blob: 7647d4e223344e4ab435419e8142d6882da40ebe [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohman12a9c082008-02-06 22:27:42 +000027#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39 cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44 setPow2DivIsCheap();
45
46 // Use _setjmp/_longjmp instead of setjmp/longjmp.
47 setUseUnderscoreSetJmp(true);
48 setUseUnderscoreLongJmp(true);
49
50 // Set up the register classes.
51 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
Duncan Sands082524c2008-01-23 20:39:46 +000056 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
Duncan Sands082524c2008-01-23 20:39:46 +000058
Chris Lattner3bc08502008-01-17 19:59:44 +000059 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
Dale Johannesen472d15d2007-10-06 01:24:11 +000073 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000076 // This is used in the ppcf128->int sequence. Note it has different semantics
77 // from FP_ROUND: that rounds to nearest, this rounds to zero.
78 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000079
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 // PowerPC has no intrinsics for these particular operations
81 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
Andrew Lenharth0531ec52008-02-16 14:46:26 +000084 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
Evan Chengd1d68072008-03-08 00:58:38 +000085 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
Andrew Lenharth0531ec52008-02-16 14:46:26 +000086
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087 // PowerPC has no SREM/UREM instructions
88 setOperationAction(ISD::SREM, MVT::i32, Expand);
89 setOperationAction(ISD::UREM, MVT::i32, Expand);
90 setOperationAction(ISD::SREM, MVT::i64, Expand);
91 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000092
93 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
94 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
95 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
96 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
97 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
98 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
99 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
100 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
101 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000102
Dan Gohman2f7b1982007-10-11 23:21:31 +0000103 // We don't support sin/cos/sqrt/fmod/pow
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 setOperationAction(ISD::FSIN , MVT::f64, Expand);
105 setOperationAction(ISD::FCOS , MVT::f64, Expand);
106 setOperationAction(ISD::FREM , MVT::f64, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000107 setOperationAction(ISD::FPOW , MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 setOperationAction(ISD::FSIN , MVT::f32, Expand);
109 setOperationAction(ISD::FCOS , MVT::f32, Expand);
110 setOperationAction(ISD::FREM , MVT::f32, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000111 setOperationAction(ISD::FPOW , MVT::f32, Expand);
Dale Johannesen436e3802008-01-18 19:55:37 +0000112
Dan Gohman819574c2008-01-31 00:41:03 +0000113 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114
115 // If we're enabling GP optimizations, use hardware square root
116 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
117 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
118 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
119 }
120
121 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
122 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
123
124 // PowerPC does not have BSWAP, CTPOP or CTTZ
125 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
126 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
127 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
128 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
129 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
130 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
131
132 // PowerPC does not have ROTR
133 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
134
135 // PowerPC does not have Select
136 setOperationAction(ISD::SELECT, MVT::i32, Expand);
137 setOperationAction(ISD::SELECT, MVT::i64, Expand);
138 setOperationAction(ISD::SELECT, MVT::f32, Expand);
139 setOperationAction(ISD::SELECT, MVT::f64, Expand);
140
141 // PowerPC wants to turn select_cc of FP into fsel when possible.
142 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
144
145 // PowerPC wants to optimize integer setcc a bit
146 setOperationAction(ISD::SETCC, MVT::i32, Custom);
147
148 // PowerPC does not have BRCOND which requires SetCC
149 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
150
151 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
152
153 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
154 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
155
156 // PowerPC does not have [U|S]INT_TO_FP
157 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
158 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
159
160 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
162 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
163 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
164
165 // We cannot sextinreg(i1). Expand to shifts.
166 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
167
168 // Support label based line numbers.
169 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
170 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Nicolas Geoffray61864762007-12-21 12:19:44 +0000171
172 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
173 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
174 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
175 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
176
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000177
178 // We want to legalize GlobalAddress and ConstantPool nodes into the
179 // appropriate instructions to materialize the address.
180 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
181 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
182 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
183 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
184 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
185 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
186 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
187 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
188
189 // RET must be custom lowered, to meet ABI requirements
190 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000191
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
193 setOperationAction(ISD::VASTART , MVT::Other, Custom);
194
195 // VAARG is custom lowered with ELF 32 ABI
196 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
197 setOperationAction(ISD::VAARG, MVT::Other, Custom);
198 else
199 setOperationAction(ISD::VAARG, MVT::Other, Expand);
200
201 // Use the default implementation.
202 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
203 setOperationAction(ISD::VAEND , MVT::Other, Expand);
204 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
205 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
207 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
208
209 // We want to custom lower some of our intrinsics.
210 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211
212 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
213 // They also have instructions for converting between i64 and fp.
214 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
215 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
216 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
217 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
218 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
219
220 // FIXME: disable this lowered code. This generates 64-bit register values,
221 // and we don't model the fact that the top part is clobbered by calls. We
222 // need to flag these together so that the value isn't live across a call.
223 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
224
225 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
226 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
227 } else {
228 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
229 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
230 }
231
232 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000233 // 64-bit PowerPC implementations can support i64 types directly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000234 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
235 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
236 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Dan Gohman71619ec2008-03-07 20:36:53 +0000237 // 64-bit PowerPC wants to expand i128 shifts itself.
238 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
239 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
240 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241 } else {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000242 // 32-bit PowerPC wants to expand i64 shifts itself.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
244 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
245 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
246 }
247
248 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
249 // First set operation action for all vector types to expand. Then we
250 // will selectively turn on ones that can be effectively codegen'd.
251 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
252 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
253 // add/sub are legal for all supported vector VT's.
254 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
255 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
256
257 // We promote all shuffles to v16i8.
258 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
259 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
260
261 // We promote all non-typed operations to v4i32.
262 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
263 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
264 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
265 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
266 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
267 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
268 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
269 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
270 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
271 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
272 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
273 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
274
275 // No other operations are legal.
276 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
277 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
278 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
280 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
281 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000282 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
285 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000286 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
287 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
288 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
289 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohman4e22ac42007-10-12 14:08:57 +0000291 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
292 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
293 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
294 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 }
296
297 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
298 // with merges, splats, etc.
299 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
300
301 setOperationAction(ISD::AND , MVT::v4i32, Legal);
302 setOperationAction(ISD::OR , MVT::v4i32, Legal);
303 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
304 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
305 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
306 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
307
308 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
309 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
310 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
311 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
312
313 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
314 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
315 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
316 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
317
318 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
319 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
320
321 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
322 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
323 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
324 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
325 }
326
327 setSetCCResultType(MVT::i32);
328 setShiftAmountType(MVT::i32);
329 setSetCCResultContents(ZeroOrOneSetCCResult);
330
331 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
332 setStackPointerRegisterToSaveRestore(PPC::X1);
333 setExceptionPointerRegister(PPC::X3);
334 setExceptionSelectorRegister(PPC::X4);
335 } else {
336 setStackPointerRegisterToSaveRestore(PPC::R1);
337 setExceptionPointerRegister(PPC::R3);
338 setExceptionSelectorRegister(PPC::R4);
339 }
340
341 // We have target-specific dag combine patterns for the following nodes:
342 setTargetDAGCombine(ISD::SINT_TO_FP);
343 setTargetDAGCombine(ISD::STORE);
344 setTargetDAGCombine(ISD::BR_CC);
345 setTargetDAGCombine(ISD::BSWAP);
346
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000347 // Darwin long double math library functions have $LDBL128 appended.
348 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
Duncan Sands37a3f472008-01-10 10:28:30 +0000349 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000350 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
351 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
Duncan Sands37a3f472008-01-10 10:28:30 +0000352 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
353 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000354 }
355
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 computeRegisterProperties();
357}
358
Dale Johannesen88945f82008-02-28 22:31:51 +0000359/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
360/// function arguments in the caller parameter area.
361unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
362 TargetMachine &TM = getTargetMachine();
363 // Darwin passes everything on 4 byte boundary.
364 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
365 return 4;
366 // FIXME Elf TBD
367 return 4;
368}
369
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
371 switch (Opcode) {
372 default: return 0;
373 case PPCISD::FSEL: return "PPCISD::FSEL";
374 case PPCISD::FCFID: return "PPCISD::FCFID";
375 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
376 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
377 case PPCISD::STFIWX: return "PPCISD::STFIWX";
378 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
379 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
380 case PPCISD::VPERM: return "PPCISD::VPERM";
381 case PPCISD::Hi: return "PPCISD::Hi";
382 case PPCISD::Lo: return "PPCISD::Lo";
383 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
384 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
385 case PPCISD::SRL: return "PPCISD::SRL";
386 case PPCISD::SRA: return "PPCISD::SRA";
387 case PPCISD::SHL: return "PPCISD::SHL";
388 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
389 case PPCISD::STD_32: return "PPCISD::STD_32";
390 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
391 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
392 case PPCISD::MTCTR: return "PPCISD::MTCTR";
393 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
394 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
395 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
396 case PPCISD::MFCR: return "PPCISD::MFCR";
397 case PPCISD::VCMP: return "PPCISD::VCMP";
398 case PPCISD::VCMPo: return "PPCISD::VCMPo";
399 case PPCISD::LBRX: return "PPCISD::LBRX";
400 case PPCISD::STBRX: return "PPCISD::STBRX";
401 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
Chris Lattnere2a6e9f2008-01-18 18:51:16 +0000402 case PPCISD::MFFS: return "PPCISD::MFFS";
403 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
404 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
405 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
406 case PPCISD::MTFSF: return "PPCISD::MTFSF";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407 }
408}
409
410//===----------------------------------------------------------------------===//
411// Node matching predicates, for use by the tblgen matching code.
412//===----------------------------------------------------------------------===//
413
414/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
415static bool isFloatingPointZero(SDOperand Op) {
416 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000417 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
419 // Maybe this has already been legalized into the constant pool?
420 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
421 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000422 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 }
424 return false;
425}
426
427/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
428/// true if Op is undef or if it matches the specified value.
429static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
430 return Op.getOpcode() == ISD::UNDEF ||
431 cast<ConstantSDNode>(Op)->getValue() == Val;
432}
433
434/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
435/// VPKUHUM instruction.
436bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
437 if (!isUnary) {
438 for (unsigned i = 0; i != 16; ++i)
439 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
440 return false;
441 } else {
442 for (unsigned i = 0; i != 8; ++i)
443 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
444 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
445 return false;
446 }
447 return true;
448}
449
450/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
451/// VPKUWUM instruction.
452bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
453 if (!isUnary) {
454 for (unsigned i = 0; i != 16; i += 2)
455 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
456 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
457 return false;
458 } else {
459 for (unsigned i = 0; i != 8; i += 2)
460 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
461 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
462 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
463 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
464 return false;
465 }
466 return true;
467}
468
469/// isVMerge - Common function, used to match vmrg* shuffles.
470///
471static bool isVMerge(SDNode *N, unsigned UnitSize,
472 unsigned LHSStart, unsigned RHSStart) {
473 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
474 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
475 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
476 "Unsupported merge size!");
477
478 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
479 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
480 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
481 LHSStart+j+i*UnitSize) ||
482 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
483 RHSStart+j+i*UnitSize))
484 return false;
485 }
486 return true;
487}
488
489/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
490/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
491bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
492 if (!isUnary)
493 return isVMerge(N, UnitSize, 8, 24);
494 return isVMerge(N, UnitSize, 8, 8);
495}
496
497/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
498/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
499bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
500 if (!isUnary)
501 return isVMerge(N, UnitSize, 0, 16);
502 return isVMerge(N, UnitSize, 0, 0);
503}
504
505
506/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
507/// amount, otherwise return -1.
508int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
509 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
510 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
511 // Find the first non-undef value in the shuffle mask.
512 unsigned i;
513 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
514 /*search*/;
515
516 if (i == 16) return -1; // all undef.
517
518 // Otherwise, check to see if the rest of the elements are consequtively
519 // numbered from this value.
520 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
521 if (ShiftAmt < i) return -1;
522 ShiftAmt -= i;
523
524 if (!isUnary) {
525 // Check the rest of the elements to see if they are consequtive.
526 for (++i; i != 16; ++i)
527 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
528 return -1;
529 } else {
530 // Check the rest of the elements to see if they are consequtive.
531 for (++i; i != 16; ++i)
532 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
533 return -1;
534 }
535
536 return ShiftAmt;
537}
538
539/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
540/// specifies a splat of a single element that is suitable for input to
541/// VSPLTB/VSPLTH/VSPLTW.
542bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
543 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
544 N->getNumOperands() == 16 &&
545 (EltSize == 1 || EltSize == 2 || EltSize == 4));
546
547 // This is a splat operation if each element of the permute is the same, and
548 // if the value doesn't reference the second vector.
549 unsigned ElementBase = 0;
550 SDOperand Elt = N->getOperand(0);
551 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
552 ElementBase = EltV->getValue();
553 else
554 return false; // FIXME: Handle UNDEF elements too!
555
556 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
557 return false;
558
559 // Check that they are consequtive.
560 for (unsigned i = 1; i != EltSize; ++i) {
561 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
562 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
563 return false;
564 }
565
566 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
567 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
568 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
569 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
570 "Invalid VECTOR_SHUFFLE mask!");
571 for (unsigned j = 0; j != EltSize; ++j)
572 if (N->getOperand(i+j) != N->getOperand(j))
573 return false;
574 }
575
576 return true;
577}
578
Evan Chengc5912e32007-07-30 07:51:22 +0000579/// isAllNegativeZeroVector - Returns true if all elements of build_vector
580/// are -0.0.
581bool PPC::isAllNegativeZeroVector(SDNode *N) {
582 assert(N->getOpcode() == ISD::BUILD_VECTOR);
583 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
584 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000585 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000586 return false;
587}
588
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000589/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
590/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
591unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
592 assert(isSplatShuffleMask(N, EltSize));
593 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
594}
595
596/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
597/// by using a vspltis[bhw] instruction of the specified element size, return
598/// the constant being splatted. The ByteSize field indicates the number of
599/// bytes of each element [124] -> [bhw].
600SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
601 SDOperand OpVal(0, 0);
602
603 // If ByteSize of the splat is bigger than the element size of the
604 // build_vector, then we have a case where we are checking for a splat where
605 // multiple elements of the buildvector are folded together into a single
606 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
607 unsigned EltSize = 16/N->getNumOperands();
608 if (EltSize < ByteSize) {
609 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
610 SDOperand UniquedVals[4];
611 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
612
613 // See if all of the elements in the buildvector agree across.
614 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
615 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
616 // If the element isn't a constant, bail fully out.
617 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
618
619
620 if (UniquedVals[i&(Multiple-1)].Val == 0)
621 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
622 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
623 return SDOperand(); // no match.
624 }
625
626 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
627 // either constant or undef values that are identical for each chunk. See
628 // if these chunks can form into a larger vspltis*.
629
630 // Check to see if all of the leading entries are either 0 or -1. If
631 // neither, then this won't fit into the immediate field.
632 bool LeadingZero = true;
633 bool LeadingOnes = true;
634 for (unsigned i = 0; i != Multiple-1; ++i) {
635 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
636
637 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
638 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
639 }
640 // Finally, check the least significant entry.
641 if (LeadingZero) {
642 if (UniquedVals[Multiple-1].Val == 0)
643 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
644 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
645 if (Val < 16)
646 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
647 }
648 if (LeadingOnes) {
649 if (UniquedVals[Multiple-1].Val == 0)
650 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
651 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
652 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
653 return DAG.getTargetConstant(Val, MVT::i32);
654 }
655
656 return SDOperand();
657 }
658
659 // Check to see if this buildvec has a single non-undef value in its elements.
660 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
661 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
662 if (OpVal.Val == 0)
663 OpVal = N->getOperand(i);
664 else if (OpVal != N->getOperand(i))
665 return SDOperand();
666 }
667
668 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
669
670 unsigned ValSizeInBytes = 0;
671 uint64_t Value = 0;
672 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
673 Value = CN->getValue();
674 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
675 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
676 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000677 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678 ValSizeInBytes = 4;
679 }
680
681 // If the splat value is larger than the element value, then we can never do
682 // this splat. The only case that we could fit the replicated bits into our
683 // immediate field for would be zero, and we prefer to use vxor for it.
684 if (ValSizeInBytes < ByteSize) return SDOperand();
685
686 // If the element value is larger than the splat value, cut it in half and
687 // check to see if the two halves are equal. Continue doing this until we
688 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
689 while (ValSizeInBytes > ByteSize) {
690 ValSizeInBytes >>= 1;
691
692 // If the top half equals the bottom half, we're still ok.
693 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
694 (Value & ((1 << (8*ValSizeInBytes))-1)))
695 return SDOperand();
696 }
697
698 // Properly sign extend the value.
699 int ShAmt = (4-ByteSize)*8;
700 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
701
702 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
703 if (MaskVal == 0) return SDOperand();
704
705 // Finally, if this value fits in a 5 bit sext field, return it
706 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
707 return DAG.getTargetConstant(MaskVal, MVT::i32);
708 return SDOperand();
709}
710
711//===----------------------------------------------------------------------===//
712// Addressing Mode Selection
713//===----------------------------------------------------------------------===//
714
715/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
716/// or 64-bit immediate, and if the value can be accurately represented as a
717/// sign extension from a 16-bit value. If so, this returns true and the
718/// immediate.
719static bool isIntS16Immediate(SDNode *N, short &Imm) {
720 if (N->getOpcode() != ISD::Constant)
721 return false;
722
723 Imm = (short)cast<ConstantSDNode>(N)->getValue();
724 if (N->getValueType(0) == MVT::i32)
725 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
726 else
727 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
728}
729static bool isIntS16Immediate(SDOperand Op, short &Imm) {
730 return isIntS16Immediate(Op.Val, Imm);
731}
732
733
734/// SelectAddressRegReg - Given the specified addressed, check to see if it
735/// can be represented as an indexed [r+r] operation. Returns false if it
736/// can be more efficiently represented with [r+imm].
737bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
738 SDOperand &Index,
739 SelectionDAG &DAG) {
740 short imm = 0;
741 if (N.getOpcode() == ISD::ADD) {
742 if (isIntS16Immediate(N.getOperand(1), imm))
743 return false; // r+i
744 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
745 return false; // r+i
746
747 Base = N.getOperand(0);
748 Index = N.getOperand(1);
749 return true;
750 } else if (N.getOpcode() == ISD::OR) {
751 if (isIntS16Immediate(N.getOperand(1), imm))
752 return false; // r+i can fold it if we can.
753
754 // If this is an or of disjoint bitfields, we can codegen this as an add
755 // (for better address arithmetic) if the LHS and RHS of the OR are provably
756 // disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000757 APInt LHSKnownZero, LHSKnownOne;
758 APInt RHSKnownZero, RHSKnownOne;
759 DAG.ComputeMaskedBits(N.getOperand(0),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000760 APInt::getAllOnesValue(N.getOperand(0)
761 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000762 LHSKnownZero, LHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763
Dan Gohman63f4e462008-02-27 01:23:58 +0000764 if (LHSKnownZero.getBoolValue()) {
765 DAG.ComputeMaskedBits(N.getOperand(1),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000766 APInt::getAllOnesValue(N.getOperand(1)
767 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000768 RHSKnownZero, RHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769 // If all of the bits are known zero on the LHS or RHS, the add won't
770 // carry.
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000771 if (~(LHSKnownZero | RHSKnownZero) == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772 Base = N.getOperand(0);
773 Index = N.getOperand(1);
774 return true;
775 }
776 }
777 }
778
779 return false;
780}
781
782/// Returns true if the address N can be represented by a base register plus
783/// a signed 16-bit displacement [r+imm], and if it is not better
784/// represented as reg+reg.
785bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
786 SDOperand &Base, SelectionDAG &DAG){
787 // If this can be more profitably realized as r+r, fail.
788 if (SelectAddressRegReg(N, Disp, Base, DAG))
789 return false;
790
791 if (N.getOpcode() == ISD::ADD) {
792 short imm = 0;
793 if (isIntS16Immediate(N.getOperand(1), imm)) {
794 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
795 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
796 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
797 } else {
798 Base = N.getOperand(0);
799 }
800 return true; // [r+i]
801 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
802 // Match LOAD (ADD (X, Lo(G))).
803 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
804 && "Cannot handle constant offsets yet!");
805 Disp = N.getOperand(1).getOperand(0); // The global address.
806 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
807 Disp.getOpcode() == ISD::TargetConstantPool ||
808 Disp.getOpcode() == ISD::TargetJumpTable);
809 Base = N.getOperand(0);
810 return true; // [&g+r]
811 }
812 } else if (N.getOpcode() == ISD::OR) {
813 short imm = 0;
814 if (isIntS16Immediate(N.getOperand(1), imm)) {
815 // If this is an or of disjoint bitfields, we can codegen this as an add
816 // (for better address arithmetic) if the LHS and RHS of the OR are
817 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000818 APInt LHSKnownZero, LHSKnownOne;
819 DAG.ComputeMaskedBits(N.getOperand(0),
820 APInt::getAllOnesValue(32),
821 LHSKnownZero, LHSKnownOne);
822 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 // If all of the bits are known zero on the LHS or RHS, the add won't
824 // carry.
825 Base = N.getOperand(0);
826 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
827 return true;
828 }
829 }
830 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
831 // Loading from a constant address.
832
833 // If this address fits entirely in a 16-bit sext immediate field, codegen
834 // this as "d, 0"
835 short Imm;
836 if (isIntS16Immediate(CN, Imm)) {
837 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
838 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
839 return true;
840 }
841
842 // Handle 32-bit sext immediates with LIS + addr mode.
843 if (CN->getValueType(0) == MVT::i32 ||
844 (int64_t)CN->getValue() == (int)CN->getValue()) {
845 int Addr = (int)CN->getValue();
846
847 // Otherwise, break this down into an LIS + disp.
848 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
849
850 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
851 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
852 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
853 return true;
854 }
855 }
856
857 Disp = DAG.getTargetConstant(0, getPointerTy());
858 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
859 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860 else
861 Base = N;
862 return true; // [r+0]
863}
864
865/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
866/// represented as an indexed [r+r] operation.
867bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
868 SDOperand &Index,
869 SelectionDAG &DAG) {
870 // Check to see if we can easily represent this as an [r+r] address. This
871 // will fail if it thinks that the address is more profitably represented as
872 // reg+imm, e.g. where imm = 0.
873 if (SelectAddressRegReg(N, Base, Index, DAG))
874 return true;
875
876 // If the operand is an addition, always emit this as [r+r], since this is
877 // better (for code size, and execution, as the memop does the add for free)
878 // than emitting an explicit add.
879 if (N.getOpcode() == ISD::ADD) {
880 Base = N.getOperand(0);
881 Index = N.getOperand(1);
882 return true;
883 }
884
885 // Otherwise, do it the hard way, using R0 as the base register.
886 Base = DAG.getRegister(PPC::R0, N.getValueType());
887 Index = N;
888 return true;
889}
890
891/// SelectAddressRegImmShift - Returns true if the address N can be
892/// represented by a base register plus a signed 14-bit displacement
893/// [r+imm*4]. Suitable for use by STD and friends.
894bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
895 SDOperand &Base,
896 SelectionDAG &DAG) {
897 // If this can be more profitably realized as r+r, fail.
898 if (SelectAddressRegReg(N, Disp, Base, DAG))
899 return false;
900
901 if (N.getOpcode() == ISD::ADD) {
902 short imm = 0;
903 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
904 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
905 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
906 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
907 } else {
908 Base = N.getOperand(0);
909 }
910 return true; // [r+i]
911 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
912 // Match LOAD (ADD (X, Lo(G))).
913 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
914 && "Cannot handle constant offsets yet!");
915 Disp = N.getOperand(1).getOperand(0); // The global address.
916 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
917 Disp.getOpcode() == ISD::TargetConstantPool ||
918 Disp.getOpcode() == ISD::TargetJumpTable);
919 Base = N.getOperand(0);
920 return true; // [&g+r]
921 }
922 } else if (N.getOpcode() == ISD::OR) {
923 short imm = 0;
924 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
925 // If this is an or of disjoint bitfields, we can codegen this as an add
926 // (for better address arithmetic) if the LHS and RHS of the OR are
927 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000928 APInt LHSKnownZero, LHSKnownOne;
929 DAG.ComputeMaskedBits(N.getOperand(0),
930 APInt::getAllOnesValue(32),
931 LHSKnownZero, LHSKnownOne);
932 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 // If all of the bits are known zero on the LHS or RHS, the add won't
934 // carry.
935 Base = N.getOperand(0);
936 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
937 return true;
938 }
939 }
940 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
941 // Loading from a constant address. Verify low two bits are clear.
942 if ((CN->getValue() & 3) == 0) {
943 // If this address fits entirely in a 14-bit sext immediate field, codegen
944 // this as "d, 0"
945 short Imm;
946 if (isIntS16Immediate(CN, Imm)) {
947 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
948 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
949 return true;
950 }
951
952 // Fold the low-part of 32-bit absolute addresses into addr mode.
953 if (CN->getValueType(0) == MVT::i32 ||
954 (int64_t)CN->getValue() == (int)CN->getValue()) {
955 int Addr = (int)CN->getValue();
956
957 // Otherwise, break this down into an LIS + disp.
958 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
959
960 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
961 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
962 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
963 return true;
964 }
965 }
966 }
967
968 Disp = DAG.getTargetConstant(0, getPointerTy());
969 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
970 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
971 else
972 Base = N;
973 return true; // [r+0]
974}
975
976
977/// getPreIndexedAddressParts - returns true by value, base pointer and
978/// offset pointer and addressing mode by reference if the node's address
979/// can be legally represented as pre-indexed load / store address.
980bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
981 SDOperand &Offset,
982 ISD::MemIndexedMode &AM,
983 SelectionDAG &DAG) {
984 // Disabled by default for now.
985 if (!EnablePPCPreinc) return false;
986
987 SDOperand Ptr;
988 MVT::ValueType VT;
989 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
990 Ptr = LD->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000991 VT = LD->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992
993 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
994 ST = ST;
995 Ptr = ST->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000996 VT = ST->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997 } else
998 return false;
999
1000 // PowerPC doesn't have preinc load/store instructions for vectors.
1001 if (MVT::isVector(VT))
1002 return false;
1003
1004 // TODO: Check reg+reg first.
1005
1006 // LDU/STU use reg+imm*4, others use reg+imm.
1007 if (VT != MVT::i64) {
1008 // reg + imm
1009 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1010 return false;
1011 } else {
1012 // reg + imm * 4.
1013 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1014 return false;
1015 }
1016
1017 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1018 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1019 // sext i32 to i64 when addr mode is r+i.
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001020 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 LD->getExtensionType() == ISD::SEXTLOAD &&
1022 isa<ConstantSDNode>(Offset))
1023 return false;
1024 }
1025
1026 AM = ISD::PRE_INC;
1027 return true;
1028}
1029
1030//===----------------------------------------------------------------------===//
1031// LowerOperation implementation
1032//===----------------------------------------------------------------------===//
1033
Dale Johannesen8be83a72008-03-04 23:17:14 +00001034SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1035 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 MVT::ValueType PtrVT = Op.getValueType();
1037 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1038 Constant *C = CP->getConstVal();
1039 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1040 SDOperand Zero = DAG.getConstant(0, PtrVT);
1041
1042 const TargetMachine &TM = DAG.getTarget();
1043
1044 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1045 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1046
1047 // If this is a non-darwin platform, we don't support non-static relo models
1048 // yet.
1049 if (TM.getRelocationModel() == Reloc::Static ||
1050 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1051 // Generate non-pic code that has direct accesses to the constant pool.
1052 // The address of the global is just (hi(&g)+lo(&g)).
1053 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1054 }
1055
1056 if (TM.getRelocationModel() == Reloc::PIC_) {
1057 // With PIC, the first instruction is actually "GR+hi(&G)".
