blob: 15e3f2d0f2a4baabdbf8fcc631b0fd6d66745b50 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohman12a9c082008-02-06 22:27:42 +000027#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028#include "llvm/CodeGen/SelectionDAG.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000029#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Support/CommandLine.h"
35using namespace llvm;
36
37static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
38cl::desc("enable preincrement load/store generation on PPC (experimental)"),
39 cl::Hidden);
40
41PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
42 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43
44 setPow2DivIsCheap();
45
46 // Use _setjmp/_longjmp instead of setjmp/longjmp.
47 setUseUnderscoreSetJmp(true);
48 setUseUnderscoreLongJmp(true);
49
50 // Set up the register classes.
51 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
52 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
53 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54
55 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
Duncan Sands082524c2008-01-23 20:39:46 +000056 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
Duncan Sands082524c2008-01-23 20:39:46 +000058
Chris Lattner3bc08502008-01-17 19:59:44 +000059 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
60
Dan Gohmanf17a25c2007-07-18 16:29:46 +000061 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
Dale Johannesen472d15d2007-10-06 01:24:11 +000073 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
74 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
75 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000076 // This is used in the ppcf128->int sequence. Note it has different semantics
77 // from FP_ROUND: that rounds to nearest, this rounds to zero.
78 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000079
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 // PowerPC has no intrinsics for these particular operations
81 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
82 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
83 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
Andrew Lenharth0531ec52008-02-16 14:46:26 +000084 setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
Evan Chengd1d68072008-03-08 00:58:38 +000085 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
Andrew Lenharth0531ec52008-02-16 14:46:26 +000086
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087 // PowerPC has no SREM/UREM instructions
88 setOperationAction(ISD::SREM, MVT::i32, Expand);
89 setOperationAction(ISD::UREM, MVT::i32, Expand);
90 setOperationAction(ISD::SREM, MVT::i64, Expand);
91 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000092
93 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
94 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
95 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
96 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
97 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
98 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
99 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
100 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
101 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000102
Dan Gohman2f7b1982007-10-11 23:21:31 +0000103 // We don't support sin/cos/sqrt/fmod/pow
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 setOperationAction(ISD::FSIN , MVT::f64, Expand);
105 setOperationAction(ISD::FCOS , MVT::f64, Expand);
106 setOperationAction(ISD::FREM , MVT::f64, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000107 setOperationAction(ISD::FPOW , MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 setOperationAction(ISD::FSIN , MVT::f32, Expand);
109 setOperationAction(ISD::FCOS , MVT::f32, Expand);
110 setOperationAction(ISD::FREM , MVT::f32, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000111 setOperationAction(ISD::FPOW , MVT::f32, Expand);
Dale Johannesen436e3802008-01-18 19:55:37 +0000112
Dan Gohman819574c2008-01-31 00:41:03 +0000113 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114
115 // If we're enabling GP optimizations, use hardware square root
116 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
117 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
118 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
119 }
120
121 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
122 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
123
124 // PowerPC does not have BSWAP, CTPOP or CTTZ
125 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
126 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
127 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
128 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
129 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
130 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
131
132 // PowerPC does not have ROTR
133 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
134
135 // PowerPC does not have Select
136 setOperationAction(ISD::SELECT, MVT::i32, Expand);
137 setOperationAction(ISD::SELECT, MVT::i64, Expand);
138 setOperationAction(ISD::SELECT, MVT::f32, Expand);
139 setOperationAction(ISD::SELECT, MVT::f64, Expand);
140
141 // PowerPC wants to turn select_cc of FP into fsel when possible.
142 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
144
145 // PowerPC wants to optimize integer setcc a bit
146 setOperationAction(ISD::SETCC, MVT::i32, Custom);
147
148 // PowerPC does not have BRCOND which requires SetCC
149 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
150
151 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
152
153 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
154 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
155
156 // PowerPC does not have [U|S]INT_TO_FP
157 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
158 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
159
160 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
162 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
163 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
164
165 // We cannot sextinreg(i1). Expand to shifts.
166 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
167
168 // Support label based line numbers.
169 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
170 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Nicolas Geoffray61864762007-12-21 12:19:44 +0000171
172 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
173 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
174 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
175 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
176
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000177
178 // We want to legalize GlobalAddress and ConstantPool nodes into the
179 // appropriate instructions to materialize the address.
180 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
181 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
182 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
183 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
184 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
185 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
186 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
187 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
188
189 // RET must be custom lowered, to meet ABI requirements
190 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000191
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
193 setOperationAction(ISD::VASTART , MVT::Other, Custom);
194
195 // VAARG is custom lowered with ELF 32 ABI
196 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
197 setOperationAction(ISD::VAARG, MVT::Other, Custom);
198 else
199 setOperationAction(ISD::VAARG, MVT::Other, Expand);
200
201 // Use the default implementation.
202 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
203 setOperationAction(ISD::VAEND , MVT::Other, Expand);
204 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
205 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
207 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
208
209 // We want to custom lower some of our intrinsics.
210 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211
212 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
213 // They also have instructions for converting between i64 and fp.
214 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
215 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
216 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
217 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
218 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
219
220 // FIXME: disable this lowered code. This generates 64-bit register values,
221 // and we don't model the fact that the top part is clobbered by calls. We
222 // need to flag these together so that the value isn't live across a call.
223 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
224
225 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
226 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
227 } else {
228 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
229 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
230 }
231
232 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000233 // 64-bit PowerPC implementations can support i64 types directly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000234 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
235 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
236 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Dan Gohman71619ec2008-03-07 20:36:53 +0000237 // 64-bit PowerPC wants to expand i128 shifts itself.
238 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
239 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
240 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241 } else {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000242 // 32-bit PowerPC wants to expand i64 shifts itself.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000243 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
244 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
245 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
246 }
247
248 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
249 // First set operation action for all vector types to expand. Then we
250 // will selectively turn on ones that can be effectively codegen'd.
251 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
252 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
253 // add/sub are legal for all supported vector VT's.
254 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
255 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
256
257 // We promote all shuffles to v16i8.
258 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
259 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
260
261 // We promote all non-typed operations to v4i32.
262 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
263 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
264 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
265 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
266 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
267 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
268 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
269 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
270 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
271 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
272 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
273 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
274
275 // No other operations are legal.
276 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
277 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
278 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
280 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
281 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000282 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000283 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
285 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000286 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
287 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
288 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
289 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohman4e22ac42007-10-12 14:08:57 +0000291 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
292 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
293 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
294 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 }
296
297 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
298 // with merges, splats, etc.
299 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
300
301 setOperationAction(ISD::AND , MVT::v4i32, Legal);
302 setOperationAction(ISD::OR , MVT::v4i32, Legal);
303 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
304 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
305 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
306 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
307
308 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
309 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
310 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
311 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
312
313 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
314 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
315 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
316 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
317
318 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
319 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
320
321 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
322 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
323 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
324 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
325 }
326
327 setSetCCResultType(MVT::i32);
328 setShiftAmountType(MVT::i32);
329 setSetCCResultContents(ZeroOrOneSetCCResult);
330
331 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
332 setStackPointerRegisterToSaveRestore(PPC::X1);
333 setExceptionPointerRegister(PPC::X3);
334 setExceptionSelectorRegister(PPC::X4);
335 } else {
336 setStackPointerRegisterToSaveRestore(PPC::R1);
337 setExceptionPointerRegister(PPC::R3);
338 setExceptionSelectorRegister(PPC::R4);
339 }
340
341 // We have target-specific dag combine patterns for the following nodes:
342 setTargetDAGCombine(ISD::SINT_TO_FP);
343 setTargetDAGCombine(ISD::STORE);
344 setTargetDAGCombine(ISD::BR_CC);
345 setTargetDAGCombine(ISD::BSWAP);
346
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000347 // Darwin long double math library functions have $LDBL128 appended.
348 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
Duncan Sands37a3f472008-01-10 10:28:30 +0000349 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000350 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
351 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
Duncan Sands37a3f472008-01-10 10:28:30 +0000352 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
353 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000354 }
355
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000356 computeRegisterProperties();
357}
358
Dale Johannesen88945f82008-02-28 22:31:51 +0000359/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
360/// function arguments in the caller parameter area.
361unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
362 TargetMachine &TM = getTargetMachine();
363 // Darwin passes everything on 4 byte boundary.
364 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
365 return 4;
366 // FIXME Elf TBD
367 return 4;
368}
369
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
371 switch (Opcode) {
372 default: return 0;
373 case PPCISD::FSEL: return "PPCISD::FSEL";
374 case PPCISD::FCFID: return "PPCISD::FCFID";
375 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
376 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
377 case PPCISD::STFIWX: return "PPCISD::STFIWX";
378 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
379 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
380 case PPCISD::VPERM: return "PPCISD::VPERM";
381 case PPCISD::Hi: return "PPCISD::Hi";
382 case PPCISD::Lo: return "PPCISD::Lo";
383 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
384 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
385 case PPCISD::SRL: return "PPCISD::SRL";
386 case PPCISD::SRA: return "PPCISD::SRA";
387 case PPCISD::SHL: return "PPCISD::SHL";
388 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
389 case PPCISD::STD_32: return "PPCISD::STD_32";
390 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
391 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
392 case PPCISD::MTCTR: return "PPCISD::MTCTR";
393 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
394 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
395 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
396 case PPCISD::MFCR: return "PPCISD::MFCR";
397 case PPCISD::VCMP: return "PPCISD::VCMP";
398 case PPCISD::VCMPo: return "PPCISD::VCMPo";
399 case PPCISD::LBRX: return "PPCISD::LBRX";
400 case PPCISD::STBRX: return "PPCISD::STBRX";
401 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
Chris Lattnere2a6e9f2008-01-18 18:51:16 +0000402 case PPCISD::MFFS: return "PPCISD::MFFS";
403 case PPCISD::MTFSB0: return "PPCISD::MTFSB0";
404 case PPCISD::MTFSB1: return "PPCISD::MTFSB1";
405 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
406 case PPCISD::MTFSF: return "PPCISD::MTFSF";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000407 }
408}
409
410//===----------------------------------------------------------------------===//
411// Node matching predicates, for use by the tblgen matching code.
412//===----------------------------------------------------------------------===//
413
414/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
415static bool isFloatingPointZero(SDOperand Op) {
416 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000417 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
419 // Maybe this has already been legalized into the constant pool?
420 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
421 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000422 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 }
424 return false;
425}
426
427/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
428/// true if Op is undef or if it matches the specified value.
