corresponding floating
2132 point constant. TYPE must be a scalar or vector floating point type.
2133 CST must be of scalar or vector integer type. Both CST and TYPE must
2134 be scalars, or vectors of the same number of elements. If the value
2135 won't fit in the floating point type, the results are undefined.
2136``sitofp (CST to TYPE)``
2137 Convert a signed integer constant to the corresponding floating
2138 point constant. TYPE must be a scalar or vector floating point type.
2139 CST must be of scalar or vector integer type. Both CST and TYPE must
2140 be scalars, or vectors of the same number of elements. If the value
2141 won't fit in the floating point type, the results are undefined.
2142``ptrtoint (CST to TYPE)``
2143 Convert a pointer typed constant to the corresponding integer
2144 constant ``TYPE`` must be an integer type. ``CST`` must be of
2145 pointer type. The ``CST`` value is zero extended, truncated, or
2146 unchanged to make it fit in ``TYPE``.
2147``inttoptr (CST to TYPE)``
2148 Convert an integer constant to a pointer constant. TYPE must be a
2149 pointer type. CST must be of integer type. The CST value is zero
2150 extended, truncated, or unchanged to make it fit in a pointer size.
2151 This one is *really* dangerous!
2152``bitcast (CST to TYPE)``
2153 Convert a constant, CST, to another TYPE. The constraints of the
2154 operands are the same as those for the :ref:`bitcast
2155 instruction <i_bitcast>`.
2156``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2157 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2158 constants. As with the :ref:`getelementptr <i_getelementptr>`
2159 instruction, the index list may have zero or more indexes, which are
2160 required to make sense for the type of "CSTPTR".
2161``select (COND, VAL1, VAL2)``
2162 Perform the :ref:`select operation <i_select>` on constants.
2163``icmp COND (VAL1, VAL2)``
2164 Performs the :ref:`icmp operation <i_icmp>` on constants.
2165``fcmp COND (VAL1, VAL2)``
2166 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2167``extractelement (VAL, IDX)``
2168 Perform the :ref:`extractelement operation <i_extractelement>` on
2169 constants.
2170``insertelement (VAL, ELT, IDX)``
2171 Perform the :ref:`insertelement operation <i_insertelement>` on
2172 constants.
2173``shufflevector (VEC1, VEC2, IDXMASK)``
2174 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2175 constants.
2176``extractvalue (VAL, IDX0, IDX1, ...)``
2177 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2178 constants. The index list is interpreted in a similar manner as
2179 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2180 least one index value must be specified.
2181``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2182 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2183 The index list is interpreted in a similar manner as indices in a
2184 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2185 value must be specified.
2186``OPCODE (LHS, RHS)``
2187 Perform the specified operation of the LHS and RHS constants. OPCODE
2188 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2189 binary <bitwiseops>` operations. The constraints on operands are
2190 the same as those for the corresponding instruction (e.g. no bitwise
2191 operations on floating point values are allowed).
2192
2193Other Values
2194============
2195
2196Inline Assembler Expressions
2197----------------------------
2198
2199LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2200Inline Assembly <moduleasm>`) through the use of a special value. This
2201value represents the inline assembler as a string (containing the
2202instructions to emit), a list of operand constraints (stored as a
2203string), a flag that indicates whether or not the inline asm expression
2204has side effects, and a flag indicating whether the function containing
2205the asm needs to align its stack conservatively. An example inline
2206assembler expression is:
2207
2208.. code-block:: llvm
2209
2210 i32 (i32) asm "bswap $0", "=r,r"
2211
2212Inline assembler expressions may **only** be used as the callee operand
2213of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2214Thus, typically we have:
2215
2216.. code-block:: llvm
2217
2218 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2219
2220Inline asms with side effects not visible in the constraint list must be
2221marked as having side effects. This is done through the use of the
2222'``sideeffect``' keyword, like so:
2223
2224.. code-block:: llvm
2225
2226 call void asm sideeffect "eieio", ""()
2227
2228In some cases inline asms will contain code that will not work unless
2229the stack is aligned in some way, such as calls or SSE instructions on
2230x86, yet will not contain code that does that alignment within the asm.
2231The compiler should make conservative assumptions about what the asm
2232might contain and should generate its usual stack alignment code in the
2233prologue if the '``alignstack``' keyword is present:
2234
2235.. code-block:: llvm
2236
2237 call void asm alignstack "eieio", ""()
2238
2239Inline asms also support using non-standard assembly dialects. The
2240assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2241the inline asm is using the Intel dialect. Currently, ATT and Intel are
2242the only supported dialects. An example is:
2243
2244.. code-block:: llvm
2245
2246 call void asm inteldialect "eieio", ""()
2247
2248If multiple keywords appear the '``sideeffect``' keyword must come
2249first, the '``alignstack``' keyword second and the '``inteldialect``'
2250keyword last.
2251
2252Inline Asm Metadata
2253^^^^^^^^^^^^^^^^^^^
2254
2255The call instructions that wrap inline asm nodes may have a
2256"``!srcloc``" MDNode attached to it that contains a list of constant
2257integers. If present, the code generator will use the integer as the
2258location cookie value when report errors through the ``LLVMContext``
2259error reporting mechanisms. This allows a front-end to correlate backend
2260errors that occur with inline asm back to the source code that produced
2261it. For example:
2262
2263.. code-block:: llvm
2264
2265 call void asm sideeffect "something bad", ""(), !srcloc !42
2266 ...
2267 !42 = !{ i32 1234567 }
2268
2269It is up to the front-end to make sense of the magic numbers it places
2270in the IR. If the MDNode contains multiple constants, the code generator
2271will use the one that corresponds to the line of the asm that the error
2272occurs on.
2273
2274.. _metadata:
2275
2276Metadata Nodes and Metadata Strings
2277-----------------------------------
2278
2279LLVM IR allows metadata to be attached to instructions in the program
2280that can convey extra information about the code to the optimizers and
2281code generator. One example application of metadata is source-level
2282debug information. There are two metadata primitives: strings and nodes.
2283All metadata has the ``metadata`` type and is identified in syntax by a
2284preceding exclamation point ('``!``').
2285
2286A metadata string is a string surrounded by double quotes. It can
2287contain any character by escaping non-printable characters with
2288"``\xx``" where "``xx``" is the two digit hex code. For example:
2289"``!"test\00"``".
2290
2291Metadata nodes are represented with notation similar to structure
2292constants (a comma separated list of elements, surrounded by braces and
2293preceded by an exclamation point). Metadata nodes can have any values as
2294their operand. For example:
2295
2296.. code-block:: llvm
2297
2298 !{ metadata !"test\00", i32 10}
2299
2300A :ref:`named metadata <namedmetadatastructure>` is a collection of
2301metadata nodes, which can be looked up in the module symbol table. For
2302example:
2303
2304.. code-block:: llvm
2305
2306 !foo = metadata !{!4, !3}
2307
2308Metadata can be used as function arguments. Here ``llvm.dbg.value``
2309function is using two metadata arguments:
2310
2311.. code-block:: llvm
2312
2313 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2314
2315Metadata can be attached with an instruction. Here metadata ``!21`` is
2316attached to the ``add`` instruction using the ``!dbg`` identifier:
2317
2318.. code-block:: llvm
2319
2320 %indvar.next = add i64 %indvar, 1, !dbg !21
2321
2322More information about specific metadata nodes recognized by the
2323optimizers and code generator is found below.
2324
2325'``tbaa``' Metadata
2326^^^^^^^^^^^^^^^^^^^
2327
2328In LLVM IR, memory does not have types, so LLVM's own type system is not
2329suitable for doing TBAA. Instead, metadata is added to the IR to
2330describe a type system of a higher level language. This can be used to
2331implement typical C/C++ TBAA, but it can also be used to implement
2332custom alias analysis behavior for other languages.
2333
2334The current metadata format is very simple. TBAA metadata nodes have up
2335to three fields, e.g.:
2336
2337.. code-block:: llvm
2338
2339 !0 = metadata !{ metadata !"an example type tree" }
2340 !1 = metadata !{ metadata !"int", metadata !0 }
2341 !2 = metadata !{ metadata !"float", metadata !0 }
2342 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2343
2344The first field is an identity field. It can be any value, usually a
2345metadata string, which uniquely identifies the type. The most important
2346name in the tree is the name of the root node. Two trees with different
2347root node names are entirely disjoint, even if they have leaves with
2348common names.
2349
2350The second field identifies the type's parent node in the tree, or is
2351null or omitted for a root node. A type is considered to alias all of
2352its descendants and all of its ancestors in the tree. Also, a type is
2353considered to alias all types in other trees, so that bitcode produced
2354from multiple front-ends is handled conservatively.
2355
2356If the third field is present, it's an integer which if equal to 1
2357indicates that the type is "constant" (meaning
2358``pointsToConstantMemory`` should return true; see `other useful
2359AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2360
2361'``tbaa.struct``' Metadata
2362^^^^^^^^^^^^^^^^^^^^^^^^^^
2363
2364The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2365aggregate assignment operations in C and similar languages, however it
2366is defined to copy a contiguous region of memory, which is more than
2367strictly necessary for aggregate types which contain holes due to
2368padding. Also, it doesn't contain any TBAA information about the fields
2369of the aggregate.
2370
2371``!tbaa.struct`` metadata can describe which memory subregions in a
2372memcpy are padding and what the TBAA tags of the struct are.
2373
2374The current metadata format is very simple. ``!tbaa.struct`` metadata
2375nodes are a list of operands which are in conceptual groups of three.
2376For each group of three, the first operand gives the byte offset of a
2377field in bytes, the second gives its size in bytes, and the third gives
2378its tbaa tag. e.g.:
2379
2380.. code-block:: llvm
2381
2382 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2383
2384This describes a struct with two fields. The first is at offset 0 bytes
2385with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2386and has size 4 bytes and has tbaa tag !2.
2387
2388Note that the fields need not be contiguous. In this example, there is a
23894 byte gap between the two fields. This gap represents padding which
2390does not carry useful data and need not be preserved.
2391
2392'``fpmath``' Metadata
2393^^^^^^^^^^^^^^^^^^^^^
2394
2395``fpmath`` metadata may be attached to any instruction of floating point
2396type. It can be used to express the maximum acceptable error in the
2397result of that instruction, in ULPs, thus potentially allowing the
2398compiler to use a more efficient but less accurate method of computing
2399it. ULP is defined as follows:
2400
2401 If ``x`` is a real number that lies between two finite consecutive
2402 floating-point numbers ``a`` and ``b``, without being equal to one
2403 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2404 distance between the two non-equal finite floating-point numbers
2405 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2406
2407The metadata node shall consist of a single positive floating point
2408number representing the maximum relative error, for example:
2409
2410.. code-block:: llvm
2411
2412 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2413
2414'``range``' Metadata
2415^^^^^^^^^^^^^^^^^^^^
2416
2417``range`` metadata may be attached only to loads of integer types. It
2418expresses the possible ranges the loaded value is in. The ranges are
2419represented with a flattened list of integers. The loaded value is known
2420to be in the union of the ranges defined by each consecutive pair. Each
2421pair has the following properties:
2422
2423- The type must match the type loaded by the instruction.
2424- The pair ``a,b`` represents the range ``[a,b)``.
2425- Both ``a`` and ``b`` are constants.
2426- The range is allowed to wrap.
2427- The range should not represent the full or empty set. That is,
2428 ``a!=b``.
2429
2430In addition, the pairs must be in signed order of the lower bound and
2431they must be non-contiguous.
2432
2433Examples:
2434
2435.. code-block:: llvm
2436
2437 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2438 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2439 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2440 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2441 ...
2442 !0 = metadata !{ i8 0, i8 2 }
2443 !1 = metadata !{ i8 255, i8 2 }
2444 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2445 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2446
2447Module Flags Metadata
2448=====================
2449
2450Information about the module as a whole is difficult to convey to LLVM's
2451subsystems. The LLVM IR isn't sufficient to transmit this information.
2452The ``llvm.module.flags`` named metadata exists in order to facilitate
2453this. These flags are in the form of key / value pairs — much like a
2454dictionary — making it easy for any subsystem who cares about a flag to
2455look it up.
2456
2457The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2458Each triplet has the following form:
2459
2460- The first element is a *behavior* flag, which specifies the behavior
2461 when two (or more) modules are merged together, and it encounters two
2462 (or more) metadata with the same ID. The supported behaviors are
2463 described below.
2464- The second element is a metadata string that is a unique ID for the
2465 metadata. How each ID is interpreted is documented below.
2466- The third element is the value of the flag.
2467
2468When two (or more) modules are merged together, the resulting
2469``llvm.module.flags`` metadata is the union of the modules'
2470``llvm.module.flags`` metadata. The only exception being a flag with the
2471*Override* behavior, which may override another flag's value (see
2472below).
2473
2474The following behaviors are supported:
2475
2476.. list-table::
2477 :header-rows: 1
2478 :widths: 10 90
2479
2480 * - Value
2481 - Behavior
2482
2483 * - 1
2484 - **Error**
2485 Emits an error if two values disagree. It is an error to have an
2486 ID with both an Error and a Warning behavior.
2487
2488 * - 2
2489 - **Warning**
2490 Emits a warning if two values disagree.
2491
2492 * - 3
2493 - **Require**
2494 Emits an error when the specified value is not present or doesn't
2495 have the specified value. It is an error for two (or more)
2496 ``llvm.module.flags`` with the same ID to have the Require behavior
2497 but different values. There may be multiple Require flags per ID.
2498
2499 * - 4
2500 - **Override**
2501 Uses the specified value if the two values disagree. It is an
2502 error for two (or more) ``llvm.module.flags`` with the same ID
2503 to have the Override behavior but different values.
2504
2505An example of module flags:
2506
2507.. code-block:: llvm
2508
2509 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2510 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2511 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2512 !3 = metadata !{ i32 3, metadata !"qux",
2513 metadata !{
2514 metadata !"foo", i32 1
2515 }
2516 }
2517 !llvm.module.flags = !{ !0, !1, !2, !3 }
2518
2519- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2520 if two or more ``!"foo"`` flags are seen is to emit an error if their
2521 values are not equal.
2522
2523- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2524 behavior if two or more ``!"bar"`` flags are seen is to use the value
2525 '37' if their values are not equal.
2526
2527- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2528 behavior if two or more ``!"qux"`` flags are seen is to emit a
2529 warning if their values are not equal.
2530
2531- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2532
2533 ::
2534
2535 metadata !{ metadata !"foo", i32 1 }
2536
2537 The behavior is to emit an error if the ``llvm.module.flags`` does
2538 not contain a flag with the ID ``!"foo"`` that has the value '1'. If
2539 two or more ``!"qux"`` flags exist, then they must have the same
2540 value or an error will be issued.
2541
2542Objective-C Garbage Collection Module Flags Metadata
2543----------------------------------------------------
2544
2545On the Mach-O platform, Objective-C stores metadata about garbage
2546collection in a special section called "image info". The metadata
2547consists of a version number and a bitmask specifying what types of
2548garbage collection are supported (if any) by the file. If two or more
2549modules are linked together their garbage collection metadata needs to
2550be merged rather than appended together.
2551
2552The Objective-C garbage collection module flags metadata consists of the
2553following key-value pairs:
2554
2555.. list-table::
2556 :header-rows: 1
2557 :widths: 30 70
2558
2559 * - Key
2560 - Value
2561
2562 * - ``Objective-C Version``
2563 - **[Required]** — The Objective-C ABI version. Valid values are 1 and 2.
2564
2565 * - ``Objective-C Image Info Version``
2566 - **[Required]** — The version of the image info section. Currently
2567 always 0.
2568
2569 * - ``Objective-C Image Info Section``
2570 - **[Required]** — The section to place the metadata. Valid values are
2571 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2572 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2573 Objective-C ABI version 2.
2574
2575 * - ``Objective-C Garbage Collection``
2576 - **[Required]** — Specifies whether garbage collection is supported or
2577 not. Valid values are 0, for no garbage collection, and 2, for garbage
2578 collection supported.
2579
2580 * - ``Objective-C GC Only``
2581 - **[Optional]** — Specifies that only garbage collection is supported.
2582 If present, its value must be 6. This flag requires that the
2583 ``Objective-C Garbage Collection`` flag have the value 2.
2584
2585Some important flag interactions:
2586
2587- If a module with ``Objective-C Garbage Collection`` set to 0 is
2588 merged with a module with ``Objective-C Garbage Collection`` set to
2589 2, then the resulting module has the
2590 ``Objective-C Garbage Collection`` flag set to 0.
2591- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2592 merged with a module with ``Objective-C GC Only`` set to 6.
2593
2594Intrinsic Global Variables
2595==========================
2596
2597LLVM has a number of "magic" global variables that contain data that
2598affect code generation or other IR semantics. These are documented here.
2599All globals of this sort should have a section specified as
2600"``llvm.metadata``". This section and all globals that start with
2601"``llvm.``" are reserved for use by LLVM.
2602
2603The '``llvm.used``' Global Variable
2604-----------------------------------
2605
2606The ``@llvm.used`` global is an array with i8\* element type which has
2607:ref:`appending linkage <linkage_appending>`. This array contains a list of
2608pointers to global variables and functions which may optionally have a
2609pointer cast formed of bitcast or getelementptr. For example, a legal
2610use of it is:
2611
2612.. code-block:: llvm
2613
2614 @X = global i8 4
2615 @Y = global i32 123
2616
2617 @llvm.used = appending global [2 x i8*] [
2618 i8* @X,
2619 i8* bitcast (i32* @Y to i8*)
2620 ], section "llvm.metadata"
2621
2622If a global variable appears in the ``@llvm.used`` list, then the
2623compiler, assembler, and linker are required to treat the symbol as if
2624there is a reference to the global that it cannot see. For example, if a
2625variable has internal linkage and no references other than that from the
2626``@llvm.used`` list, it cannot be deleted. This is commonly used to
2627represent references from inline asms and other things the compiler
2628cannot "see", and corresponds to "``attribute((used))``" in GNU C.
2629
2630On some targets, the code generator must emit a directive to the
2631assembler or object file to prevent the assembler and linker from
2632molesting the symbol.
2633
2634The '``llvm.compiler.used``' Global Variable
2635--------------------------------------------
2636
2637The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2638directive, except that it only prevents the compiler from touching the
2639symbol. On targets that support it, this allows an intelligent linker to
2640optimize references to the symbol without being impeded as it would be
2641by ``@llvm.used``.
2642
2643This is a rare construct that should only be used in rare circumstances,
2644and should not be exposed to source languages.
2645
2646The '``llvm.global_ctors``' Global Variable
2647-------------------------------------------
2648
2649.. code-block:: llvm
2650
2651 %0 = type { i32, void ()* }
2652 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2653
2654The ``@llvm.global_ctors`` array contains a list of constructor
2655functions and associated priorities. The functions referenced by this
2656array will be called in ascending order of priority (i.e. lowest first)
2657when the module is loaded. The order of functions with the same priority
2658is not defined.
2659
2660The '``llvm.global_dtors``' Global Variable
2661-------------------------------------------
2662
2663.. code-block:: llvm
2664
2665 %0 = type { i32, void ()* }
2666 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2667
2668The ``@llvm.global_dtors`` array contains a list of destructor functions
2669and associated priorities. The functions referenced by this array will
2670be called in descending order of priority (i.e. highest first) when the
2671module is loaded. The order of functions with the same priority is not
2672defined.
2673
2674Instruction Reference
2675=====================
2676
2677The LLVM instruction set consists of several different classifications
2678of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2679instructions <binaryops>`, :ref:`bitwise binary
2680instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2681:ref:`other instructions <otherops>`.
2682
2683.. _terminators:
2684
2685Terminator Instructions
2686-----------------------
2687
2688As mentioned :ref:`previously <functionstructure>`, every basic block in a
2689program ends with a "Terminator" instruction, which indicates which
2690block should be executed after the current block is finished. These
2691terminator instructions typically yield a '``void``' value: they produce
2692control flow, not values (the one exception being the
2693':ref:`invoke <i_invoke>`' instruction).
2694
2695The terminator instructions are: ':ref:`ret <i_ret>`',
2696':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2697':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2698':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2699
2700.. _i_ret:
2701
2702'``ret``' Instruction
2703^^^^^^^^^^^^^^^^^^^^^
2704
2705Syntax:
2706"""""""
2707
2708::
2709
2710 ret <type> <value> ; Return a value from a non-void function
2711 ret void ; Return from void function
2712
2713Overview:
2714"""""""""
2715
2716The '``ret``' instruction is used to return control flow (and optionally
2717a value) from a function back to the caller.
2718
2719There are two forms of the '``ret``' instruction: one that returns a
2720value and then causes control flow, and one that just causes control
2721flow to occur.
2722
2723Arguments:
2724""""""""""
2725
2726The '``ret``' instruction optionally accepts a single argument, the
2727return value. The type of the return value must be a ':ref:`first
2728class <t_firstclass>`' type.