1058 Hi = DAG.getNode(ISD::ADD, PtrVT,
1059 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1060 }
1061
1062 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1063 return Lo;
1064}
1065
Dale Johannesen8be83a72008-03-04 23:17:14 +00001066SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 MVT::ValueType PtrVT = Op.getValueType();
1068 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1069 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1070 SDOperand Zero = DAG.getConstant(0, PtrVT);
1071
1072 const TargetMachine &TM = DAG.getTarget();
1073
1074 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1075 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1076
1077 // If this is a non-darwin platform, we don't support non-static relo models
1078 // yet.
1079 if (TM.getRelocationModel() == Reloc::Static ||
1080 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1081 // Generate non-pic code that has direct accesses to the constant pool.
1082 // The address of the global is just (hi(&g)+lo(&g)).
1083 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1084 }
1085
1086 if (TM.getRelocationModel() == Reloc::PIC_) {
1087 // With PIC, the first instruction is actually "GR+hi(&G)".
1088 Hi = DAG.getNode(ISD::ADD, PtrVT,
1089 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1090 }
1091
1092 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1093 return Lo;
1094}
1095
Dale Johannesen8be83a72008-03-04 23:17:14 +00001096SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1097 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 assert(0 && "TLS not implemented for PPC.");
1099}
1100
Dale Johannesen8be83a72008-03-04 23:17:14 +00001101SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1102 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 MVT::ValueType PtrVT = Op.getValueType();
1104 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1105 GlobalValue *GV = GSDN->getGlobal();
1106 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
Evan Chenga5a257d2008-02-02 05:06:29 +00001107 // If it's a debug information descriptor, don't mess with it.
1108 if (DAG.isVerifiedDebugInfoDesc(Op))
1109 return GA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 SDOperand Zero = DAG.getConstant(0, PtrVT);
1111
1112 const TargetMachine &TM = DAG.getTarget();
1113
1114 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1115 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1116
1117 // If this is a non-darwin platform, we don't support non-static relo models
1118 // yet.
1119 if (TM.getRelocationModel() == Reloc::Static ||
1120 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1121 // Generate non-pic code that has direct accesses to globals.
1122 // The address of the global is just (hi(&g)+lo(&g)).
1123 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1124 }
1125
1126 if (TM.getRelocationModel() == Reloc::PIC_) {
1127 // With PIC, the first instruction is actually "GR+hi(&G)".
1128 Hi = DAG.getNode(ISD::ADD, PtrVT,
1129 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1130 }
1131
1132 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1133
1134 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1135 return Lo;
1136
1137 // If the global is weak or external, we have to go through the lazy
1138 // resolution stub.
1139 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1140}
1141
Dale Johannesen8be83a72008-03-04 23:17:14 +00001142SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001143 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1144
1145 // If we're comparing for equality to zero, expose the fact that this is
1146 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1147 // fold the new nodes.
1148 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1149 if (C->isNullValue() && CC == ISD::SETEQ) {
1150 MVT::ValueType VT = Op.getOperand(0).getValueType();
1151 SDOperand Zext = Op.getOperand(0);
1152 if (VT < MVT::i32) {
1153 VT = MVT::i32;
1154 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1155 }
1156 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1157 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1158 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1159 DAG.getConstant(Log2b, MVT::i32));
1160 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1161 }
1162 // Leave comparisons against 0 and -1 alone for now, since they're usually
1163 // optimized. FIXME: revisit this when we can custom lower all setcc
1164 // optimizations.
1165 if (C->isAllOnesValue() || C->isNullValue())
1166 return SDOperand();
1167 }
1168
1169 // If we have an integer seteq/setne, turn it into a compare against zero
1170 // by xor'ing the rhs with the lhs, which is faster than setting a
1171 // condition register, reading it back out, and masking the correct bit. The
1172 // normal approach here uses sub to do this instead of xor. Using xor exposes
1173 // the result to other bit-twiddling opportunities.
1174 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1175 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1176 MVT::ValueType VT = Op.getValueType();
1177 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1178 Op.getOperand(1));
1179 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1180 }
1181 return SDOperand();
1182}
1183
Dale Johannesen8be83a72008-03-04 23:17:14 +00001184SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001185 int VarArgsFrameIndex,
1186 int VarArgsStackOffset,
1187 unsigned VarArgsNumGPR,
1188 unsigned VarArgsNumFPR,
1189 const PPCSubtarget &Subtarget) {
1190
1191 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1192}
1193
Dale Johannesen8be83a72008-03-04 23:17:14 +00001194SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 int VarArgsFrameIndex,
1196 int VarArgsStackOffset,
1197 unsigned VarArgsNumGPR,
1198 unsigned VarArgsNumFPR,
1199 const PPCSubtarget &Subtarget) {
1200
1201 if (Subtarget.isMachoABI()) {
1202 // vastart just stores the address of the VarArgsFrameIndex slot into the
1203 // memory location argument.
1204 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1205 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
Dan Gohman12a9c082008-02-06 22:27:42 +00001206 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1207 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 }
1209
1210 // For ELF 32 ABI we follow the layout of the va_list struct.
1211 // We suppose the given va_list is already allocated.
1212 //
1213 // typedef struct {
1214 // char gpr; /* index into the array of 8 GPRs
1215 // * stored in the register save area
1216 // * gpr=0 corresponds to r3,
1217 // * gpr=1 to r4, etc.
1218 // */
1219 // char fpr; /* index into the array of 8 FPRs
1220 // * stored in the register save area
1221 // * fpr=0 corresponds to f1,
1222 // * fpr=1 to f2, etc.
1223 // */
1224 // char *overflow_arg_area;
1225 // /* location on stack that holds
1226 // * the next overflow argument
1227 // */
1228 // char *reg_save_area;
1229 // /* where r3:r10 and f1:f8 (if saved)
1230 // * are stored
1231 // */
1232 // } va_list[1];
1233
1234
1235 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1236 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1237
1238
1239 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1240
Dan Gohman12a9c082008-02-06 22:27:42 +00001241 SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1243
Dan Gohman12a9c082008-02-06 22:27:42 +00001244 uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1245 SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1246
1247 uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1248 SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1249
1250 uint64_t FPROffset = 1;
1251 SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252
Dan Gohman12a9c082008-02-06 22:27:42 +00001253 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254
1255 // Store first byte : number of int regs
1256 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
Dan Gohman12a9c082008-02-06 22:27:42 +00001257 Op.getOperand(1), SV, 0);
1258 uint64_t nextOffset = FPROffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1260 ConstFPROffset);
1261
1262 // Store second byte : number of float regs
Dan Gohman12a9c082008-02-06 22:27:42 +00001263 SDOperand secondStore =
1264 DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1265 nextOffset += StackOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001266 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1267
1268 // Store second word : arguments given on stack
Dan Gohman12a9c082008-02-06 22:27:42 +00001269 SDOperand thirdStore =
1270 DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1271 nextOffset += FrameOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1273
1274 // Store third word : arguments given in registers
Dan Gohman12a9c082008-02-06 22:27:42 +00001275 return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001276
1277}
1278
1279#include "PPCGenCallingConv.inc"
1280
1281/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1282/// depending on which subtarget is selected.
1283static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1284 if (Subtarget.isMachoABI()) {
1285 static const unsigned FPR[] = {
1286 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1287 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1288 };
1289 return FPR;
1290 }
1291
1292
1293 static const unsigned FPR[] = {
1294 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1295 PPC::F8
1296 };
1297 return FPR;
1298}
1299
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001300SDOperand
1301PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1302 SelectionDAG &DAG,
1303 int &VarArgsFrameIndex,
1304 int &VarArgsStackOffset,
1305 unsigned &VarArgsNumGPR,
1306 unsigned &VarArgsNumFPR,
1307 const PPCSubtarget &Subtarget) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001308 // TODO: add description of PPC stack frame format, or at least some docs.
1309 //
1310 MachineFunction &MF = DAG.getMachineFunction();
1311 MachineFrameInfo *MFI = MF.getFrameInfo();
Chris Lattner1b989192007-12-31 04:13:23 +00001312 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 SmallVector<SDOperand, 8> ArgValues;
1314 SDOperand Root = Op.getOperand(0);
1315
1316 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1317 bool isPPC64 = PtrVT == MVT::i64;
1318 bool isMachoABI = Subtarget.isMachoABI();
1319 bool isELF32_ABI = Subtarget.isELF32_ABI();
1320 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1321
1322 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1323
1324 static const unsigned GPR_32[] = { // 32-bit registers.
1325 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1326 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1327 };
1328 static const unsigned GPR_64[] = { // 64-bit registers.
1329 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1330 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1331 };
1332
1333 static const unsigned *FPR = GetFPR(Subtarget);
1334
1335 static const unsigned VR[] = {
1336 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1337 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1338 };
1339
Owen Anderson1636de92007-09-07 04:06:50 +00001340 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001342 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001343
1344 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1345
1346 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1347
1348 // Add DAG nodes to load the arguments or copy them out of registers. On
1349 // entry to a function on PPC, the arguments start after the linkage area,
1350 // although the first ones are often in registers.
1351 //
1352 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1353 // represented with two words (long long or double) must be copied to an
1354 // even GPR_idx value or to an even ArgOffset value.
1355
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001356 SmallVector<SDOperand, 8> MemOps;
1357
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1359 SDOperand ArgVal;
1360 bool needsLoad = false;
1361 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1362 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1363 unsigned ArgSize = ObjSize;
1364 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1365 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001366 unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001367 // See if next argument requires stack alignment in ELF
1368 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1369 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1370 (!(Flags & AlignFlag)));
1371
1372 unsigned CurArgOffset = ArgOffset;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001373
1374 // FIXME alignment for ELF may not be right
1375 // FIXME the codegen can be much improved in some cases.
1376 // We do not have to keep everything in memory.
1377 if (isByVal) {
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001378 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1379 ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1380 ISD::ParamFlags::ByValSizeOffs;
1381 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001382 // Double word align in ELF
1383 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1384 // Objects of size 1 and 2 are right justified, everything else is
1385 // left justified. This means the memory address is adjusted forwards.
1386 if (ObjSize==1 || ObjSize==2) {
1387 CurArgOffset = CurArgOffset + (4 - ObjSize);
1388 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001389 // The value of the object is its address.
1390 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1391 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1392 ArgValues.push_back(FIN);
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001393 if (ObjSize==1 || ObjSize==2) {
1394 if (GPR_idx != Num_GPR_Regs) {
1395 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1396 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1397 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1398 SDOperand Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1399 NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1400 MemOps.push_back(Store);
1401 ++GPR_idx;
1402 if (isMachoABI) ArgOffset += PtrByteSize;
1403 } else {
1404 ArgOffset += PtrByteSize;
1405 }
1406 continue;
1407 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001408 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1409 // Store whatever pieces of the object are in registers
1410 // to memory. ArgVal will be address of the beginning of
1411 // the object.
1412 if (GPR_idx != Num_GPR_Regs) {
1413 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1414 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1415 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1416 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1417 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1418 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1419 MemOps.push_back(Store);
1420 ++GPR_idx;
1421 if (isMachoABI) ArgOffset += PtrByteSize;
1422 } else {
1423 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1424 break;
1425 }
1426 }
1427 continue;
1428 }
1429
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001430 switch (ObjectVT) {
1431 default: assert(0 && "Unhandled argument type!");
1432 case MVT::i32:
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001433 if (!isPPC64) {
1434 // Double word align in ELF
1435 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1436
1437 if (GPR_idx != Num_GPR_Regs) {
1438 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1439 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1440 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1441 ++GPR_idx;
1442 } else {
1443 needsLoad = true;
1444 ArgSize = PtrByteSize;
1445 }
1446 // Stack align in ELF
1447 if (needsLoad && Expand && isELF32_ABI)
1448 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1449 // All int arguments reserve stack space in Macho ABI.
1450 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1451 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001452 }
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001453 // FALLTHROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454 case MVT::i64: // PPC64
1455 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001456 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1457 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001458 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001459
1460 if (ObjectVT == MVT::i32) {
1461 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1462 // value to MVT::i64 and then truncate to the correct register size.
1463 if (Flags & ISD::ParamFlags::SExt)
1464 ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1465 DAG.getValueType(ObjectVT));
1466 else if (Flags & ISD::ParamFlags::ZExt)
1467 ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1468 DAG.getValueType(ObjectVT));
1469
1470 ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1471 }
1472
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001473 ++GPR_idx;
1474 } else {
1475 needsLoad = true;
1476 }
1477 // All int arguments reserve stack space in Macho ABI.
1478 if (isMachoABI || needsLoad) ArgOffset += 8;
1479 break;
1480
1481 case MVT::f32:
1482 case MVT::f64:
1483 // Every 4 bytes of argument space consumes one of the GPRs available for
1484 // argument passing.
1485 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1486 ++GPR_idx;
1487 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1488 ++GPR_idx;
1489 }
1490 if (FPR_idx != Num_FPR_Regs) {
1491 unsigned VReg;
1492 if (ObjectVT == MVT::f32)
Chris Lattner1b989192007-12-31 04:13:23 +00001493 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001494 else
Chris Lattner1b989192007-12-31 04:13:23 +00001495 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1496 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1498 ++FPR_idx;
1499 } else {
1500 needsLoad = true;
1501 }
1502
1503 // Stack align in ELF
1504 if (needsLoad && Expand && isELF32_ABI)
1505 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1506 // All FP arguments reserve stack space in Macho ABI.
1507 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1508 break;
1509 case MVT::v4f32:
1510 case MVT::v4i32:
1511 case MVT::v8i16:
1512 case MVT::v16i8:
1513 // Note that vector arguments in registers don't reserve stack space.
1514 if (VR_idx != Num_VR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001515 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1516 RegInfo.addLiveIn(VR[VR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001517 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1518 ++VR_idx;
1519 } else {
1520 // This should be simple, but requires getting 16-byte aligned stack
1521 // values.