429static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
430 return Op.getOpcode() == ISD::UNDEF ||
431 cast<ConstantSDNode>(Op)->getValue() == Val;
432}
433
434/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
435/// VPKUHUM instruction.
436bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
437 if (!isUnary) {
438 for (unsigned i = 0; i != 16; ++i)
439 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
440 return false;
441 } else {
442 for (unsigned i = 0; i != 8; ++i)
443 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
444 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
445 return false;
446 }
447 return true;
448}
449
450/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
451/// VPKUWUM instruction.
452bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
453 if (!isUnary) {
454 for (unsigned i = 0; i != 16; i += 2)
455 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
456 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
457 return false;
458 } else {
459 for (unsigned i = 0; i != 8; i += 2)
460 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
461 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
462 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
463 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
464 return false;
465 }
466 return true;
467}
468
469/// isVMerge - Common function, used to match vmrg* shuffles.
470///
471static bool isVMerge(SDNode *N, unsigned UnitSize,
472 unsigned LHSStart, unsigned RHSStart) {
473 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
474 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
475 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
476 "Unsupported merge size!");
477
478 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
479 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
480 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
481 LHSStart+j+i*UnitSize) ||
482 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
483 RHSStart+j+i*UnitSize))
484 return false;
485 }
486 return true;
487}
488
489/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
490/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
491bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
492 if (!isUnary)
493 return isVMerge(N, UnitSize, 8, 24);
494 return isVMerge(N, UnitSize, 8, 8);
495}
496
497/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
498/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
499bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
500 if (!isUnary)
501 return isVMerge(N, UnitSize, 0, 16);
502 return isVMerge(N, UnitSize, 0, 0);
503}
504
505
506/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
507/// amount, otherwise return -1.
508int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
509 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
510 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
511 // Find the first non-undef value in the shuffle mask.
512 unsigned i;
513 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
514 /*search*/;
515
516 if (i == 16) return -1; // all undef.
517
518 // Otherwise, check to see if the rest of the elements are consequtively
519 // numbered from this value.
520 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
521 if (ShiftAmt < i) return -1;
522 ShiftAmt -= i;
523
524 if (!isUnary) {
525 // Check the rest of the elements to see if they are consequtive.
526 for (++i; i != 16; ++i)
527 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
528 return -1;
529 } else {
530 // Check the rest of the elements to see if they are consequtive.
531 for (++i; i != 16; ++i)
532 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
533 return -1;
534 }
535
536 return ShiftAmt;
537}
538
539/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
540/// specifies a splat of a single element that is suitable for input to
541/// VSPLTB/VSPLTH/VSPLTW.
542bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
543 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
544 N->getNumOperands() == 16 &&
545 (EltSize == 1 || EltSize == 2 || EltSize == 4));
546
547 // This is a splat operation if each element of the permute is the same, and
548 // if the value doesn't reference the second vector.
549 unsigned ElementBase = 0;
550 SDOperand Elt = N->getOperand(0);
551 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
552 ElementBase = EltV->getValue();
553 else
554 return false; // FIXME: Handle UNDEF elements too!
555
556 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
557 return false;
558
559 // Check that they are consequtive.
560 for (unsigned i = 1; i != EltSize; ++i) {
561 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
562 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
563 return false;
564 }
565
566 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
567 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
568 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
569 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
570 "Invalid VECTOR_SHUFFLE mask!");
571 for (unsigned j = 0; j != EltSize; ++j)
572 if (N->getOperand(i+j) != N->getOperand(j))
573 return false;
574 }
575
576 return true;
577}
578
Evan Chengc5912e32007-07-30 07:51:22 +0000579/// isAllNegativeZeroVector - Returns true if all elements of build_vector
580/// are -0.0.
581bool PPC::isAllNegativeZeroVector(SDNode *N) {
582 assert(N->getOpcode() == ISD::BUILD_VECTOR);
583 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
584 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000585 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000586 return false;
587}
588
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000589/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
590/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
591unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
592 assert(isSplatShuffleMask(N, EltSize));
593 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
594}
595
596/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
597/// by using a vspltis[bhw] instruction of the specified element size, return
598/// the constant being splatted. The ByteSize field indicates the number of
599/// bytes of each element [124] -> [bhw].
600SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
601 SDOperand OpVal(0, 0);
602
603 // If ByteSize of the splat is bigger than the element size of the
604 // build_vector, then we have a case where we are checking for a splat where
605 // multiple elements of the buildvector are folded together into a single
606 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
607 unsigned EltSize = 16/N->getNumOperands();
608 if (EltSize < ByteSize) {
609 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
610 SDOperand UniquedVals[4];
611 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
612
613 // See if all of the elements in the buildvector agree across.
614 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
615 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
616 // If the element isn't a constant, bail fully out.
617 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
618
619
620 if (UniquedVals[i&(Multiple-1)].Val == 0)
621 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
622 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
623 return SDOperand(); // no match.
624 }
625
626 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
627 // either constant or undef values that are identical for each chunk. See
628 // if these chunks can form into a larger vspltis*.
629
630 // Check to see if all of the leading entries are either 0 or -1. If
631 // neither, then this won't fit into the immediate field.
632 bool LeadingZero = true;
633 bool LeadingOnes = true;
634 for (unsigned i = 0; i != Multiple-1; ++i) {
635 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
636
637 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
638 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
639 }
640 // Finally, check the least significant entry.
641 if (LeadingZero) {
642 if (UniquedVals[Multiple-1].Val == 0)
643 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
644 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
645 if (Val < 16)
646 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
647 }
648 if (LeadingOnes) {
649 if (UniquedVals[Multiple-1].Val == 0)
650 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
651 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
652 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
653 return DAG.getTargetConstant(Val, MVT::i32);
654 }
655
656 return SDOperand();
657 }
658
659 // Check to see if this buildvec has a single non-undef value in its elements.
660 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
661 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
662 if (OpVal.Val == 0)
663 OpVal = N->getOperand(i);
664 else if (OpVal != N->getOperand(i))
665 return SDOperand();
666 }
667
668 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
669
670 unsigned ValSizeInBytes = 0;
671 uint64_t Value = 0;
672 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
673 Value = CN->getValue();
674 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
675 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
676 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000677 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678 ValSizeInBytes = 4;
679 }
680
681 // If the splat value is larger than the element value, then we can never do
682 // this splat. The only case that we could fit the replicated bits into our
683 // immediate field for would be zero, and we prefer to use vxor for it.
684 if (ValSizeInBytes < ByteSize) return SDOperand();
685
686 // If the element value is larger than the splat value, cut it in half and
687 // check to see if the two halves are equal. Continue doing this until we
688 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
689 while (ValSizeInBytes > ByteSize) {
690 ValSizeInBytes >>= 1;
691
692 // If the top half equals the bottom half, we're still ok.
693 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
694 (Value & ((1 << (8*ValSizeInBytes))-1)))
695 return SDOperand();
696 }
697
698 // Properly sign extend the value.
699 int ShAmt = (4-ByteSize)*8;
700 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
701
702 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
703 if (MaskVal == 0) return SDOperand();
704
705 // Finally, if this value fits in a 5 bit sext field, return it
706 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
707 return DAG.getTargetConstant(MaskVal, MVT::i32);
708 return SDOperand();
709}
710
711//===----------------------------------------------------------------------===//
712// Addressing Mode Selection
713//===----------------------------------------------------------------------===//
714
715/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
716/// or 64-bit immediate, and if the value can be accurately represented as a
717/// sign extension from a 16-bit value. If so, this returns true and the
718/// immediate.
719static bool isIntS16Immediate(SDNode *N, short &Imm) {
720 if (N->getOpcode() != ISD::Constant)
721 return false;
722
723 Imm = (short)cast<ConstantSDNode>(N)->getValue();
724 if (N->getValueType(0) == MVT::i32)
725 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
726 else
727 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
728}
729static bool isIntS16Immediate(SDOperand Op, short &Imm) {
730 return isIntS16Immediate(Op.Val, Imm);
731}
732
733
734/// SelectAddressRegReg - Given the specified addressed, check to see if it
735/// can be represented as an indexed [r+r] operation. Returns false if it
736/// can be more efficiently represented with [r+imm].
737bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
738 SDOperand &Index,
739 SelectionDAG &DAG) {
740 short imm = 0;
741 if (N.getOpcode() == ISD::ADD) {
742 if (isIntS16Immediate(N.getOperand(1), imm))
743 return false; // r+i
744 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
745 return false; // r+i
746
747 Base = N.getOperand(0);
748 Index = N.getOperand(1);
749 return true;
750 } else if (N.getOpcode() == ISD::OR) {
751 if (isIntS16Immediate(N.getOperand(1), imm))
752 return false; // r+i can fold it if we can.
753
754 // If this is an or of disjoint bitfields, we can codegen this as an add
755 // (for better address arithmetic) if the LHS and RHS of the OR are provably
756 // disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000757 APInt LHSKnownZero, LHSKnownOne;
758 APInt RHSKnownZero, RHSKnownOne;
759 DAG.ComputeMaskedBits(N.getOperand(0),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000760 APInt::getAllOnesValue(N.getOperand(0)
761 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000762 LHSKnownZero, LHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000763
Dan Gohman63f4e462008-02-27 01:23:58 +0000764 if (LHSKnownZero.getBoolValue()) {
765 DAG.ComputeMaskedBits(N.getOperand(1),
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000766 APInt::getAllOnesValue(N.getOperand(1)
767 .getValueSizeInBits()),
Dan Gohman63f4e462008-02-27 01:23:58 +0000768 RHSKnownZero, RHSKnownOne);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000769 // If all of the bits are known zero on the LHS or RHS, the add won't
770 // carry.
Dan Gohmanc9cd46f2008-02-27 21:12:32 +0000771 if (~(LHSKnownZero | RHSKnownZero) == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772 Base = N.getOperand(0);
773 Index = N.getOperand(1);
774 return true;
775 }
776 }
777 }
778
779 return false;
780}
781
782/// Returns true if the address N can be represented by a base register plus
783/// a signed 16-bit displacement [r+imm], and if it is not better
784/// represented as reg+reg.
785bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
786 SDOperand &Base, SelectionDAG &DAG){
787 // If this can be more profitably realized as r+r, fail.