2729
2730A function is not :ref:`well formed <wellformed>` if it it has a non-void
2731return type and contains a '``ret``' instruction with no return value or
2732a return value with a type that does not match its type, or if it has a
2733void return type and contains a '``ret``' instruction with a return
2734value.
2735
2736Semantics:
2737""""""""""
2738
2739When the '``ret``' instruction is executed, control flow returns back to
2740the calling function's context. If the caller is a
2741":ref:`call <i_call>`" instruction, execution continues at the
2742instruction after the call. If the caller was an
2743":ref:`invoke <i_invoke>`" instruction, execution continues at the
2744beginning of the "normal" destination block. If the instruction returns
2745a value, that value shall set the call or invoke instruction's return
2746value.
2747
2748Example:
2749""""""""
2750
2751.. code-block:: llvm
2752
2753 ret i32 5 ; Return an integer value of 5
2754 ret void ; Return from a void function
2755 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
2756
2757.. _i_br:
2758
2759'``br``' Instruction
2760^^^^^^^^^^^^^^^^^^^^
2761
2762Syntax:
2763"""""""
2764
2765::
2766
2767 br i1 <cond>, label <iftrue>, label <iffalse>
2768 br label <dest> ; Unconditional branch
2769
2770Overview:
2771"""""""""
2772
2773The '``br``' instruction is used to cause control flow to transfer to a
2774different basic block in the current function. There are two forms of
2775this instruction, corresponding to a conditional branch and an
2776unconditional branch.
2777
2778Arguments:
2779""""""""""
2780
2781The conditional branch form of the '``br``' instruction takes a single
2782'``i1``' value and two '``label``' values. The unconditional form of the
2783'``br``' instruction takes a single '``label``' value as a target.
2784
2785Semantics:
2786""""""""""
2787
2788Upon execution of a conditional '``br``' instruction, the '``i1``'
2789argument is evaluated. If the value is ``true``, control flows to the
2790'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
2791to the '``iffalse``' ``label`` argument.
2792
2793Example:
2794""""""""
2795
2796.. code-block:: llvm
2797
2798 Test:
2799 %cond = icmp eq i32 %a, %b
2800 br i1 %cond, label %IfEqual, label %IfUnequal
2801 IfEqual:
2802 ret i32 1
2803 IfUnequal:
2804 ret i32 0
2805
2806.. _i_switch:
2807
2808'``switch``' Instruction
2809^^^^^^^^^^^^^^^^^^^^^^^^
2810
2811Syntax:
2812"""""""
2813
2814::
2815
2816 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
2817
2818Overview:
2819"""""""""
2820
2821The '``switch``' instruction is used to transfer control flow to one of
2822several different places. It is a generalization of the '``br``'
2823instruction, allowing a branch to occur to one of many possible
2824destinations.
2825
2826Arguments:
2827""""""""""
2828
2829The '``switch``' instruction uses three parameters: an integer
2830comparison value '``value``', a default '``label``' destination, and an
2831array of pairs of comparison value constants and '``label``'s. The table
2832is not allowed to contain duplicate constant entries.
2833
2834Semantics:
2835""""""""""
2836
2837The ``switch`` instruction specifies a table of values and destinations.
2838When the '``switch``' instruction is executed, this table is searched
2839for the given value. If the value is found, control flow is transferred
2840to the corresponding destination; otherwise, control flow is transferred
2841to the default destination.
2842
2843Implementation:
2844"""""""""""""""
2845
2846Depending on properties of the target machine and the particular
2847``switch`` instruction, this instruction may be code generated in
2848different ways. For example, it could be generated as a series of
2849chained conditional branches or with a lookup table.
2850
2851Example:
2852""""""""
2853
2854.. code-block:: llvm
2855
2856 ; Emulate a conditional br instruction
2857 %Val = zext i1 %value to i32
2858 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2859
2860 ; Emulate an unconditional br instruction
2861 switch i32 0, label %dest [ ]
2862
2863 ; Implement a jump table:
2864 switch i32 %val, label %otherwise [ i32 0, label %onzero
2865 i32 1, label %onone
2866 i32 2, label %ontwo ]
2867
2868.. _i_indirectbr:
2869
2870'``indirectbr``' Instruction
2871^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2872
2873Syntax:
2874"""""""
2875
2876::
2877
2878 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
2879
2880Overview:
2881"""""""""
2882
2883The '``indirectbr``' instruction implements an indirect branch to a
2884label within the current function, whose address is specified by
2885"``address``". Address must be derived from a
2886:ref:`blockaddress <blockaddress>` constant.
2887
2888Arguments:
2889""""""""""
2890
2891The '``address``' argument is the address of the label to jump to. The
2892rest of the arguments indicate the full set of possible destinations
2893that the address may point to. Blocks are allowed to occur multiple
2894times in the destination list, though this isn't particularly useful.
2895
2896This destination list is required so that dataflow analysis has an
2897accurate understanding of the CFG.
2898
2899Semantics:
2900""""""""""
2901
2902Control transfers to the block specified in the address argument. All
2903possible destination blocks must be listed in the label list, otherwise
2904this instruction has undefined behavior. This implies that jumps to
2905labels defined in other functions have undefined behavior as well.
2906
2907Implementation:
2908"""""""""""""""
2909
2910This is typically implemented with a jump through a register.
2911
2912Example:
2913""""""""
2914
2915.. code-block:: llvm
2916
2917 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
2918
2919.. _i_invoke:
2920
2921'``invoke``' Instruction
2922^^^^^^^^^^^^^^^^^^^^^^^^
2923
2924Syntax:
2925"""""""
2926
2927::
2928
2929 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
2930 to label <normal label> unwind label <exception label>
2931
2932Overview:
2933"""""""""
2934
2935The '``invoke``' instruction causes control to transfer to a specified
2936function, with the possibility of control flow transfer to either the
2937'``normal``' label or the '``exception``' label. If the callee function
2938returns with the "``ret``" instruction, control flow will return to the
2939"normal" label. If the callee (or any indirect callees) returns via the
2940":ref:`resume <i_resume>`" instruction or other exception handling
2941mechanism, control is interrupted and continued at the dynamically
2942nearest "exception" label.
2943
2944The '``exception``' label is a `landing
2945pad <ExceptionHandling.html#overview>`_ for the exception. As such,
2946'``exception``' label is required to have the
2947":ref:`landingpad <i_landingpad>`" instruction, which contains the
2948information about the behavior of the program after unwinding happens,
2949as its first non-PHI instruction. The restrictions on the
2950"``landingpad``" instruction's tightly couples it to the "``invoke``"
2951instruction, so that the important information contained within the
2952"``landingpad``" instruction can't be lost through normal code motion.
2953
2954Arguments:
2955""""""""""
2956
2957This instruction requires several arguments:
2958
2959#. The optional "cconv" marker indicates which :ref:`calling
2960 convention <callingconv>` the call should use. If none is
2961 specified, the call defaults to using C calling conventions.
2962#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
2963 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
2964 are valid here.
2965#. '``ptr to function ty``': shall be the signature of the pointer to
2966 function value being invoked. In most cases, this is a direct
2967 function invocation, but indirect ``invoke``'s are just as possible,
2968 branching off an arbitrary pointer to function value.
2969#. '``function ptr val``': An LLVM value containing a pointer to a
2970 function to be invoked.
2971#. '``function args``': argument list whose types match the function
2972 signature argument types and parameter attributes. All arguments must
2973 be of :ref:`first class <t_firstclass>` type. If the function signature
2974 indicates the function accepts a variable number of arguments, the
2975 extra arguments can be specified.
2976#. '``normal label``': the label reached when the called function
2977 executes a '``ret``' instruction.
2978#. '``exception label``': the label reached when a callee returns via
2979 the :ref:`resume <i_resume>` instruction or other exception handling
2980 mechanism.
2981#. The optional :ref:`function attributes <fnattrs>` list. Only
2982 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
2983 attributes are valid here.
2984
2985Semantics:
2986""""""""""
2987
2988This instruction is designed to operate as a standard '``call``'
2989instruction in most regards. The primary difference is that it
2990establishes an association with a label, which is used by the runtime
2991library to unwind the stack.
2992
2993This instruction is used in languages with destructors to ensure that
2994proper cleanup is performed in the case of either a ``longjmp`` or a
2995thrown exception. Additionally, this is important for implementation of
2996'``catch``' clauses in high-level languages that support them.
2997
2998For the purposes of the SSA form, the definition of the value returned
2999by the '``invoke``' instruction is deemed to occur on the edge from the
3000current block to the "normal" label. If the callee unwinds then no
3001return value is available.
3002
3003Example:
3004""""""""
3005
3006.. code-block:: llvm
3007
3008 %retval = invoke i32 @Test(i32 15) to label %Continue
3009 unwind label %TestCleanup ; {i32}:retval set
3010 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3011 unwind label %TestCleanup ; {i32}:retval set
3012
3013.. _i_resume:
3014
3015'``resume``' Instruction
3016^^^^^^^^^^^^^^^^^^^^^^^^
3017
3018Syntax:
3019"""""""
3020
3021::
3022
3023 resume <type> <value>
3024
3025Overview:
3026"""""""""
3027
3028The '``resume``' instruction is a terminator instruction that has no
3029successors.
3030
3031Arguments:
3032""""""""""
3033
3034The '``resume``' instruction requires one argument, which must have the
3035same type as the result of any '``landingpad``' instruction in the same
3036function.
3037
3038Semantics:
3039""""""""""
3040
3041The '``resume``' instruction resumes propagation of an existing
3042(in-flight) exception whose unwinding was interrupted with a
3043:ref:`landingpad <i_landingpad>` instruction.
3044
3045Example:
3046""""""""
3047
3048.. code-block:: llvm
3049
3050 resume { i8*, i32 } %exn
3051
3052.. _i_unreachable:
3053
3054'``unreachable``' Instruction
3055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3056
3057Syntax:
3058"""""""
3059
3060::
3061
3062 unreachable
3063
3064Overview:
3065"""""""""
3066
3067The '``unreachable``' instruction has no defined semantics. This
3068instruction is used to inform the optimizer that a particular portion of
3069the code is not reachable. This can be used to indicate that the code
3070after a no-return function cannot be reached, and other facts.
3071
3072Semantics:
3073""""""""""
3074
3075The '``unreachable``' instruction has no defined semantics.
3076
3077.. _binaryops:
3078
3079Binary Operations
3080-----------------
3081
3082Binary operators are used to do most of the computation in a program.
3083They require two operands of the same type, execute an operation on
3084them, and produce a single value. The operands might represent multiple
3085data, as is the case with the :ref:`vector <t_vector>` data type. The
3086result value has the same type as its operands.
3087
3088There are several different binary operators:
3089
3090.. _i_add:
3091
3092'``add``' Instruction
3093^^^^^^^^^^^^^^^^^^^^^
3094
3095Syntax:
3096"""""""
3097
3098::
3099
3100 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3101 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3102 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3103 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3104
3105Overview:
3106"""""""""
3107
3108The '``add``' instruction returns the sum of its two operands.
3109
3110Arguments:
3111""""""""""
3112
3113The two arguments to the '``add``' instruction must be
3114:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3115arguments must have identical types.
3116
3117Semantics:
3118""""""""""
3119
3120The value produced is the integer sum of the two operands.
3121
3122If the sum has unsigned overflow, the result returned is the
3123mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3124the result.
3125
3126Because LLVM integers use a two's complement representation, this
3127instruction is appropriate for both signed and unsigned integers.
3128
3129``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3130respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3131result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3132unsigned and/or signed overflow, respectively, occurs.
3133
3134Example:
3135""""""""
3136
3137.. code-block:: llvm
3138
3139 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3140
3141.. _i_fadd:
3142
3143'``fadd``' Instruction
3144^^^^^^^^^^^^^^^^^^^^^^
3145
3146Syntax:
3147"""""""
3148
3149::
3150
3151 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3152
3153Overview:
3154"""""""""
3155
3156The '``fadd``' instruction returns the sum of its two operands.
3157
3158Arguments:
3159""""""""""
3160
3161The two arguments to the '``fadd``' instruction must be :ref:`floating
3162point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3163Both arguments must have identical types.
3164
3165Semantics:
3166""""""""""
3167
3168The value produced is the floating point sum of the two operands. This
3169instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3170which are optimization hints to enable otherwise unsafe floating point
3171optimizations:
3172
3173Example:
3174""""""""
3175
3176.. code-block:: llvm
3177
3178 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3179
3180'``sub``' Instruction
3181^^^^^^^^^^^^^^^^^^^^^
3182
3183Syntax:
3184"""""""
3185
3186::
3187
3188 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3189 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3190 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3191 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3192
3193Overview:
3194"""""""""
3195
3196The '``sub``' instruction returns the difference of its two operands.
3197
3198Note that the '``sub``' instruction is used to represent the '``neg``'
3199instruction present in most other intermediate representations.
3200
3201Arguments:
3202""""""""""
3203
3204The two arguments to the '``sub``' instruction must be
3205:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3206arguments must have identical types.
3207
3208Semantics:
3209""""""""""
3210
3211The value produced is the integer difference of the two operands.
3212
3213If the difference has unsigned overflow, the result returned is the
3214mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3215the result.
3216
3217Because LLVM integers use a two's complement representation, this
3218instruction is appropriate for both signed and unsigned integers.
3219
3220``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3221respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3222result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3223unsigned and/or signed overflow, respectively, occurs.
3224
3225Example:
3226""""""""
3227
3228.. code-block:: llvm
3229
3230 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3231 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3232
3233.. _i_fsub:
3234
3235'``fsub``' Instruction
3236^^^^^^^^^^^^^^^^^^^^^^
3237
3238Syntax:
3239"""""""
3240
3241::
3242
3243 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3244
3245Overview:
3246"""""""""
3247
3248The '``fsub``' instruction returns the difference of its two operands.
3249
3250Note that the '``fsub``' instruction is used to represent the '``fneg``'
3251instruction present in most other intermediate representations.
3252
3253Arguments:
3254""""""""""
3255
3256The two arguments to the '``fsub``' instruction must be :ref:`floating
3257point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3258Both arguments must have identical types.
3259
3260Semantics:
3261""""""""""
3262
3263The value produced is the floating point difference of the two operands.
3264This instruction can also take any number of :ref:`fast-math
3265flags <fastmath>`, which are optimization hints to enable otherwise
3266unsafe floating point optimizations:
3267
3268Example:
3269""""""""
3270
3271.. code-block:: llvm
3272
3273 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3274 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3275
3276'``mul``' Instruction
3277^^^^^^^^^^^^^^^^^^^^^
3278
3279Syntax:
3280"""""""
3281
3282::
3283
3284 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3285 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3286 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3287 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3288
3289Overview:
3290"""""""""
3291
3292The '``mul``' instruction returns the product of its two operands.
3293
3294Arguments:
3295""""""""""
3296
3297The two arguments to the '``mul``' instruction must be
3298:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3299arguments must have identical types.
3300
3301Semantics:
3302""""""""""
3303
3304The value produced is the integer product of the two operands.
3305
3306If the result of the multiplication has unsigned overflow, the result
3307returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3308bit width of the result.
3309
3310Because LLVM integers use a two's complement representation, and the
3311result is the same width as the operands, this instruction returns the
3312correct result for both signed and unsigned integers. If a full product
3313(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3314sign-extended or zero-extended as appropriate to the width of the full
3315product.
3316
3317``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3318respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3319result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3320unsigned and/or signed overflow, respectively, occurs.
3321
3322Example:
3323""""""""
3324
3325.. code-block:: llvm
3326
3327 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3328
3329.. _i_fmul:
3330
3331'``fmul``' Instruction
3332^^^^^^^^^^^^^^^^^^^^^^
3333
3334Syntax:
3335"""""""
3336
3337::
3338
3339 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3340
3341Overview:
3342"""""""""
3343
3344The '``fmul``' instruction returns the product of its two operands.
3345
3346Arguments:
3347""""""""""
3348
3349The two arguments to the '``fmul``' instruction must be :ref:`floating
3350point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3351Both arguments must have identical types.
3352
3353Semantics:
3354""""""""""
3355
3356The value produced is the floating point product of the two operands.
3357This instruction can also take any number of :ref:`fast-math
3358flags <fastmath>`, which are optimization hints to enable otherwise
3359unsafe floating point optimizations:
3360
3361Example:
3362""""""""
3363
3364.. code-block:: llvm
3365
3366 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3367
3368'``udiv``' Instruction
3369^^^^^^^^^^^^^^^^^^^^^^
3370
3371Syntax:
3372"""""""
3373
3374::
3375
3376 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3377 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3378
3379Overview:
3380"""""""""
3381
3382The '``udiv``' instruction returns the quotient of its two operands.
3383
3384Arguments:
3385""""""""""
3386
3387The two arguments to the '``udiv``' instruction must be
3388:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3389arguments must have identical types.
3390
3391Semantics:
3392""""""""""
3393
3394The value produced is the unsigned integer quotient of the two operands.
3395
3396Note that unsigned integer division and signed integer division are
3397distinct operations; for signed integer division, use '``sdiv``'.
3398
3399Division by zero leads to undefined behavior.
3400
3401If the ``exact`` keyword is present, the result value of the ``udiv`` is
3402a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3403such, "((a udiv exact b) mul b) == a").
3404
3405Example:
3406""""""""
3407
3408.. code-block:: llvm
3409
3410 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3411
3412'``sdiv``' Instruction
3413^^^^^^^^^^^^^^^^^^^^^^
3414
3415Syntax:
3416"""""""
3417
3418::
3419
3420 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3421 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3422
3423Overview:
3424"""""""""
3425
3426The '``sdiv``' instruction returns the quotient of its two operands.
3427
3428Arguments:
3429""""""""""
3430
3431The two arguments to the '``sdiv``' instruction must be
3432:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3433arguments must have identical types.
3434
3435Semantics:
3436""""""""""
3437
3438The value produced is the signed integer quotient of the two operands
3439rounded towards zero.
3440
3441Note that signed integer division and unsigned integer division are
3442distinct operations; for unsigned integer division, use '``udiv``'.
3443
3444Division by zero leads to undefined behavior. Overflow also leads to
3445undefined behavior; this is a rare case, but can occur, for example, by
3446doing a 32-bit division of -2147483648 by -1.
3447
3448If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3449a :ref:`poison value <poisonvalues>` if the result would be rounded.
3450
3451Example:
3452""""""""
3453
3454.. code-block:: llvm
3455
3456 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3457
3458.. _i_fdiv:
3459
3460'``fdiv``' Instruction
3461^^^^^^^^^^^^^^^^^^^^^^
3462
3463Syntax:
3464"""""""
3465
3466::
3467
3468 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3469
3470Overview:
3471"""""""""
3472
3473The '``fdiv``' instruction returns the quotient of its two operands.
3474
3475Arguments:
3476""""""""""
3477
3478The two arguments to the '``fdiv``' instruction must be :ref:`floating
3479point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3480Both arguments must have identical types.
3481
3482Semantics:
3483""""""""""
3484
3485The value produced is the floating point quotient of the two operands.
3486This instruction can also take any number of :ref:`fast-math
3487flags <fastmath>`, which are optimization hints to enable otherwise
3488unsafe floating point optimizations:
3489
3490Example:
3491""""""""
3492
3493.. code-block:: llvm
3494
3495 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3496
3497'``urem``' Instruction
3498^^^^^^^^^^^^^^^^^^^^^^
3499
3500Syntax:
3501"""""""
3502
3503::
3504
3505 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3506
3507Overview:
3508"""""""""
3509
3510The '``urem``' instruction returns the remainder from the unsigned
3511division of its two arguments.
3512
3513Arguments:
3514""""""""""
3515
3516The two arguments to the '``urem``' instruction must be
3517:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3518arguments must have identical types.
3519
3520Semantics:
3521""""""""""
3522
3523This instruction returns the unsigned integer *remainder* of a division.
3524This instruction always performs an unsigned division to get the
3525remainder.
3526
3527Note that unsigned integer remainder and signed integer remainder are
3528distinct operations; for signed integer remainder, use '``srem``'.
3529
3530Taking the remainder of a division by zero leads to undefined behavior.
3531
3532Example:
3533""""""""
3534
3535.. code-block:: llvm
3536
3537 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3538
3539'``srem``' Instruction
3540^^^^^^^^^^^^^^^^^^^^^^
3541
3542Syntax:
3543"""""""
3544
3545::
3546
3547 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3548
3549Overview:
3550"""""""""
3551
3552The '``srem``' instruction returns the remainder from the signed
3553division of its two operands. This instruction can also take
3554:ref:`vector <t_vector>` versions of the values in which case the elements
3555must be integers.
3556
3557Arguments:
3558""""""""""
3559
3560The two arguments to the '``srem``' instruction must be
3561:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3562arguments must have identical types.
3563
3564Semantics:
3565""""""""""
3566
3567This instruction returns the *remainder* of a division (where the result
3568is either zero or has the same sign as the dividend, ``op1``), not the
3569*modulo* operator (where the result is either zero or has the same sign
3570as the divisor, ``op2``) of a value. For more information about the
3571difference, see `The Math
3572Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3573table of how this is implemented in various languages, please see
3574`Wikipedia: modulo
3575operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3576
3577Note that signed integer remainder and unsigned integer remainder are
3578distinct operations; for unsigned integer remainder, use '``urem``'.