1522 assert(0 && "Loading VR argument not implemented yet!");
1523 needsLoad = true;
1524 }
1525 break;
1526 }
1527
1528 // We need to load the argument to a virtual register if we determined above
Chris Lattner60069452008-02-13 07:35:30 +00001529 // that we ran out of physical registers of the appropriate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001530 if (needsLoad) {
Chris Lattner60069452008-02-13 07:35:30 +00001531 int FI = MFI->CreateFixedObject(ObjSize,
1532 CurArgOffset + (ArgSize - ObjSize));
1533 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1534 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001535 }
1536
1537 ArgValues.push_back(ArgVal);
1538 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001539
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001540 // If the function takes variable number of arguments, make a frame index for
1541 // the start of the first vararg value... for expansion of llvm.va_start.
1542 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1543 if (isVarArg) {
1544
1545 int depth;
1546 if (isELF32_ABI) {
1547 VarArgsNumGPR = GPR_idx;
1548 VarArgsNumFPR = FPR_idx;
1549
1550 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1551 // pointer.
1552 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1553 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1554 MVT::getSizeInBits(PtrVT)/8);
1555
1556 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1557 ArgOffset);
1558
1559 }
1560 else
1561 depth = ArgOffset;
1562
1563 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1564 depth);
1565 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1566
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1568 // stored to the VarArgsFrameIndex on the stack.
1569 if (isELF32_ABI) {
1570 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1571 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1572 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1573 MemOps.push_back(Store);
1574 // Increment the address by four for the next argument to store
1575 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1576 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1577 }
1578 }
1579
1580 // If this function is vararg, store any remaining integer argument regs
1581 // to their spots on the stack so that they may be loaded by deferencing the
1582 // result of va_next.
1583 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1584 unsigned VReg;
1585 if (isPPC64)
Chris Lattner1b989192007-12-31 04:13:23 +00001586 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001587 else
Chris Lattner1b989192007-12-31 04:13:23 +00001588 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001589
Chris Lattner1b989192007-12-31 04:13:23 +00001590 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001591 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1592 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1593 MemOps.push_back(Store);
1594 // Increment the address by four for the next argument to store
1595 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1596 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1597 }
1598
1599 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1600 // on the stack.
1601 if (isELF32_ABI) {
1602 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1603 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1604 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1605 MemOps.push_back(Store);
1606 // Increment the address by eight for the next argument to store
1607 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1608 PtrVT);
1609 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1610 }
1611
1612 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1613 unsigned VReg;
Chris Lattner1b989192007-12-31 04:13:23 +00001614 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001615
Chris Lattner1b989192007-12-31 04:13:23 +00001616 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001617 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1618 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1619 MemOps.push_back(Store);
1620 // Increment the address by eight for the next argument to store
1621 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1622 PtrVT);
1623 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1624 }
1625 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001626 }
1627
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001628 if (!MemOps.empty())
1629 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1630
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001631 ArgValues.push_back(Root);
1632
1633 // Return the new list of results.
1634 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1635 Op.Val->value_end());
1636 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1637}
1638
1639/// isCallCompatibleAddress - Return the immediate to use if the specified
1640/// 32-bit value is representable in the immediate field of a BxA instruction.
1641static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1642 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1643 if (!C) return 0;
1644
1645 int Addr = C->getValue();
1646 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1647 (Addr << 6 >> 6) != Addr)
1648 return 0; // Top 6 bits have to be sext of immediate.
1649
Evan Cheng282c6462007-10-22 19:46:19 +00001650 return DAG.getConstant((int)C->getValue() >> 2,
1651 DAG.getTargetLoweringInfo().getPointerTy()).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001652}
1653
Dale Johannesen8be83a72008-03-04 23:17:14 +00001654/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1655/// by "Src" to address "Dst" of size "Size". Alignment information is
1656/// specified by the specific parameter attribute. The copy will be passed as
1657/// a byval function parameter.
1658/// Sometimes what we are copying is the end of a larger object, the part that
1659/// does not fit in registers.
1660static SDOperand
1661CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001662 unsigned Flags, SelectionDAG &DAG, unsigned Size) {
Dale Johannesen8be83a72008-03-04 23:17:14 +00001663 unsigned Align = 1 <<
1664 ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1665 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1666 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001667 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
Dale Johannesen8be83a72008-03-04 23:17:14 +00001668 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1669}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001670
Dale Johannesen8be83a72008-03-04 23:17:14 +00001671SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1672 const PPCSubtarget &Subtarget) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001673 SDOperand Chain = Op.getOperand(0);
1674 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1675 SDOperand Callee = Op.getOperand(4);
1676 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1677
1678 bool isMachoABI = Subtarget.isMachoABI();
1679 bool isELF32_ABI = Subtarget.isELF32_ABI();
1680
1681 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1682 bool isPPC64 = PtrVT == MVT::i64;
1683 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1684
1685 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1686 // SelectExpr to use to put the arguments in the appropriate registers.
1687 std::vector<SDOperand> args_to_use;
1688
1689 // Count how many bytes are to be pushed on the stack, including the linkage
1690 // area, and parameter passing area. We start with 24/48 bytes, which is
1691 // prereserved space for [SP][CR][LR][3 x unused].
1692 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1693
1694 // Add up all the space actually used.
1695 for (unsigned i = 0; i != NumOps; ++i) {
Dale Johannesen8be83a72008-03-04 23:17:14 +00001696 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001697 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001698 if (Flags & ISD::ParamFlags::ByVal)
1699 ArgSize = (Flags & ISD::ParamFlags::ByValSize) >>
1700 ISD::ParamFlags::ByValSizeOffs;
Dale Johannesen05b4dbc2008-03-08 01:41:42 +00001701 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001702 NumBytes += ArgSize;
1703 }
1704
1705 // The prolog code of the callee may store up to 8 GPR argument registers to
1706 // the stack, allowing va_start to index over them in memory if its varargs.
1707 // Because we cannot tell if this is needed on the caller side, we have to
1708 // conservatively assume that it is needed. As such, make sure we have at
1709 // least enough stack space for the caller to store the 8 GPRs.
1710 NumBytes = std::max(NumBytes,
1711 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1712
1713 // Adjust the stack pointer for the new arguments...
1714 // These operations are automatically eliminated by the prolog/epilog pass
1715 Chain = DAG.getCALLSEQ_START(Chain,
1716 DAG.getConstant(NumBytes, PtrVT));
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001717 SDOperand CallSeqStart = Chain;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001718
1719 // Set up a copy of the stack pointer for use loading and storing any
1720 // arguments that may not fit in the registers available for argument
1721 // passing.
1722 SDOperand StackPtr;
1723 if (isPPC64)
1724 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1725 else
1726 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1727
1728 // Figure out which arguments are going to go in registers, and which in
1729 // memory. Also, if this is a vararg function, floating point operations
1730 // must be stored to our stack, and loaded into integer regs as well, if
1731 // any integer regs are available for argument passing.
1732 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1733 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1734
1735 static const unsigned GPR_32[] = { // 32-bit registers.
1736 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1737 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1738 };
1739 static const unsigned GPR_64[] = { // 64-bit registers.
1740 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1741 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1742 };
1743 static const unsigned *FPR = GetFPR(Subtarget);
1744
1745 static const unsigned VR[] = {
1746 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1747 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1748 };
Owen Anderson1636de92007-09-07 04:06:50 +00001749 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001750 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001751 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752
1753 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1754
1755 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1756 SmallVector<SDOperand, 8> MemOpChains;
1757 for (unsigned i = 0; i != NumOps; ++i) {
1758 bool inMem = false;
1759 SDOperand Arg = Op.getOperand(5+2*i);
1760 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1761 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1762 // See if next argument requires stack alignment in ELF
1763 unsigned next = 5+2*(i+1)+1;
1764 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1765 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1766 (!(Flags & AlignFlag)));
1767
1768 // PtrOff will be used to store the current argument to the stack if a
1769 // register cannot be found for it.
1770 SDOperand PtrOff;
1771
1772 // Stack align in ELF 32
1773 if (isELF32_ABI && Expand)
1774 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1775 StackPtr.getValueType());
1776 else
1777 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1778
1779 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1780
1781 // On PPC64, promote integers to 64-bit values.
1782 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1783 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001784 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1785 }
Dale Johannesen8be83a72008-03-04 23:17:14 +00001786
1787 // FIXME Elf untested, what are alignment rules?
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001788 // FIXME memcpy is used way more than necessary. Correctness first.
Dale Johannesen8be83a72008-03-04 23:17:14 +00001789 if (Flags & ISD::ParamFlags::ByVal) {
1790 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1791 ISD::ParamFlags::ByValSizeOffs;
1792 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001793 if (Size==1 || Size==2) {
1794 // Very small objects are passed right-justified.
1795 // Everything else is passed left-justified.
1796 MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1797 if (GPR_idx != NumGPRs) {
1798 SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1799 NULL, 0, VT);
1800 MemOpChains.push_back(Load.getValue(1));
1801 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1802 if (isMachoABI)
1803 ArgOffset += PtrByteSize;
1804 } else {
1805 SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1806 SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1807 SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1808 CallSeqStart.Val->getOperand(0),
1809 Flags, DAG, Size);
1810 // This must go outside the CALLSEQ_START..END.
1811 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1812 CallSeqStart.Val->getOperand(1));
1813 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1814 Chain = CallSeqStart = NewCallSeqStart;
1815 ArgOffset += PtrByteSize;
1816 }
1817 continue;
1818 }
Dale Johannesen8be83a72008-03-04 23:17:14 +00001819 for (unsigned j=0; j<Size; j+=PtrByteSize) {
1820 SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1821 SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1822 if (GPR_idx != NumGPRs) {
1823 SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001824 MemOpChains.push_back(Load.getValue(1));
Dale Johannesen8be83a72008-03-04 23:17:14 +00001825 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1826 if (isMachoABI)
1827 ArgOffset += PtrByteSize;
1828 } else {
1829 SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001830 SDOperand MemcpyCall = CreateCopyOfByValArgument(AddArg, AddPtr,
1831 CallSeqStart.Val->getOperand(0),
1832 Flags, DAG, Size - j);
1833 // This must go outside the CALLSEQ_START..END.
1834 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1835 CallSeqStart.Val->getOperand(1));
1836 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001837 Chain = CallSeqStart = NewCallSeqStart;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001838 ArgOffset += ((Size - j + 3)/4)*4;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001839 break;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001840 }
1841 }
1842 continue;
1843 }
1844
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001845 switch (Arg.getValueType()) {
1846 default: assert(0 && "Unexpected ValueType for argument!");
1847 case MVT::i32:
1848 case MVT::i64:
1849 // Double word align in ELF
1850 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1851 if (GPR_idx != NumGPRs) {
1852 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1853 } else {
1854 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1855 inMem = true;
1856 }
1857 if (inMem || isMachoABI) {
1858 // Stack align in ELF
1859 if (isELF32_ABI && Expand)
1860 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1861
1862 ArgOffset += PtrByteSize;
1863 }
1864 break;
1865 case MVT::f32:
1866 case MVT::f64:
1867 if (isVarArg) {
1868 // Float varargs need to be promoted to double.
1869 if (Arg.getValueType() == MVT::f32)
1870 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1871 }
1872
1873 if (FPR_idx != NumFPRs) {
1874 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1875
1876 if (isVarArg) {
1877 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1878 MemOpChains.push_back(Store);
1879
1880 // Float varargs are always shadowed in available integer registers
1881 if (GPR_idx != NumGPRs) {
1882 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1883 MemOpChains.push_back(Load.getValue(1));
1884 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1885 Load));
1886 }
1887 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1888 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1889 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1890 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1891 MemOpChains.push_back(Load.getValue(1));
1892 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1893 Load));
1894 }
1895 } else {
1896 // If we have any FPRs remaining, we may also have GPRs remaining.
1897 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1898 // GPRs.
1899 if (isMachoABI) {
1900 if (GPR_idx != NumGPRs)
1901 ++GPR_idx;
1902 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1903 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1904 ++GPR_idx;
1905 }
1906 }
1907 } else {
1908 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1909 inMem = true;
1910 }
1911 if (inMem || isMachoABI) {
1912 // Stack align in ELF
1913 if (isELF32_ABI && Expand)
1914 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1915 if (isPPC64)
1916 ArgOffset += 8;
1917 else
1918 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1919 }
1920 break;
1921 case MVT::v4f32:
1922 case MVT::v4i32:
1923 case MVT::v8i16:
1924 case MVT::v16i8:
1925 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1926 assert(VR_idx != NumVRs &&
1927 "Don't support passing more than 12 vector args yet!");
1928 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1929 break;
1930 }
1931 }
1932 if (!MemOpChains.empty())
1933 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1934 &MemOpChains[0], MemOpChains.size());
1935
1936 // Build a sequence of copy-to-reg nodes chained together with token chain
1937 // and flag operands which copy the outgoing args into the appropriate regs.
1938 SDOperand InFlag;
1939 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1940 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1941 InFlag);
1942 InFlag = Chain.getValue(1);
1943 }
1944
1945 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1946 if (isVarArg && isELF32_ABI) {
1947 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1948 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1949 InFlag = Chain.getValue(1);
1950 }
1951
1952 std::vector<MVT::ValueType> NodeTys;
1953 NodeTys.push_back(MVT::Other); // Returns a chain
1954 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1955
1956 SmallVector<SDOperand, 8> Ops;
1957 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1958
1959 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1960 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1961 // node so that legalize doesn't hack it.
Nicolas Geoffray455a2e02007-12-21 12:22:29 +00001962 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1963 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1964 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001965 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1966 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1967 // If this is an absolute destination address, use the munged value.
1968 Callee = SDOperand(Dest, 0);
1969 else {
1970 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1971 // to do the call, we can't use PPCISD::CALL.
1972 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1973 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1974 InFlag = Chain.getValue(1);
1975
1976 // Copy the callee address into R12 on darwin.
1977 if (isMachoABI) {
1978 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1979 InFlag = Chain.getValue(1);
1980 }
1981
1982 NodeTys.clear();
1983 NodeTys.push_back(MVT::Other);
1984 NodeTys.push_back(MVT::Flag);
1985 Ops.push_back(Chain);
1986 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1987 Callee.Val = 0;
1988 }
1989
1990 // If this is a direct call, pass the chain and the callee.