788 if (SelectAddressRegReg(N, Disp, Base, DAG))
789 return false;
790
791 if (N.getOpcode() == ISD::ADD) {
792 short imm = 0;
793 if (isIntS16Immediate(N.getOperand(1), imm)) {
794 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
795 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
796 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
797 } else {
798 Base = N.getOperand(0);
799 }
800 return true; // [r+i]
801 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
802 // Match LOAD (ADD (X, Lo(G))).
803 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
804 && "Cannot handle constant offsets yet!");
805 Disp = N.getOperand(1).getOperand(0); // The global address.
806 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
807 Disp.getOpcode() == ISD::TargetConstantPool ||
808 Disp.getOpcode() == ISD::TargetJumpTable);
809 Base = N.getOperand(0);
810 return true; // [&g+r]
811 }
812 } else if (N.getOpcode() == ISD::OR) {
813 short imm = 0;
814 if (isIntS16Immediate(N.getOperand(1), imm)) {
815 // If this is an or of disjoint bitfields, we can codegen this as an add
816 // (for better address arithmetic) if the LHS and RHS of the OR are
817 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000818 APInt LHSKnownZero, LHSKnownOne;
819 DAG.ComputeMaskedBits(N.getOperand(0),
820 APInt::getAllOnesValue(32),
821 LHSKnownZero, LHSKnownOne);
822 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 // If all of the bits are known zero on the LHS or RHS, the add won't
824 // carry.
825 Base = N.getOperand(0);
826 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
827 return true;
828 }
829 }
830 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
831 // Loading from a constant address.
832
833 // If this address fits entirely in a 16-bit sext immediate field, codegen
834 // this as "d, 0"
835 short Imm;
836 if (isIntS16Immediate(CN, Imm)) {
837 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
838 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
839 return true;
840 }
841
842 // Handle 32-bit sext immediates with LIS + addr mode.
843 if (CN->getValueType(0) == MVT::i32 ||
844 (int64_t)CN->getValue() == (int)CN->getValue()) {
845 int Addr = (int)CN->getValue();
846
847 // Otherwise, break this down into an LIS + disp.
848 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
849
850 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
851 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
852 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
853 return true;
854 }
855 }
856
857 Disp = DAG.getTargetConstant(0, getPointerTy());
858 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
859 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860 else
861 Base = N;
862 return true; // [r+0]
863}
864
865/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
866/// represented as an indexed [r+r] operation.
867bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
868 SDOperand &Index,
869 SelectionDAG &DAG) {
870 // Check to see if we can easily represent this as an [r+r] address. This
871 // will fail if it thinks that the address is more profitably represented as
872 // reg+imm, e.g. where imm = 0.
873 if (SelectAddressRegReg(N, Base, Index, DAG))
874 return true;
875
876 // If the operand is an addition, always emit this as [r+r], since this is
877 // better (for code size, and execution, as the memop does the add for free)
878 // than emitting an explicit add.
879 if (N.getOpcode() == ISD::ADD) {
880 Base = N.getOperand(0);
881 Index = N.getOperand(1);
882 return true;
883 }
884
885 // Otherwise, do it the hard way, using R0 as the base register.
886 Base = DAG.getRegister(PPC::R0, N.getValueType());
887 Index = N;
888 return true;
889}
890
891/// SelectAddressRegImmShift - Returns true if the address N can be
892/// represented by a base register plus a signed 14-bit displacement
893/// [r+imm*4]. Suitable for use by STD and friends.
894bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
895 SDOperand &Base,
896 SelectionDAG &DAG) {
897 // If this can be more profitably realized as r+r, fail.
898 if (SelectAddressRegReg(N, Disp, Base, DAG))
899 return false;
900
901 if (N.getOpcode() == ISD::ADD) {
902 short imm = 0;
903 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
904 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
905 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
906 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
907 } else {
908 Base = N.getOperand(0);
909 }
910 return true; // [r+i]
911 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
912 // Match LOAD (ADD (X, Lo(G))).
913 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
914 && "Cannot handle constant offsets yet!");
915 Disp = N.getOperand(1).getOperand(0); // The global address.
916 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
917 Disp.getOpcode() == ISD::TargetConstantPool ||
918 Disp.getOpcode() == ISD::TargetJumpTable);
919 Base = N.getOperand(0);
920 return true; // [&g+r]
921 }
922 } else if (N.getOpcode() == ISD::OR) {
923 short imm = 0;
924 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
925 // If this is an or of disjoint bitfields, we can codegen this as an add
926 // (for better address arithmetic) if the LHS and RHS of the OR are
927 // provably disjoint.
Dan Gohman63f4e462008-02-27 01:23:58 +0000928 APInt LHSKnownZero, LHSKnownOne;
929 DAG.ComputeMaskedBits(N.getOperand(0),
930 APInt::getAllOnesValue(32),
931 LHSKnownZero, LHSKnownOne);
932 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 // If all of the bits are known zero on the LHS or RHS, the add won't
934 // carry.
935 Base = N.getOperand(0);
936 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
937 return true;
938 }
939 }
940 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
941 // Loading from a constant address. Verify low two bits are clear.
942 if ((CN->getValue() & 3) == 0) {
943 // If this address fits entirely in a 14-bit sext immediate field, codegen
944 // this as "d, 0"
945 short Imm;
946 if (isIntS16Immediate(CN, Imm)) {
947 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
948 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
949 return true;
950 }
951
952 // Fold the low-part of 32-bit absolute addresses into addr mode.
953 if (CN->getValueType(0) == MVT::i32 ||
954 (int64_t)CN->getValue() == (int)CN->getValue()) {
955 int Addr = (int)CN->getValue();
956
957 // Otherwise, break this down into an LIS + disp.
958 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
959
960 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
961 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
962 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
963 return true;
964 }
965 }
966 }
967
968 Disp = DAG.getTargetConstant(0, getPointerTy());
969 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
970 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
971 else
972 Base = N;
973 return true; // [r+0]
974}
975
976
977/// getPreIndexedAddressParts - returns true by value, base pointer and
978/// offset pointer and addressing mode by reference if the node's address
979/// can be legally represented as pre-indexed load / store address.
980bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
981 SDOperand &Offset,
982 ISD::MemIndexedMode &AM,
983 SelectionDAG &DAG) {
984 // Disabled by default for now.
985 if (!EnablePPCPreinc) return false;
986
987 SDOperand Ptr;
988 MVT::ValueType VT;
989 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
990 Ptr = LD->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000991 VT = LD->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992
993 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
994 ST = ST;
995 Ptr = ST->getBasePtr();
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000996 VT = ST->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997 } else
998 return false;
999
1000 // PowerPC doesn't have preinc load/store instructions for vectors.
1001 if (MVT::isVector(VT))
1002 return false;
1003
1004 // TODO: Check reg+reg first.
1005
1006 // LDU/STU use reg+imm*4, others use reg+imm.
1007 if (VT != MVT::i64) {
1008 // reg + imm
1009 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1010 return false;
1011 } else {
1012 // reg + imm * 4.
1013 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1014 return false;
1015 }
1016
1017 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1018 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1019 // sext i32 to i64 when addr mode is r+i.
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001020 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 LD->getExtensionType() == ISD::SEXTLOAD &&
1022 isa<ConstantSDNode>(Offset))
1023 return false;
1024 }
1025
1026 AM = ISD::PRE_INC;
1027 return true;
1028}
1029
1030//===----------------------------------------------------------------------===//
1031// LowerOperation implementation
1032//===----------------------------------------------------------------------===//
1033
Dale Johannesen8be83a72008-03-04 23:17:14 +00001034SDOperand PPCTargetLowering::LowerConstantPool(SDOperand Op,
1035 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001036 MVT::ValueType PtrVT = Op.getValueType();
1037 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1038 Constant *C = CP->getConstVal();
1039 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1040 SDOperand Zero = DAG.getConstant(0, PtrVT);
1041
1042 const TargetMachine &TM = DAG.getTarget();
1043
1044 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1045 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1046
1047 // If this is a non-darwin platform, we don't support non-static relo models
1048 // yet.
1049 if (TM.getRelocationModel() == Reloc::Static ||
1050 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1051 // Generate non-pic code that has direct accesses to the constant pool.
1052 // The address of the global is just (hi(&g)+lo(&g)).
1053 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1054 }
1055
1056 if (TM.getRelocationModel() == Reloc::PIC_) {
1057 // With PIC, the first instruction is actually "GR+hi(&G)".
1058 Hi = DAG.getNode(ISD::ADD, PtrVT,
1059 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1060 }
1061
1062 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1063 return Lo;
1064}
1065
Dale Johannesen8be83a72008-03-04 23:17:14 +00001066SDOperand PPCTargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001067 MVT::ValueType PtrVT = Op.getValueType();
1068 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1069 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1070 SDOperand Zero = DAG.getConstant(0, PtrVT);
1071
1072 const TargetMachine &TM = DAG.getTarget();
1073
1074 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1075 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1076
1077 // If this is a non-darwin platform, we don't support non-static relo models
1078 // yet.
1079 if (TM.getRelocationModel() == Reloc::Static ||
1080 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1081 // Generate non-pic code that has direct accesses to the constant pool.
1082 // The address of the global is just (hi(&g)+lo(&g)).
1083 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1084 }
1085
1086 if (TM.getRelocationModel() == Reloc::PIC_) {
1087 // With PIC, the first instruction is actually "GR+hi(&G)".
1088 Hi = DAG.getNode(ISD::ADD, PtrVT,
1089 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1090 }
1091
1092 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1093 return Lo;
1094}
1095
Dale Johannesen8be83a72008-03-04 23:17:14 +00001096SDOperand PPCTargetLowering::LowerGlobalTLSAddress(SDOperand Op,
1097 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001098 assert(0 && "TLS not implemented for PPC.");
1099}
1100
Dale Johannesen8be83a72008-03-04 23:17:14 +00001101SDOperand PPCTargetLowering::LowerGlobalAddress(SDOperand Op,
1102 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 MVT::ValueType PtrVT = Op.getValueType();
1104 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1105 GlobalValue *GV = GSDN->getGlobal();
1106 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
Evan Chenga5a257d2008-02-02 05:06:29 +00001107 // If it's a debug information descriptor, don't mess with it.
1108 if (DAG.isVerifiedDebugInfoDesc(Op))
1109 return GA;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001110 SDOperand Zero = DAG.getConstant(0, PtrVT);
1111
1112 const TargetMachine &TM = DAG.getTarget();
1113
1114 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1115 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1116
1117 // If this is a non-darwin platform, we don't support non-static relo models
1118 // yet.