3579
3580Taking the remainder of a division by zero leads to undefined behavior.
3581Overflow also leads to undefined behavior; this is a rare case, but can
3582occur, for example, by taking the remainder of a 32-bit division of
3583-2147483648 by -1. (The remainder doesn't actually overflow, but this
3584rule lets srem be implemented using instructions that return both the
3585result of the division and the remainder.)
3586
3587Example:
3588""""""""
3589
3590.. code-block:: llvm
3591
3592 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3593
3594.. _i_frem:
3595
3596'``frem``' Instruction
3597^^^^^^^^^^^^^^^^^^^^^^
3598
3599Syntax:
3600"""""""
3601
3602::
3603
3604 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3605
3606Overview:
3607"""""""""
3608
3609The '``frem``' instruction returns the remainder from the division of
3610its two operands.
3611
3612Arguments:
3613""""""""""
3614
3615The two arguments to the '``frem``' instruction must be :ref:`floating
3616point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3617Both arguments must have identical types.
3618
3619Semantics:
3620""""""""""
3621
3622This instruction returns the *remainder* of a division. The remainder
3623has the same sign as the dividend. This instruction can also take any
3624number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3625to enable otherwise unsafe floating point optimizations:
3626
3627Example:
3628""""""""
3629
3630.. code-block:: llvm
3631
3632 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3633
3634.. _bitwiseops:
3635
3636Bitwise Binary Operations
3637-------------------------
3638
3639Bitwise binary operators are used to do various forms of bit-twiddling
3640in a program. They are generally very efficient instructions and can
3641commonly be strength reduced from other instructions. They require two
3642operands of the same type, execute an operation on them, and produce a
3643single value. The resulting value is the same type as its operands.
3644
3645'``shl``' Instruction
3646^^^^^^^^^^^^^^^^^^^^^
3647
3648Syntax:
3649"""""""
3650
3651::
3652
3653 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3654 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3655 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3656 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3657
3658Overview:
3659"""""""""
3660
3661The '``shl``' instruction returns the first operand shifted to the left
3662a specified number of bits.
3663
3664Arguments:
3665""""""""""
3666
3667Both arguments to the '``shl``' instruction must be the same
3668:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3669'``op2``' is treated as an unsigned value.
3670
3671Semantics:
3672""""""""""
3673
3674The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3675where ``n`` is the width of the result. If ``op2`` is (statically or
3676dynamically) negative or equal to or larger than the number of bits in
3677``op1``, the result is undefined. If the arguments are vectors, each
3678vector element of ``op1`` is shifted by the corresponding shift amount
3679in ``op2``.
3680
3681If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3682value <poisonvalues>` if it shifts out any non-zero bits. If the
3683``nsw`` keyword is present, then the shift produces a :ref:`poison
3684value <poisonvalues>` if it shifts out any bits that disagree with the
3685resultant sign bit. As such, NUW/NSW have the same semantics as they
3686would if the shift were expressed as a mul instruction with the same
3687nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3688
3689Example:
3690""""""""
3691
3692.. code-block:: llvm
3693
3694 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3695 <result> = shl i32 4, 2 ; yields {i32}: 16
3696 <result> = shl i32 1, 10 ; yields {i32}: 1024
3697 <result> = shl i32 1, 32 ; undefined
3698 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3699
3700'``lshr``' Instruction
3701^^^^^^^^^^^^^^^^^^^^^^
3702
3703Syntax:
3704"""""""
3705
3706::
3707
3708 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3709 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3710
3711Overview:
3712"""""""""
3713
3714The '``lshr``' instruction (logical shift right) returns the first
3715operand shifted to the right a specified number of bits with zero fill.
3716
3717Arguments:
3718""""""""""
3719
3720Both arguments to the '``lshr``' instruction must be the same
3721:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3722'``op2``' is treated as an unsigned value.
3723
3724Semantics:
3725""""""""""
3726
3727This instruction always performs a logical shift right operation. The
3728most significant bits of the result will be filled with zero bits after
3729the shift. If ``op2`` is (statically or dynamically) equal to or larger
3730than the number of bits in ``op1``, the result is undefined. If the
3731arguments are vectors, each vector element of ``op1`` is shifted by the
3732corresponding shift amount in ``op2``.
3733
3734If the ``exact`` keyword is present, the result value of the ``lshr`` is
3735a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3736non-zero.
3737
3738Example:
3739""""""""
3740
3741.. code-block:: llvm
3742
3743 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
3744 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
3745 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
3746 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7FFFFFFF
3747 <result> = lshr i32 1, 32 ; undefined
3748 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
3749
3750'``ashr``' Instruction
3751^^^^^^^^^^^^^^^^^^^^^^
3752
3753Syntax:
3754"""""""
3755
3756::
3757
3758 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
3759 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
3760
3761Overview:
3762"""""""""
3763
3764The '``ashr``' instruction (arithmetic shift right) returns the first
3765operand shifted to the right a specified number of bits with sign
3766extension.
3767
3768Arguments:
3769""""""""""
3770
3771Both arguments to the '``ashr``' instruction must be the same
3772:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3773'``op2``' is treated as an unsigned value.
3774
3775Semantics:
3776""""""""""
3777
3778This instruction always performs an arithmetic shift right operation,
3779The most significant bits of the result will be filled with the sign bit
3780of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
3781than the number of bits in ``op1``, the result is undefined. If the
3782arguments are vectors, each vector element of ``op1`` is shifted by the
3783corresponding shift amount in ``op2``.
3784
3785If the ``exact`` keyword is present, the result value of the ``ashr`` is
3786a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
3787non-zero.
3788
3789Example:
3790""""""""
3791
3792.. code-block:: llvm
3793
3794 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
3795 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
3796 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
3797 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
3798 <result> = ashr i32 1, 32 ; undefined
3799 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
3800
3801'``and``' Instruction
3802^^^^^^^^^^^^^^^^^^^^^
3803
3804Syntax:
3805"""""""
3806
3807::
3808
3809 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
3810
3811Overview:
3812"""""""""
3813
3814The '``and``' instruction returns the bitwise logical and of its two
3815operands.
3816
3817Arguments:
3818""""""""""
3819
3820The two arguments to the '``and``' instruction must be
3821:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3822arguments must have identical types.
3823
3824Semantics:
3825""""""""""
3826
3827The truth table used for the '``and``' instruction is:
3828
3829+-----+-----+-----+
3830| In0 | In1 | Out |
3831+-----+-----+-----+
3832| 0 | 0 | 0 |
3833+-----+-----+-----+
3834| 0 | 1 | 0 |
3835+-----+-----+-----+
3836| 1 | 0 | 0 |
3837+-----+-----+-----+
3838| 1 | 1 | 1 |
3839+-----+-----+-----+
3840
3841Example:
3842""""""""
3843
3844.. code-block:: llvm
3845
3846 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
3847 <result> = and i32 15, 40 ; yields {i32}:result = 8
3848 <result> = and i32 4, 8 ; yields {i32}:result = 0
3849
3850'``or``' Instruction
3851^^^^^^^^^^^^^^^^^^^^
3852
3853Syntax:
3854"""""""
3855
3856::
3857
3858 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
3859
3860Overview:
3861"""""""""
3862
3863The '``or``' instruction returns the bitwise logical inclusive or of its
3864two operands.
3865
3866Arguments:
3867""""""""""
3868
3869The two arguments to the '``or``' instruction must be
3870:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3871arguments must have identical types.
3872
3873Semantics:
3874""""""""""
3875
3876The truth table used for the '``or``' instruction is:
3877
3878+-----+-----+-----+
3879| In0 | In1 | Out |
3880+-----+-----+-----+
3881| 0 | 0 | 0 |
3882+-----+-----+-----+
3883| 0 | 1 | 1 |
3884+-----+-----+-----+
3885| 1 | 0 | 1 |
3886+-----+-----+-----+
3887| 1 | 1 | 1 |
3888+-----+-----+-----+
3889
3890Example:
3891""""""""
3892
3893::
3894
3895 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
3896 <result> = or i32 15, 40 ; yields {i32}:result = 47
3897 <result> = or i32 4, 8 ; yields {i32}:result = 12
3898
3899'``xor``' Instruction
3900^^^^^^^^^^^^^^^^^^^^^
3901
3902Syntax:
3903"""""""
3904
3905::
3906
3907 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
3908
3909Overview:
3910"""""""""
3911
3912The '``xor``' instruction returns the bitwise logical exclusive or of
3913its two operands. The ``xor`` is used to implement the "one's
3914complement" operation, which is the "~" operator in C.
3915
3916Arguments:
3917""""""""""
3918
3919The two arguments to the '``xor``' instruction must be
3920:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3921arguments must have identical types.
3922
3923Semantics:
3924""""""""""
3925
3926The truth table used for the '``xor``' instruction is:
3927
3928+-----+-----+-----+
3929| In0 | In1 | Out |
3930+-----+-----+-----+
3931| 0 | 0 | 0 |
3932+-----+-----+-----+
3933| 0 | 1 | 1 |
3934+-----+-----+-----+
3935| 1 | 0 | 1 |
3936+-----+-----+-----+
3937| 1 | 1 | 0 |
3938+-----+-----+-----+
3939
3940Example:
3941""""""""
3942
3943.. code-block:: llvm
3944
3945 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
3946 <result> = xor i32 15, 40 ; yields {i32}:result = 39
3947 <result> = xor i32 4, 8 ; yields {i32}:result = 12
3948 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
3949
3950Vector Operations
3951-----------------
3952
3953LLVM supports several instructions to represent vector operations in a
3954target-independent manner. These instructions cover the element-access
3955and vector-specific operations needed to process vectors effectively.
3956While LLVM does directly support these vector operations, many
3957sophisticated algorithms will want to use target-specific intrinsics to
3958take full advantage of a specific target.
3959
3960.. _i_extractelement:
3961
3962'``extractelement``' Instruction
3963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3964
3965Syntax:
3966"""""""
3967
3968::
3969
3970 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
3971
3972Overview:
3973"""""""""
3974
3975The '``extractelement``' instruction extracts a single scalar element
3976from a vector at a specified index.
3977
3978Arguments:
3979""""""""""
3980
3981The first operand of an '``extractelement``' instruction is a value of
3982:ref:`vector <t_vector>` type. The second operand is an index indicating
3983the position from which to extract the element. The index may be a
3984variable.
3985
3986Semantics:
3987""""""""""
3988
3989The result is a scalar of the same type as the element type of ``val``.
3990Its value is the value at position ``idx`` of ``val``. If ``idx``
3991exceeds the length of ``val``, the results are undefined.
3992
3993Example:
3994""""""""
3995
3996.. code-block:: llvm
3997
3998 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
3999
4000.. _i_insertelement:
4001
4002'``insertelement``' Instruction
4003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4004
4005Syntax:
4006"""""""
4007
4008::
4009
4010 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4011
4012Overview:
4013"""""""""
4014
4015The '``insertelement``' instruction inserts a scalar element into a
4016vector at a specified index.
4017
4018Arguments:
4019""""""""""
4020
4021The first operand of an '``insertelement``' instruction is a value of
4022:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4023type must equal the element type of the first operand. The third operand
4024is an index indicating the position at which to insert the value. The
4025index may be a variable.
4026
4027Semantics:
4028""""""""""
4029
4030The result is a vector of the same type as ``val``. Its element values
4031are those of ``val`` except at position ``idx``, where it gets the value
4032``elt``. If ``idx`` exceeds the length of ``val``, the results are
4033undefined.
4034
4035Example:
4036""""""""
4037
4038.. code-block:: llvm
4039
4040 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4041
4042.. _i_shufflevector:
4043
4044'``shufflevector``' Instruction
4045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4046
4047Syntax:
4048"""""""
4049
4050::
4051
4052 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4053
4054Overview:
4055"""""""""
4056
4057The '``shufflevector``' instruction constructs a permutation of elements
4058from two input vectors, returning a vector with the same element type as
4059the input and length that is the same as the shuffle mask.
4060
4061Arguments:
4062""""""""""
4063
4064The first two operands of a '``shufflevector``' instruction are vectors
4065with the same type. The third argument is a shuffle mask whose element
4066type is always 'i32'. The result of the instruction is a vector whose
4067length is the same as the shuffle mask and whose element type is the
4068same as the element type of the first two operands.
4069
4070The shuffle mask operand is required to be a constant vector with either
4071constant integer or undef values.
4072
4073Semantics:
4074""""""""""
4075
4076The elements of the two input vectors are numbered from left to right
4077across both of the vectors. The shuffle mask operand specifies, for each
4078element of the result vector, which element of the two input vectors the
4079result element gets. The element selector may be undef (meaning "don't
4080care") and the second operand may be undef if performing a shuffle from
4081only one vector.
4082
4083Example:
4084""""""""
4085
4086.. code-block:: llvm
4087
4088 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4089 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4090 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4091 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4092 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4093 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4094 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4095 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4096
4097Aggregate Operations
4098--------------------
4099
4100LLVM supports several instructions for working with
4101:ref:`aggregate <t_aggregate>` values.
4102
4103.. _i_extractvalue:
4104
4105'``extractvalue``' Instruction
4106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4107
4108Syntax:
4109"""""""
4110
4111::
4112
4113 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4114
4115Overview:
4116"""""""""
4117
4118The '``extractvalue``' instruction extracts the value of a member field
4119from an :ref:`aggregate <t_aggregate>` value.
4120
4121Arguments:
4122""""""""""
4123
4124The first operand of an '``extractvalue``' instruction is a value of
4125:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4126constant indices to specify which value to extract in a similar manner
4127as indices in a '``getelementptr``' instruction.
4128
4129The major differences to ``getelementptr`` indexing are:
4130
4131- Since the value being indexed is not a pointer, the first index is
4132 omitted and assumed to be zero.
4133- At least one index must be specified.
4134- Not only struct indices but also array indices must be in bounds.
4135
4136Semantics:
4137""""""""""
4138
4139The result is the value at the position in the aggregate specified by
4140the index operands.
4141
4142Example:
4143""""""""
4144
4145.. code-block:: llvm
4146
4147 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4148
4149.. _i_insertvalue:
4150
4151'``insertvalue``' Instruction
4152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4153
4154Syntax:
4155"""""""
4156
4157::
4158
4159 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4160
4161Overview:
4162"""""""""
4163
4164The '``insertvalue``' instruction inserts a value into a member field in
4165an :ref:`aggregate <t_aggregate>` value.
4166
4167Arguments:
4168""""""""""
4169
4170The first operand of an '``insertvalue``' instruction is a value of
4171:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4172a first-class value to insert. The following operands are constant
4173indices indicating the position at which to insert the value in a
4174similar manner as indices in a '``extractvalue``' instruction. The value
4175to insert must have the same type as the value identified by the
4176indices.
4177
4178Semantics:
4179""""""""""
4180
4181The result is an aggregate of the same type as ``val``. Its value is
4182that of ``val`` except that the value at the position specified by the
4183indices is that of ``elt``.
4184
4185Example:
4186""""""""
4187
4188.. code-block:: llvm
4189
4190 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4191 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4192 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4193
4194.. _memoryops:
4195
4196Memory Access and Addressing Operations
4197---------------------------------------
4198
4199A key design point of an SSA-based representation is how it represents
4200memory. In LLVM, no memory locations are in SSA form, which makes things
4201very simple. This section describes how to read, write, and allocate
4202memory in LLVM.
4203
4204.. _i_alloca:
4205
4206'``alloca``' Instruction
4207^^^^^^^^^^^^^^^^^^^^^^^^
4208
4209Syntax:
4210"""""""
4211
4212::
4213
4214 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4215
4216Overview:
4217"""""""""
4218
4219The '``alloca``' instruction allocates memory on the stack frame of the
4220currently executing function, to be automatically released when this
4221function returns to its caller. The object is always allocated in the
4222generic address space (address space zero).
4223
4224Arguments:
4225""""""""""
4226
4227The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4228bytes of memory on the runtime stack, returning a pointer of the
4229appropriate type to the program. If "NumElements" is specified, it is
4230the number of elements allocated, otherwise "NumElements" is defaulted
4231to be one. If a constant alignment is specified, the value result of the
4232allocation is guaranteed to be aligned to at least that boundary. If not
4233specified, or if zero, the target can choose to align the allocation on
4234any convenient boundary compatible with the type.
4235
4236'``type``' may be any sized type.
4237
4238Semantics:
4239""""""""""
4240
4241Memory is allocated; a pointer is returned. The operation is undefined
4242if there is insufficient stack space for the allocation. '``alloca``'d
4243memory is automatically released when the function returns. The
4244'``alloca``' instruction is commonly used to represent automatic
4245variables that must have an address available. When the function returns
4246(either with the ``ret`` or ``resume`` instructions), the memory is
4247reclaimed. Allocating zero bytes is legal, but the result is undefined.
4248The order in which memory is allocated (ie., which way the stack grows)
4249is not specified.
4250
4251Example:
4252""""""""
4253
4254.. code-block:: llvm
4255
4256 %ptr = alloca i32 ; yields {i32*}:ptr
4257 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4258 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4259 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4260
4261.. _i_load:
4262
4263'``load``' Instruction
4264^^^^^^^^^^^^^^^^^^^^^^
4265
4266Syntax:
4267"""""""
4268
4269::
4270
4271 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4272 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4273 !<index> = !{ i32 1 }
4274
4275Overview:
4276"""""""""
4277
4278The '``load``' instruction is used to read from memory.
4279
4280Arguments:
4281""""""""""
4282
4283The argument to the '``load``' instruction specifies the memory address
4284from which to load. The pointer must point to a :ref:`first
4285class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4286then the optimizer is not allowed to modify the number or order of
4287execution of this ``load`` with other :ref:`volatile
4288operations <volatile>`.
4289
4290If the ``load`` is marked as ``atomic``, it takes an extra
4291:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4292``release`` and ``acq_rel`` orderings are not valid on ``load``
4293instructions. Atomic loads produce :ref:`defined <memmodel>` results
4294when they may see multiple atomic stores. The type of the pointee must
4295be an integer type whose bit width is a power of two greater than or
4296equal to eight and less than or equal to a target-specific size limit.
4297``align`` must be explicitly specified on atomic loads, and the load has
4298undefined behavior if the alignment is not set to a value which is at
4299least the size in bytes of the pointee. ``!nontemporal`` does not have
4300any defined semantics for atomic loads.
4301
4302The optional constant ``align`` argument specifies the alignment of the
4303operation (that is, the alignment of the memory address). A value of 0
4304or an omitted ``align`` argument means that the operation has the abi
4305alignment for the target. It is the responsibility of the code emitter
4306to ensure that the alignment information is correct. Overestimating the
4307alignment results in undefined behavior. Underestimating the alignment
4308may produce less efficient code. An alignment of 1 is always safe.
4309
4310The optional ``!nontemporal`` metadata must reference a single
4311metatadata name <index> corresponding to a metadata node with one
4312``i32`` entry of value 1. The existence of the ``!nontemporal``
4313metatadata on the instruction tells the optimizer and code generator
4314that this load is not expected to be reused in the cache. The code
4315generator may select special instructions to save cache bandwidth, such
4316as the ``MOVNT`` instruction on x86.
4317
4318The optional ``!invariant.load`` metadata must reference a single
4319metatadata name <index> corresponding to a metadata node with no
4320entries. The existence of the ``!invariant.load`` metatadata on the
4321instruction tells the optimizer and code generator that this load
4322address points to memory which does not change value during program
4323execution. The optimizer may then move this load around, for example, by
4324hoisting it out of loops using loop invariant code motion.
4325
4326Semantics:
4327""""""""""
4328
4329The location of memory pointed to is loaded. If the value being loaded
4330is of scalar type then the number of bytes read does not exceed the
4331minimum number of bytes needed to hold all bits of the type. For
4332example, loading an ``i24`` reads at most three bytes. When loading a
4333value of a type like ``i20`` with a size that is not an integral number
4334of bytes, the result is undefined if the value was not originally
4335written using a store of the same type.
4336
4337Examples:
4338"""""""""
4339
4340.. code-block:: llvm
4341
4342 %ptr = alloca i32 ; yields {i32*}:ptr
4343 store i32 3, i32* %ptr ; yields {void}
4344 %val = load i32* %ptr ; yields {i32}:val = i32 3
4345
4346.. _i_store:
4347
4348'``store``' Instruction
4349^^^^^^^^^^^^^^^^^^^^^^^
4350
4351Syntax:
4352"""""""
4353
4354::
4355
4356 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4357 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4358
4359Overview:
4360"""""""""
4361
4362The '``store``' instruction is used to write to memory.