1991 if (Callee.Val) {
1992 Ops.push_back(Chain);
1993 Ops.push_back(Callee);
1994 }
1995
1996 // Add argument registers to the end of the list so that they are known live
1997 // into the call.
1998 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1999 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2000 RegsToPass[i].second.getValueType()));
2001
2002 if (InFlag.Val)
2003 Ops.push_back(InFlag);
2004 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2005 InFlag = Chain.getValue(1);
2006
Bill Wendling22f8deb2007-11-13 00:44:25 +00002007 Chain = DAG.getCALLSEQ_END(Chain,
2008 DAG.getConstant(NumBytes, PtrVT),
2009 DAG.getConstant(0, PtrVT),
2010 InFlag);
2011 if (Op.Val->getValueType(0) != MVT::Other)
2012 InFlag = Chain.getValue(1);
2013
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002014 SDOperand ResultVals[3];
2015 unsigned NumResults = 0;
2016 NodeTys.clear();
2017
2018 // If the call has results, copy the values out of the ret val registers.
2019 switch (Op.Val->getValueType(0)) {
2020 default: assert(0 && "Unexpected ret value!");
2021 case MVT::Other: break;
2022 case MVT::i32:
2023 if (Op.Val->getValueType(1) == MVT::i32) {
2024 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2025 ResultVals[0] = Chain.getValue(0);
2026 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
2027 Chain.getValue(2)).getValue(1);
2028 ResultVals[1] = Chain.getValue(0);
2029 NumResults = 2;
2030 NodeTys.push_back(MVT::i32);
2031 } else {
2032 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2033 ResultVals[0] = Chain.getValue(0);
2034 NumResults = 1;
2035 }
2036 NodeTys.push_back(MVT::i32);
2037 break;
2038 case MVT::i64:
Dan Gohmanfe65bda2008-03-08 00:19:12 +00002039 if (Op.Val->getValueType(1) == MVT::i64) {
2040 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2041 ResultVals[0] = Chain.getValue(0);
2042 Chain = DAG.getCopyFromReg(Chain, PPC::X4, MVT::i64,
2043 Chain.getValue(2)).getValue(1);
2044 ResultVals[1] = Chain.getValue(0);
2045 NumResults = 2;
2046 NodeTys.push_back(MVT::i64);
2047 } else {
2048 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2049 ResultVals[0] = Chain.getValue(0);
2050 NumResults = 1;
2051 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002052 NodeTys.push_back(MVT::i64);
2053 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002054 case MVT::f64:
Dale Johannesenac77b272007-10-05 20:04:43 +00002055 if (Op.Val->getValueType(1) == MVT::f64) {
2056 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
2057 ResultVals[0] = Chain.getValue(0);
2058 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
2059 Chain.getValue(2)).getValue(1);
2060 ResultVals[1] = Chain.getValue(0);
2061 NumResults = 2;
2062 NodeTys.push_back(MVT::f64);
2063 NodeTys.push_back(MVT::f64);
2064 break;
2065 }
2066 // else fall through
2067 case MVT::f32:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002068 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
2069 InFlag).getValue(1);
2070 ResultVals[0] = Chain.getValue(0);
2071 NumResults = 1;
2072 NodeTys.push_back(Op.Val->getValueType(0));
2073 break;
2074 case MVT::v4f32:
2075 case MVT::v4i32:
2076 case MVT::v8i16:
2077 case MVT::v16i8:
2078 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
2079 InFlag).getValue(1);
2080 ResultVals[0] = Chain.getValue(0);
2081 NumResults = 1;
2082 NodeTys.push_back(Op.Val->getValueType(0));
2083 break;
2084 }
2085
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002086 NodeTys.push_back(MVT::Other);
2087
2088 // If the function returns void, just return the chain.
2089 if (NumResults == 0)
2090 return Chain;
2091
2092 // Otherwise, merge everything together with a MERGE_VALUES node.
2093 ResultVals[NumResults++] = Chain;
2094 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2095 ResultVals, NumResults);
2096 return Res.getValue(Op.ResNo);
2097}
2098
Dale Johannesen8be83a72008-03-04 23:17:14 +00002099SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2100 TargetMachine &TM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002101 SmallVector<CCValAssign, 16> RVLocs;
2102 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2103 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2104 CCState CCInfo(CC, isVarArg, TM, RVLocs);
2105 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2106
2107 // If this is the first return lowered for this function, add the regs to the
2108 // liveout set for the function.
Chris Lattner1b989192007-12-31 04:13:23 +00002109 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002110 for (unsigned i = 0; i != RVLocs.size(); ++i)
Chris Lattner1b989192007-12-31 04:13:23 +00002111 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 }
2113
2114 SDOperand Chain = Op.getOperand(0);
2115 SDOperand Flag;
2116
2117 // Copy the result values into the output registers.
2118 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2119 CCValAssign &VA = RVLocs[i];
2120 assert(VA.isRegLoc() && "Can only return in registers!");
2121 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2122 Flag = Chain.getValue(1);
2123 }
2124
2125 if (Flag.Val)
2126 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2127 else
2128 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2129}
2130
Dale Johannesen8be83a72008-03-04 23:17:14 +00002131SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002132 const PPCSubtarget &Subtarget) {
2133 // When we pop the dynamic allocation we need to restore the SP link.
2134
2135 // Get the corect type for pointers.
2136 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2137
2138 // Construct the stack pointer operand.
2139 bool IsPPC64 = Subtarget.isPPC64();
2140 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2141 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2142
2143 // Get the operands for the STACKRESTORE.
2144 SDOperand Chain = Op.getOperand(0);
2145 SDOperand SaveSP = Op.getOperand(1);
2146
2147 // Load the old link SP.
2148 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2149
2150 // Restore the stack pointer.
2151 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2152
2153 // Store the old link SP.
2154 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2155}
2156
Dale Johannesen8be83a72008-03-04 23:17:14 +00002157SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2158 SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002159 const PPCSubtarget &Subtarget) {
2160 MachineFunction &MF = DAG.getMachineFunction();
2161 bool IsPPC64 = Subtarget.isPPC64();
2162 bool isMachoABI = Subtarget.isMachoABI();
2163
2164 // Get current frame pointer save index. The users of this index will be
2165 // primarily DYNALLOC instructions.
2166 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2167 int FPSI = FI->getFramePointerSaveIndex();
2168
2169 // If the frame pointer save index hasn't been defined yet.
2170 if (!FPSI) {
2171 // Find out what the fix offset of the frame pointer save area.
2172 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2173
2174 // Allocate the frame index for frame pointer save area.
2175 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2176 // Save the result.
2177 FI->setFramePointerSaveIndex(FPSI);
2178 }
2179
2180 // Get the inputs.
2181 SDOperand Chain = Op.getOperand(0);
2182 SDOperand Size = Op.getOperand(1);
2183
2184 // Get the corect type for pointers.
2185 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2186 // Negate the size.
2187 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2188 DAG.getConstant(0, PtrVT), Size);
2189 // Construct a node for the frame pointer save index.
2190 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2191 // Build a DYNALLOC node.
2192 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2193 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2194 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2195}
2196
2197
2198/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2199/// possible.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002200SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002201 // Not FP? Not a fsel.
2202 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2203 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2204 return SDOperand();
2205
2206 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2207
2208 // Cannot handle SETEQ/SETNE.
2209 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2210
2211 MVT::ValueType ResVT = Op.getValueType();
2212 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2213 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2214 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2215
2216 // If the RHS of the comparison is a 0.0, we don't need to do the
2217 // subtraction at all.
2218 if (isFloatingPointZero(RHS))
2219 switch (CC) {
2220 default: break; // SETUO etc aren't handled by fsel.
2221 case ISD::SETULT:
2222 case ISD::SETOLT:
2223 case ISD::SETLT:
2224 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2225 case ISD::SETUGE:
2226 case ISD::SETOGE:
2227 case ISD::SETGE:
2228 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2229 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2230 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2231 case ISD::SETUGT:
2232 case ISD::SETOGT:
2233 case ISD::SETGT:
2234 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2235 case ISD::SETULE:
2236 case ISD::SETOLE:
2237 case ISD::SETLE:
2238 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2239 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2240 return DAG.getNode(PPCISD::FSEL, ResVT,
2241 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2242 }
2243
Chris Lattnera216bee2007-10-15 20:14:52 +00002244 SDOperand Cmp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002245 switch (CC) {
2246 default: break; // SETUO etc aren't handled by fsel.
2247 case ISD::SETULT:
2248 case ISD::SETOLT:
2249 case ISD::SETLT:
2250 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2251 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2252 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2253 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2254 case ISD::SETUGE:
2255 case ISD::SETOGE:
2256 case ISD::SETGE:
2257 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2258 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2259 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2260 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2261 case ISD::SETUGT:
2262 case ISD::SETOGT:
2263 case ISD::SETGT:
2264 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2265 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2266 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2267 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2268 case ISD::SETULE:
2269 case ISD::SETOLE:
2270 case ISD::SETLE:
2271 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2272 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2273 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2274 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2275 }
2276 return SDOperand();
2277}
2278
Chris Lattner28771092007-11-28 18:44:47 +00002279// FIXME: Split this code up when LegalizeDAGTypes lands.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002280SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002281 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2282 SDOperand Src = Op.getOperand(0);
2283 if (Src.getValueType() == MVT::f32)
2284 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2285
2286 SDOperand Tmp;
2287 switch (Op.getValueType()) {
2288 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2289 case MVT::i32:
2290 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2291 break;
2292 case MVT::i64:
2293 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2294 break;
2295 }
2296
2297 // Convert the FP value to an int value through memory.
Chris Lattnera216bee2007-10-15 20:14:52 +00002298 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2299
2300 // Emit a store to the stack slot.
2301 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2302
2303 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2304 // add in a bias.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002305 if (Op.getValueType() == MVT::i32)
Chris Lattnera216bee2007-10-15 20:14:52 +00002306 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2307 DAG.getConstant(4, FIPtr.getValueType()));
2308 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002309}
2310
Dale Johannesen8be83a72008-03-04 23:17:14 +00002311SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2312 SelectionDAG &DAG) {
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002313 assert(Op.getValueType() == MVT::ppcf128);
2314 SDNode *Node = Op.Val;
2315 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
Chris Lattnerc882caf2007-10-19 04:08:28 +00002316 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002317 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2318 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2319
2320 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2321 // of the long double, and puts FPSCR back the way it was. We do not
2322 // actually model FPSCR.
2323 std::vector<MVT::ValueType> NodeTys;
2324 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2325
2326 NodeTys.push_back(MVT::f64); // Return register
2327 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2328 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2329 MFFSreg = Result.getValue(0);
2330 InFlag = Result.getValue(1);
2331
2332 NodeTys.clear();
2333 NodeTys.push_back(MVT::Flag); // Returns a flag
2334 Ops[0] = DAG.getConstant(31, MVT::i32);
2335 Ops[1] = InFlag;
2336 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2337 InFlag = Result.getValue(0);
2338
2339 NodeTys.clear();
2340 NodeTys.push_back(MVT::Flag); // Returns a flag
2341 Ops[0] = DAG.getConstant(30, MVT::i32);
2342 Ops[1] = InFlag;
2343 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2344 InFlag = Result.getValue(0);
2345
2346 NodeTys.clear();
2347 NodeTys.push_back(MVT::f64); // result of add
2348 NodeTys.push_back(MVT::Flag); // Returns a flag
2349 Ops[0] = Lo;
2350 Ops[1] = Hi;
2351 Ops[2] = InFlag;
2352 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2353 FPreg = Result.getValue(0);
2354 InFlag = Result.getValue(1);
2355
2356 NodeTys.clear();
2357 NodeTys.push_back(MVT::f64);
2358 Ops[0] = DAG.getConstant(1, MVT::i32);
2359 Ops[1] = MFFSreg;
2360 Ops[2] = FPreg;
2361 Ops[3] = InFlag;
2362 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2363 FPreg = Result.getValue(0);
2364
2365 // We know the low half is about to be thrown away, so just use something
2366 // convenient.
2367 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2368}
2369
Dale Johannesen8be83a72008-03-04 23:17:14 +00002370SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002371 if (Op.getOperand(0).getValueType() == MVT::i64) {
2372 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2373 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2374 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002375 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376 return FP;
2377 }
2378
2379 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2380 "Unhandled SINT_TO_FP type in custom expander!");
2381 // Since we only generate this in 64-bit mode, we can take advantage of
2382 // 64-bit registers. In particular, sign extend the input value into the
2383 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2384 // then lfd it and fcfid it.
2385 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2386 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2387 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2388 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2389
2390 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2391 Op.getOperand(0));
2392
2393 // STD the extended value into the stack slot.
Dan Gohmanfb020b62008-02-07 18:41:25 +00002394 MemOperand MO(PseudoSourceValue::getFixedStack(),
Dan Gohman12a9c082008-02-06 22:27:42 +00002395 MemOperand::MOStore, FrameIdx, 8, 8);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002396 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2397 DAG.getEntryNode(), Ext64, FIdx,
Dan Gohman12a9c082008-02-06 22:27:42 +00002398 DAG.getMemOperand(MO));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002399 // Load the value as a double.
2400 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2401
2402 // FCFID it and return it.