1119 if (TM.getRelocationModel() == Reloc::Static ||
1120 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1121 // Generate non-pic code that has direct accesses to globals.
1122 // The address of the global is just (hi(&g)+lo(&g)).
1123 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1124 }
1125
1126 if (TM.getRelocationModel() == Reloc::PIC_) {
1127 // With PIC, the first instruction is actually "GR+hi(&G)".
1128 Hi = DAG.getNode(ISD::ADD, PtrVT,
1129 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1130 }
1131
1132 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1133
1134 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1135 return Lo;
1136
1137 // If the global is weak or external, we have to go through the lazy
1138 // resolution stub.
1139 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1140}
1141
Dale Johannesen8be83a72008-03-04 23:17:14 +00001142SDOperand PPCTargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001143 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1144
1145 // If we're comparing for equality to zero, expose the fact that this is
1146 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1147 // fold the new nodes.
1148 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1149 if (C->isNullValue() && CC == ISD::SETEQ) {
1150 MVT::ValueType VT = Op.getOperand(0).getValueType();
1151 SDOperand Zext = Op.getOperand(0);
1152 if (VT < MVT::i32) {
1153 VT = MVT::i32;
1154 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1155 }
1156 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1157 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1158 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1159 DAG.getConstant(Log2b, MVT::i32));
1160 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1161 }
1162 // Leave comparisons against 0 and -1 alone for now, since they're usually
1163 // optimized. FIXME: revisit this when we can custom lower all setcc
1164 // optimizations.
1165 if (C->isAllOnesValue() || C->isNullValue())
1166 return SDOperand();
1167 }
1168
1169 // If we have an integer seteq/setne, turn it into a compare against zero
1170 // by xor'ing the rhs with the lhs, which is faster than setting a
1171 // condition register, reading it back out, and masking the correct bit. The
1172 // normal approach here uses sub to do this instead of xor. Using xor exposes
1173 // the result to other bit-twiddling opportunities.
1174 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1175 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1176 MVT::ValueType VT = Op.getValueType();
1177 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1178 Op.getOperand(1));
1179 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1180 }
1181 return SDOperand();
1182}
1183
Dale Johannesen8be83a72008-03-04 23:17:14 +00001184SDOperand PPCTargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001185 int VarArgsFrameIndex,
1186 int VarArgsStackOffset,
1187 unsigned VarArgsNumGPR,
1188 unsigned VarArgsNumFPR,
1189 const PPCSubtarget &Subtarget) {
1190
1191 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1192}
1193
Dale Johannesen8be83a72008-03-04 23:17:14 +00001194SDOperand PPCTargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195 int VarArgsFrameIndex,
1196 int VarArgsStackOffset,
1197 unsigned VarArgsNumGPR,
1198 unsigned VarArgsNumFPR,
1199 const PPCSubtarget &Subtarget) {
1200
1201 if (Subtarget.isMachoABI()) {
1202 // vastart just stores the address of the VarArgsFrameIndex slot into the
1203 // memory location argument.
1204 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1205 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
Dan Gohman12a9c082008-02-06 22:27:42 +00001206 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1207 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 }
1209
1210 // For ELF 32 ABI we follow the layout of the va_list struct.
1211 // We suppose the given va_list is already allocated.
1212 //
1213 // typedef struct {
1214 // char gpr; /* index into the array of 8 GPRs
1215 // * stored in the register save area
1216 // * gpr=0 corresponds to r3,
1217 // * gpr=1 to r4, etc.
1218 // */
1219 // char fpr; /* index into the array of 8 FPRs
1220 // * stored in the register save area
1221 // * fpr=0 corresponds to f1,
1222 // * fpr=1 to f2, etc.
1223 // */
1224 // char *overflow_arg_area;
1225 // /* location on stack that holds
1226 // * the next overflow argument
1227 // */
1228 // char *reg_save_area;
1229 // /* where r3:r10 and f1:f8 (if saved)
1230 // * are stored
1231 // */
1232 // } va_list[1];
1233
1234
1235 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1236 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1237
1238
1239 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1240
Dan Gohman12a9c082008-02-06 22:27:42 +00001241 SDOperand StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1243
Dan Gohman12a9c082008-02-06 22:27:42 +00001244 uint64_t FrameOffset = MVT::getSizeInBits(PtrVT)/8;
1245 SDOperand ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1246
1247 uint64_t StackOffset = MVT::getSizeInBits(PtrVT)/8 - 1;
1248 SDOperand ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1249
1250 uint64_t FPROffset = 1;
1251 SDOperand ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252
Dan Gohman12a9c082008-02-06 22:27:42 +00001253 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001254
1255 // Store first byte : number of int regs
1256 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
Dan Gohman12a9c082008-02-06 22:27:42 +00001257 Op.getOperand(1), SV, 0);
1258 uint64_t nextOffset = FPROffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1260 ConstFPROffset);
1261
1262 // Store second byte : number of float regs
Dan Gohman12a9c082008-02-06 22:27:42 +00001263 SDOperand secondStore =
1264 DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1265 nextOffset += StackOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001266 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1267
1268 // Store second word : arguments given on stack
Dan Gohman12a9c082008-02-06 22:27:42 +00001269 SDOperand thirdStore =
1270 DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1271 nextOffset += FrameOffset;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001272 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1273
1274 // Store third word : arguments given in registers
Dan Gohman12a9c082008-02-06 22:27:42 +00001275 return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001276
1277}
1278
1279#include "PPCGenCallingConv.inc"
1280
1281/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1282/// depending on which subtarget is selected.
1283static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1284 if (Subtarget.isMachoABI()) {
1285 static const unsigned FPR[] = {
1286 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1287 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1288 };
1289 return FPR;
1290 }
1291
1292
1293 static const unsigned FPR[] = {
1294 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1295 PPC::F8
1296 };
1297 return FPR;
1298}
1299
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001300SDOperand
1301PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op,
1302 SelectionDAG &DAG,
1303 int &VarArgsFrameIndex,
1304 int &VarArgsStackOffset,
1305 unsigned &VarArgsNumGPR,
1306 unsigned &VarArgsNumFPR,
1307 const PPCSubtarget &Subtarget) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001308 // TODO: add description of PPC stack frame format, or at least some docs.
1309 //
1310 MachineFunction &MF = DAG.getMachineFunction();
1311 MachineFrameInfo *MFI = MF.getFrameInfo();
Chris Lattner1b989192007-12-31 04:13:23 +00001312 MachineRegisterInfo &RegInfo = MF.getRegInfo();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001313 SmallVector<SDOperand, 8> ArgValues;
1314 SDOperand Root = Op.getOperand(0);
1315
1316 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1317 bool isPPC64 = PtrVT == MVT::i64;
1318 bool isMachoABI = Subtarget.isMachoABI();
1319 bool isELF32_ABI = Subtarget.isELF32_ABI();
1320 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1321
1322 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1323
1324 static const unsigned GPR_32[] = { // 32-bit registers.
1325 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1326 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1327 };
1328 static const unsigned GPR_64[] = { // 64-bit registers.
1329 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1330 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1331 };
1332
1333 static const unsigned *FPR = GetFPR(Subtarget);
1334
1335 static const unsigned VR[] = {
1336 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1337 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1338 };
1339
Owen Anderson1636de92007-09-07 04:06:50 +00001340 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001341 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001342 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001343
1344 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1345
1346 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1347
1348 // Add DAG nodes to load the arguments or copy them out of registers. On
1349 // entry to a function on PPC, the arguments start after the linkage area,
1350 // although the first ones are often in registers.
1351 //
1352 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1353 // represented with two words (long long or double) must be copied to an
1354 // even GPR_idx value or to an even ArgOffset value.
1355
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001356 SmallVector<SDOperand, 8> MemOps;
1357
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1359 SDOperand ArgVal;
1360 bool needsLoad = false;
1361 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1362 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1363 unsigned ArgSize = ObjSize;
1364 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1365 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001366 unsigned isByVal = Flags & ISD::ParamFlags::ByVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001367 // See if next argument requires stack alignment in ELF
1368 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1369 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1370 (!(Flags & AlignFlag)));
1371
1372 unsigned CurArgOffset = ArgOffset;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001373
1374 // FIXME alignment for ELF may not be right
1375 // FIXME the codegen can be much improved in some cases.
1376 // We do not have to keep everything in memory.
1377 if (isByVal) {
1378 // Double word align in ELF
1379 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1380 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1381 ObjSize = (Flags & ISD::ParamFlags::ByValSize) >>
1382 ISD::ParamFlags::ByValSizeOffs;
1383 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1384 // The value of the object is its address.
1385 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1386 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1387 ArgValues.push_back(FIN);
1388 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1389 // Store whatever pieces of the object are in registers
1390 // to memory. ArgVal will be address of the beginning of
1391 // the object.
1392 if (GPR_idx != Num_GPR_Regs) {
1393 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1394 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1395 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1396 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1397 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1398 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1399 MemOps.push_back(Store);
1400 ++GPR_idx;
1401 if (isMachoABI) ArgOffset += PtrByteSize;
1402 } else {
1403 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1404 break;
1405 }
1406 }
1407 continue;
1408 }
1409
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001410 switch (ObjectVT) {
1411 default: assert(0 && "Unhandled argument type!");
1412 case MVT::i32:
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001413 if (!isPPC64) {
1414 // Double word align in ELF
1415 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1416
1417 if (GPR_idx != Num_GPR_Regs) {
1418 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1419 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1420 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1421 ++GPR_idx;
1422 } else {
1423 needsLoad = true;
1424 ArgSize = PtrByteSize;
1425 }
1426 // Stack align in ELF
1427 if (needsLoad && Expand && isELF32_ABI)
1428 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1429 // All int arguments reserve stack space in Macho ABI.
1430 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1431 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001432 }
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001433 // FALLTHROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001434 case MVT::i64: // PPC64
1435 if (GPR_idx != Num_GPR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001436 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1437 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001439
1440 if (ObjectVT == MVT::i32) {
1441 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1442 // value to MVT::i64 and then truncate to the correct register size.
1443 if (Flags & ISD::ParamFlags::SExt)
1444 ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1445 DAG.getValueType(ObjectVT));
1446 else if (Flags & ISD::ParamFlags::ZExt)
1447 ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1448 DAG.getValueType(ObjectVT));
1449
1450 ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1451 }
1452
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001453 ++GPR_idx;
1454 } else {
1455 needsLoad = true;
1456 }
1457 // All int arguments reserve stack space in Macho ABI.