4363
4364Arguments:
4365""""""""""
4366
4367There are two arguments to the '``store``' instruction: a value to store
4368and an address at which to store it. The type of the '``<pointer>``'
4369operand must be a pointer to the :ref:`first class <t_firstclass>` type of
4370the '``<value>``' operand. If the ``store`` is marked as ``volatile``,
4371then the optimizer is not allowed to modify the number or order of
4372execution of this ``store`` with other :ref:`volatile
4373operations <volatile>`.
4374
4375If the ``store`` is marked as ``atomic``, it takes an extra
4376:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4377``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4378instructions. Atomic loads produce :ref:`defined <memmodel>` results
4379when they may see multiple atomic stores. The type of the pointee must
4380be an integer type whose bit width is a power of two greater than or
4381equal to eight and less than or equal to a target-specific size limit.
4382``align`` must be explicitly specified on atomic stores, and the store
4383has undefined behavior if the alignment is not set to a value which is
4384at least the size in bytes of the pointee. ``!nontemporal`` does not
4385have any defined semantics for atomic stores.
4386
4387The optional constant "align" argument specifies the alignment of the
4388operation (that is, the alignment of the memory address). A value of 0
4389or an omitted "align" argument means that the operation has the abi
4390alignment for the target. It is the responsibility of the code emitter
4391to ensure that the alignment information is correct. Overestimating the
4392alignment results in an undefined behavior. Underestimating the
4393alignment may produce less efficient code. An alignment of 1 is always
4394safe.
4395
4396The optional !nontemporal metadata must reference a single metatadata
4397name <index> corresponding to a metadata node with one i32 entry of
4398value 1. The existence of the !nontemporal metatadata on the instruction
4399tells the optimizer and code generator that this load is not expected to
4400be reused in the cache. The code generator may select special
4401instructions to save cache bandwidth, such as the MOVNT instruction on
4402x86.
4403
4404Semantics:
4405""""""""""
4406
4407The contents of memory are updated to contain '``<value>``' at the
4408location specified by the '``<pointer>``' operand. If '``<value>``' is
4409of scalar type then the number of bytes written does not exceed the
4410minimum number of bytes needed to hold all bits of the type. For
4411example, storing an ``i24`` writes at most three bytes. When writing a
4412value of a type like ``i20`` with a size that is not an integral number
4413of bytes, it is unspecified what happens to the extra bits that do not
4414belong to the type, but they will typically be overwritten.
4415
4416Example:
4417""""""""
4418
4419.. code-block:: llvm
4420
4421 %ptr = alloca i32 ; yields {i32*}:ptr
4422 store i32 3, i32* %ptr ; yields {void}
4423 %val = load i32* %ptr ; yields {i32}:val = i32 3
4424
4425.. _i_fence:
4426
4427'``fence``' Instruction
4428^^^^^^^^^^^^^^^^^^^^^^^
4429
4430Syntax:
4431"""""""
4432
4433::
4434
4435 fence [singlethread] <ordering> ; yields {void}
4436
4437Overview:
4438"""""""""
4439
4440The '``fence``' instruction is used to introduce happens-before edges
4441between operations.
4442
4443Arguments:
4444""""""""""
4445
4446'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4447defines what *synchronizes-with* edges they add. They can only be given
4448``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4449
4450Semantics:
4451""""""""""
4452
4453A fence A which has (at least) ``release`` ordering semantics
4454*synchronizes with* a fence B with (at least) ``acquire`` ordering
4455semantics if and only if there exist atomic operations X and Y, both
4456operating on some atomic object M, such that A is sequenced before X, X
4457modifies M (either directly or through some side effect of a sequence
4458headed by X), Y is sequenced before B, and Y observes M. This provides a
4459*happens-before* dependency between A and B. Rather than an explicit
4460``fence``, one (but not both) of the atomic operations X or Y might
4461provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4462still *synchronize-with* the explicit ``fence`` and establish the
4463*happens-before* edge.
4464
4465A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4466``acquire`` and ``release`` semantics specified above, participates in
4467the global program order of other ``seq_cst`` operations and/or fences.
4468
4469The optional ":ref:`singlethread <singlethread>`" argument specifies
4470that the fence only synchronizes with other fences in the same thread.
4471(This is useful for interacting with signal handlers.)
4472
4473Example:
4474""""""""
4475
4476.. code-block:: llvm
4477
4478 fence acquire ; yields {void}
4479 fence singlethread seq_cst ; yields {void}
4480
4481.. _i_cmpxchg:
4482
4483'``cmpxchg``' Instruction
4484^^^^^^^^^^^^^^^^^^^^^^^^^
4485
4486Syntax:
4487"""""""
4488
4489::
4490
4491 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4492
4493Overview:
4494"""""""""
4495
4496The '``cmpxchg``' instruction is used to atomically modify memory. It
4497loads a value in memory and compares it to a given value. If they are
4498equal, it stores a new value into the memory.
4499
4500Arguments:
4501""""""""""
4502
4503There are three arguments to the '``cmpxchg``' instruction: an address
4504to operate on, a value to compare to the value currently be at that
4505address, and a new value to place at that address if the compared values
4506are equal. The type of '<cmp>' must be an integer type whose bit width
4507is a power of two greater than or equal to eight and less than or equal
4508to a target-specific size limit. '<cmp>' and '<new>' must have the same
4509type, and the type of '<pointer>' must be a pointer to that type. If the
4510``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4511to modify the number or order of execution of this ``cmpxchg`` with
4512other :ref:`volatile operations <volatile>`.
4513
4514The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4515synchronizes with other atomic operations.
4516
4517The optional "``singlethread``" argument declares that the ``cmpxchg``
4518is only atomic with respect to code (usually signal handlers) running in
4519the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4520respect to all other code in the system.
4521
4522The pointer passed into cmpxchg must have alignment greater than or
4523equal to the size in memory of the operand.
4524
4525Semantics:
4526""""""""""
4527
4528The contents of memory at the location specified by the '``<pointer>``'
4529operand is read and compared to '``<cmp>``'; if the read value is the
4530equal, '``<new>``' is written. The original value at the location is
4531returned.
4532
4533A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4534of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4535atomic load with an ordering parameter determined by dropping any
4536``release`` part of the ``cmpxchg``'s ordering.
4537
4538Example:
4539""""""""
4540
4541.. code-block:: llvm
4542
4543 entry:
4544 %orig = atomic load i32* %ptr unordered ; yields {i32}
4545 br label %loop
4546
4547 loop:
4548 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4549 %squared = mul i32 %cmp, %cmp
4550 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4551 %success = icmp eq i32 %cmp, %old
4552 br i1 %success, label %done, label %loop
4553
4554 done:
4555 ...
4556
4557.. _i_atomicrmw:
4558
4559'``atomicrmw``' Instruction
4560^^^^^^^^^^^^^^^^^^^^^^^^^^^
4561
4562Syntax:
4563"""""""
4564
4565::
4566
4567 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4568
4569Overview:
4570"""""""""
4571
4572The '``atomicrmw``' instruction is used to atomically modify memory.
4573
4574Arguments:
4575""""""""""
4576
4577There are three arguments to the '``atomicrmw``' instruction: an
4578operation to apply, an address whose value to modify, an argument to the
4579operation. The operation must be one of the following keywords:
4580
4581- xchg
4582- add
4583- sub
4584- and
4585- nand
4586- or
4587- xor
4588- max
4589- min
4590- umax
4591- umin
4592
4593The type of '<value>' must be an integer type whose bit width is a power
4594of two greater than or equal to eight and less than or equal to a
4595target-specific size limit. The type of the '``<pointer>``' operand must
4596be a pointer to that type. If the ``atomicrmw`` is marked as
4597``volatile``, then the optimizer is not allowed to modify the number or
4598order of execution of this ``atomicrmw`` with other :ref:`volatile
4599operations <volatile>`.
4600
4601Semantics:
4602""""""""""
4603
4604The contents of memory at the location specified by the '``<pointer>``'
4605operand are atomically read, modified, and written back. The original
4606value at the location is returned. The modification is specified by the
4607operation argument:
4608
4609- xchg: ``*ptr = val``
4610- add: ``*ptr = *ptr + val``
4611- sub: ``*ptr = *ptr - val``
4612- and: ``*ptr = *ptr & val``
4613- nand: ``*ptr = ~(*ptr & val)``
4614- or: ``*ptr = *ptr | val``
4615- xor: ``*ptr = *ptr ^ val``
4616- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4617- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4618- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4619 comparison)
4620- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4621 comparison)
4622
4623Example:
4624""""""""
4625
4626.. code-block:: llvm
4627
4628 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4629
4630.. _i_getelementptr:
4631
4632'``getelementptr``' Instruction
4633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4634
4635Syntax:
4636"""""""
4637
4638::
4639
4640 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4641 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4642 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4643
4644Overview:
4645"""""""""
4646
4647The '``getelementptr``' instruction is used to get the address of a
4648subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4649address calculation only and does not access memory.
4650
4651Arguments:
4652""""""""""
4653
4654The first argument is always a pointer or a vector of pointers, and
4655forms the basis of the calculation. The remaining arguments are indices
4656that indicate which of the elements of the aggregate object are indexed.
4657The interpretation of each index is dependent on the type being indexed
4658into. The first index always indexes the pointer value given as the
4659first argument, the second index indexes a value of the type pointed to
4660(not necessarily the value directly pointed to, since the first index
4661can be non-zero), etc. The first type indexed into must be a pointer
4662value, subsequent types can be arrays, vectors, and structs. Note that
4663subsequent types being indexed into can never be pointers, since that
4664would require loading the pointer before continuing calculation.
4665
4666The type of each index argument depends on the type it is indexing into.
4667When indexing into a (optionally packed) structure, only ``i32`` integer
4668**constants** are allowed (when using a vector of indices they must all
4669be the **same** ``i32`` integer constant). When indexing into an array,
4670pointer or vector, integers of any width are allowed, and they are not
4671required to be constant. These integers are treated as signed values
4672where relevant.
4673
4674For example, let's consider a C code fragment and how it gets compiled
4675to LLVM:
4676
4677.. code-block:: c
4678
4679 struct RT {
4680 char A;
4681 int B[10][20];
4682 char C;
4683 };
4684 struct ST {
4685 int X;
4686 double Y;
4687 struct RT Z;
4688 };
4689
4690 int *foo(struct ST *s) {
4691 return &s[1].Z.B[5][13];
4692 }
4693
4694The LLVM code generated by Clang is:
4695
4696.. code-block:: llvm
4697
4698 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4699 %struct.ST = type { i32, double, %struct.RT }
4700
4701 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4702 entry:
4703 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4704 ret i32* %arrayidx
4705 }
4706
4707Semantics:
4708""""""""""
4709
4710In the example above, the first index is indexing into the
4711'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4712= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4713indexes into the third element of the structure, yielding a
4714'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4715structure. The third index indexes into the second element of the
4716structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4717dimensions of the array are subscripted into, yielding an '``i32``'
4718type. The '``getelementptr``' instruction returns a pointer to this
4719element, thus computing a value of '``i32*``' type.
4720
4721Note that it is perfectly legal to index partially through a structure,
4722returning a pointer to an inner element. Because of this, the LLVM code
4723for the given testcase is equivalent to:
4724
4725.. code-block:: llvm
4726
4727 define i32* @foo(%struct.ST* %s) {
4728 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4729 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4730 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4731 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4732 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4733 ret i32* %t5
4734 }
4735
4736If the ``inbounds`` keyword is present, the result value of the
4737``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
4738pointer is not an *in bounds* address of an allocated object, or if any
4739of the addresses that would be formed by successive addition of the
4740offsets implied by the indices to the base address with infinitely
4741precise signed arithmetic are not an *in bounds* address of that
4742allocated object. The *in bounds* addresses for an allocated object are
4743all the addresses that point into the object, plus the address one byte
4744past the end. In cases where the base is a vector of pointers the
4745``inbounds`` keyword applies to each of the computations element-wise.
4746
4747If the ``inbounds`` keyword is not present, the offsets are added to the
4748base address with silently-wrapping two's complement arithmetic. If the
4749offsets have a different width from the pointer, they are sign-extended
4750or truncated to the width of the pointer. The result value of the
4751``getelementptr`` may be outside the object pointed to by the base
4752pointer. The result value may not necessarily be used to access memory
4753though, even if it happens to point into allocated storage. See the
4754:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
4755information.
4756
4757The getelementptr instruction is often confusing. For some more insight
4758into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
4759
4760Example:
4761""""""""
4762
4763.. code-block:: llvm
4764
4765 ; yields [12 x i8]*:aptr
4766 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4767 ; yields i8*:vptr
4768 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
4769 ; yields i8*:eptr
4770 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4771 ; yields i32*:iptr
4772 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4773
4774In cases where the pointer argument is a vector of pointers, each index
4775must be a vector with the same number of elements. For example:
4776
4777.. code-block:: llvm
4778
4779 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
4780
4781Conversion Operations
4782---------------------
4783
4784The instructions in this category are the conversion instructions
4785(casting) which all take a single operand and a type. They perform
4786various bit conversions on the operand.
4787
4788'``trunc .. to``' Instruction
4789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4790
4791Syntax:
4792"""""""
4793
4794::
4795
4796 <result> = trunc <ty> <value> to <ty2> ; yields ty2
4797
4798Overview:
4799"""""""""
4800
4801The '``trunc``' instruction truncates its operand to the type ``ty2``.
4802
4803Arguments:
4804""""""""""
4805
4806The '``trunc``' instruction takes a value to trunc, and a type to trunc
4807it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
4808of the same number of integers. The bit size of the ``value`` must be
4809larger than the bit size of the destination type, ``ty2``. Equal sized
4810types are not allowed.
4811
4812Semantics:
4813""""""""""
4814
4815The '``trunc``' instruction truncates the high order bits in ``value``
4816and converts the remaining bits to ``ty2``. Since the source size must
4817be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
4818It will always truncate bits.
4819
4820Example:
4821""""""""
4822
4823.. code-block:: llvm
4824
4825 %X = trunc i32 257 to i8 ; yields i8:1
4826 %Y = trunc i32 123 to i1 ; yields i1:true
4827 %Z = trunc i32 122 to i1 ; yields i1:false
4828 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
4829
4830'``zext .. to``' Instruction
4831^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4832
4833Syntax:
4834"""""""
4835
4836::
4837
4838 <result> = zext <ty> <value> to <ty2> ; yields ty2
4839
4840Overview:
4841"""""""""
4842
4843The '``zext``' instruction zero extends its operand to type ``ty2``.
4844
4845Arguments:
4846""""""""""
4847
4848The '``zext``' instruction takes a value to cast, and a type to cast it
4849to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4850the same number of integers. The bit size of the ``value`` must be
4851smaller than the bit size of the destination type, ``ty2``.
4852
4853Semantics:
4854""""""""""
4855
4856The ``zext`` fills the high order bits of the ``value`` with zero bits
4857until it reaches the size of the destination type, ``ty2``.
4858
4859When zero extending from i1, the result will always be either 0 or 1.
4860
4861Example:
4862""""""""
4863
4864.. code-block:: llvm
4865
4866 %X = zext i32 257 to i64 ; yields i64:257
4867 %Y = zext i1 true to i32 ; yields i32:1
4868 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4869
4870'``sext .. to``' Instruction
4871^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4872
4873Syntax:
4874"""""""
4875
4876::
4877
4878 <result> = sext <ty> <value> to <ty2> ; yields ty2
4879
4880Overview:
4881"""""""""
4882
4883The '``sext``' sign extends ``value`` to the type ``ty2``.
4884
4885Arguments:
4886""""""""""
4887
4888The '``sext``' instruction takes a value to cast, and a type to cast it
4889to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
4890the same number of integers. The bit size of the ``value`` must be
4891smaller than the bit size of the destination type, ``ty2``.
4892
4893Semantics:
4894""""""""""
4895
4896The '``sext``' instruction performs a sign extension by copying the sign
4897bit (highest order bit) of the ``value`` until it reaches the bit size
4898of the type ``ty2``.
4899
4900When sign extending from i1, the extension always results in -1 or 0.
4901
4902Example:
4903""""""""
4904
4905.. code-block:: llvm
4906
4907 %X = sext i8 -1 to i16 ; yields i16 :65535
4908 %Y = sext i1 true to i32 ; yields i32:-1
4909 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
4910
4911'``fptrunc .. to``' Instruction
4912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4913
4914Syntax:
4915"""""""
4916
4917::
4918
4919 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
4920
4921Overview:
4922"""""""""
4923
4924The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
4925
4926Arguments:
4927""""""""""
4928
4929The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
4930value to cast and a :ref:`floating point <t_floating>` type to cast it to.
4931The size of ``value`` must be larger than the size of ``ty2``. This
4932implies that ``fptrunc`` cannot be used to make a *no-op cast*.
4933
4934Semantics:
4935""""""""""
4936
4937The '``fptrunc``' instruction truncates a ``value`` from a larger
4938:ref:`floating point <t_floating>` type to a smaller :ref:`floating
4939point <t_floating>` type. If the value cannot fit within the
4940destination type, ``ty2``, then the results are undefined.
4941
4942Example:
4943""""""""
4944
4945.. code-block:: llvm
4946
4947 %X = fptrunc double 123.0 to float ; yields float:123.0
4948 %Y = fptrunc double 1.0E+300 to float ; yields undefined
4949
4950'``fpext .. to``' Instruction
4951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4952
4953Syntax:
4954"""""""
4955
4956::
4957
4958 <result> = fpext <ty> <value> to <ty2> ; yields ty2
4959
4960Overview:
4961"""""""""
4962
4963The '``fpext``' extends a floating point ``value`` to a larger floating
4964point value.
4965
4966Arguments:
4967""""""""""
4968
4969The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
4970``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
4971to. The source type must be smaller than the destination type.
4972
4973Semantics:
4974""""""""""
4975
4976The '``fpext``' instruction extends the ``value`` from a smaller
4977:ref:`floating point <t_floating>` type to a larger :ref:`floating
4978point <t_floating>` type. The ``fpext`` cannot be used to make a
4979*no-op cast* because it always changes bits. Use ``bitcast`` to make a
4980*no-op cast* for a floating point cast.
4981
4982Example:
4983""""""""
4984
4985.. code-block:: llvm
4986
4987 %X = fpext float 3.125 to double ; yields double:3.125000e+00
4988 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
4989
4990'``fptoui .. to``' Instruction
4991^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4992
4993Syntax:
4994"""""""
4995
4996::
4997
4998 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
4999
5000Overview:
5001"""""""""
5002
5003The '``fptoui``' converts a floating point ``value`` to its unsigned
5004integer equivalent of type ``ty2``.
5005
5006Arguments:
5007""""""""""
5008
5009The '``fptoui``' instruction takes a value to cast, which must be a
5010scalar or vector :ref:`floating point <t_floating>` value, and a type to
5011cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5012``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5013type with the same number of elements as ``ty``
5014
5015Semantics:
5016""""""""""
5017
5018The '``fptoui``' instruction converts its :ref:`floating
5019point <t_floating>` operand into the nearest (rounding towards zero)
5020unsigned integer value. If the value cannot fit in ``ty2``, the results
5021are undefined.
5022
5023Example:
5024""""""""
5025
5026.. code-block:: llvm
5027
5028 %X = fptoui double 123.0 to i32 ; yields i32:123
5029 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5030 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5031
5032'``fptosi .. to``' Instruction
5033^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5034
5035Syntax:
5036"""""""
5037
5038::
5039
5040 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5041
5042Overview:
5043"""""""""
5044
5045The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5046``value`` to type ``ty2``.
5047
5048Arguments:
5049""""""""""
5050
5051The '``fptosi``' instruction takes a value to cast, which must be a
5052scalar or vector :ref:`floating point <t_floating>` value, and a type to
5053cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5054``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5055type with the same number of elements as ``ty``
5056
5057Semantics:
5058""""""""""
5059
5060The '``fptosi``' instruction converts its :ref:`floating
5061point <t_floating>` operand into the nearest (rounding towards zero)
5062signed integer value. If the value cannot fit in ``ty2``, the results
5063are undefined.
5064
5065Example:
5066""""""""
5067
5068.. code-block:: llvm
5069
5070 %X = fptosi double -123.0 to i32 ; yields i32:-123
5071 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5072 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5073
5074'``uitofp .. to``' Instruction
5075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5076
5077Syntax:
5078"""""""
5079
5080::
5081
5082 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5083
5084Overview:
5085"""""""""
5086
5087The '``uitofp``' instruction regards ``value`` as an unsigned integer
5088and converts that value to the ``ty2`` type.
5089
5090Arguments:
5091""""""""""
5092
5093The '``uitofp``' instruction takes a value to cast, which must be a
5094scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5095``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5096``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5097type with the same number of elements as ``ty``
5098
5099Semantics:
5100""""""""""
5101
5102The '``uitofp``' instruction interprets its operand as an unsigned
5103integer quantity and converts it to the corresponding floating point
5104value. If the value cannot fit in the floating point value, the results
5105are undefined.