2403 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2404 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002405 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002406 return FP;
2407}
2408
Dale Johannesen8be83a72008-03-04 23:17:14 +00002409SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
Dale Johannesen436e3802008-01-18 19:55:37 +00002410 /*
2411 The rounding mode is in bits 30:31 of FPSR, and has the following
2412 settings:
2413 00 Round to nearest
2414 01 Round to 0
2415 10 Round to +inf
2416 11 Round to -inf
2417
2418 FLT_ROUNDS, on the other hand, expects the following:
2419 -1 Undefined
2420 0 Round to 0
2421 1 Round to nearest
2422 2 Round to +inf
2423 3 Round to -inf
2424
2425 To perform the conversion, we do:
2426 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2427 */
2428
2429 MachineFunction &MF = DAG.getMachineFunction();
2430 MVT::ValueType VT = Op.getValueType();
2431 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2432 std::vector<MVT::ValueType> NodeTys;
2433 SDOperand MFFSreg, InFlag;
2434
2435 // Save FP Control Word to register
2436 NodeTys.push_back(MVT::f64); // return register
2437 NodeTys.push_back(MVT::Flag); // unused in this context
2438 SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2439
2440 // Save FP register to stack slot
2441 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2442 SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2443 SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2444 StackSlot, NULL, 0);
2445
2446 // Load FP Control Word from low 32 bits of stack slot.
2447 SDOperand Four = DAG.getConstant(4, PtrVT);
2448 SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2449 SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2450
2451 // Transform as necessary
2452 SDOperand CWD1 =
2453 DAG.getNode(ISD::AND, MVT::i32,
2454 CWD, DAG.getConstant(3, MVT::i32));
2455 SDOperand CWD2 =
2456 DAG.getNode(ISD::SRL, MVT::i32,
2457 DAG.getNode(ISD::AND, MVT::i32,
2458 DAG.getNode(ISD::XOR, MVT::i32,
2459 CWD, DAG.getConstant(3, MVT::i32)),
2460 DAG.getConstant(3, MVT::i32)),
2461 DAG.getConstant(1, MVT::i8));
2462
2463 SDOperand RetVal =
2464 DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2465
2466 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2467 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2468}
2469
Dale Johannesen8be83a72008-03-04 23:17:14 +00002470SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002471 MVT::ValueType VT = Op.getValueType();
2472 unsigned BitWidth = MVT::getSizeInBits(VT);
2473 assert(Op.getNumOperands() == 3 &&
2474 VT == Op.getOperand(1).getValueType() &&
2475 "Unexpected SHL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476
2477 // Expand into a bunch of logical ops. Note that these ops
2478 // depend on the PPC behavior for oversized shift amounts.
2479 SDOperand Lo = Op.getOperand(0);
2480 SDOperand Hi = Op.getOperand(1);
2481 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002482 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002483
Dan Gohman71619ec2008-03-07 20:36:53 +00002484 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2485 DAG.getConstant(BitWidth, AmtVT), Amt);
2486 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2487 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2488 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2489 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2490 DAG.getConstant(-BitWidth, AmtVT));
2491 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2492 SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2493 SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002495 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496 OutOps, 2);
2497}
2498
Dale Johannesen8be83a72008-03-04 23:17:14 +00002499SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002500 MVT::ValueType VT = Op.getValueType();
2501 unsigned BitWidth = MVT::getSizeInBits(VT);
2502 assert(Op.getNumOperands() == 3 &&
2503 VT == Op.getOperand(1).getValueType() &&
2504 "Unexpected SRL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505
Dan Gohman71619ec2008-03-07 20:36:53 +00002506 // Expand into a bunch of logical ops. Note that these ops
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002507 // depend on the PPC behavior for oversized shift amounts.
2508 SDOperand Lo = Op.getOperand(0);
2509 SDOperand Hi = Op.getOperand(1);
2510 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002511 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002512
Dan Gohman71619ec2008-03-07 20:36:53 +00002513 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2514 DAG.getConstant(BitWidth, AmtVT), Amt);
2515 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2516 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2517 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2518 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2519 DAG.getConstant(-BitWidth, AmtVT));
2520 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2521 SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2522 SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002523 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002524 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002525 OutOps, 2);
2526}
2527
Dale Johannesen8be83a72008-03-04 23:17:14 +00002528SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002529 MVT::ValueType VT = Op.getValueType();
2530 unsigned BitWidth = MVT::getSizeInBits(VT);
2531 assert(Op.getNumOperands() == 3 &&
2532 VT == Op.getOperand(1).getValueType() &&
2533 "Unexpected SRA!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002534
Dan Gohman71619ec2008-03-07 20:36:53 +00002535 // Expand into a bunch of logical ops, followed by a select_cc.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002536 SDOperand Lo = Op.getOperand(0);
2537 SDOperand Hi = Op.getOperand(1);
2538 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002539 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002540
Dan Gohman71619ec2008-03-07 20:36:53 +00002541 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2542 DAG.getConstant(BitWidth, AmtVT), Amt);
2543 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2544 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2545 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2546 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2547 DAG.getConstant(-BitWidth, AmtVT));
2548 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2549 SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2550 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551 Tmp4, Tmp6, ISD::SETLE);
2552 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002553 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002554 OutOps, 2);
2555}
2556
2557//===----------------------------------------------------------------------===//
2558// Vector related lowering.
2559//
2560
2561// If this is a vector of constants or undefs, get the bits. A bit in
2562// UndefBits is set if the corresponding element of the vector is an
2563// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2564// zero. Return true if this is not an array of constants, false if it is.
2565//
2566static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2567 uint64_t UndefBits[2]) {
2568 // Start with zero'd results.
2569 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2570
2571 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2572 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2573 SDOperand OpVal = BV->getOperand(i);
2574
2575 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2576 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2577
2578 uint64_t EltBits = 0;
2579 if (OpVal.getOpcode() == ISD::UNDEF) {
2580 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2581 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2582 continue;
2583 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2584 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2585 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2586 assert(CN->getValueType(0) == MVT::f32 &&
2587 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002588 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002589 } else {
2590 // Nonconstant element.
2591 return true;
2592 }
2593
2594 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2595 }
2596
2597 //printf("%llx %llx %llx %llx\n",
2598 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2599 return false;
2600}
2601
2602// If this is a splat (repetition) of a value across the whole vector, return
2603// the smallest size that splats it. For example, "0x01010101010101..." is a
2604// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2605// SplatSize = 1 byte.
2606static bool isConstantSplat(const uint64_t Bits128[2],
2607 const uint64_t Undef128[2],
2608 unsigned &SplatBits, unsigned &SplatUndef,
2609 unsigned &SplatSize) {
2610
2611 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2612 // the same as the lower 64-bits, ignoring undefs.
2613 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2614 return false; // Can't be a splat if two pieces don't match.
2615
2616 uint64_t Bits64 = Bits128[0] | Bits128[1];
2617 uint64_t Undef64 = Undef128[0] & Undef128[1];
2618
2619 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2620 // undefs.
2621 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2622 return false; // Can't be a splat if two pieces don't match.
2623
2624 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2625 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2626
2627 // If the top 16-bits are different than the lower 16-bits, ignoring
2628 // undefs, we have an i32 splat.
2629 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2630 SplatBits = Bits32;
2631 SplatUndef = Undef32;
2632 SplatSize = 4;
2633 return true;
2634 }
2635
2636 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2637 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2638
2639 // If the top 8-bits are different than the lower 8-bits, ignoring
2640 // undefs, we have an i16 splat.
2641 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2642 SplatBits = Bits16;
2643 SplatUndef = Undef16;
2644 SplatSize = 2;
2645 return true;
2646 }
2647
2648 // Otherwise, we have an 8-bit splat.
2649 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2650 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2651 SplatSize = 1;
2652 return true;
2653}
2654
2655/// BuildSplatI - Build a canonical splati of Val with an element size of
2656/// SplatSize. Cast the result to VT.
2657static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2658 SelectionDAG &DAG) {
2659 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2660
2661 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2662 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2663 };
2664
2665 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2666
2667 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2668 if (Val == -1)
2669 SplatSize = 1;
2670
2671 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2672
2673 // Build a canonical splat for this value.
2674 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2675 SmallVector<SDOperand, 8> Ops;
2676 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2677 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2678 &Ops[0], Ops.size());
2679 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2680}
2681
2682/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2683/// specified intrinsic ID.
2684static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2685 SelectionDAG &DAG,
2686 MVT::ValueType DestVT = MVT::Other) {
2687 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2688 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2689 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2690}
2691
2692/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2693/// specified intrinsic ID.
2694static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2695 SDOperand Op2, SelectionDAG &DAG,
2696 MVT::ValueType DestVT = MVT::Other) {
2697 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2698 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2699 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2700}
2701
2702
2703/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2704/// amount. The result has the specified value type.
2705static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2706 MVT::ValueType VT, SelectionDAG &DAG) {
2707 // Force LHS/RHS to be the right type.
2708 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2709 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2710
2711 SDOperand Ops[16];
2712 for (unsigned i = 0; i != 16; ++i)
2713 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2714 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2715 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2716 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2717}
2718
2719// If this is a case we can't handle, return null and let the default
2720// expansion code take care of it. If we CAN select this case, and if it
2721// selects to a single instruction, return Op. Otherwise, if we can codegen
2722// this case more efficiently than a constant pool load, lower it to the
2723// sequence of ops that should be used.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002724SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2725 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002726 // If this is a vector of constants or undefs, get the bits. A bit in
2727 // UndefBits is set if the corresponding element of the vector is an
2728 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2729 // zero.
2730 uint64_t VectorBits[2];
2731 uint64_t UndefBits[2];
2732 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2733 return SDOperand(); // Not a constant vector.
2734
2735 // If this is a splat (repetition) of a value across the whole vector, return
2736 // the smallest size that splats it. For example, "0x01010101010101..." is a
2737 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2738 // SplatSize = 1 byte.
2739 unsigned SplatBits, SplatUndef, SplatSize;
2740 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2741 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2742
2743 // First, handle single instruction cases.
2744
2745 // All zeros?
2746 if (SplatBits == 0) {
2747 // Canonicalize all zero vectors to be v4i32.
2748 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2749 SDOperand Z = DAG.getConstant(0, MVT::i32);
2750 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2751 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2752 }
2753 return Op;
2754 }
2755
2756 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2757 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2758 if (SextVal >= -16 && SextVal <= 15)
2759 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2760
2761
2762 // Two instruction sequences.
2763
2764 // If this value is in the range [-32,30] and is even, use:
2765 // tmp = VSPLTI[bhw], result = add tmp, tmp
2766 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2767 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2768 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2769 }
2770
2771 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2772 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2773 // for fneg/fabs.
2774 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2775 // Make -1 and vspltisw -1:
2776 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2777
2778 // Make the VSLW intrinsic, computing 0x8000_0000.
2779 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2780 OnesV, DAG);
2781
2782 // xor by OnesV to invert it.
2783 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2784 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2785 }
2786
2787 // Check to see if this is a wide variety of vsplti*, binop self cases.
2788 unsigned SplatBitSize = SplatSize*8;
2789 static const signed char SplatCsts[] = {
2790 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2791 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2792 };
2793
Owen Anderson1636de92007-09-07 04:06:50 +00002794 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002795 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2796 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2797 int i = SplatCsts[idx];
2798
2799 // Figure out what shift amount will be used by altivec if shifted by i in
2800 // this splat size.
2801 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2802
2803 // vsplti + shl self.
2804 if (SextVal == (i << (int)TypeShiftAmt)) {
2805 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2806 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2807 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2808 Intrinsic::ppc_altivec_vslw
2809 };
2810 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2811 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2812 }
2813
2814 // vsplti + srl self.
2815 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2816 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2817 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2818 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2819 Intrinsic::ppc_altivec_vsrw
2820 };
2821 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2822 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2823 }
2824
2825 // vsplti + sra self.
2826 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2827 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2828 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2829 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2830 Intrinsic::ppc_altivec_vsraw
2831 };
2832 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2833 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2834 }
2835
2836 // vsplti + rol self.
2837 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2838 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2839 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2840 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2841 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2842 Intrinsic::ppc_altivec_vrlw
2843 };
2844 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2845 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2846 }
2847
2848 // t = vsplti c, result = vsldoi t, t, 1
2849 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2850 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2851 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2852 }
2853 // t = vsplti c, result = vsldoi t, t, 2
2854 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2855 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2856 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2857 }
2858 // t = vsplti c, result = vsldoi t, t, 3
2859 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2860 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2861 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2862 }
2863 }
2864
2865 // Three instruction sequences.
2866
2867 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2868 if (SextVal >= 0 && SextVal <= 31) {
2869 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2870 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002871 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002872 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2873 }
2874 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2875 if (SextVal >= -31 && SextVal <= 0) {
2876 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2877 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002878 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002879 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2880 }
2881 }
2882
2883 return SDOperand();
2884}
2885
2886/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2887/// the specified operations to build the shuffle.
2888static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2889 SDOperand RHS, SelectionDAG &DAG) {
2890 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2891 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2892 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2893
2894 enum {
2895 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2896 OP_VMRGHW,
2897 OP_VMRGLW,
2898 OP_VSPLTISW0,
2899 OP_VSPLTISW1,
2900 OP_VSPLTISW2,
2901 OP_VSPLTISW3,
2902 OP_VSLDOI4,
2903 OP_VSLDOI8,
2904 OP_VSLDOI12
2905 };
2906
2907 if (OpNum == OP_COPY) {
2908 if (LHSID == (1*9+2)*9+3) return LHS;
2909 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2910 return RHS;
2911 }
2912
2913 SDOperand OpLHS, OpRHS;
2914 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2915 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2916
2917 unsigned ShufIdxs[16];
2918 switch (OpNum) {
2919 default: assert(0 && "Unknown i32 permute!");
2920 case OP_VMRGHW:
2921 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2922 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2923 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2924 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2925 break;
2926 case OP_VMRGLW:
2927 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2928 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2929 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2930 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2931 break;
2932 case OP_VSPLTISW0:
2933 for (unsigned i = 0; i != 16; ++i)
2934 ShufIdxs[i] = (i&3)+0;
2935 break;
2936 case OP_VSPLTISW1:
2937 for (unsigned i = 0; i != 16; ++i)
2938 ShufIdxs[i] = (i&3)+4;
2939 break;
2940 case OP_VSPLTISW2:
2941 for (unsigned i = 0; i != 16; ++i)
2942 ShufIdxs[i] = (i&3)+8;
2943 break;
2944 case OP_VSPLTISW3:
2945 for (unsigned i = 0; i != 16; ++i)
2946 ShufIdxs[i] = (i&3)+12;
2947 break;
2948 case OP_VSLDOI4:
2949 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2950 case OP_VSLDOI8:
2951 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2952 case OP_VSLDOI12:
2953 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2954 }
2955 SDOperand Ops[16];
2956 for (unsigned i = 0; i != 16; ++i)
2957 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2958
2959 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2960 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2961}
2962
2963/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2964/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2965/// return the code it can be lowered into. Worst case, it can always be
2966/// lowered into a vperm.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002967SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
2968 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002969 SDOperand V1 = Op.getOperand(0);
2970 SDOperand V2 = Op.getOperand(1);
2971 SDOperand PermMask = Op.getOperand(2);
2972
2973 // Cases that are handled by instructions that take permute immediates
2974 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2975 // selected by the instruction selector.