1458 if (isMachoABI || needsLoad) ArgOffset += 8;
1459 break;
1460
1461 case MVT::f32:
1462 case MVT::f64:
1463 // Every 4 bytes of argument space consumes one of the GPRs available for
1464 // argument passing.
1465 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1466 ++GPR_idx;
1467 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1468 ++GPR_idx;
1469 }
1470 if (FPR_idx != Num_FPR_Regs) {
1471 unsigned VReg;
1472 if (ObjectVT == MVT::f32)
Chris Lattner1b989192007-12-31 04:13:23 +00001473 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001474 else
Chris Lattner1b989192007-12-31 04:13:23 +00001475 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1476 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001477 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1478 ++FPR_idx;
1479 } else {
1480 needsLoad = true;
1481 }
1482
1483 // Stack align in ELF
1484 if (needsLoad && Expand && isELF32_ABI)
1485 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1486 // All FP arguments reserve stack space in Macho ABI.
1487 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1488 break;
1489 case MVT::v4f32:
1490 case MVT::v4i32:
1491 case MVT::v8i16:
1492 case MVT::v16i8:
1493 // Note that vector arguments in registers don't reserve stack space.
1494 if (VR_idx != Num_VR_Regs) {
Chris Lattner1b989192007-12-31 04:13:23 +00001495 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1496 RegInfo.addLiveIn(VR[VR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001497 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1498 ++VR_idx;
1499 } else {
1500 // This should be simple, but requires getting 16-byte aligned stack
1501 // values.
1502 assert(0 && "Loading VR argument not implemented yet!");
1503 needsLoad = true;
1504 }
1505 break;
1506 }
1507
1508 // We need to load the argument to a virtual register if we determined above
Chris Lattner60069452008-02-13 07:35:30 +00001509 // that we ran out of physical registers of the appropriate type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001510 if (needsLoad) {
Chris Lattner60069452008-02-13 07:35:30 +00001511 int FI = MFI->CreateFixedObject(ObjSize,
1512 CurArgOffset + (ArgSize - ObjSize));
1513 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1514 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001515 }
1516
1517 ArgValues.push_back(ArgVal);
1518 }
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001519
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 // If the function takes variable number of arguments, make a frame index for
1521 // the start of the first vararg value... for expansion of llvm.va_start.
1522 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1523 if (isVarArg) {
1524
1525 int depth;
1526 if (isELF32_ABI) {
1527 VarArgsNumGPR = GPR_idx;
1528 VarArgsNumFPR = FPR_idx;
1529
1530 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1531 // pointer.
1532 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1533 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1534 MVT::getSizeInBits(PtrVT)/8);
1535
1536 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1537 ArgOffset);
1538
1539 }
1540 else
1541 depth = ArgOffset;
1542
1543 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1544 depth);
1545 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1546
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1548 // stored to the VarArgsFrameIndex on the stack.
1549 if (isELF32_ABI) {
1550 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1551 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1552 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1553 MemOps.push_back(Store);
1554 // Increment the address by four for the next argument to store
1555 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1556 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1557 }
1558 }
1559
1560 // If this function is vararg, store any remaining integer argument regs
1561 // to their spots on the stack so that they may be loaded by deferencing the
1562 // result of va_next.
1563 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1564 unsigned VReg;
1565 if (isPPC64)
Chris Lattner1b989192007-12-31 04:13:23 +00001566 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567 else
Chris Lattner1b989192007-12-31 04:13:23 +00001568 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001569
Chris Lattner1b989192007-12-31 04:13:23 +00001570 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001571 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1572 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1573 MemOps.push_back(Store);
1574 // Increment the address by four for the next argument to store
1575 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1576 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1577 }
1578
1579 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1580 // on the stack.
1581 if (isELF32_ABI) {
1582 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1583 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1584 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1585 MemOps.push_back(Store);
1586 // Increment the address by eight for the next argument to store
1587 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1588 PtrVT);
1589 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1590 }
1591
1592 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1593 unsigned VReg;
Chris Lattner1b989192007-12-31 04:13:23 +00001594 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001595
Chris Lattner1b989192007-12-31 04:13:23 +00001596 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001597 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1598 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1599 MemOps.push_back(Store);
1600 // Increment the address by eight for the next argument to store
1601 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1602 PtrVT);
1603 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1604 }
1605 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001606 }
1607
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001608 if (!MemOps.empty())
1609 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1610
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001611 ArgValues.push_back(Root);
1612
1613 // Return the new list of results.
1614 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1615 Op.Val->value_end());
1616 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1617}
1618
1619/// isCallCompatibleAddress - Return the immediate to use if the specified
1620/// 32-bit value is representable in the immediate field of a BxA instruction.
1621static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1622 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1623 if (!C) return 0;
1624
1625 int Addr = C->getValue();
1626 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1627 (Addr << 6 >> 6) != Addr)
1628 return 0; // Top 6 bits have to be sext of immediate.
1629
Evan Cheng282c6462007-10-22 19:46:19 +00001630 return DAG.getConstant((int)C->getValue() >> 2,
1631 DAG.getTargetLoweringInfo().getPointerTy()).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001632}
1633
Dale Johannesen8be83a72008-03-04 23:17:14 +00001634/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1635/// by "Src" to address "Dst" of size "Size". Alignment information is
1636/// specified by the specific parameter attribute. The copy will be passed as
1637/// a byval function parameter.
1638/// Sometimes what we are copying is the end of a larger object, the part that
1639/// does not fit in registers.
1640static SDOperand
1641CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
Bill Wendlingb0edf3d2008-03-07 20:49:02 +00001642 unsigned Flags, SelectionDAG &DAG, unsigned Size) {
Dale Johannesen8be83a72008-03-04 23:17:14 +00001643 unsigned Align = 1 <<
1644 ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1645 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1646 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001647 SDOperand AlwaysInline = DAG.getConstant(0, MVT::i32);
Dale Johannesen8be83a72008-03-04 23:17:14 +00001648 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1649}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001650
Dale Johannesen8be83a72008-03-04 23:17:14 +00001651SDOperand PPCTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG,
1652 const PPCSubtarget &Subtarget) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001653 SDOperand Chain = Op.getOperand(0);
1654 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1655 SDOperand Callee = Op.getOperand(4);
1656 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1657
1658 bool isMachoABI = Subtarget.isMachoABI();
1659 bool isELF32_ABI = Subtarget.isELF32_ABI();
1660
1661 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1662 bool isPPC64 = PtrVT == MVT::i64;
1663 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1664
1665 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1666 // SelectExpr to use to put the arguments in the appropriate registers.
1667 std::vector<SDOperand> args_to_use;
1668
1669 // Count how many bytes are to be pushed on the stack, including the linkage
1670 // area, and parameter passing area. We start with 24/48 bytes, which is
1671 // prereserved space for [SP][CR][LR][3 x unused].
1672 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1673
1674 // Add up all the space actually used.
1675 for (unsigned i = 0; i != NumOps; ++i) {
Dale Johannesen8be83a72008-03-04 23:17:14 +00001676 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001677 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001678 if (Flags & ISD::ParamFlags::ByVal)
1679 ArgSize = (Flags & ISD::ParamFlags::ByValSize) >>
1680 ISD::ParamFlags::ByValSizeOffs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001681 ArgSize = std::max(ArgSize, PtrByteSize);
1682 NumBytes += ArgSize;
1683 }
1684
1685 // The prolog code of the callee may store up to 8 GPR argument registers to
1686 // the stack, allowing va_start to index over them in memory if its varargs.
1687 // Because we cannot tell if this is needed on the caller side, we have to
1688 // conservatively assume that it is needed. As such, make sure we have at
1689 // least enough stack space for the caller to store the 8 GPRs.
1690 NumBytes = std::max(NumBytes,
1691 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1692
1693 // Adjust the stack pointer for the new arguments...
1694 // These operations are automatically eliminated by the prolog/epilog pass
1695 Chain = DAG.getCALLSEQ_START(Chain,
1696 DAG.getConstant(NumBytes, PtrVT));
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001697 SDOperand CallSeqStart = Chain;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001698
1699 // Set up a copy of the stack pointer for use loading and storing any
1700 // arguments that may not fit in the registers available for argument
1701 // passing.
1702 SDOperand StackPtr;
1703 if (isPPC64)
1704 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1705 else
1706 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1707
1708 // Figure out which arguments are going to go in registers, and which in
1709 // memory. Also, if this is a vararg function, floating point operations
1710 // must be stored to our stack, and loaded into integer regs as well, if
1711 // any integer regs are available for argument passing.
1712 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1713 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1714
1715 static const unsigned GPR_32[] = { // 32-bit registers.
1716 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1717 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1718 };
1719 static const unsigned GPR_64[] = { // 64-bit registers.
1720 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1721 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1722 };
1723 static const unsigned *FPR = GetFPR(Subtarget);
1724
1725 static const unsigned VR[] = {
1726 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1727 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1728 };
Owen Anderson1636de92007-09-07 04:06:50 +00001729 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001730 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001731 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001732
1733 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1734
1735 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1736 SmallVector<SDOperand, 8> MemOpChains;
1737 for (unsigned i = 0; i != NumOps; ++i) {
1738 bool inMem = false;
1739 SDOperand Arg = Op.getOperand(5+2*i);
1740 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1741 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1742 // See if next argument requires stack alignment in ELF
1743 unsigned next = 5+2*(i+1)+1;
1744 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1745 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1746 (!(Flags & AlignFlag)));
1747
1748 // PtrOff will be used to store the current argument to the stack if a
1749 // register cannot be found for it.
1750 SDOperand PtrOff;
1751
1752 // Stack align in ELF 32
1753 if (isELF32_ABI && Expand)
1754 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1755 StackPtr.getValueType());
1756 else
1757 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1758
1759 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1760
1761 // On PPC64, promote integers to 64-bit values.
1762 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1763 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001764 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1765 }
Dale Johannesen8be83a72008-03-04 23:17:14 +00001766
1767 // FIXME Elf untested, what are alignment rules?
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001768 // FIXME memcpy is used way more than necessary. Correctness first.
Dale Johannesen8be83a72008-03-04 23:17:14 +00001769 if (Flags & ISD::ParamFlags::ByVal) {
1770 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1771 ISD::ParamFlags::ByValSizeOffs;
1772 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001773 if (Size==1 || Size==2) {
1774 // Very small objects are passed right-justified.
1775 // Everything else is passed left-justified.