5106
5107Example:
5108""""""""
5109
5110.. code-block:: llvm
5111
5112 %X = uitofp i32 257 to float ; yields float:257.0
5113 %Y = uitofp i8 -1 to double ; yields double:255.0
5114
5115'``sitofp .. to``' Instruction
5116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5117
5118Syntax:
5119"""""""
5120
5121::
5122
5123 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5124
5125Overview:
5126"""""""""
5127
5128The '``sitofp``' instruction regards ``value`` as a signed integer and
5129converts that value to the ``ty2`` type.
5130
5131Arguments:
5132""""""""""
5133
5134The '``sitofp``' instruction takes a value to cast, which must be a
5135scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5136``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5137``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5138type with the same number of elements as ``ty``
5139
5140Semantics:
5141""""""""""
5142
5143The '``sitofp``' instruction interprets its operand as a signed integer
5144quantity and converts it to the corresponding floating point value. If
5145the value cannot fit in the floating point value, the results are
5146undefined.
5147
5148Example:
5149""""""""
5150
5151.. code-block:: llvm
5152
5153 %X = sitofp i32 257 to float ; yields float:257.0
5154 %Y = sitofp i8 -1 to double ; yields double:-1.0
5155
5156.. _i_ptrtoint:
5157
5158'``ptrtoint .. to``' Instruction
5159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5160
5161Syntax:
5162"""""""
5163
5164::
5165
5166 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5167
5168Overview:
5169"""""""""
5170
5171The '``ptrtoint``' instruction converts the pointer or a vector of
5172pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5173
5174Arguments:
5175""""""""""
5176
5177The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5178a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5179type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5180a vector of integers type.
5181
5182Semantics:
5183""""""""""
5184
5185The '``ptrtoint``' instruction converts ``value`` to integer type
5186``ty2`` by interpreting the pointer value as an integer and either
5187truncating or zero extending that value to the size of the integer type.
5188If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5189``value`` is larger than ``ty2`` then a truncation is done. If they are
5190the same size, then nothing is done (*no-op cast*) other than a type
5191change.
5192
5193Example:
5194""""""""
5195
5196.. code-block:: llvm
5197
5198 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5199 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5200 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5201
5202.. _i_inttoptr:
5203
5204'``inttoptr .. to``' Instruction
5205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5206
5207Syntax:
5208"""""""
5209
5210::
5211
5212 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5213
5214Overview:
5215"""""""""
5216
5217The '``inttoptr``' instruction converts an integer ``value`` to a
5218pointer type, ``ty2``.
5219
5220Arguments:
5221""""""""""
5222
5223The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5224cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5225type.
5226
5227Semantics:
5228""""""""""
5229
5230The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5231applying either a zero extension or a truncation depending on the size
5232of the integer ``value``. If ``value`` is larger than the size of a
5233pointer then a truncation is done. If ``value`` is smaller than the size
5234of a pointer then a zero extension is done. If they are the same size,
5235nothing is done (*no-op cast*).
5236
5237Example:
5238""""""""
5239
5240.. code-block:: llvm
5241
5242 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5243 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5244 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5245 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5246
5247.. _i_bitcast:
5248
5249'``bitcast .. to``' Instruction
5250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5251
5252Syntax:
5253"""""""
5254
5255::
5256
5257 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5258
5259Overview:
5260"""""""""
5261
5262The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5263changing any bits.
5264
5265Arguments:
5266""""""""""
5267
5268The '``bitcast``' instruction takes a value to cast, which must be a
5269non-aggregate first class value, and a type to cast it to, which must
5270also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5271sizes of ``value`` and the destination type, ``ty2``, must be identical.
5272If the source type is a pointer, the destination type must also be a
5273pointer. This instruction supports bitwise conversion of vectors to
5274integers and to vectors of other types (as long as they have the same
5275size).
5276
5277Semantics:
5278""""""""""
5279
5280The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5281always a *no-op cast* because no bits change with this conversion. The
5282conversion is done as if the ``value`` had been stored to memory and
5283read back as type ``ty2``. Pointer (or vector of pointers) types may
5284only be converted to other pointer (or vector of pointers) types with
5285this instruction. To convert pointers to other types, use the
5286:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5287first.
5288
5289Example:
5290""""""""
5291
5292.. code-block:: llvm
5293
5294 %X = bitcast i8 255 to i8 ; yields i8 :-1
5295 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5296 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5297 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5298
5299.. _otherops:
5300
5301Other Operations
5302----------------
5303
5304The instructions in this category are the "miscellaneous" instructions,
5305which defy better classification.
5306
5307.. _i_icmp:
5308
5309'``icmp``' Instruction
5310^^^^^^^^^^^^^^^^^^^^^^
5311
5312Syntax:
5313"""""""
5314
5315::
5316
5317 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5318
5319Overview:
5320"""""""""
5321
5322The '``icmp``' instruction returns a boolean value or a vector of
5323boolean values based on comparison of its two integer, integer vector,
5324pointer, or pointer vector operands.
5325
5326Arguments:
5327""""""""""
5328
5329The '``icmp``' instruction takes three operands. The first operand is
5330the condition code indicating the kind of comparison to perform. It is
5331not a value, just a keyword. The possible condition code are:
5332
5333#. ``eq``: equal
5334#. ``ne``: not equal
5335#. ``ugt``: unsigned greater than
5336#. ``uge``: unsigned greater or equal
5337#. ``ult``: unsigned less than
5338#. ``ule``: unsigned less or equal
5339#. ``sgt``: signed greater than
5340#. ``sge``: signed greater or equal
5341#. ``slt``: signed less than
5342#. ``sle``: signed less or equal
5343
5344The remaining two arguments must be :ref:`integer <t_integer>` or
5345:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5346must also be identical types.
5347
5348Semantics:
5349""""""""""
5350
5351The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5352code given as ``cond``. The comparison performed always yields either an
5353:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5354
5355#. ``eq``: yields ``true`` if the operands are equal, ``false``
5356 otherwise. No sign interpretation is necessary or performed.
5357#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5358 otherwise. No sign interpretation is necessary or performed.
5359#. ``ugt``: interprets the operands as unsigned values and yields
5360 ``true`` if ``op1`` is greater than ``op2``.
5361#. ``uge``: interprets the operands as unsigned values and yields
5362 ``true`` if ``op1`` is greater than or equal to ``op2``.
5363#. ``ult``: interprets the operands as unsigned values and yields
5364 ``true`` if ``op1`` is less than ``op2``.
5365#. ``ule``: interprets the operands as unsigned values and yields
5366 ``true`` if ``op1`` is less than or equal to ``op2``.
5367#. ``sgt``: interprets the operands as signed values and yields ``true``
5368 if ``op1`` is greater than ``op2``.
5369#. ``sge``: interprets the operands as signed values and yields ``true``
5370 if ``op1`` is greater than or equal to ``op2``.
5371#. ``slt``: interprets the operands as signed values and yields ``true``
5372 if ``op1`` is less than ``op2``.
5373#. ``sle``: interprets the operands as signed values and yields ``true``
5374 if ``op1`` is less than or equal to ``op2``.
5375
5376If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5377are compared as if they were integers.
5378
5379If the operands are integer vectors, then they are compared element by
5380element. The result is an ``i1`` vector with the same number of elements
5381as the values being compared. Otherwise, the result is an ``i1``.
5382
5383Example:
5384""""""""
5385
5386.. code-block:: llvm
5387
5388 <result> = icmp eq i32 4, 5 ; yields: result=false
5389 <result> = icmp ne float* %X, %X ; yields: result=false
5390 <result> = icmp ult i16 4, 5 ; yields: result=true
5391 <result> = icmp sgt i16 4, 5 ; yields: result=false
5392 <result> = icmp ule i16 -4, 5 ; yields: result=false
5393 <result> = icmp sge i16 4, 5 ; yields: result=false
5394
5395Note that the code generator does not yet support vector types with the
5396``icmp`` instruction.
5397
5398.. _i_fcmp:
5399
5400'``fcmp``' Instruction
5401^^^^^^^^^^^^^^^^^^^^^^
5402
5403Syntax:
5404"""""""
5405
5406::
5407
5408 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5409
5410Overview:
5411"""""""""
5412
5413The '``fcmp``' instruction returns a boolean value or vector of boolean
5414values based on comparison of its operands.
5415
5416If the operands are floating point scalars, then the result type is a
5417boolean (:ref:`i1 <t_integer>`).
5418
5419If the operands are floating point vectors, then the result type is a
5420vector of boolean with the same number of elements as the operands being
5421compared.
5422
5423Arguments:
5424""""""""""
5425
5426The '``fcmp``' instruction takes three operands. The first operand is
5427the condition code indicating the kind of comparison to perform. It is
5428not a value, just a keyword. The possible condition code are:
5429
5430#. ``false``: no comparison, always returns false
5431#. ``oeq``: ordered and equal
5432#. ``ogt``: ordered and greater than
5433#. ``oge``: ordered and greater than or equal
5434#. ``olt``: ordered and less than
5435#. ``ole``: ordered and less than or equal
5436#. ``one``: ordered and not equal
5437#. ``ord``: ordered (no nans)
5438#. ``ueq``: unordered or equal
5439#. ``ugt``: unordered or greater than
5440#. ``uge``: unordered or greater than or equal
5441#. ``ult``: unordered or less than
5442#. ``ule``: unordered or less than or equal
5443#. ``une``: unordered or not equal
5444#. ``uno``: unordered (either nans)
5445#. ``true``: no comparison, always returns true
5446
5447*Ordered* means that neither operand is a QNAN while *unordered* means
5448that either operand may be a QNAN.
5449
5450Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5451point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5452type. They must have identical types.
5453
5454Semantics:
5455""""""""""
5456
5457The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5458condition code given as ``cond``. If the operands are vectors, then the
5459vectors are compared element by element. Each comparison performed
5460always yields an :ref:`i1 <t_integer>` result, as follows:
5461
5462#. ``false``: always yields ``false``, regardless of operands.
5463#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5464 is equal to ``op2``.
5465#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5466 is greater than ``op2``.
5467#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5468 is greater than or equal to ``op2``.
5469#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5470 is less than ``op2``.
5471#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5472 is less than or equal to ``op2``.
5473#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5474 is not equal to ``op2``.
5475#. ``ord``: yields ``true`` if both operands are not a QNAN.
5476#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5477 equal to ``op2``.
5478#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5479 greater than ``op2``.
5480#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5481 greater than or equal to ``op2``.
5482#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5483 less than ``op2``.
5484#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5485 less than or equal to ``op2``.
5486#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5487 not equal to ``op2``.
5488#. ``uno``: yields ``true`` if either operand is a QNAN.
5489#. ``true``: always yields ``true``, regardless of operands.
5490
5491Example:
5492""""""""
5493
5494.. code-block:: llvm
5495
5496 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5497 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5498 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5499 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5500
5501Note that the code generator does not yet support vector types with the
5502``fcmp`` instruction.
5503
5504.. _i_phi:
5505
5506'``phi``' Instruction
5507^^^^^^^^^^^^^^^^^^^^^
5508
5509Syntax:
5510"""""""
5511
5512::
5513
5514 <result> = phi <ty> [ <val0>, <label0>], ...
5515
5516Overview:
5517"""""""""
5518
5519The '``phi``' instruction is used to implement the φ node in the SSA
5520graph representing the function.
5521
5522Arguments:
5523""""""""""
5524
5525The type of the incoming values is specified with the first type field.
5526After this, the '``phi``' instruction takes a list of pairs as
5527arguments, with one pair for each predecessor basic block of the current
5528block. Only values of :ref:`first class <t_firstclass>` type may be used as
5529the value arguments to the PHI node. Only labels may be used as the
5530label arguments.
5531
5532There must be no non-phi instructions between the start of a basic block
5533and the PHI instructions: i.e. PHI instructions must be first in a basic
5534block.
5535
5536For the purposes of the SSA form, the use of each incoming value is
5537deemed to occur on the edge from the corresponding predecessor block to
5538the current block (but after any definition of an '``invoke``'
5539instruction's return value on the same edge).
5540
5541Semantics:
5542""""""""""
5543
5544At runtime, the '``phi``' instruction logically takes on the value
5545specified by the pair corresponding to the predecessor basic block that
5546executed just prior to the current block.
5547
5548Example:
5549""""""""
5550
5551.. code-block:: llvm
5552
5553 Loop: ; Infinite loop that counts from 0 on up...
5554 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5555 %nextindvar = add i32 %indvar, 1
5556 br label %Loop
5557
5558.. _i_select:
5559
5560'``select``' Instruction
5561^^^^^^^^^^^^^^^^^^^^^^^^
5562
5563Syntax:
5564"""""""
5565
5566::
5567
5568 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5569
5570 selty is either i1 or {<N x i1>}
5571
5572Overview:
5573"""""""""
5574
5575The '``select``' instruction is used to choose one value based on a
5576condition, without branching.
5577
5578Arguments:
5579""""""""""
5580
5581The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5582values indicating the condition, and two values of the same :ref:`first
5583class <t_firstclass>` type. If the val1/val2 are vectors and the
5584condition is a scalar, then entire vectors are selected, not individual
5585elements.
5586
5587Semantics:
5588""""""""""
5589
5590If the condition is an i1 and it evaluates to 1, the instruction returns
5591the first value argument; otherwise, it returns the second value
5592argument.
5593
5594If the condition is a vector of i1, then the value arguments must be
5595vectors of the same size, and the selection is done element by element.
5596
5597Example:
5598""""""""
5599
5600.. code-block:: llvm
5601
5602 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5603
5604.. _i_call:
5605
5606'``call``' Instruction
5607^^^^^^^^^^^^^^^^^^^^^^
5608
5609Syntax:
5610"""""""
5611
5612::
5613
5614 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5615
5616Overview:
5617"""""""""
5618
5619The '``call``' instruction represents a simple function call.
5620
5621Arguments:
5622""""""""""
5623
5624This instruction requires several arguments:
5625
5626#. The optional "tail" marker indicates that the callee function does
5627 not access any allocas or varargs in the caller. Note that calls may
5628 be marked "tail" even if they do not occur before a
5629 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5630 function call is eligible for tail call optimization, but `might not
5631 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5632 The code generator may optimize calls marked "tail" with either 1)
5633 automatic `sibling call
5634 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5635 callee have matching signatures, or 2) forced tail call optimization
5636 when the following extra requirements are met:
5637
5638 - Caller and callee both have the calling convention ``fastcc``.
5639 - The call is in tail position (ret immediately follows call and ret
5640 uses value of call or is void).
5641 - Option ``-tailcallopt`` is enabled, or
5642 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5643 - `Platform specific constraints are
5644 met. <CodeGenerator.html#tailcallopt>`_
5645
5646#. The optional "cconv" marker indicates which :ref:`calling
5647 convention <callingconv>` the call should use. If none is
5648 specified, the call defaults to using C calling conventions. The
5649 calling convention of the call must match the calling convention of
5650 the target function, or else the behavior is undefined.
5651#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5652 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5653 are valid here.
5654#. '``ty``': the type of the call instruction itself which is also the
5655 type of the return value. Functions that return no value are marked
5656 ``void``.
5657#. '``fnty``': shall be the signature of the pointer to function value
5658 being invoked. The argument types must match the types implied by
5659 this signature. This type can be omitted if the function is not
5660 varargs and if the function type does not return a pointer to a
5661 function.
5662#. '``fnptrval``': An LLVM value containing a pointer to a function to
5663 be invoked. In most cases, this is a direct function invocation, but
5664 indirect ``call``'s are just as possible, calling an arbitrary pointer
5665 to function value.
5666#. '``function args``': argument list whose types match the function
5667 signature argument types and parameter attributes. All arguments must
5668 be of :ref:`first class <t_firstclass>` type. If the function signature
5669 indicates the function accepts a variable number of arguments, the
5670 extra arguments can be specified.
5671#. The optional :ref:`function attributes <fnattrs>` list. Only
5672 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5673 attributes are valid here.
5674
5675Semantics:
5676""""""""""
5677
5678The '``call``' instruction is used to cause control flow to transfer to
5679a specified function, with its incoming arguments bound to the specified
5680values. Upon a '``ret``' instruction in the called function, control
5681flow continues with the instruction after the function call, and the
5682return value of the function is bound to the result argument.
5683
5684Example:
5685""""""""
5686
5687.. code-block:: llvm
5688
5689 %retval = call i32 @test(i32 %argc)
5690 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5691 %X = tail call i32 @foo() ; yields i32
5692 %Y = tail call fastcc i32 @foo() ; yields i32
5693 call void %foo(i8 97 signext)
5694
5695 %struct.A = type { i32, i8 }
5696 %r = call %struct.A @foo() ; yields { 32, i8 }
5697 %gr = extractvalue %struct.A %r, 0 ; yields i32
5698 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5699 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5700 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5701
5702llvm treats calls to some functions with names and arguments that match
5703the standard C99 library as being the C99 library functions, and may
5704perform optimizations or generate code for them under that assumption.
5705This is something we'd like to change in the future to provide better
5706support for freestanding environments and non-C-based languages.
5707
5708.. _i_va_arg:
5709
5710'``va_arg``' Instruction
5711^^^^^^^^^^^^^^^^^^^^^^^^
5712
5713Syntax:
5714"""""""
5715
5716::
5717
5718 <resultval> = va_arg <va_list*> <arglist>, <argty>
5719
5720Overview:
5721"""""""""
5722
5723The '``va_arg``' instruction is used to access arguments passed through
5724the "variable argument" area of a function call. It is used to implement
5725the ``va_arg`` macro in C.
5726
5727Arguments:
5728""""""""""
5729
5730This instruction takes a ``va_list*`` value and the type of the
5731argument. It returns a value of the specified argument type and
5732increments the ``va_list`` to point to the next argument. The actual
5733type of ``va_list`` is target specific.
5734
5735Semantics:
5736""""""""""
5737
5738The '``va_arg``' instruction loads an argument of the specified type
5739from the specified ``va_list`` and causes the ``va_list`` to point to
5740the next argument. For more information, see the variable argument
5741handling :ref:`Intrinsic Functions <int_varargs>`.
5742
5743It is legal for this instruction to be called in a function which does
5744not take a variable number of arguments, for example, the ``vfprintf``
5745function.
5746
5747``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
5748function <intrinsics>` because it takes a type as an argument.
5749
5750Example:
5751""""""""
5752
5753See the :ref:`variable argument processing <int_varargs>` section.
5754
5755Note that the code generator does not yet fully support va\_arg on many
5756targets. Also, it does not currently support va\_arg with aggregate
5757types on any target.
5758
5759.. _i_landingpad:
5760
5761'``landingpad``' Instruction
5762^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5763
5764Syntax:
5765"""""""
5766
5767::
5768
5769 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
5770 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
5771
5772 <clause> := catch <type> <value>
5773 <clause> := filter <array constant type> <array constant>
5774
5775Overview:
5776"""""""""
5777
5778The '``landingpad``' instruction is used by `LLVM's exception handling
5779system <ExceptionHandling.html#overview>`_ to specify that a basic block
5780is a landing pad — one where the exception lands, and corresponds to the
5781code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
5782defines values supplied by the personality function (``pers_fn``) upon
5783re-entry to the function. The ``resultval`` has the type ``resultty``.
5784
5785Arguments:
5786""""""""""
5787
5788This instruction takes a ``pers_fn`` value. This is the personality
5789function associated with the unwinding mechanism. The optional
5790``cleanup`` flag indicates that the landing pad block is a cleanup.
5791
5792A ``clause`` begins with the clause type — ``catch`` or ``filter`` — and
5793contains the global variable representing the "type" that may be caught
5794or filtered respectively. Unlike the ``catch`` clause, the ``filter``
5795clause takes an array constant as its argument. Use
5796"``[0 x i8**] undef``" for a filter which cannot throw. The
5797'``landingpad``' instruction must contain *at least* one ``clause`` or
5798the ``cleanup`` flag.
5799
5800Semantics:
5801""""""""""
5802
5803The '``landingpad``' instruction defines the values which are set by the
5804personality function (``pers_fn``) upon re-entry to the function, and
5805therefore the "result type" of the ``landingpad`` instruction. As with
5806calling conventions, how the personality function results are
5807represented in LLVM IR is target specific.
5808
5809The clauses are applied in order from top to bottom. If two
5810``landingpad`` instructions are merged together through inlining, the
5811clauses from the calling function are appended to the list of clauses.
5812When the call stack is being unwound due to an exception being thrown,
5813the exception is compared against each ``clause`` in turn. If it doesn't
5814match any of the clauses, and the ``cleanup`` flag is not set, then
5815unwinding continues further up the call stack.
5816
5817The ``landingpad`` instruction has several restrictions:
5818
5819- A landing pad block is a basic block which is the unwind destination
5820 of an '``invoke``' instruction.
5821- A landing pad block must have a '``landingpad``' instruction as its
5822 first non-PHI instruction.
5823- There can be only one '``landingpad``' instruction within the landing
5824 pad block.
5825- A basic block that is not a landing pad block may not include a
5826 '``landingpad``' instruction.
5827- All '``landingpad``' instructions in a function must have the same
5828 personality function.
5829
5830Example:
5831""""""""
5832
5833.. code-block:: llvm
5834
5835 ;; A landing pad which can catch an integer.