2976 if (V2.getOpcode() == ISD::UNDEF) {
2977 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2978 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2979 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2980 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2981 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2982 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2983 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2984 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2985 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2986 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2987 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2988 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2989 return Op;
2990 }
2991 }
2992
2993 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2994 // and produce a fixed permutation. If any of these match, do not lower to
2995 // VPERM.
2996 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2997 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2998 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2999 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3000 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3001 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3002 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3003 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3004 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3005 return Op;
3006
3007 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
3008 // perfect shuffle table to emit an optimal matching sequence.
3009 unsigned PFIndexes[4];
3010 bool isFourElementShuffle = true;
3011 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3012 unsigned EltNo = 8; // Start out undef.
3013 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
3014 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3015 continue; // Undef, ignore it.
3016
3017 unsigned ByteSource =
3018 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3019 if ((ByteSource & 3) != j) {
3020 isFourElementShuffle = false;
3021 break;
3022 }
3023
3024 if (EltNo == 8) {
3025 EltNo = ByteSource/4;
3026 } else if (EltNo != ByteSource/4) {
3027 isFourElementShuffle = false;
3028 break;
3029 }
3030 }
3031 PFIndexes[i] = EltNo;
3032 }
3033
3034 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3035 // perfect shuffle vector to determine if it is cost effective to do this as
3036 // discrete instructions, or whether we should use a vperm.
3037 if (isFourElementShuffle) {
3038 // Compute the index in the perfect shuffle table.
3039 unsigned PFTableIndex =
3040 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3041
3042 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3043 unsigned Cost = (PFEntry >> 30);
3044
3045 // Determining when to avoid vperm is tricky. Many things affect the cost
3046 // of vperm, particularly how many times the perm mask needs to be computed.
3047 // For example, if the perm mask can be hoisted out of a loop or is already
3048 // used (perhaps because there are multiple permutes with the same shuffle
3049 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
3050 // the loop requires an extra register.
3051 //
3052 // As a compromise, we only emit discrete instructions if the shuffle can be
3053 // generated in 3 or fewer operations. When we have loop information
3054 // available, if this block is within a loop, we should avoid using vperm
3055 // for 3-operation perms and use a constant pool load instead.
3056 if (Cost < 3)
3057 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3058 }
3059
3060 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3061 // vector that will get spilled to the constant pool.
3062 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3063
3064 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3065 // that it is in input element units, not in bytes. Convert now.
3066 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3067 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3068
3069 SmallVector<SDOperand, 16> ResultMask;
3070 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3071 unsigned SrcElt;
3072 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3073 SrcElt = 0;
3074 else
3075 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3076
3077 for (unsigned j = 0; j != BytesPerElement; ++j)
3078 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3079 MVT::i8));
3080 }
3081
3082 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3083 &ResultMask[0], ResultMask.size());
3084 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3085}
3086
3087/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3088/// altivec comparison. If it is, return true and fill in Opc/isDot with
3089/// information about the intrinsic.
3090static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3091 bool &isDot) {
3092 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3093 CompareOpc = -1;
3094 isDot = false;
3095 switch (IntrinsicID) {
3096 default: return false;
3097 // Comparison predicates.
3098 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
3099 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3100 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
3101 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
3102 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3103 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3104 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3105 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3106 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3107 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3108 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3109 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3110 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3111
3112 // Normal Comparisons.
3113 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
3114 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
3115 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
3116 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
3117 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
3118 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
3119 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
3120 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
3121 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
3122 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
3123 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
3124 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
3125 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
3126 }
3127 return true;
3128}
3129
3130/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3131/// lower, do it, otherwise return null.
Dale Johannesen8be83a72008-03-04 23:17:14 +00003132SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3133 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003134 // If this is a lowered altivec predicate compare, CompareOpc is set to the
3135 // opcode number of the comparison.
3136 int CompareOpc;
3137 bool isDot;
3138 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3139 return SDOperand(); // Don't custom lower most intrinsics.
3140
3141 // If this is a non-dot comparison, make the VCMP node and we are done.
3142 if (!isDot) {
3143 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3144 Op.getOperand(1), Op.getOperand(2),
3145 DAG.getConstant(CompareOpc, MVT::i32));
3146 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3147 }
3148
3149 // Create the PPCISD altivec 'dot' comparison node.
3150 SDOperand Ops[] = {
3151 Op.getOperand(2), // LHS
3152 Op.getOperand(3), // RHS
3153 DAG.getConstant(CompareOpc, MVT::i32)
3154 };
3155 std::vector<MVT::ValueType> VTs;
3156 VTs.push_back(Op.getOperand(2).getValueType());
3157 VTs.push_back(MVT::Flag);
3158 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3159
3160 // Now that we have the comparison, emit a copy from the CR to a GPR.
3161 // This is flagged to the above dot comparison.
3162 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3163 DAG.getRegister(PPC::CR6, MVT::i32),
3164 CompNode.getValue(1));
3165
3166 // Unpack the result based on how the target uses it.
3167 unsigned BitNo; // Bit # of CR6.
3168 bool InvertBit; // Invert result?
3169 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3170 default: // Can't happen, don't crash on invalid number though.
3171 case 0: // Return the value of the EQ bit of CR6.
3172 BitNo = 0; InvertBit = false;
3173 break;
3174 case 1: // Return the inverted value of the EQ bit of CR6.
3175 BitNo = 0; InvertBit = true;
3176 break;
3177 case 2: // Return the value of the LT bit of CR6.
3178 BitNo = 2; InvertBit = false;
3179 break;
3180 case 3: // Return the inverted value of the LT bit of CR6.
3181 BitNo = 2; InvertBit = true;
3182 break;
3183 }
3184
3185 // Shift the bit into the low position.
3186 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3187 DAG.getConstant(8-(3-BitNo), MVT::i32));
3188 // Isolate the bit.
3189 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3190 DAG.getConstant(1, MVT::i32));
3191
3192 // If we are supposed to, toggle the bit.
3193 if (InvertBit)
3194 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3195 DAG.getConstant(1, MVT::i32));
3196 return Flags;
3197}
3198
Dale Johannesen8be83a72008-03-04 23:17:14 +00003199SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3200 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003201 // Create a stack slot that is 16-byte aligned.
3202 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3203 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3204 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3205 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3206
3207 // Store the input value into Value#0 of the stack slot.
3208 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3209 Op.getOperand(0), FIdx, NULL, 0);
3210 // Load it out.
3211 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3212}
3213
Dale Johannesen8be83a72008-03-04 23:17:14 +00003214SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003215 if (Op.getValueType() == MVT::v4i32) {
3216 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3217
3218 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
3219 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3220
3221 SDOperand RHSSwap = // = vrlw RHS, 16
3222 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3223
3224 // Shrinkify inputs to v8i16.
3225 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3226 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3227 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3228
3229 // Low parts multiplied together, generating 32-bit results (we ignore the
3230 // top parts).
3231 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3232 LHS, RHS, DAG, MVT::v4i32);
3233
3234 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3235 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3236 // Shift the high parts up 16 bits.
3237 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3238 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3239 } else if (Op.getValueType() == MVT::v8i16) {
3240 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3241
3242 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3243
3244 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3245 LHS, RHS, Zero, DAG);
3246 } else if (Op.getValueType() == MVT::v16i8) {
3247 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3248
3249 // Multiply the even 8-bit parts, producing 16-bit sums.
3250 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3251 LHS, RHS, DAG, MVT::v8i16);
3252 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3253
3254 // Multiply the odd 8-bit parts, producing 16-bit sums.
3255 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3256 LHS, RHS, DAG, MVT::v8i16);
3257 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3258
3259 // Merge the results together.
3260 SDOperand Ops[16];
3261 for (unsigned i = 0; i != 8; ++i) {
3262 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
3263 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3264 }
3265 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3266 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3267 } else {
3268 assert(0 && "Unknown mul to lower!");
3269 abort();
3270 }
3271}
3272
3273/// LowerOperation - Provide custom lowering hooks for some operations.
3274///
3275SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3276 switch (Op.getOpcode()) {
3277 default: assert(0 && "Wasn't expecting to be able to lower this!");
3278 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3279 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3280 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3281 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3282 case ISD::SETCC: return LowerSETCC(Op, DAG);
3283 case ISD::VASTART:
3284 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3285 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3286
3287 case ISD::VAARG:
3288 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3289 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3290
3291 case ISD::FORMAL_ARGUMENTS:
3292 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3293 VarArgsStackOffset, VarArgsNumGPR,
3294 VarArgsNumFPR, PPCSubTarget);
3295
3296 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
3297 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3298 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3299 case ISD::DYNAMIC_STACKALLOC:
3300 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3301
3302 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3303 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3304 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003305 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohman819574c2008-01-31 00:41:03 +00003306 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003307
3308 // Lower 64-bit shifts.
3309 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3310 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3311 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3312
3313 // Vector-related lowering.
3314 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3315 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3316 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3317 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3318 case ISD::MUL: return LowerMUL(Op, DAG);
3319
Chris Lattnerf8b93372007-12-08 06:59:59 +00003320 // Frame & Return address.
3321 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003322 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3323 }
3324 return SDOperand();
3325}
3326
Chris Lattner28771092007-11-28 18:44:47 +00003327SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3328 switch (N->getOpcode()) {
3329 default: assert(0 && "Wasn't expecting to be able to lower this!");
3330 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3331 }
3332}
3333
3334
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003335//===----------------------------------------------------------------------===//
3336// Other Lowering Code
3337//===----------------------------------------------------------------------===//
3338
3339MachineBasicBlock *
Evan Chenge637db12008-01-30 18:18:23 +00003340PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3341 MachineBasicBlock *BB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003342 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3343 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3344 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3345 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3346 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3347 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3348 "Unexpected instr type to insert");
3349
3350 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3351 // control-flow pattern. The incoming instruction knows the destination vreg
3352 // to set, the condition code register to branch on, the true/false values to
3353 // select between, and a branch opcode to use.
3354 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3355 ilist<MachineBasicBlock>::iterator It = BB;
3356 ++It;
3357
3358 // thisMBB:
3359 // ...
3360 // TrueVal = ...
3361 // cmpTY ccX, r1, r2
3362 // bCC copy1MBB
3363 // fallthrough --> copy0MBB
3364 MachineBasicBlock *thisMBB = BB;
3365 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3366 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3367 unsigned SelectPred = MI->getOperand(4).getImm();
3368 BuildMI(BB, TII->get(PPC::BCC))
3369 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3370 MachineFunction *F = BB->getParent();
3371 F->getBasicBlockList().insert(It, copy0MBB);
3372 F->getBasicBlockList().insert(It, sinkMBB);
3373 // Update machine-CFG edges by first adding all successors of the current
3374 // block to the new block which will contain the Phi node for the select.
3375 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3376 e = BB->succ_end(); i != e; ++i)
3377 sinkMBB->addSuccessor(*i);
3378 // Next, remove all successors of the current block, and add the true
3379 // and fallthrough blocks as its successors.
3380 while(!BB->succ_empty())
3381 BB->removeSuccessor(BB->succ_begin());
3382 BB->addSuccessor(copy0MBB);
3383 BB->addSuccessor(sinkMBB);
3384
3385 // copy0MBB:
3386 // %FalseValue = ...
3387 // # fallthrough to sinkMBB
3388 BB = copy0MBB;
3389
3390 // Update machine-CFG edges
3391 BB->addSuccessor(sinkMBB);
3392
3393 // sinkMBB:
3394 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3395 // ...
3396 BB = sinkMBB;
3397 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3398 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3399 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3400
3401 delete MI; // The pseudo instruction is gone now.
3402 return BB;
3403}
3404
3405//===----------------------------------------------------------------------===//
3406// Target Optimization Hooks
3407//===----------------------------------------------------------------------===//
3408
3409SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3410 DAGCombinerInfo &DCI) const {
3411 TargetMachine &TM = getTargetMachine();
3412 SelectionDAG &DAG = DCI.DAG;
3413 switch (N->getOpcode()) {
3414 default: break;
3415 case PPCISD::SHL:
3416 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3417 if (C->getValue() == 0) // 0 << V -> 0.
3418 return N->getOperand(0);
3419 }
3420 break;
3421 case PPCISD::SRL:
3422 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3423 if (C->getValue() == 0) // 0 >>u V -> 0.
3424 return N->getOperand(0);
3425 }
3426 break;
3427 case PPCISD::SRA:
3428 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3429 if (C->getValue() == 0 || // 0 >>s V -> 0.
3430 C->isAllOnesValue()) // -1 >>s V -> -1.
3431 return N->getOperand(0);
3432 }
3433 break;
3434
3435 case ISD::SINT_TO_FP:
3436 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3437 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3438 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3439 // We allow the src/dst to be either f32/f64, but the intermediate
3440 // type must be i64.
Dale Johannesencbc03512007-10-23 23:20:14 +00003441 if (N->getOperand(0).getValueType() == MVT::i64 &&
3442 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003443 SDOperand Val = N->getOperand(0).getOperand(0);
3444 if (Val.getValueType() == MVT::f32) {
3445 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3446 DCI.AddToWorklist(Val.Val);
3447 }
3448
3449 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3450 DCI.AddToWorklist(Val.Val);
3451 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3452 DCI.AddToWorklist(Val.Val);
3453 if (N->getValueType(0) == MVT::f32) {
Chris Lattner5872a362008-01-17 07:00:52 +00003454 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3455 DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003456 DCI.AddToWorklist(Val.Val);
3457 }
3458 return Val;
3459 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3460 // If the intermediate type is i32, we can avoid the load/store here
3461 // too.