1776 MVT::ValueType VT = (Size==1) ? MVT::i8 : MVT::i16;
1777 if (GPR_idx != NumGPRs) {
1778 SDOperand Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
1779 NULL, 0, VT);
1780 MemOpChains.push_back(Load.getValue(1));
1781 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1782 if (isMachoABI)
1783 ArgOffset += PtrByteSize;
1784 } else {
1785 SDOperand Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
1786 SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
1787 SDOperand MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
1788 CallSeqStart.Val->getOperand(0),
1789 Flags, DAG, Size);
1790 // This must go outside the CALLSEQ_START..END.
1791 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1792 CallSeqStart.Val->getOperand(1));
1793 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
1794 Chain = CallSeqStart = NewCallSeqStart;
1795 ArgOffset += PtrByteSize;
1796 }
1797 continue;
1798 }
Dale Johannesen8be83a72008-03-04 23:17:14 +00001799 for (unsigned j=0; j<Size; j+=PtrByteSize) {
1800 SDOperand Const = DAG.getConstant(j, PtrOff.getValueType());
1801 SDOperand AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
1802 if (GPR_idx != NumGPRs) {
1803 SDOperand Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001804 MemOpChains.push_back(Load.getValue(1));
Dale Johannesen8be83a72008-03-04 23:17:14 +00001805 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1806 if (isMachoABI)
1807 ArgOffset += PtrByteSize;
1808 } else {
1809 SDOperand AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
Dale Johannesen7a7aa102008-03-05 23:31:27 +00001810 SDOperand MemcpyCall = CreateCopyOfByValArgument(AddArg, AddPtr,
1811 CallSeqStart.Val->getOperand(0),
1812 Flags, DAG, Size - j);
1813 // This must go outside the CALLSEQ_START..END.
1814 SDOperand NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
1815 CallSeqStart.Val->getOperand(1));
1816 DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001817 Chain = CallSeqStart = NewCallSeqStart;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001818 ArgOffset += ((Size - j + 3)/4)*4;
Dale Johanneseneaea88c2008-03-07 20:27:40 +00001819 break;
Dale Johannesen8be83a72008-03-04 23:17:14 +00001820 }
1821 }
1822 continue;
1823 }
1824
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001825 switch (Arg.getValueType()) {
1826 default: assert(0 && "Unexpected ValueType for argument!");
1827 case MVT::i32:
1828 case MVT::i64:
1829 // Double word align in ELF
1830 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1831 if (GPR_idx != NumGPRs) {
1832 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1833 } else {
1834 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1835 inMem = true;
1836 }
1837 if (inMem || isMachoABI) {
1838 // Stack align in ELF
1839 if (isELF32_ABI && Expand)
1840 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1841
1842 ArgOffset += PtrByteSize;
1843 }
1844 break;
1845 case MVT::f32:
1846 case MVT::f64:
1847 if (isVarArg) {
1848 // Float varargs need to be promoted to double.
1849 if (Arg.getValueType() == MVT::f32)
1850 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1851 }
1852
1853 if (FPR_idx != NumFPRs) {
1854 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1855
1856 if (isVarArg) {
1857 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1858 MemOpChains.push_back(Store);
1859
1860 // Float varargs are always shadowed in available integer registers
1861 if (GPR_idx != NumGPRs) {
1862 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1863 MemOpChains.push_back(Load.getValue(1));
1864 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1865 Load));
1866 }
1867 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1868 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1869 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1870 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1871 MemOpChains.push_back(Load.getValue(1));
1872 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1873 Load));
1874 }
1875 } else {
1876 // If we have any FPRs remaining, we may also have GPRs remaining.
1877 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1878 // GPRs.
1879 if (isMachoABI) {
1880 if (GPR_idx != NumGPRs)
1881 ++GPR_idx;
1882 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1883 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1884 ++GPR_idx;
1885 }
1886 }
1887 } else {
1888 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1889 inMem = true;
1890 }
1891 if (inMem || isMachoABI) {
1892 // Stack align in ELF
1893 if (isELF32_ABI && Expand)
1894 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1895 if (isPPC64)
1896 ArgOffset += 8;
1897 else
1898 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1899 }
1900 break;
1901 case MVT::v4f32:
1902 case MVT::v4i32:
1903 case MVT::v8i16:
1904 case MVT::v16i8:
1905 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1906 assert(VR_idx != NumVRs &&
1907 "Don't support passing more than 12 vector args yet!");
1908 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1909 break;
1910 }
1911 }
1912 if (!MemOpChains.empty())
1913 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1914 &MemOpChains[0], MemOpChains.size());
1915
1916 // Build a sequence of copy-to-reg nodes chained together with token chain
1917 // and flag operands which copy the outgoing args into the appropriate regs.
1918 SDOperand InFlag;
1919 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1920 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1921 InFlag);
1922 InFlag = Chain.getValue(1);
1923 }
1924
1925 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1926 if (isVarArg && isELF32_ABI) {
1927 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1928 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1929 InFlag = Chain.getValue(1);
1930 }
1931
1932 std::vector<MVT::ValueType> NodeTys;
1933 NodeTys.push_back(MVT::Other); // Returns a chain
1934 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1935
1936 SmallVector<SDOperand, 8> Ops;
1937 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1938
1939 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1940 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1941 // node so that legalize doesn't hack it.
Nicolas Geoffray455a2e02007-12-21 12:22:29 +00001942 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1943 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1944 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001945 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1946 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1947 // If this is an absolute destination address, use the munged value.
1948 Callee = SDOperand(Dest, 0);
1949 else {
1950 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1951 // to do the call, we can't use PPCISD::CALL.
1952 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1953 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1954 InFlag = Chain.getValue(1);
1955
1956 // Copy the callee address into R12 on darwin.
1957 if (isMachoABI) {
1958 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1959 InFlag = Chain.getValue(1);
1960 }
1961
1962 NodeTys.clear();
1963 NodeTys.push_back(MVT::Other);
1964 NodeTys.push_back(MVT::Flag);
1965 Ops.push_back(Chain);
1966 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1967 Callee.Val = 0;
1968 }
1969
1970 // If this is a direct call, pass the chain and the callee.
1971 if (Callee.Val) {
1972 Ops.push_back(Chain);
1973 Ops.push_back(Callee);
1974 }
1975
1976 // Add argument registers to the end of the list so that they are known live
1977 // into the call.
1978 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1979 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1980 RegsToPass[i].second.getValueType()));
1981
1982 if (InFlag.Val)
1983 Ops.push_back(InFlag);
1984 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1985 InFlag = Chain.getValue(1);
1986
Bill Wendling22f8deb2007-11-13 00:44:25 +00001987 Chain = DAG.getCALLSEQ_END(Chain,
1988 DAG.getConstant(NumBytes, PtrVT),
1989 DAG.getConstant(0, PtrVT),
1990 InFlag);
1991 if (Op.Val->getValueType(0) != MVT::Other)
1992 InFlag = Chain.getValue(1);
1993
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001994 SDOperand ResultVals[3];
1995 unsigned NumResults = 0;
1996 NodeTys.clear();
1997
1998 // If the call has results, copy the values out of the ret val registers.
1999 switch (Op.Val->getValueType(0)) {
2000 default: assert(0 && "Unexpected ret value!");
2001 case MVT::Other: break;
2002 case MVT::i32:
2003 if (Op.Val->getValueType(1) == MVT::i32) {
2004 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2005 ResultVals[0] = Chain.getValue(0);
2006 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
2007 Chain.getValue(2)).getValue(1);
2008 ResultVals[1] = Chain.getValue(0);
2009 NumResults = 2;
2010 NodeTys.push_back(MVT::i32);
2011 } else {
2012 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
2013 ResultVals[0] = Chain.getValue(0);
2014 NumResults = 1;
2015 }
2016 NodeTys.push_back(MVT::i32);
2017 break;
2018 case MVT::i64:
Dan Gohmanfe65bda2008-03-08 00:19:12 +00002019 if (Op.Val->getValueType(1) == MVT::i64) {
2020 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2021 ResultVals[0] = Chain.getValue(0);
2022 Chain = DAG.getCopyFromReg(Chain, PPC::X4, MVT::i64,
2023 Chain.getValue(2)).getValue(1);
2024 ResultVals[1] = Chain.getValue(0);
2025 NumResults = 2;
2026 NodeTys.push_back(MVT::i64);
2027 } else {
2028 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
2029 ResultVals[0] = Chain.getValue(0);
2030 NumResults = 1;
2031 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 NodeTys.push_back(MVT::i64);
2033 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002034 case MVT::f64:
Dale Johannesenac77b272007-10-05 20:04:43 +00002035 if (Op.Val->getValueType(1) == MVT::f64) {
2036 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
2037 ResultVals[0] = Chain.getValue(0);
2038 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
2039 Chain.getValue(2)).getValue(1);
2040 ResultVals[1] = Chain.getValue(0);
2041 NumResults = 2;
2042 NodeTys.push_back(MVT::f64);
2043 NodeTys.push_back(MVT::f64);
2044 break;
2045 }
2046 // else fall through
2047 case MVT::f32:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002048 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
2049 InFlag).getValue(1);
2050 ResultVals[0] = Chain.getValue(0);
2051 NumResults = 1;
2052 NodeTys.push_back(Op.Val->getValueType(0));
2053 break;
2054 case MVT::v4f32:
2055 case MVT::v4i32:
2056 case MVT::v8i16:
2057 case MVT::v16i8:
2058 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
2059 InFlag).getValue(1);
2060 ResultVals[0] = Chain.getValue(0);
2061 NumResults = 1;
2062 NodeTys.push_back(Op.Val->getValueType(0));
2063 break;
2064 }
2065
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002066 NodeTys.push_back(MVT::Other);
2067
2068 // If the function returns void, just return the chain.
2069 if (NumResults == 0)
2070 return Chain;
2071
2072 // Otherwise, merge everything together with a MERGE_VALUES node.
2073 ResultVals[NumResults++] = Chain;
2074 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
2075 ResultVals, NumResults);
2076 return Res.getValue(Op.ResNo);
2077}
2078
Dale Johannesen8be83a72008-03-04 23:17:14 +00002079SDOperand PPCTargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG,
2080 TargetMachine &TM) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002081 SmallVector<CCValAssign, 16> RVLocs;
2082 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2083 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2084 CCState CCInfo(CC, isVarArg, TM, RVLocs);
2085 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2086
2087 // If this is the first return lowered for this function, add the regs to the
2088 // liveout set for the function.