5836 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5837 catch i8** @_ZTIi
5838 ;; A landing pad that is a cleanup.
5839 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5840 cleanup
5841 ;; A landing pad which can catch an integer and can only throw a double.
5842 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
5843 catch i8** @_ZTIi
5844 filter [1 x i8**] [@_ZTId]
5845
5846.. _intrinsics:
5847
5848Intrinsic Functions
5849===================
5850
5851LLVM supports the notion of an "intrinsic function". These functions
5852have well known names and semantics and are required to follow certain
5853restrictions. Overall, these intrinsics represent an extension mechanism
5854for the LLVM language that does not require changing all of the
5855transformations in LLVM when adding to the language (or the bitcode
5856reader/writer, the parser, etc...).
5857
5858Intrinsic function names must all start with an "``llvm.``" prefix. This
5859prefix is reserved in LLVM for intrinsic names; thus, function names may
5860not begin with this prefix. Intrinsic functions must always be external
5861functions: you cannot define the body of intrinsic functions. Intrinsic
5862functions may only be used in call or invoke instructions: it is illegal
5863to take the address of an intrinsic function. Additionally, because
5864intrinsic functions are part of the LLVM language, it is required if any
5865are added that they be documented here.
5866
5867Some intrinsic functions can be overloaded, i.e., the intrinsic
5868represents a family of functions that perform the same operation but on
5869different data types. Because LLVM can represent over 8 million
5870different integer types, overloading is used commonly to allow an
5871intrinsic function to operate on any integer type. One or more of the
5872argument types or the result type can be overloaded to accept any
5873integer type. Argument types may also be defined as exactly matching a
5874previous argument's type or the result type. This allows an intrinsic
5875function which accepts multiple arguments, but needs all of them to be
5876of the same type, to only be overloaded with respect to a single
5877argument or the result.
5878
5879Overloaded intrinsics will have the names of its overloaded argument
5880types encoded into its function name, each preceded by a period. Only
5881those types which are overloaded result in a name suffix. Arguments
5882whose type is matched against another type do not. For example, the
5883``llvm.ctpop`` function can take an integer of any width and returns an
5884integer of exactly the same integer width. This leads to a family of
5885functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
5886``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
5887overloaded, and only one type suffix is required. Because the argument's
5888type is matched against the return type, it does not require its own
5889name suffix.
5890
5891To learn how to add an intrinsic function, please see the `Extending
5892LLVM Guide <ExtendingLLVM.html>`_.
5893
5894.. _int_varargs:
5895
5896Variable Argument Handling Intrinsics
5897-------------------------------------
5898
5899Variable argument support is defined in LLVM with the
5900:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
5901functions. These functions are related to the similarly named macros
5902defined in the ``<stdarg.h>`` header file.
5903
5904All of these functions operate on arguments that use a target-specific
5905value type "``va_list``". The LLVM assembly language reference manual
5906does not define what this type is, so all transformations should be
5907prepared to handle these functions regardless of the type used.
5908
5909This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
5910variable argument handling intrinsic functions are used.
5911
5912.. code-block:: llvm
5913
5914 define i32 @test(i32 %X, ...) {
5915 ; Initialize variable argument processing
5916 %ap = alloca i8*
5917 %ap2 = bitcast i8** %ap to i8*
5918 call void @llvm.va_start(i8* %ap2)
5919
5920 ; Read a single integer argument
5921 %tmp = va_arg i8** %ap, i32
5922
5923 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5924 %aq = alloca i8*
5925 %aq2 = bitcast i8** %aq to i8*
5926 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5927 call void @llvm.va_end(i8* %aq2)
5928
5929 ; Stop processing of arguments.
5930 call void @llvm.va_end(i8* %ap2)
5931 ret i32 %tmp
5932 }
5933
5934 declare void @llvm.va_start(i8*)
5935 declare void @llvm.va_copy(i8*, i8*)
5936 declare void @llvm.va_end(i8*)
5937
5938.. _int_va_start:
5939
5940'``llvm.va_start``' Intrinsic
5941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5942
5943Syntax:
5944"""""""
5945
5946::
5947
5948 declare void %llvm.va_start(i8* <arglist>)
5949
5950Overview:
5951"""""""""
5952
5953The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
5954subsequent use by ``va_arg``.
5955
5956Arguments:
5957""""""""""
5958
5959The argument is a pointer to a ``va_list`` element to initialize.
5960
5961Semantics:
5962""""""""""
5963
5964The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
5965available in C. In a target-dependent way, it initializes the
5966``va_list`` element to which the argument points, so that the next call
5967to ``va_arg`` will produce the first variable argument passed to the
5968function. Unlike the C ``va_start`` macro, this intrinsic does not need
5969to know the last argument of the function as the compiler can figure
5970that out.
5971
5972'``llvm.va_end``' Intrinsic
5973^^^^^^^^^^^^^^^^^^^^^^^^^^^
5974
5975Syntax:
5976"""""""
5977
5978::
5979
5980 declare void @llvm.va_end(i8* <arglist>)
5981
5982Overview:
5983"""""""""
5984
5985The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
5986initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
5987
5988Arguments:
5989""""""""""
5990
5991The argument is a pointer to a ``va_list`` to destroy.
5992
5993Semantics:
5994""""""""""
5995
5996The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
5997available in C. In a target-dependent way, it destroys the ``va_list``
5998element to which the argument points. Calls to
5999:ref:`llvm.va_start <int_va_start>` and
6000:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6001``llvm.va_end``.
6002
6003.. _int_va_copy:
6004
6005'``llvm.va_copy``' Intrinsic
6006^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6007
6008Syntax:
6009"""""""
6010
6011::
6012
6013 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6014
6015Overview:
6016"""""""""
6017
6018The '``llvm.va_copy``' intrinsic copies the current argument position
6019from the source argument list to the destination argument list.
6020
6021Arguments:
6022""""""""""
6023
6024The first argument is a pointer to a ``va_list`` element to initialize.
6025The second argument is a pointer to a ``va_list`` element to copy from.
6026
6027Semantics:
6028""""""""""
6029
6030The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6031available in C. In a target-dependent way, it copies the source
6032``va_list`` element into the destination ``va_list`` element. This
6033intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6034arbitrarily complex and require, for example, memory allocation.
6035
6036Accurate Garbage Collection Intrinsics
6037--------------------------------------
6038
6039LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6040(GC) requires the implementation and generation of these intrinsics.
6041These intrinsics allow identification of :ref:`GC roots on the
6042stack <int_gcroot>`, as well as garbage collector implementations that
6043require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6044Front-ends for type-safe garbage collected languages should generate
6045these intrinsics to make use of the LLVM garbage collectors. For more
6046details, see `Accurate Garbage Collection with
6047LLVM <GarbageCollection.html>`_.
6048
6049The garbage collection intrinsics only operate on objects in the generic
6050address space (address space zero).
6051
6052.. _int_gcroot:
6053
6054'``llvm.gcroot``' Intrinsic
6055^^^^^^^^^^^^^^^^^^^^^^^^^^^
6056
6057Syntax:
6058"""""""
6059
6060::
6061
6062 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6063
6064Overview:
6065"""""""""
6066
6067The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6068the code generator, and allows some metadata to be associated with it.
6069
6070Arguments:
6071""""""""""
6072
6073The first argument specifies the address of a stack object that contains
6074the root pointer. The second pointer (which must be either a constant or
6075a global value address) contains the meta-data to be associated with the
6076root.
6077
6078Semantics:
6079""""""""""
6080
6081At runtime, a call to this intrinsic stores a null pointer into the
6082"ptrloc" location. At compile-time, the code generator generates
6083information to allow the runtime to find the pointer at GC safe points.
6084The '``llvm.gcroot``' intrinsic may only be used in a function which
6085:ref:`specifies a GC algorithm <gc>`.
6086
6087.. _int_gcread:
6088
6089'``llvm.gcread``' Intrinsic
6090^^^^^^^^^^^^^^^^^^^^^^^^^^^
6091
6092Syntax:
6093"""""""
6094
6095::
6096
6097 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6098
6099Overview:
6100"""""""""
6101
6102The '``llvm.gcread``' intrinsic identifies reads of references from heap
6103locations, allowing garbage collector implementations that require read
6104barriers.
6105
6106Arguments:
6107""""""""""
6108
6109The second argument is the address to read from, which should be an
6110address allocated from the garbage collector. The first object is a
6111pointer to the start of the referenced object, if needed by the language
6112runtime (otherwise null).
6113
6114Semantics:
6115""""""""""
6116
6117The '``llvm.gcread``' intrinsic has the same semantics as a load
6118instruction, but may be replaced with substantially more complex code by
6119the garbage collector runtime, as needed. The '``llvm.gcread``'
6120intrinsic may only be used in a function which :ref:`specifies a GC
6121algorithm <gc>`.
6122
6123.. _int_gcwrite:
6124
6125'``llvm.gcwrite``' Intrinsic
6126^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6127
6128Syntax:
6129"""""""
6130
6131::
6132
6133 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6134
6135Overview:
6136"""""""""
6137
6138The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6139locations, allowing garbage collector implementations that require write
6140barriers (such as generational or reference counting collectors).
6141
6142Arguments:
6143""""""""""
6144
6145The first argument is the reference to store, the second is the start of
6146the object to store it to, and the third is the address of the field of
6147Obj to store to. If the runtime does not require a pointer to the
6148object, Obj may be null.
6149
6150Semantics:
6151""""""""""
6152
6153The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6154instruction, but may be replaced with substantially more complex code by
6155the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6156intrinsic may only be used in a function which :ref:`specifies a GC
6157algorithm <gc>`.
6158
6159Code Generator Intrinsics
6160-------------------------
6161
6162These intrinsics are provided by LLVM to expose special features that
6163may only be implemented with code generator support.
6164
6165'``llvm.returnaddress``' Intrinsic
6166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6167
6168Syntax:
6169"""""""
6170
6171::
6172
6173 declare i8 *@llvm.returnaddress(i32 <level>)
6174
6175Overview:
6176"""""""""
6177
6178The '``llvm.returnaddress``' intrinsic attempts to compute a
6179target-specific value indicating the return address of the current
6180function or one of its callers.
6181
6182Arguments:
6183""""""""""
6184
6185The argument to this intrinsic indicates which function to return the
6186address for. Zero indicates the calling function, one indicates its
6187caller, etc. The argument is **required** to be a constant integer
6188value.
6189
6190Semantics:
6191""""""""""
6192
6193The '``llvm.returnaddress``' intrinsic either returns a pointer
6194indicating the return address of the specified call frame, or zero if it
6195cannot be identified. The value returned by this intrinsic is likely to
6196be incorrect or 0 for arguments other than zero, so it should only be
6197used for debugging purposes.
6198
6199Note that calling this intrinsic does not prevent function inlining or
6200other aggressive transformations, so the value returned may not be that
6201of the obvious source-language caller.
6202
6203'``llvm.frameaddress``' Intrinsic
6204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6205
6206Syntax:
6207"""""""
6208
6209::
6210
6211 declare i8* @llvm.frameaddress(i32 <level>)
6212
6213Overview:
6214"""""""""
6215
6216The '``llvm.frameaddress``' intrinsic attempts to return the
6217target-specific frame pointer value for the specified stack frame.
6218
6219Arguments:
6220""""""""""
6221
6222The argument to this intrinsic indicates which function to return the
6223frame pointer for. Zero indicates the calling function, one indicates
6224its caller, etc. The argument is **required** to be a constant integer
6225value.
6226
6227Semantics:
6228""""""""""
6229
6230The '``llvm.frameaddress``' intrinsic either returns a pointer
6231indicating the frame address of the specified call frame, or zero if it
6232cannot be identified. The value returned by this intrinsic is likely to
6233be incorrect or 0 for arguments other than zero, so it should only be
6234used for debugging purposes.
6235
6236Note that calling this intrinsic does not prevent function inlining or
6237other aggressive transformations, so the value returned may not be that
6238of the obvious source-language caller.
6239
6240.. _int_stacksave:
6241
6242'``llvm.stacksave``' Intrinsic
6243^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6244
6245Syntax:
6246"""""""
6247
6248::
6249
6250 declare i8* @llvm.stacksave()
6251
6252Overview:
6253"""""""""
6254
6255The '``llvm.stacksave``' intrinsic is used to remember the current state
6256of the function stack, for use with
6257:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6258implementing language features like scoped automatic variable sized
6259arrays in C99.
6260
6261Semantics:
6262""""""""""
6263
6264This intrinsic returns a opaque pointer value that can be passed to
6265:ref:`llvm.stackrestore <int_stackrestore>`. When an
6266``llvm.stackrestore`` intrinsic is executed with a value saved from
6267``llvm.stacksave``, it effectively restores the state of the stack to
6268the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6269practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6270were allocated after the ``llvm.stacksave`` was executed.
6271
6272.. _int_stackrestore:
6273
6274'``llvm.stackrestore``' Intrinsic
6275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6276
6277Syntax:
6278"""""""
6279
6280::
6281
6282 declare void @llvm.stackrestore(i8* %ptr)
6283
6284Overview:
6285"""""""""
6286
6287The '``llvm.stackrestore``' intrinsic is used to restore the state of
6288the function stack to the state it was in when the corresponding
6289:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6290useful for implementing language features like scoped automatic variable
6291sized arrays in C99.
6292
6293Semantics:
6294""""""""""
6295
6296See the description for :ref:`llvm.stacksave <int_stacksave>`.
6297
6298'``llvm.prefetch``' Intrinsic
6299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6300
6301Syntax:
6302"""""""
6303
6304::
6305
6306 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6307
6308Overview:
6309"""""""""
6310
6311The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6312insert a prefetch instruction if supported; otherwise, it is a noop.
6313Prefetches have no effect on the behavior of the program but can change
6314its performance characteristics.
6315
6316Arguments:
6317""""""""""
6318
6319``address`` is the address to be prefetched, ``rw`` is the specifier
6320determining if the fetch should be for a read (0) or write (1), and
6321``locality`` is a temporal locality specifier ranging from (0) - no
6322locality, to (3) - extremely local keep in cache. The ``cache type``
6323specifies whether the prefetch is performed on the data (1) or
6324instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6325arguments must be constant integers.
6326
6327Semantics:
6328""""""""""
6329
6330This intrinsic does not modify the behavior of the program. In
6331particular, prefetches cannot trap and do not produce a value. On
6332targets that support this intrinsic, the prefetch can provide hints to
6333the processor cache for better performance.
6334
6335'``llvm.pcmarker``' Intrinsic
6336^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6337
6338Syntax:
6339"""""""
6340
6341::
6342
6343 declare void @llvm.pcmarker(i32 <id>)
6344
6345Overview:
6346"""""""""
6347
6348The '``llvm.pcmarker``' intrinsic is a method to export a Program
6349Counter (PC) in a region of code to simulators and other tools. The
6350method is target specific, but it is expected that the marker will use
6351exported symbols to transmit the PC of the marker. The marker makes no
6352guarantees that it will remain with any specific instruction after
6353optimizations. It is possible that the presence of a marker will inhibit
6354optimizations. The intended use is to be inserted after optimizations to
6355allow correlations of simulation runs.
6356
6357Arguments:
6358""""""""""
6359
6360``id`` is a numerical id identifying the marker.
6361
6362Semantics:
6363""""""""""
6364
6365This intrinsic does not modify the behavior of the program. Backends
6366that do not support this intrinsic may ignore it.
6367
6368'``llvm.readcyclecounter``' Intrinsic
6369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6370
6371Syntax:
6372"""""""
6373
6374::
6375
6376 declare i64 @llvm.readcyclecounter()
6377
6378Overview:
6379"""""""""
6380
6381The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6382counter register (or similar low latency, high accuracy clocks) on those
6383targets that support it. On X86, it should map to RDTSC. On Alpha, it
6384should map to RPCC. As the backing counters overflow quickly (on the
6385order of 9 seconds on alpha), this should only be used for small
6386timings.
6387
6388Semantics:
6389""""""""""
6390
6391When directly supported, reading the cycle counter should not modify any
6392memory. Implementations are allowed to either return a application
6393specific value or a system wide value. On backends without support, this
6394is lowered to a constant 0.
6395
6396Standard C Library Intrinsics
6397-----------------------------
6398
6399LLVM provides intrinsics for a few important standard C library
6400functions. These intrinsics allow source-language front-ends to pass
6401information about the alignment of the pointer arguments to the code
6402generator, providing opportunity for more efficient code generation.
6403
6404.. _int_memcpy:
6405
6406'``llvm.memcpy``' Intrinsic
6407^^^^^^^^^^^^^^^^^^^^^^^^^^^
6408
6409Syntax:
6410"""""""
6411
6412This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6413integer bit width and for different address spaces. Not all targets
6414support all bit widths however.
6415
6416::
6417
6418 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6419 i32 <len>, i32 <align>, i1 <isvolatile>)
6420 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6421 i64 <len>, i32 <align>, i1 <isvolatile>)
6422
6423Overview:
6424"""""""""
6425
6426The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6427source location to the destination location.
6428
6429Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6430intrinsics do not return a value, takes extra alignment/isvolatile
6431arguments and the pointers can be in specified address spaces.
6432
6433Arguments:
6434""""""""""
6435
6436The first argument is a pointer to the destination, the second is a
6437pointer to the source. The third argument is an integer argument
6438specifying the number of bytes to copy, the fourth argument is the
6439alignment of the source and destination locations, and the fifth is a
6440boolean indicating a volatile access.
6441
6442If the call to this intrinsic has an alignment value that is not 0 or 1,
6443then the caller guarantees that both the source and destination pointers
6444are aligned to that boundary.
6445
6446If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6447a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6448very cleanly specified and it is unwise to depend on it.
6449
6450Semantics:
6451""""""""""
6452
6453The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6454source location to the destination location, which are not allowed to
6455overlap. It copies "len" bytes of memory over. If the argument is known
6456to be aligned to some boundary, this can be specified as the fourth
6457argument, otherwise it should be set to 0 or 1.
6458
6459'``llvm.memmove``' Intrinsic
6460^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6461
6462Syntax:
6463"""""""
6464
6465This is an overloaded intrinsic. You can use llvm.memmove on any integer
6466bit width and for different address space. Not all targets support all
6467bit widths however.
6468
6469::
6470
6471 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6472 i32 <len>, i32 <align>, i1 <isvolatile>)
6473 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6474 i64 <len>, i32 <align>, i1 <isvolatile>)
6475
6476Overview:
6477"""""""""
6478
6479The '``llvm.memmove.*``' intrinsics move a block of memory from the
6480source location to the destination location. It is similar to the
6481'``llvm.memcpy``' intrinsic but allows the two memory locations to
6482overlap.
6483
6484Note that, unlike the standard libc function, the ``llvm.memmove.*``
6485intrinsics do not return a value, takes extra alignment/isvolatile
6486arguments and the pointers can be in specified address spaces.
6487
6488Arguments:
6489""""""""""
6490
6491The first argument is a pointer to the destination, the second is a
6492pointer to the source. The third argument is an integer argument
6493specifying the number of bytes to copy, the fourth argument is the
6494alignment of the source and destination locations, and the fifth is a
6495boolean indicating a volatile access.
6496
6497If the call to this intrinsic has an alignment value that is not 0 or 1,
6498then the caller guarantees that the source and destination pointers are
6499aligned to that boundary.
6500
6501If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6502is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6503not very cleanly specified and it is unwise to depend on it.
6504
6505Semantics:
6506""""""""""
6507
6508The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6509source location to the destination location, which may overlap. It
6510copies "len" bytes of memory over. If the argument is known to be
6511aligned to some boundary, this can be specified as the fourth argument,
6512otherwise it should be set to 0 or 1.
6513
6514'``llvm.memset.*``' Intrinsics
6515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6516
6517Syntax:
6518"""""""
6519
6520This is an overloaded intrinsic. You can use llvm.memset on any integer
6521bit width and for different address spaces. However, not all targets
6522support all bit widths.
6523
6524::
6525
6526 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6527 i32 <len>, i32 <align>, i1 <isvolatile>)
6528 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6529 i64 <len>, i32 <align>, i1 <isvolatile>)
6530
6531Overview:
6532"""""""""
6533
6534The '``llvm.memset.*``' intrinsics fill a block of memory with a
6535particular byte value.
6536
6537Note that, unlike the standard libc function, the ``llvm.memset``
6538intrinsic does not return a value and takes extra alignment/volatile
6539arguments. Also, the destination can be in an arbitrary address space.
6540
6541Arguments:
6542""""""""""
6543
6544The first argument is a pointer to the destination to fill, the second
6545is the byte value with which to fill it, the third argument is an
6546integer argument specifying the number of bytes to fill, and the fourth
6547argument is the known alignment of the destination location.
6548
6549If the call to this intrinsic has an alignment value that is not 0 or 1,
6550then the caller guarantees that the destination pointer is aligned to
6551that boundary.
6552
6553If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6554a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6555very cleanly specified and it is unwise to depend on it.