3462 }
3463 }
3464 }
3465 break;
3466 case ISD::STORE:
3467 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3468 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
Chris Lattnerdf7a4ae2008-01-18 16:54:56 +00003469 !cast<StoreSDNode>(N)->isTruncatingStore() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003470 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
Dale Johannesencbc03512007-10-23 23:20:14 +00003471 N->getOperand(1).getValueType() == MVT::i32 &&
3472 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003473 SDOperand Val = N->getOperand(1).getOperand(0);
3474 if (Val.getValueType() == MVT::f32) {
3475 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3476 DCI.AddToWorklist(Val.Val);
3477 }
3478 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3479 DCI.AddToWorklist(Val.Val);
3480
3481 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3482 N->getOperand(2), N->getOperand(3));
3483 DCI.AddToWorklist(Val.Val);
3484 return Val;
3485 }
3486
3487 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3488 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3489 N->getOperand(1).Val->hasOneUse() &&
3490 (N->getOperand(1).getValueType() == MVT::i32 ||
3491 N->getOperand(1).getValueType() == MVT::i16)) {
3492 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3493 // Do an any-extend to 32-bits if this is a half-word input.
3494 if (BSwapOp.getValueType() == MVT::i16)
3495 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3496
3497 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3498 N->getOperand(2), N->getOperand(3),
3499 DAG.getValueType(N->getOperand(1).getValueType()));
3500 }
3501 break;
3502 case ISD::BSWAP:
3503 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3504 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3505 N->getOperand(0).hasOneUse() &&
3506 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3507 SDOperand Load = N->getOperand(0);
3508 LoadSDNode *LD = cast<LoadSDNode>(Load);
3509 // Create the byte-swapping load.
3510 std::vector<MVT::ValueType> VTs;
3511 VTs.push_back(MVT::i32);
3512 VTs.push_back(MVT::Other);
Dan Gohman12a9c082008-02-06 22:27:42 +00003513 SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003514 SDOperand Ops[] = {
3515 LD->getChain(), // Chain
3516 LD->getBasePtr(), // Ptr
Dan Gohman12a9c082008-02-06 22:27:42 +00003517 MO, // MemOperand
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003518 DAG.getValueType(N->getValueType(0)) // VT
3519 };
3520 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3521
3522 // If this is an i16 load, insert the truncate.
3523 SDOperand ResVal = BSLoad;
3524 if (N->getValueType(0) == MVT::i16)
3525 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3526
3527 // First, combine the bswap away. This makes the value produced by the
3528 // load dead.
3529 DCI.CombineTo(N, ResVal);
3530
3531 // Next, combine the load away, we give it a bogus result value but a real
3532 // chain result. The result value is dead because the bswap is dead.
3533 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3534
3535 // Return N so it doesn't get rechecked!
3536 return SDOperand(N, 0);
3537 }
3538
3539 break;
3540 case PPCISD::VCMP: {
3541 // If a VCMPo node already exists with exactly the same operands as this
3542 // node, use its result instead of this node (VCMPo computes both a CR6 and
3543 // a normal output).
3544 //
3545 if (!N->getOperand(0).hasOneUse() &&
3546 !N->getOperand(1).hasOneUse() &&
3547 !N->getOperand(2).hasOneUse()) {
3548
3549 // Scan all of the users of the LHS, looking for VCMPo's that match.
3550 SDNode *VCMPoNode = 0;
3551
3552 SDNode *LHSN = N->getOperand(0).Val;
3553 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3554 UI != E; ++UI)
3555 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3556 (*UI)->getOperand(1) == N->getOperand(1) &&
3557 (*UI)->getOperand(2) == N->getOperand(2) &&
3558 (*UI)->getOperand(0) == N->getOperand(0)) {
3559 VCMPoNode = *UI;
3560 break;
3561 }
3562
3563 // If there is no VCMPo node, or if the flag value has a single use, don't
3564 // transform this.
3565 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3566 break;
3567
3568 // Look at the (necessarily single) use of the flag value. If it has a
3569 // chain, this transformation is more complex. Note that multiple things
3570 // could use the value result, which we should ignore.
3571 SDNode *FlagUser = 0;
3572 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3573 FlagUser == 0; ++UI) {
3574 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3575 SDNode *User = *UI;
3576 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3577 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3578 FlagUser = User;
3579 break;
3580 }
3581 }
3582 }
3583
3584 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3585 // give up for right now.
3586 if (FlagUser->getOpcode() == PPCISD::MFCR)
3587 return SDOperand(VCMPoNode, 0);
3588 }
3589 break;
3590 }
3591 case ISD::BR_CC: {
3592 // If this is a branch on an altivec predicate comparison, lower this so
3593 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3594 // lowering is done pre-legalize, because the legalizer lowers the predicate
3595 // compare down to code that is difficult to reassemble.
3596 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3597 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3598 int CompareOpc;
3599 bool isDot;
3600
3601 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3602 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3603 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3604 assert(isDot && "Can't compare against a vector result!");
3605
3606 // If this is a comparison against something other than 0/1, then we know
3607 // that the condition is never/always true.
3608 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3609 if (Val != 0 && Val != 1) {
3610 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3611 return N->getOperand(0);
3612 // Always !=, turn it into an unconditional branch.
3613 return DAG.getNode(ISD::BR, MVT::Other,
3614 N->getOperand(0), N->getOperand(4));
3615 }
3616
3617 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3618
3619 // Create the PPCISD altivec 'dot' comparison node.
3620 std::vector<MVT::ValueType> VTs;
3621 SDOperand Ops[] = {
3622 LHS.getOperand(2), // LHS of compare
3623 LHS.getOperand(3), // RHS of compare
3624 DAG.getConstant(CompareOpc, MVT::i32)
3625 };
3626 VTs.push_back(LHS.getOperand(2).getValueType());
3627 VTs.push_back(MVT::Flag);
3628 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3629
3630 // Unpack the result based on how the target uses it.
3631 PPC::Predicate CompOpc;
3632 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3633 default: // Can't happen, don't crash on invalid number though.
3634 case 0: // Branch on the value of the EQ bit of CR6.
3635 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3636 break;
3637 case 1: // Branch on the inverted value of the EQ bit of CR6.
3638 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3639 break;
3640 case 2: // Branch on the value of the LT bit of CR6.
3641 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3642 break;
3643 case 3: // Branch on the inverted value of the LT bit of CR6.
3644 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3645 break;
3646 }
3647
3648 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3649 DAG.getConstant(CompOpc, MVT::i32),
3650 DAG.getRegister(PPC::CR6, MVT::i32),
3651 N->getOperand(4), CompNode.getValue(1));
3652 }
3653 break;
3654 }
3655 }
3656
3657 return SDOperand();
3658}
3659
3660//===----------------------------------------------------------------------===//
3661// Inline Assembly Support
3662//===----------------------------------------------------------------------===//
3663
3664void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
Dan Gohmand0dfc772008-02-13 22:28:48 +00003665 const APInt &Mask,
Dan Gohman229fa052008-02-13 00:35:47 +00003666 APInt &KnownZero,
3667 APInt &KnownOne,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003668 const SelectionDAG &DAG,
3669 unsigned Depth) const {
Dan Gohman229fa052008-02-13 00:35:47 +00003670 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003671 switch (Op.getOpcode()) {
3672 default: break;
3673 case PPCISD::LBRX: {
3674 // lhbrx is known to have the top bits cleared out.
3675 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3676 KnownZero = 0xFFFF0000;
3677 break;
3678 }
3679 case ISD::INTRINSIC_WO_CHAIN: {
3680 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3681 default: break;
3682 case Intrinsic::ppc_altivec_vcmpbfp_p:
3683 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3684 case Intrinsic::ppc_altivec_vcmpequb_p:
3685 case Intrinsic::ppc_altivec_vcmpequh_p:
3686 case Intrinsic::ppc_altivec_vcmpequw_p:
3687 case Intrinsic::ppc_altivec_vcmpgefp_p:
3688 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3689 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3690 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3691 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3692 case Intrinsic::ppc_altivec_vcmpgtub_p:
3693 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3694 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3695 KnownZero = ~1U; // All bits but the low one are known to be zero.
3696 break;
3697 }
3698 }
3699 }
3700}
3701
3702
3703/// getConstraintType - Given a constraint, return the type of
3704/// constraint it is for this target.
3705PPCTargetLowering::ConstraintType
3706PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3707 if (Constraint.size() == 1) {
3708 switch (Constraint[0]) {
3709 default: break;
3710 case 'b':
3711 case 'r':
3712 case 'f':
3713 case 'v':
3714 case 'y':
3715 return C_RegisterClass;
3716 }
3717 }
3718 return TargetLowering::getConstraintType(Constraint);
3719}
3720
3721std::pair<unsigned, const TargetRegisterClass*>
3722PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3723 MVT::ValueType VT) const {
3724 if (Constraint.size() == 1) {
3725 // GCC RS6000 Constraint Letters
3726 switch (Constraint[0]) {
3727 case 'b': // R1-R31
3728 case 'r': // R0-R31
3729 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3730 return std::make_pair(0U, PPC::G8RCRegisterClass);
3731 return std::make_pair(0U, PPC::GPRCRegisterClass);
3732 case 'f':
3733 if (VT == MVT::f32)
3734 return std::make_pair(0U, PPC::F4RCRegisterClass);
3735 else if (VT == MVT::f64)
3736 return std::make_pair(0U, PPC::F8RCRegisterClass);
3737 break;
3738 case 'v':
3739 return std::make_pair(0U, PPC::VRRCRegisterClass);
3740 case 'y': // crrc
3741 return std::make_pair(0U, PPC::CRRCRegisterClass);
3742 }
3743 }
3744
3745 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3746}
3747
3748
Chris Lattnera531abc2007-08-25 00:47:38 +00003749/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3750/// vector. If it is invalid, don't add anything to Ops.
3751void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3752 std::vector<SDOperand>&Ops,
3753 SelectionDAG &DAG) {
3754 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003755 switch (Letter) {
3756 default: break;
3757 case 'I':
3758 case 'J':
3759 case 'K':
3760 case 'L':
3761 case 'M':
3762 case 'N':
3763 case 'O':
3764 case 'P': {
3765 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003766 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003767 unsigned Value = CST->getValue();
3768 switch (Letter) {
3769 default: assert(0 && "Unknown constraint letter!");
3770 case 'I': // "I" is a signed 16-bit constant.
3771 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003772 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003773 break;
3774 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3775 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3776 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003777 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778 break;
3779 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3780 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003781 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003782 break;
3783 case 'M': // "M" is a constant that is greater than 31.
3784 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003785 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003786 break;
3787 case 'N': // "N" is a positive constant that is an exact power of two.
3788 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003789 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003790 break;
3791 case 'O': // "O" is the constant zero.
3792 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003793 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003794 break;
3795 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3796 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003797 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003798 break;
3799 }
3800 break;
3801 }
3802 }
3803
Chris Lattnera531abc2007-08-25 00:47:38 +00003804 if (Result.Val) {
3805 Ops.push_back(Result);
3806 return;
3807 }
3808
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003809 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003810 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003811}
3812
3813// isLegalAddressingMode - Return true if the addressing mode represented
3814// by AM is legal for this target, for a load/store of the specified type.
3815bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3816 const Type *Ty) const {
3817 // FIXME: PPC does not allow r+i addressing modes for vectors!
3818
3819 // PPC allows a sign-extended 16-bit immediate field.
3820 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3821 return false;
3822
3823 // No global is ever allowed as a base.
3824 if (AM.BaseGV)
3825 return false;
3826
3827 // PPC only support r+r,
3828 switch (AM.Scale) {
3829 case 0: // "r+i" or just "i", depending on HasBaseReg.
3830 break;
3831 case 1:
3832 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3833 return false;
3834 // Otherwise we have r+r or r+i.
3835 break;
3836 case 2:
3837 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3838 return false;
3839 // Allow 2*r as r+r.
3840 break;
3841 default:
3842 // No other scales are supported.
3843 return false;
3844 }
3845
3846 return true;
3847}
3848
3849/// isLegalAddressImmediate - Return true if the integer value can be used
3850/// as the offset of the target addressing mode for load / store of the
3851/// given type.
3852bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3853 // PPC allows a sign-extended 16-bit immediate field.
3854 return (V > -(1 << 16) && V < (1 << 16)-1);
3855}
3856
3857bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3858 return false;
3859}
3860
Chris Lattnerf8b93372007-12-08 06:59:59 +00003861SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3862 // Depths > 0 not supported yet!
3863 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3864 return SDOperand();
3865
3866 MachineFunction &MF = DAG.getMachineFunction();
3867 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3868 int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3869 if (RAIdx == 0) {
3870 bool isPPC64 = PPCSubTarget.isPPC64();
3871 int Offset =
3872 PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3873
3874 // Set up a frame object for the return address.
3875 RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3876
3877 // Remember it for next time.
3878 FuncInfo->setReturnAddrSaveIndex(RAIdx);
3879
3880 // Make sure the function really does not optimize away the store of the RA
3881 // to the stack.
3882 FuncInfo->setLRStoreRequired();
3883 }
3884
3885 // Just load the return address off the stack.
3886 SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy());
3887 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3888}
3889
3890SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891 // Depths > 0 not supported yet!
3892 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3893 return SDOperand();
3894
3895 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3896 bool isPPC64 = PtrVT == MVT::i64;
3897
3898 MachineFunction &MF = DAG.getMachineFunction();
3899 MachineFrameInfo *MFI = MF.getFrameInfo();
3900 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3901 && MFI->getStackSize();
3902
3903 if (isPPC64)
3904 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00003905 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003906 else
3907 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3908 MVT::i32);
3909}