Chris Lattner1b989192007-12-31 04:13:23 +00002089 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002090 for (unsigned i = 0; i != RVLocs.size(); ++i)
Chris Lattner1b989192007-12-31 04:13:23 +00002091 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002092 }
2093
2094 SDOperand Chain = Op.getOperand(0);
2095 SDOperand Flag;
2096
2097 // Copy the result values into the output registers.
2098 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2099 CCValAssign &VA = RVLocs[i];
2100 assert(VA.isRegLoc() && "Can only return in registers!");
2101 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2102 Flag = Chain.getValue(1);
2103 }
2104
2105 if (Flag.Val)
2106 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2107 else
2108 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2109}
2110
Dale Johannesen8be83a72008-03-04 23:17:14 +00002111SDOperand PPCTargetLowering::LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002112 const PPCSubtarget &Subtarget) {
2113 // When we pop the dynamic allocation we need to restore the SP link.
2114
2115 // Get the corect type for pointers.
2116 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2117
2118 // Construct the stack pointer operand.
2119 bool IsPPC64 = Subtarget.isPPC64();
2120 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2121 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
2122
2123 // Get the operands for the STACKRESTORE.
2124 SDOperand Chain = Op.getOperand(0);
2125 SDOperand SaveSP = Op.getOperand(1);
2126
2127 // Load the old link SP.
2128 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2129
2130 // Restore the stack pointer.
2131 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2132
2133 // Store the old link SP.
2134 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2135}
2136
Dale Johannesen8be83a72008-03-04 23:17:14 +00002137SDOperand PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
2138 SelectionDAG &DAG,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002139 const PPCSubtarget &Subtarget) {
2140 MachineFunction &MF = DAG.getMachineFunction();
2141 bool IsPPC64 = Subtarget.isPPC64();
2142 bool isMachoABI = Subtarget.isMachoABI();
2143
2144 // Get current frame pointer save index. The users of this index will be
2145 // primarily DYNALLOC instructions.
2146 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2147 int FPSI = FI->getFramePointerSaveIndex();
2148
2149 // If the frame pointer save index hasn't been defined yet.
2150 if (!FPSI) {
2151 // Find out what the fix offset of the frame pointer save area.
2152 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2153
2154 // Allocate the frame index for frame pointer save area.
2155 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2156 // Save the result.
2157 FI->setFramePointerSaveIndex(FPSI);
2158 }
2159
2160 // Get the inputs.
2161 SDOperand Chain = Op.getOperand(0);
2162 SDOperand Size = Op.getOperand(1);
2163
2164 // Get the corect type for pointers.
2165 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2166 // Negate the size.
2167 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
2168 DAG.getConstant(0, PtrVT), Size);
2169 // Construct a node for the frame pointer save index.
2170 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
2171 // Build a DYNALLOC node.
2172 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
2173 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2174 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2175}
2176
2177
2178/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2179/// possible.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002180SDOperand PPCTargetLowering::LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002181 // Not FP? Not a fsel.
2182 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2183 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2184 return SDOperand();
2185
2186 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2187
2188 // Cannot handle SETEQ/SETNE.
2189 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2190
2191 MVT::ValueType ResVT = Op.getValueType();
2192 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2193 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2194 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2195
2196 // If the RHS of the comparison is a 0.0, we don't need to do the
2197 // subtraction at all.
2198 if (isFloatingPointZero(RHS))
2199 switch (CC) {
2200 default: break; // SETUO etc aren't handled by fsel.
2201 case ISD::SETULT:
2202 case ISD::SETOLT:
2203 case ISD::SETLT:
2204 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2205 case ISD::SETUGE:
2206 case ISD::SETOGE:
2207 case ISD::SETGE:
2208 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2209 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2210 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2211 case ISD::SETUGT:
2212 case ISD::SETOGT:
2213 case ISD::SETGT:
2214 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2215 case ISD::SETULE:
2216 case ISD::SETOLE:
2217 case ISD::SETLE:
2218 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2219 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2220 return DAG.getNode(PPCISD::FSEL, ResVT,
2221 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2222 }
2223
Chris Lattnera216bee2007-10-15 20:14:52 +00002224 SDOperand Cmp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002225 switch (CC) {
2226 default: break; // SETUO etc aren't handled by fsel.
2227 case ISD::SETULT:
2228 case ISD::SETOLT:
2229 case ISD::SETLT:
2230 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2231 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2232 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2233 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2234 case ISD::SETUGE:
2235 case ISD::SETOGE:
2236 case ISD::SETGE:
2237 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2238 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2239 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2240 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2241 case ISD::SETUGT:
2242 case ISD::SETOGT:
2243 case ISD::SETGT:
2244 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2245 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2246 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2247 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2248 case ISD::SETULE:
2249 case ISD::SETOLE:
2250 case ISD::SETLE:
2251 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2252 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2253 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2254 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2255 }
2256 return SDOperand();
2257}
2258
Chris Lattner28771092007-11-28 18:44:47 +00002259// FIXME: Split this code up when LegalizeDAGTypes lands.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002260SDOperand PPCTargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002261 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2262 SDOperand Src = Op.getOperand(0);
2263 if (Src.getValueType() == MVT::f32)
2264 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2265
2266 SDOperand Tmp;
2267 switch (Op.getValueType()) {
2268 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2269 case MVT::i32:
2270 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2271 break;
2272 case MVT::i64:
2273 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2274 break;
2275 }
2276
2277 // Convert the FP value to an int value through memory.
Chris Lattnera216bee2007-10-15 20:14:52 +00002278 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2279
2280 // Emit a store to the stack slot.
2281 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2282
2283 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2284 // add in a bias.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002285 if (Op.getValueType() == MVT::i32)
Chris Lattnera216bee2007-10-15 20:14:52 +00002286 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2287 DAG.getConstant(4, FIPtr.getValueType()));
2288 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002289}
2290
Dale Johannesen8be83a72008-03-04 23:17:14 +00002291SDOperand PPCTargetLowering::LowerFP_ROUND_INREG(SDOperand Op,
2292 SelectionDAG &DAG) {
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002293 assert(Op.getValueType() == MVT::ppcf128);
2294 SDNode *Node = Op.Val;
2295 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
Chris Lattnerc882caf2007-10-19 04:08:28 +00002296 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002297 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2298 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2299
2300 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2301 // of the long double, and puts FPSCR back the way it was. We do not
2302 // actually model FPSCR.
2303 std::vector<MVT::ValueType> NodeTys;
2304 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2305
2306 NodeTys.push_back(MVT::f64); // Return register
2307 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2308 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2309 MFFSreg = Result.getValue(0);
2310 InFlag = Result.getValue(1);
2311
2312 NodeTys.clear();
2313 NodeTys.push_back(MVT::Flag); // Returns a flag
2314 Ops[0] = DAG.getConstant(31, MVT::i32);
2315 Ops[1] = InFlag;
2316 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2317 InFlag = Result.getValue(0);
2318
2319 NodeTys.clear();
2320 NodeTys.push_back(MVT::Flag); // Returns a flag
2321 Ops[0] = DAG.getConstant(30, MVT::i32);
2322 Ops[1] = InFlag;
2323 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2324 InFlag = Result.getValue(0);
2325
2326 NodeTys.clear();
2327 NodeTys.push_back(MVT::f64); // result of add
2328 NodeTys.push_back(MVT::Flag); // Returns a flag
2329 Ops[0] = Lo;
2330 Ops[1] = Hi;
2331 Ops[2] = InFlag;
2332 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2333 FPreg = Result.getValue(0);
2334 InFlag = Result.getValue(1);
2335
2336 NodeTys.clear();
2337 NodeTys.push_back(MVT::f64);
2338 Ops[0] = DAG.getConstant(1, MVT::i32);
2339 Ops[1] = MFFSreg;
2340 Ops[2] = FPreg;
2341 Ops[3] = InFlag;
2342 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2343 FPreg = Result.getValue(0);
2344
2345 // We know the low half is about to be thrown away, so just use something
2346 // convenient.
2347 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2348}
2349
Dale Johannesen8be83a72008-03-04 23:17:14 +00002350SDOperand PPCTargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002351 if (Op.getOperand(0).getValueType() == MVT::i64) {
2352 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2353 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2354 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002355 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002356 return FP;
2357 }
2358
2359 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2360 "Unhandled SINT_TO_FP type in custom expander!");
2361 // Since we only generate this in 64-bit mode, we can take advantage of
2362 // 64-bit registers. In particular, sign extend the input value into the
2363 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2364 // then lfd it and fcfid it.
2365 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2366 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2367 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2368 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2369
2370 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2371 Op.getOperand(0));
2372
2373 // STD the extended value into the stack slot.
Dan Gohmanfb020b62008-02-07 18:41:25 +00002374 MemOperand MO(PseudoSourceValue::getFixedStack(),
Dan Gohman12a9c082008-02-06 22:27:42 +00002375 MemOperand::MOStore, FrameIdx, 8, 8);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2377 DAG.getEntryNode(), Ext64, FIdx,
Dan Gohman12a9c082008-02-06 22:27:42 +00002378 DAG.getMemOperand(MO));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002379 // Load the value as a double.
2380 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2381
2382 // FCFID it and return it.
2383 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2384 if (Op.getValueType() == MVT::f32)
Chris Lattner5872a362008-01-17 07:00:52 +00002385 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002386 return FP;
2387}
2388
Dale Johannesen8be83a72008-03-04 23:17:14 +00002389SDOperand PPCTargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
Dale Johannesen436e3802008-01-18 19:55:37 +00002390 /*
2391 The rounding mode is in bits 30:31 of FPSR, and has the following
2392 settings:
2393 00 Round to nearest
2394 01 Round to 0
2395 10 Round to +inf
2396 11 Round to -inf
2397
2398 FLT_ROUNDS, on the other hand, expects the following:
2399 -1 Undefined
2400 0 Round to 0
2401 1 Round to nearest
2402 2 Round to +inf
2403 3 Round to -inf
2404
2405 To perform the conversion, we do:
2406 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
2407 */
2408
2409 MachineFunction &MF = DAG.getMachineFunction();
2410 MVT::ValueType VT = Op.getValueType();
2411 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2412 std::vector<MVT::ValueType> NodeTys;
2413 SDOperand MFFSreg, InFlag;
2414
2415 // Save FP Control Word to register
2416 NodeTys.push_back(MVT::f64); // return register
2417 NodeTys.push_back(MVT::Flag); // unused in this context
2418 SDOperand Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2419
2420 // Save FP register to stack slot
2421 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
2422 SDOperand StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
2423 SDOperand Store = DAG.getStore(DAG.getEntryNode(), Chain,
2424 StackSlot, NULL, 0);
2425
2426 // Load FP Control Word from low 32 bits of stack slot.