6556
6557Semantics:
6558""""""""""
6559
6560The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6561at the destination location. If the argument is known to be aligned to
6562some boundary, this can be specified as the fourth argument, otherwise
6563it should be set to 0 or 1.
6564
6565'``llvm.sqrt.*``' Intrinsic
6566^^^^^^^^^^^^^^^^^^^^^^^^^^^
6567
6568Syntax:
6569"""""""
6570
6571This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6572floating point or vector of floating point type. Not all targets support
6573all types however.
6574
6575::
6576
6577 declare float @llvm.sqrt.f32(float %Val)
6578 declare double @llvm.sqrt.f64(double %Val)
6579 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6580 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6581 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6582
6583Overview:
6584"""""""""
6585
6586The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6587returning the same value as the libm '``sqrt``' functions would. Unlike
6588``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6589negative numbers other than -0.0 (which allows for better optimization,
6590because there is no need to worry about errno being set).
6591``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6592
6593Arguments:
6594""""""""""
6595
6596The argument and return value are floating point numbers of the same
6597type.
6598
6599Semantics:
6600""""""""""
6601
6602This function returns the sqrt of the specified operand if it is a
6603nonnegative floating point number.
6604
6605'``llvm.powi.*``' Intrinsic
6606^^^^^^^^^^^^^^^^^^^^^^^^^^^
6607
6608Syntax:
6609"""""""
6610
6611This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6612floating point or vector of floating point type. Not all targets support
6613all types however.
6614
6615::
6616
6617 declare float @llvm.powi.f32(float %Val, i32 %power)
6618 declare double @llvm.powi.f64(double %Val, i32 %power)
6619 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6620 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6621 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6622
6623Overview:
6624"""""""""
6625
6626The '``llvm.powi.*``' intrinsics return the first operand raised to the
6627specified (positive or negative) power. The order of evaluation of
6628multiplications is not defined. When a vector of floating point type is
6629used, the second argument remains a scalar integer value.
6630
6631Arguments:
6632""""""""""
6633
6634The second argument is an integer power, and the first is a value to
6635raise to that power.
6636
6637Semantics:
6638""""""""""
6639
6640This function returns the first value raised to the second power with an
6641unspecified sequence of rounding operations.
6642
6643'``llvm.sin.*``' Intrinsic
6644^^^^^^^^^^^^^^^^^^^^^^^^^^
6645
6646Syntax:
6647"""""""
6648
6649This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6650floating point or vector of floating point type. Not all targets support
6651all types however.
6652
6653::
6654
6655 declare float @llvm.sin.f32(float %Val)
6656 declare double @llvm.sin.f64(double %Val)
6657 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6658 declare fp128 @llvm.sin.f128(fp128 %Val)
6659 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6660
6661Overview:
6662"""""""""
6663
6664The '``llvm.sin.*``' intrinsics return the sine of the operand.
6665
6666Arguments:
6667""""""""""
6668
6669The argument and return value are floating point numbers of the same
6670type.
6671
6672Semantics:
6673""""""""""
6674
6675This function returns the sine of the specified operand, returning the
6676same values as the libm ``sin`` functions would, and handles error
6677conditions in the same way.
6678
6679'``llvm.cos.*``' Intrinsic
6680^^^^^^^^^^^^^^^^^^^^^^^^^^
6681
6682Syntax:
6683"""""""
6684
6685This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6686floating point or vector of floating point type. Not all targets support
6687all types however.
6688
6689::
6690
6691 declare float @llvm.cos.f32(float %Val)
6692 declare double @llvm.cos.f64(double %Val)
6693 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6694 declare fp128 @llvm.cos.f128(fp128 %Val)
6695 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6696
6697Overview:
6698"""""""""
6699
6700The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6701
6702Arguments:
6703""""""""""
6704
6705The argument and return value are floating point numbers of the same
6706type.
6707
6708Semantics:
6709""""""""""
6710
6711This function returns the cosine of the specified operand, returning the
6712same values as the libm ``cos`` functions would, and handles error
6713conditions in the same way.
6714
6715'``llvm.pow.*``' Intrinsic
6716^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6722floating point or vector of floating point type. Not all targets support
6723all types however.
6724
6725::
6726
6727 declare float @llvm.pow.f32(float %Val, float %Power)
6728 declare double @llvm.pow.f64(double %Val, double %Power)
6729 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6730 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6731 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6732
6733Overview:
6734"""""""""
6735
6736The '``llvm.pow.*``' intrinsics return the first operand raised to the
6737specified (positive or negative) power.
6738
6739Arguments:
6740""""""""""
6741
6742The second argument is a floating point power, and the first is a value
6743to raise to that power.
6744
6745Semantics:
6746""""""""""
6747
6748This function returns the first value raised to the second power,
6749returning the same values as the libm ``pow`` functions would, and
6750handles error conditions in the same way.
6751
6752'``llvm.exp.*``' Intrinsic
6753^^^^^^^^^^^^^^^^^^^^^^^^^^
6754
6755Syntax:
6756"""""""
6757
6758This is an overloaded intrinsic. You can use ``llvm.exp`` on any
6759floating point or vector of floating point type. Not all targets support
6760all types however.
6761
6762::
6763
6764 declare float @llvm.exp.f32(float %Val)
6765 declare double @llvm.exp.f64(double %Val)
6766 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
6767 declare fp128 @llvm.exp.f128(fp128 %Val)
6768 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
6769
6770Overview:
6771"""""""""
6772
6773The '``llvm.exp.*``' intrinsics perform the exp function.
6774
6775Arguments:
6776""""""""""
6777
6778The argument and return value are floating point numbers of the same
6779type.
6780
6781Semantics:
6782""""""""""
6783
6784This function returns the same values as the libm ``exp`` functions
6785would, and handles error conditions in the same way.
6786
6787'``llvm.exp2.*``' Intrinsic
6788^^^^^^^^^^^^^^^^^^^^^^^^^^^
6789
6790Syntax:
6791"""""""
6792
6793This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
6794floating point or vector of floating point type. Not all targets support
6795all types however.
6796
6797::
6798
6799 declare float @llvm.exp2.f32(float %Val)
6800 declare double @llvm.exp2.f64(double %Val)
6801 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
6802 declare fp128 @llvm.exp2.f128(fp128 %Val)
6803 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
6804
6805Overview:
6806"""""""""
6807
6808The '``llvm.exp2.*``' intrinsics perform the exp2 function.
6809
6810Arguments:
6811""""""""""
6812
6813The argument and return value are floating point numbers of the same
6814type.
6815
6816Semantics:
6817""""""""""
6818
6819This function returns the same values as the libm ``exp2`` functions
6820would, and handles error conditions in the same way.
6821
6822'``llvm.log.*``' Intrinsic
6823^^^^^^^^^^^^^^^^^^^^^^^^^^
6824
6825Syntax:
6826"""""""
6827
6828This is an overloaded intrinsic. You can use ``llvm.log`` on any
6829floating point or vector of floating point type. Not all targets support
6830all types however.
6831
6832::
6833
6834 declare float @llvm.log.f32(float %Val)
6835 declare double @llvm.log.f64(double %Val)
6836 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
6837 declare fp128 @llvm.log.f128(fp128 %Val)
6838 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
6839
6840Overview:
6841"""""""""
6842
6843The '``llvm.log.*``' intrinsics perform the log function.
6844
6845Arguments:
6846""""""""""
6847
6848The argument and return value are floating point numbers of the same
6849type.
6850
6851Semantics:
6852""""""""""
6853
6854This function returns the same values as the libm ``log`` functions
6855would, and handles error conditions in the same way.
6856
6857'``llvm.log10.*``' Intrinsic
6858^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6859
6860Syntax:
6861"""""""
6862
6863This is an overloaded intrinsic. You can use ``llvm.log10`` on any
6864floating point or vector of floating point type. Not all targets support
6865all types however.
6866
6867::
6868
6869 declare float @llvm.log10.f32(float %Val)
6870 declare double @llvm.log10.f64(double %Val)
6871 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
6872 declare fp128 @llvm.log10.f128(fp128 %Val)
6873 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
6874
6875Overview:
6876"""""""""
6877
6878The '``llvm.log10.*``' intrinsics perform the log10 function.
6879
6880Arguments:
6881""""""""""
6882
6883The argument and return value are floating point numbers of the same
6884type.
6885
6886Semantics:
6887""""""""""
6888
6889This function returns the same values as the libm ``log10`` functions
6890would, and handles error conditions in the same way.
6891
6892'``llvm.log2.*``' Intrinsic
6893^^^^^^^^^^^^^^^^^^^^^^^^^^^
6894
6895Syntax:
6896"""""""
6897
6898This is an overloaded intrinsic. You can use ``llvm.log2`` on any
6899floating point or vector of floating point type. Not all targets support
6900all types however.
6901
6902::
6903
6904 declare float @llvm.log2.f32(float %Val)
6905 declare double @llvm.log2.f64(double %Val)
6906 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
6907 declare fp128 @llvm.log2.f128(fp128 %Val)
6908 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
6909
6910Overview:
6911"""""""""
6912
6913The '``llvm.log2.*``' intrinsics perform the log2 function.
6914
6915Arguments:
6916""""""""""
6917
6918The argument and return value are floating point numbers of the same
6919type.
6920
6921Semantics:
6922""""""""""
6923
6924This function returns the same values as the libm ``log2`` functions
6925would, and handles error conditions in the same way.
6926
6927'``llvm.fma.*``' Intrinsic
6928^^^^^^^^^^^^^^^^^^^^^^^^^^
6929
6930Syntax:
6931"""""""
6932
6933This is an overloaded intrinsic. You can use ``llvm.fma`` on any
6934floating point or vector of floating point type. Not all targets support
6935all types however.
6936
6937::
6938
6939 declare float @llvm.fma.f32(float %a, float %b, float %c)
6940 declare double @llvm.fma.f64(double %a, double %b, double %c)
6941 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
6942 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
6943 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
6944
6945Overview:
6946"""""""""
6947
6948The '``llvm.fma.*``' intrinsics perform the fused multiply-add
6949operation.
6950
6951Arguments:
6952""""""""""
6953
6954The argument and return value are floating point numbers of the same
6955type.
6956
6957Semantics:
6958""""""""""
6959
6960This function returns the same values as the libm ``fma`` functions
6961would.
6962
6963'``llvm.fabs.*``' Intrinsic
6964^^^^^^^^^^^^^^^^^^^^^^^^^^^
6965
6966Syntax:
6967"""""""
6968
6969This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
6970floating point or vector of floating point type. Not all targets support
6971all types however.
6972
6973::
6974
6975 declare float @llvm.fabs.f32(float %Val)
6976 declare double @llvm.fabs.f64(double %Val)
6977 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
6978 declare fp128 @llvm.fabs.f128(fp128 %Val)
6979 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
6980
6981Overview:
6982"""""""""
6983
6984The '``llvm.fabs.*``' intrinsics return the absolute value of the
6985operand.
6986
6987Arguments:
6988""""""""""
6989
6990The argument and return value are floating point numbers of the same
6991type.
6992
6993Semantics:
6994""""""""""
6995
6996This function returns the same values as the libm ``fabs`` functions
6997would, and handles error conditions in the same way.
6998
6999'``llvm.floor.*``' Intrinsic
7000^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7001
7002Syntax:
7003"""""""
7004
7005This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7006floating point or vector of floating point type. Not all targets support
7007all types however.
7008
7009::
7010
7011 declare float @llvm.floor.f32(float %Val)
7012 declare double @llvm.floor.f64(double %Val)
7013 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7014 declare fp128 @llvm.floor.f128(fp128 %Val)
7015 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7016
7017Overview:
7018"""""""""
7019
7020The '``llvm.floor.*``' intrinsics return the floor of the operand.
7021
7022Arguments:
7023""""""""""
7024
7025The argument and return value are floating point numbers of the same
7026type.
7027
7028Semantics:
7029""""""""""
7030
7031This function returns the same values as the libm ``floor`` functions
7032would, and handles error conditions in the same way.
7033
7034'``llvm.ceil.*``' Intrinsic
7035^^^^^^^^^^^^^^^^^^^^^^^^^^^
7036
7037Syntax:
7038"""""""
7039
7040This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7041floating point or vector of floating point type. Not all targets support
7042all types however.
7043
7044::
7045
7046 declare float @llvm.ceil.f32(float %Val)
7047 declare double @llvm.ceil.f64(double %Val)
7048 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7049 declare fp128 @llvm.ceil.f128(fp128 %Val)
7050 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7051
7052Overview:
7053"""""""""
7054
7055The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7056
7057Arguments:
7058""""""""""
7059
7060The argument and return value are floating point numbers of the same
7061type.
7062
7063Semantics:
7064""""""""""
7065
7066This function returns the same values as the libm ``ceil`` functions
7067would, and handles error conditions in the same way.
7068
7069'``llvm.trunc.*``' Intrinsic
7070^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7071
7072Syntax:
7073"""""""
7074
7075This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7076floating point or vector of floating point type. Not all targets support
7077all types however.
7078
7079::
7080
7081 declare float @llvm.trunc.f32(float %Val)
7082 declare double @llvm.trunc.f64(double %Val)
7083 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7084 declare fp128 @llvm.trunc.f128(fp128 %Val)
7085 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7086
7087Overview:
7088"""""""""
7089
7090The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7091nearest integer not larger in magnitude than the operand.
7092
7093Arguments:
7094""""""""""
7095
7096The argument and return value are floating point numbers of the same
7097type.
7098
7099Semantics:
7100""""""""""
7101
7102This function returns the same values as the libm ``trunc`` functions
7103would, and handles error conditions in the same way.
7104
7105'``llvm.rint.*``' Intrinsic
7106^^^^^^^^^^^^^^^^^^^^^^^^^^^
7107
7108Syntax:
7109"""""""
7110
7111This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7112floating point or vector of floating point type. Not all targets support
7113all types however.
7114
7115::
7116
7117 declare float @llvm.rint.f32(float %Val)
7118 declare double @llvm.rint.f64(double %Val)
7119 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7120 declare fp128 @llvm.rint.f128(fp128 %Val)
7121 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7122
7123Overview:
7124"""""""""
7125
7126The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7127nearest integer. It may raise an inexact floating-point exception if the
7128operand isn't an integer.
7129
7130Arguments:
7131""""""""""
7132
7133The argument and return value are floating point numbers of the same
7134type.
7135
7136Semantics:
7137""""""""""
7138
7139This function returns the same values as the libm ``rint`` functions
7140would, and handles error conditions in the same way.
7141
7142'``llvm.nearbyint.*``' Intrinsic
7143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7144
7145Syntax:
7146"""""""
7147
7148This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7149floating point or vector of floating point type. Not all targets support
7150all types however.
7151
7152::
7153
7154 declare float @llvm.nearbyint.f32(float %Val)
7155 declare double @llvm.nearbyint.f64(double %Val)
7156 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7157 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7158 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7159
7160Overview:
7161"""""""""
7162
7163The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7164nearest integer.
7165
7166Arguments:
7167""""""""""
7168
7169The argument and return value are floating point numbers of the same
7170type.
7171
7172Semantics:
7173""""""""""
7174
7175This function returns the same values as the libm ``nearbyint``
7176functions would, and handles error conditions in the same way.
7177
7178Bit Manipulation Intrinsics
7179---------------------------
7180
7181LLVM provides intrinsics for a few important bit manipulation
7182operations. These allow efficient code generation for some algorithms.
7183
7184'``llvm.bswap.*``' Intrinsics
7185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7186
7187Syntax:
7188"""""""
7189
7190This is an overloaded intrinsic function. You can use bswap on any
7191integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7192
7193::
7194
7195 declare i16 @llvm.bswap.i16(i16 <id>)
7196 declare i32 @llvm.bswap.i32(i32 <id>)
7197 declare i64 @llvm.bswap.i64(i64 <id>)
7198
7199Overview:
7200"""""""""
7201
7202The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7203values with an even number of bytes (positive multiple of 16 bits).
7204These are useful for performing operations on data that is not in the
7205target's native byte order.
7206
7207Semantics:
7208""""""""""
7209
7210The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7211and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7212intrinsic returns an i32 value that has the four bytes of the input i32
7213swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7214returned i32 will have its bytes in 3, 2, 1, 0 order. The
7215``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7216concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7217respectively).
7218
7219'``llvm.ctpop.*``' Intrinsic
7220^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7221
7222Syntax:
7223"""""""
7224
7225This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7226bit width, or on any vector with integer elements. Not all targets
7227support all bit widths or vector types, however.
7228
7229::
7230
7231 declare i8 @llvm.ctpop.i8(i8 <src>)
7232 declare i16 @llvm.ctpop.i16(i16 <src>)
7233 declare i32 @llvm.ctpop.i32(i32 <src>)
7234 declare i64 @llvm.ctpop.i64(i64 <src>)
7235 declare i256 @llvm.ctpop.i256(i256 <src>)
7236 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7237
7238Overview:
7239"""""""""
7240
7241The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7242in a value.
7243
7244Arguments:
7245""""""""""
7246
7247The only argument is the value to be counted. The argument may be of any
7248integer type, or a vector with integer elements. The return type must
7249match the argument type.
7250
7251Semantics:
7252""""""""""
7253
7254The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7255each element of a vector.
7256
7257'``llvm.ctlz.*``' Intrinsic
7258^^^^^^^^^^^^^^^^^^^^^^^^^^^
7259
7260Syntax:
7261"""""""
7262
7263This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7264integer bit width, or any vector whose elements are integers. Not all
7265targets support all bit widths or vector types, however.
7266
7267::
7268
7269 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7270 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7271 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7272 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7273 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7274 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7275
7276Overview:
7277"""""""""
7278
7279The '``llvm.ctlz``' family of intrinsic functions counts the number of
7280leading zeros in a variable.
7281
7282Arguments:
7283""""""""""
7284
7285The first argument is the value to be counted. This argument may be of
7286any integer type, or a vectory with integer element type. The return
7287type must match the first argument type.
7288
7289The second argument must be a constant and is a flag to indicate whether
7290the intrinsic should ensure that a zero as the first argument produces a
7291defined result. Historically some architectures did not provide a
7292defined result for zero values as efficiently, and many algorithms are
7293now predicated on avoiding zero-value inputs.
7294
7295Semantics:
7296""""""""""
7297
7298The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7299zeros in a variable, or within each element of the vector. If
7300``src == 0`` then the result is the size in bits of the type of ``src``
7301if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7302``llvm.ctlz(i32 2) = 30``.
7303
7304'``llvm.cttz.*``' Intrinsic
7305^^^^^^^^^^^^^^^^^^^^^^^^^^^
7306
7307Syntax:
7308"""""""
7309
7310This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7311integer bit width, or any vector of integer elements. Not all targets
7312support all bit widths or vector types, however.
7313
7314::
7315
7316 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7317 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7318 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7319 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7320 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7321 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7322
7323Overview:
7324"""""""""
7325
7326The '``llvm.cttz``' family of intrinsic functions counts the number of
7327trailing zeros.
7328
7329Arguments:
7330""""""""""
7331
7332The first argument is the value to be counted. This argument may be of
7333any integer type, or a vectory with integer element type. The return
7334type must match the first argument type.
7335
7336The second argument must be a constant and is a flag to indicate whether
7337the intrinsic should ensure that a zero as the first argument produces a
7338defined result. Historically some architectures did not provide a
7339defined result for zero values as efficiently, and many algorithms are
7340now predicated on avoiding zero-value inputs.
7341
7342Semantics:
7343""""""""""
7344
7345The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7346zeros in a variable, or within each element of a vector. If ``src == 0``
7347then the result is the size in bits of the type of ``src`` if
7348``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7349``llvm.cttz(2) = 1``.
7350
7351Arithmetic with Overflow Intrinsics
7352-----------------------------------
7353
7354LLVM provides intrinsics for some arithmetic with overflow operations.
7355
7356'``llvm.sadd.with.overflow.*``' Intrinsics
7357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7358
7359Syntax:
7360"""""""
7361
7362This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7363on any integer bit width.
7364
7365::
7366
7367 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7368 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7369 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7370
7371Overview:
7372"""""""""
7373
7374The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7375a signed addition of the two arguments, and indicate whether an overflow
7376occurred during the signed summation.
7377
7378Arguments:
7379""""""""""
7380
7381The arguments (%a and %b) and the first element of the result structure
7382may be of integer types of any bit width, but they must have the same
7383bit width. The second element of the result structure must be of type
7384``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7385addition.
7386
7387Semantics:
7388""""""""""
7389
7390The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7391a signed addition of the two variables. They return a structure — the
7392first element of which is the signed summation, and the second element
7393of which is a bit specifying if the signed summation resulted in an
7394overflow.
7395
7396Examples:
7397"""""""""
7398
7399.. code-block:: llvm
7400
7401 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7402 %sum = extractvalue {i32, i1} %res, 0
7403 %obit = extractvalue {i32, i1} %res, 1
7404 br i1 %obit, label %overflow, label %normal
7405
7406'``llvm.uadd.with.overflow.*``' Intrinsics
7407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7408
7409Syntax:
7410"""""""
7411
7412This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7413on any integer bit width.
7414
7415::
7416
7417 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7418 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7419 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7420
7421Overview:
7422"""""""""
7423
7424The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7425an unsigned addition of the two arguments, and indicate whether a carry
7426occurred during the unsigned summation.
7427
7428Arguments:
7429""""""""""
7430
7431The arguments (%a and %b) and the first element of the result structure
7432may be of integer types of any bit width, but they must have the same
7433bit width. The second element of the result structure must be of type
7434``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7435addition.
7436
7437Semantics:
7438""""""""""
7439
7440The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7441an unsigned addition of the two arguments. They return a structure — the
7442first element of which is the sum, and the second element of which is a
7443bit specifying if the unsigned summation resulted in a carry.
7444
7445Examples:
7446"""""""""
7447
7448.. code-block:: llvm
7449
7450 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7451 %sum = extractvalue {i32, i1} %res, 0
7452 %obit = extractvalue {i32, i1} %res, 1
7453 br i1 %obit, label %carry, label %normal
7454
7455'``llvm.ssub.with.overflow.*``' Intrinsics
7456^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7457
7458Syntax:
7459"""""""
7460
7461This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7462on any integer bit width.
7463
7464::
7465
7466 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7467 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7468 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7469
7470Overview:
7471"""""""""
7472
7473The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7474a signed subtraction of the two arguments, and indicate whether an
7475overflow occurred during the signed subtraction.
7476
7477Arguments:
7478""""""""""
7479
7480The arguments (%a and %b) and the first element of the result structure
7481may be of integer types of any bit width, but they must have the same
7482bit width. The second element of the result structure must be of type
7483``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7484subtraction.
7485
7486Semantics:
7487""""""""""
7488
7489The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7490a signed subtraction of the two arguments. They return a structure — the
7491first element of which is the subtraction, and the second element of
7492which is a bit specifying if the signed subtraction resulted in an
7493overflow.
7494
7495Examples:
7496"""""""""
7497
7498.. code-block:: llvm
7499
7500 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7501 %sum = extractvalue {i32, i1} %res, 0
7502 %obit = extractvalue {i32, i1} %res, 1
7503 br i1 %obit, label %overflow, label %normal
7504
7505'``llvm.usub.with.overflow.*``' Intrinsics
7506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7507
7508Syntax:
7509"""""""
7510
7511This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7512on any integer bit width.
7513
7514::
7515
7516 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7517 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7518 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7519
7520Overview:
7521"""""""""
7522
7523The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7524an unsigned subtraction of the two arguments, and indicate whether an
7525overflow occurred during the unsigned subtraction.
7526
7527Arguments:
7528""""""""""
7529
7530The arguments (%a and %b) and the first element of the result structure
7531may be of integer types of any bit width, but they must have the same
7532bit width. The second element of the result structure must be of type
7533``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7534subtraction.
7535
7536Semantics:
7537""""""""""
7538
7539The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7540an unsigned subtraction of the two arguments. They return a structure —
7541the first element of which is the subtraction, and the second element of
7542which is a bit specifying if the unsigned subtraction resulted in an
7543overflow.
7544
7545Examples:
7546"""""""""
7547
7548.. code-block:: llvm
7549
7550 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7551 %sum = extractvalue {i32, i1} %res, 0
7552 %obit = extractvalue {i32, i1} %res, 1
7553 br i1 %obit, label %overflow, label %normal
7554
7555'``llvm.smul.with.overflow.*``' Intrinsics
7556^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7557
7558Syntax:
7559"""""""
7560
7561This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7562on any integer bit width.
7563
7564::
7565
7566 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7567 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7568 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7569
7570Overview:
7571"""""""""
7572
7573The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7574a signed multiplication of the two arguments, and indicate whether an
7575overflow occurred during the signed multiplication.
7576
7577Arguments:
7578""""""""""
7579
7580The arguments (%a and %b) and the first element of the result structure
7581may be of integer types of any bit width, but they must have the same
7582bit width. The second element of the result structure must be of type
7583``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7584multiplication.
7585
7586Semantics:
7587""""""""""
7588
7589The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7590a signed multiplication of the two arguments. They return a structure —
7591the first element of which is the multiplication, and the second element
7592of which is a bit specifying if the signed multiplication resulted in an
7593overflow.
7594
7595Examples:
7596"""""""""
7597
7598.. code-block:: llvm
7599
7600 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7601 %sum = extractvalue {i32, i1} %res, 0
7602 %obit = extractvalue {i32, i1} %res, 1
7603 br i1 %obit, label %overflow, label %normal
7604
7605'``llvm.umul.with.overflow.*``' Intrinsics
7606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7607
7608Syntax:
7609"""""""
7610
7611This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7612on any integer bit width.
7613
7614::
7615
7616 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7617 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7618 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7619
7620Overview:
7621"""""""""
7622
7623The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7624a unsigned multiplication of the two arguments, and indicate whether an
7625overflow occurred during the unsigned multiplication.
7626
7627Arguments:
7628""""""""""
7629
7630The arguments (%a and %b) and the first element of the result structure
7631may be of integer types of any bit width, but they must have the same
7632bit width. The second element of the result structure must be of type
7633``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7634multiplication.
7635
7636Semantics:
7637""""""""""
7638
7639The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7640an unsigned multiplication of the two arguments. They return a structure
7641— the first element of which is the multiplication, and the second
7642element of which is a bit specifying if the unsigned multiplication
7643resulted in an overflow.
7644
7645Examples:
7646"""""""""
7647
7648.. code-block:: llvm
7649
7650 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7651 %sum = extractvalue {i32, i1} %res, 0
7652 %obit = extractvalue {i32, i1} %res, 1
7653 br i1 %obit, label %overflow, label %normal
7654
7655Specialised Arithmetic Intrinsics
7656---------------------------------
7657
7658'``llvm.fmuladd.*``' Intrinsic
7659^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7660
7661Syntax:
7662"""""""
7663
7664::
7665
7666 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7667 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7668
7669Overview:
7670"""""""""
7671
7672The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
7673expressions that can be fused if the code generator determines that the
7674fused expression would be legal and efficient.
7675
7676Arguments:
7677""""""""""
7678
7679The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7680multiplicands, a and b, and an addend c.
7681
7682Semantics:
7683""""""""""
7684
7685The expression:
7686
7687::
7688
7689 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7690
7691is equivalent to the expression a \* b + c, except that rounding will
7692not be performed between the multiplication and addition steps if the
7693code generator fuses the operations. Fusion is not guaranteed, even if
7694the target platform supports it. If a fused multiply-add is required the
7695corresponding llvm.fma.\* intrinsic function should be used instead.
7696
7697Examples:
7698"""""""""
7699
7700.. code-block:: llvm
7701
7702 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7703
7704Half Precision Floating Point Intrinsics
7705----------------------------------------
7706
7707For most target platforms, half precision floating point is a
7708storage-only format. This means that it is a dense encoding (in memory)
7709but does not support computation in the format.
7710
7711This means that code must first load the half-precision floating point
7712value as an i16, then convert it to float with
7713:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7714then be performed on the float value (including extending to double
7715etc). To store the value back to memory, it is first converted to float
7716if needed, then converted to i16 with
7717:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7718i16 value.
7719
7720.. _int_convert_to_fp16:
7721
7722'``llvm.convert.to.fp16``' Intrinsic
7723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7724
7725Syntax:
7726"""""""
7727
7728::
7729
7730 declare i16 @llvm.convert.to.fp16(f32 %a)
7731
7732Overview:
7733"""""""""
7734
7735The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7736from single precision floating point format to half precision floating
7737point format.
7738
7739Arguments:
7740""""""""""
7741
7742The intrinsic function contains single argument - the value to be
7743converted.
7744
7745Semantics:
7746""""""""""
7747
7748The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
7749from single precision floating point format to half precision floating
7750point format. The return value is an ``i16`` which contains the
7751converted number.
7752
7753Examples:
7754"""""""""
7755
7756.. code-block:: llvm
7757
7758 %res = call i16 @llvm.convert.to.fp16(f32 %a)
7759 store i16 %res, i16* @x, align 2
7760
7761.. _int_convert_from_fp16:
7762
7763'``llvm.convert.from.fp16``' Intrinsic
7764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7765
7766Syntax:
7767"""""""
7768
7769::
7770
7771 declare f32 @llvm.convert.from.fp16(i16 %a)
7772
7773Overview:
7774"""""""""
7775
7776The '``llvm.convert.from.fp16``' intrinsic function performs a
7777conversion from half precision floating point format to single precision
7778floating point format.
7779
7780Arguments:
7781""""""""""
7782
7783The intrinsic function contains single argument - the value to be
7784converted.
7785
7786Semantics:
7787""""""""""
7788
7789The '``llvm.convert.from.fp16``' intrinsic function performs a
7790conversion from half single precision floating point format to single
7791precision floating point format. The input half-float value is
7792represented by an ``i16`` value.
7793
7794Examples:
7795"""""""""
7796
7797.. code-block:: llvm
7798
7799 %a = load i16* @x, align 2
7800 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7801
7802Debugger Intrinsics
7803-------------------
7804
7805The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
7806prefix), are described in the `LLVM Source Level
7807Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
7808document.
7809
7810Exception Handling Intrinsics
7811-----------------------------
7812
7813The LLVM exception handling intrinsics (which all start with
7814``llvm.eh.`` prefix), are described in the `LLVM Exception
7815Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
7816
7817.. _int_trampoline:
7818
7819Trampoline Intrinsics
7820---------------------
7821
7822These intrinsics make it possible to excise one parameter, marked with
7823the :ref:`nest <nest>` attribute, from a function. The result is a
7824callable function pointer lacking the nest parameter - the caller does
7825not need to provide a value for it. Instead, the value to use is stored
7826in advance in a "trampoline", a block of memory usually allocated on the
7827stack, which also contains code to splice the nest value into the
7828argument list. This is used to implement the GCC nested function address
7829extension.
7830
7831For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
7832then the resulting function pointer has signature ``i32 (i32, i32)*``.
7833It can be created as follows:
7834
7835.. code-block:: llvm
7836
7837 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7838 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
7839 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
7840 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
7841 %fp = bitcast i8* %p to i32 (i32, i32)*
7842
7843The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
7844``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
7845
7846.. _int_it:
7847
7848'``llvm.init.trampoline``' Intrinsic
7849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854::
7855
7856 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
7857
7858Overview:
7859"""""""""
7860
7861This fills the memory pointed to by ``tramp`` with executable code,
7862turning it into a trampoline.
7863
7864Arguments:
7865""""""""""
7866
7867The ``llvm.init.trampoline`` intrinsic takes three arguments, all
7868pointers. The ``tramp`` argument must point to a sufficiently large and
7869sufficiently aligned block of memory; this memory is written to by the
7870intrinsic. Note that the size and the alignment are target-specific -
7871LLVM currently provides no portable way of determining them, so a
7872front-end that generates this intrinsic needs to have some
7873target-specific knowledge. The ``func`` argument must hold a function
7874bitcast to an ``i8*``.
7875
7876Semantics:
7877""""""""""
7878
7879The block of memory pointed to by ``tramp`` is filled with target
7880dependent code, turning it into a function. Then ``tramp`` needs to be
7881passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
7882be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
7883function's signature is the same as that of ``func`` with any arguments
7884marked with the ``nest`` attribute removed. At most one such ``nest``
7885argument is allowed, and it must be of pointer type. Calling the new
7886function is equivalent to calling ``func`` with the same argument list,
7887but with ``nval`` used for the missing ``nest`` argument. If, after
7888calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
7889modified, then the effect of any later call to the returned function
7890pointer is undefined.
7891
7892.. _int_at:
7893
7894'``llvm.adjust.trampoline``' Intrinsic
7895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7896
7897Syntax:
7898"""""""
7899
7900::
7901
7902 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
7903
7904Overview:
7905"""""""""
7906
7907This performs any required machine-specific adjustment to the address of
7908a trampoline (passed as ``tramp``).
7909
7910Arguments:
7911""""""""""
7912
7913``tramp`` must point to a block of memory which already has trampoline
7914code filled in by a previous call to
7915:ref:`llvm.init.trampoline <int_it>`.
7916
7917Semantics:
7918""""""""""
7919
7920On some architectures the address of the code to be executed needs to be
7921different to the address where the trampoline is actually stored. This
7922intrinsic returns the executable address corresponding to ``tramp``
7923after performing the required machine specific adjustments. The pointer
7924returned can then be :ref:`bitcast and executed <int_trampoline>`.
7925
7926Memory Use Markers
7927------------------
7928
7929This class of intrinsics exists to information about the lifetime of
7930memory objects and ranges where variables are immutable.
7931
7932'``llvm.lifetime.start``' Intrinsic
7933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7934
7935Syntax:
7936"""""""
7937
7938::
7939
7940 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
7941
7942Overview:
7943"""""""""
7944
7945The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
7946object's lifetime.
7947
7948Arguments:
7949""""""""""
7950
7951The first argument is a constant integer representing the size of the
7952object, or -1 if it is variable sized. The second argument is a pointer
7953to the object.
7954
7955Semantics:
7956""""""""""
7957
7958This intrinsic indicates that before this point in the code, the value
7959of the memory pointed to by ``ptr`` is dead. This means that it is known
7960to never be used and has an undefined value. A load from the pointer
7961that precedes this intrinsic can be replaced with ``'undef'``.
7962
7963'``llvm.lifetime.end``' Intrinsic
7964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7965
7966Syntax:
7967"""""""
7968
7969::
7970
7971 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
7972
7973Overview:
7974"""""""""
7975
7976The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
7977object's lifetime.
7978
7979Arguments:
7980""""""""""
7981
7982The first argument is a constant integer representing the size of the
7983object, or -1 if it is variable sized. The second argument is a pointer
7984to the object.
7985
7986Semantics:
7987""""""""""
7988
7989This intrinsic indicates that after this point in the code, the value of
7990the memory pointed to by ``ptr`` is dead. This means that it is known to
7991never be used and has an undefined value. Any stores into the memory
7992object following this intrinsic may be removed as dead.
7993
7994'``llvm.invariant.start``' Intrinsic
7995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7996
7997Syntax:
7998"""""""
7999
8000::
8001
8002 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8003
8004Overview:
8005"""""""""
8006
8007The '``llvm.invariant.start``' intrinsic specifies that the contents of
8008a memory object will not change.
8009
8010Arguments:
8011""""""""""
8012
8013The first argument is a constant integer representing the size of the
8014object, or -1 if it is variable sized. The second argument is a pointer
8015to the object.
8016
8017Semantics:
8018""""""""""
8019
8020This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8021the return value, the referenced memory location is constant and
8022unchanging.
8023
8024'``llvm.invariant.end``' Intrinsic
8025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8026
8027Syntax:
8028"""""""
8029
8030::
8031
8032 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8033
8034Overview:
8035"""""""""
8036
8037The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8038memory object are mutable.
8039
8040Arguments:
8041""""""""""
8042
8043The first argument is the matching ``llvm.invariant.start`` intrinsic.
8044The second argument is a constant integer representing the size of the
8045object, or -1 if it is variable sized and the third argument is a
8046pointer to the object.
8047
8048Semantics:
8049""""""""""
8050
8051This intrinsic indicates that the memory is mutable again.
8052
8053General Intrinsics
8054------------------
8055
8056This class of intrinsics is designed to be generic and has no specific
8057purpose.
8058
8059'``llvm.var.annotation``' Intrinsic
8060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065::
8066
8067 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8068
8069Overview:
8070"""""""""
8071
8072The '``llvm.var.annotation``' intrinsic.
8073
8074Arguments:
8075""""""""""
8076
8077The first argument is a pointer to a value, the second is a pointer to a
8078global string, the third is a pointer to a global string which is the
8079source file name, and the last argument is the line number.
8080
8081Semantics:
8082""""""""""
8083
8084This intrinsic allows annotation of local variables with arbitrary
8085strings. This can be useful for special purpose optimizations that want
8086to look for these annotations. These have no other defined use; they are
8087ignored by code generation and optimization.
8088
8089'``llvm.annotation.*``' Intrinsic
8090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8091
8092Syntax:
8093"""""""
8094
8095This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8096any integer bit width.
8097
8098::
8099
8100 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8101 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8102 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8103 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8104 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8105
8106Overview:
8107"""""""""
8108
8109The '``llvm.annotation``' intrinsic.
8110
8111Arguments:
8112""""""""""
8113
8114The first argument is an integer value (result of some expression), the
8115second is a pointer to a global string, the third is a pointer to a
8116global string which is the source file name, and the last argument is
8117the line number. It returns the value of the first argument.
8118
8119Semantics:
8120""""""""""
8121
8122This intrinsic allows annotations to be put on arbitrary expressions
8123with arbitrary strings. This can be useful for special purpose
8124optimizations that want to look for these annotations. These have no
8125other defined use; they are ignored by code generation and optimization.
8126
8127'``llvm.trap``' Intrinsic
8128^^^^^^^^^^^^^^^^^^^^^^^^^
8129
8130Syntax:
8131"""""""
8132
8133::
8134
8135 declare void @llvm.trap() noreturn nounwind
8136
8137Overview:
8138"""""""""
8139
8140The '``llvm.trap``' intrinsic.
8141
8142Arguments:
8143""""""""""
8144
8145None.
8146
8147Semantics:
8148""""""""""
8149
8150This intrinsic is lowered to the target dependent trap instruction. If
8151the target does not have a trap instruction, this intrinsic will be
8152lowered to a call of the ``abort()`` function.
8153
8154'``llvm.debugtrap``' Intrinsic
8155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8156
8157Syntax:
8158"""""""
8159
8160::
8161
8162 declare void @llvm.debugtrap() nounwind
8163
8164Overview:
8165"""""""""
8166
8167The '``llvm.debugtrap``' intrinsic.
8168
8169Arguments:
8170""""""""""
8171
8172None.
8173
8174Semantics:
8175""""""""""
8176
8177This intrinsic is lowered to code which is intended to cause an
8178execution trap with the intention of requesting the attention of a
8179debugger.
8180
8181'``llvm.stackprotector``' Intrinsic
8182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8183
8184Syntax:
8185"""""""
8186
8187::
8188
8189 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8190
8191Overview:
8192"""""""""
8193
8194The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8195onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8196is placed on the stack before local variables.
8197
8198Arguments:
8199""""""""""
8200
8201The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8202The first argument is the value loaded from the stack guard
8203``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8204enough space to hold the value of the guard.
8205
8206Semantics:
8207""""""""""
8208
8209This intrinsic causes the prologue/epilogue inserter to force the
8210position of the ``AllocaInst`` stack slot to be before local variables
8211on the stack. This is to ensure that if a local variable on the stack is
8212overwritten, it will destroy the value of the guard. When the function
8213exits, the guard on the stack is checked against the original guard. If
8214they are different, then the program aborts by calling the
8215``__stack_chk_fail()`` function.
8216
8217'``llvm.objectsize``' Intrinsic
8218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8219
8220Syntax:
8221"""""""
8222
8223::
8224
8225 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8226 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8227
8228Overview:
8229"""""""""
8230
8231The ``llvm.objectsize`` intrinsic is designed to provide information to
8232the optimizers to determine at compile time whether a) an operation
8233(like memcpy) will overflow a buffer that corresponds to an object, or
8234b) that a runtime check for overflow isn't necessary. An object in this
8235context means an allocation of a specific class, structure, array, or
8236other object.
8237
8238Arguments:
8239""""""""""
8240
8241The ``llvm.objectsize`` intrinsic takes two arguments. The first
8242argument is a pointer to or into the ``object``. The second argument is
8243a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8244or -1 (if false) when the object size is unknown. The second argument
8245only accepts constants.
8246
8247Semantics:
8248""""""""""
8249
8250The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8251the size of the object concerned. If the size cannot be determined at
8252compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8253on the ``min`` argument).
8254
8255'``llvm.expect``' Intrinsic
8256^^^^^^^^^^^^^^^^^^^^^^^^^^^
8257
8258Syntax:
8259"""""""
8260
8261::
8262
8263 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8264 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8265
8266Overview:
8267"""""""""
8268
8269The ``llvm.expect`` intrinsic provides information about expected (the
8270most probable) value of ``val``, which can be used by optimizers.
8271
8272Arguments:
8273""""""""""
8274
8275The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8276a value. The second argument is an expected value, this needs to be a
8277constant value, variables are not allowed.
8278
8279Semantics:
8280""""""""""
8281
8282This intrinsic is lowered to the ``val``.
8283
8284'``llvm.donothing``' Intrinsic
8285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8286
8287Syntax:
8288"""""""
8289
8290::
8291
8292 declare void @llvm.donothing() nounwind readnone
8293
8294Overview:
8295"""""""""
8296
8297The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8298only intrinsic that can be called with an invoke instruction.
8299
8300Arguments:
8301""""""""""
8302
8303None.
8304
8305Semantics:
8306""""""""""
8307
8308This intrinsic does nothing, and it's removed by optimizers and ignored
8309by codegen.