2427 SDOperand Four = DAG.getConstant(4, PtrVT);
2428 SDOperand Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
2429 SDOperand CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
2430
2431 // Transform as necessary
2432 SDOperand CWD1 =
2433 DAG.getNode(ISD::AND, MVT::i32,
2434 CWD, DAG.getConstant(3, MVT::i32));
2435 SDOperand CWD2 =
2436 DAG.getNode(ISD::SRL, MVT::i32,
2437 DAG.getNode(ISD::AND, MVT::i32,
2438 DAG.getNode(ISD::XOR, MVT::i32,
2439 CWD, DAG.getConstant(3, MVT::i32)),
2440 DAG.getConstant(3, MVT::i32)),
2441 DAG.getConstant(1, MVT::i8));
2442
2443 SDOperand RetVal =
2444 DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
2445
2446 return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
2447 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
2448}
2449
Dale Johannesen8be83a72008-03-04 23:17:14 +00002450SDOperand PPCTargetLowering::LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002451 MVT::ValueType VT = Op.getValueType();
2452 unsigned BitWidth = MVT::getSizeInBits(VT);
2453 assert(Op.getNumOperands() == 3 &&
2454 VT == Op.getOperand(1).getValueType() &&
2455 "Unexpected SHL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002456
2457 // Expand into a bunch of logical ops. Note that these ops
2458 // depend on the PPC behavior for oversized shift amounts.
2459 SDOperand Lo = Op.getOperand(0);
2460 SDOperand Hi = Op.getOperand(1);
2461 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002462 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463
Dan Gohman71619ec2008-03-07 20:36:53 +00002464 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2465 DAG.getConstant(BitWidth, AmtVT), Amt);
2466 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
2467 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
2468 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2469 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2470 DAG.getConstant(-BitWidth, AmtVT));
2471 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
2472 SDOperand OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2473 SDOperand OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002474 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002475 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002476 OutOps, 2);
2477}
2478
Dale Johannesen8be83a72008-03-04 23:17:14 +00002479SDOperand PPCTargetLowering::LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002480 MVT::ValueType VT = Op.getValueType();
2481 unsigned BitWidth = MVT::getSizeInBits(VT);
2482 assert(Op.getNumOperands() == 3 &&
2483 VT == Op.getOperand(1).getValueType() &&
2484 "Unexpected SRL!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002485
Dan Gohman71619ec2008-03-07 20:36:53 +00002486 // Expand into a bunch of logical ops. Note that these ops
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002487 // depend on the PPC behavior for oversized shift amounts.
2488 SDOperand Lo = Op.getOperand(0);
2489 SDOperand Hi = Op.getOperand(1);
2490 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002491 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002492
Dan Gohman71619ec2008-03-07 20:36:53 +00002493 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2494 DAG.getConstant(BitWidth, AmtVT), Amt);
2495 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2496 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2497 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2498 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2499 DAG.getConstant(-BitWidth, AmtVT));
2500 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
2501 SDOperand OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
2502 SDOperand OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002503 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002504 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002505 OutOps, 2);
2506}
2507
Dale Johannesen8be83a72008-03-04 23:17:14 +00002508SDOperand PPCTargetLowering::LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
Dan Gohman71619ec2008-03-07 20:36:53 +00002509 MVT::ValueType VT = Op.getValueType();
2510 unsigned BitWidth = MVT::getSizeInBits(VT);
2511 assert(Op.getNumOperands() == 3 &&
2512 VT == Op.getOperand(1).getValueType() &&
2513 "Unexpected SRA!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002514
Dan Gohman71619ec2008-03-07 20:36:53 +00002515 // Expand into a bunch of logical ops, followed by a select_cc.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002516 SDOperand Lo = Op.getOperand(0);
2517 SDOperand Hi = Op.getOperand(1);
2518 SDOperand Amt = Op.getOperand(2);
Dan Gohman71619ec2008-03-07 20:36:53 +00002519 MVT::ValueType AmtVT = Amt.getValueType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002520
Dan Gohman71619ec2008-03-07 20:36:53 +00002521 SDOperand Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
2522 DAG.getConstant(BitWidth, AmtVT), Amt);
2523 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
2524 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
2525 SDOperand Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
2526 SDOperand Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
2527 DAG.getConstant(-BitWidth, AmtVT));
2528 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
2529 SDOperand OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
2530 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002531 Tmp4, Tmp6, ISD::SETLE);
2532 SDOperand OutOps[] = { OutLo, OutHi };
Dan Gohman71619ec2008-03-07 20:36:53 +00002533 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(VT, VT),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002534 OutOps, 2);
2535}
2536
2537//===----------------------------------------------------------------------===//
2538// Vector related lowering.
2539//
2540
2541// If this is a vector of constants or undefs, get the bits. A bit in
2542// UndefBits is set if the corresponding element of the vector is an
2543// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2544// zero. Return true if this is not an array of constants, false if it is.
2545//
2546static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2547 uint64_t UndefBits[2]) {
2548 // Start with zero'd results.
2549 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2550
2551 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2552 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2553 SDOperand OpVal = BV->getOperand(i);
2554
2555 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2556 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2557
2558 uint64_t EltBits = 0;
2559 if (OpVal.getOpcode() == ISD::UNDEF) {
2560 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2561 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2562 continue;
2563 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2564 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2565 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2566 assert(CN->getValueType(0) == MVT::f32 &&
2567 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002568 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002569 } else {
2570 // Nonconstant element.
2571 return true;
2572 }
2573
2574 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2575 }
2576
2577 //printf("%llx %llx %llx %llx\n",
2578 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2579 return false;
2580}
2581
2582// If this is a splat (repetition) of a value across the whole vector, return
2583// the smallest size that splats it. For example, "0x01010101010101..." is a
2584// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2585// SplatSize = 1 byte.
2586static bool isConstantSplat(const uint64_t Bits128[2],
2587 const uint64_t Undef128[2],
2588 unsigned &SplatBits, unsigned &SplatUndef,
2589 unsigned &SplatSize) {
2590
2591 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2592 // the same as the lower 64-bits, ignoring undefs.
2593 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2594 return false; // Can't be a splat if two pieces don't match.
2595
2596 uint64_t Bits64 = Bits128[0] | Bits128[1];
2597 uint64_t Undef64 = Undef128[0] & Undef128[1];
2598
2599 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2600 // undefs.
2601 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2602 return false; // Can't be a splat if two pieces don't match.
2603
2604 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2605 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2606
2607 // If the top 16-bits are different than the lower 16-bits, ignoring
2608 // undefs, we have an i32 splat.
2609 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2610 SplatBits = Bits32;
2611 SplatUndef = Undef32;
2612 SplatSize = 4;
2613 return true;
2614 }
2615
2616 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2617 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2618
2619 // If the top 8-bits are different than the lower 8-bits, ignoring
2620 // undefs, we have an i16 splat.
2621 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2622 SplatBits = Bits16;
2623 SplatUndef = Undef16;
2624 SplatSize = 2;
2625 return true;
2626 }
2627
2628 // Otherwise, we have an 8-bit splat.
2629 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2630 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2631 SplatSize = 1;
2632 return true;
2633}
2634
2635/// BuildSplatI - Build a canonical splati of Val with an element size of
2636/// SplatSize. Cast the result to VT.
2637static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2638 SelectionDAG &DAG) {
2639 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2640
2641 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2642 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2643 };
2644
2645 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2646
2647 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2648 if (Val == -1)
2649 SplatSize = 1;
2650
2651 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2652
2653 // Build a canonical splat for this value.
2654 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2655 SmallVector<SDOperand, 8> Ops;
2656 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2657 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2658 &Ops[0], Ops.size());
2659 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2660}
2661
2662/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2663/// specified intrinsic ID.
2664static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2665 SelectionDAG &DAG,
2666 MVT::ValueType DestVT = MVT::Other) {
2667 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2668 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2669 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2670}
2671
2672/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2673/// specified intrinsic ID.
2674static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2675 SDOperand Op2, SelectionDAG &DAG,
2676 MVT::ValueType DestVT = MVT::Other) {
2677 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2678 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2679 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2680}
2681
2682
2683/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2684/// amount. The result has the specified value type.
2685static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2686 MVT::ValueType VT, SelectionDAG &DAG) {
2687 // Force LHS/RHS to be the right type.
2688 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2689 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2690
2691 SDOperand Ops[16];
2692 for (unsigned i = 0; i != 16; ++i)
2693 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2694 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2695 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2696 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2697}
2698
2699// If this is a case we can't handle, return null and let the default
2700// expansion code take care of it. If we CAN select this case, and if it
2701// selects to a single instruction, return Op. Otherwise, if we can codegen
2702// this case more efficiently than a constant pool load, lower it to the
2703// sequence of ops that should be used.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002704SDOperand PPCTargetLowering::LowerBUILD_VECTOR(SDOperand Op,
2705 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002706 // If this is a vector of constants or undefs, get the bits. A bit in
2707 // UndefBits is set if the corresponding element of the vector is an
2708 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2709 // zero.
2710 uint64_t VectorBits[2];
2711 uint64_t UndefBits[2];
2712 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2713 return SDOperand(); // Not a constant vector.
2714
2715 // If this is a splat (repetition) of a value across the whole vector, return
2716 // the smallest size that splats it. For example, "0x01010101010101..." is a
2717 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2718 // SplatSize = 1 byte.
2719 unsigned SplatBits, SplatUndef, SplatSize;
2720 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2721 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2722
2723 // First, handle single instruction cases.
2724
2725 // All zeros?
2726 if (SplatBits == 0) {
2727 // Canonicalize all zero vectors to be v4i32.
2728 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2729 SDOperand Z = DAG.getConstant(0, MVT::i32);
2730 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2731 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2732 }
2733 return Op;
2734 }
2735
2736 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2737 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2738 if (SextVal >= -16 && SextVal <= 15)
2739 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2740
2741
2742 // Two instruction sequences.
2743
2744 // If this value is in the range [-32,30] and is even, use:
2745 // tmp = VSPLTI[bhw], result = add tmp, tmp
2746 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2747 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2748 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2749 }
2750
2751 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2752 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2753 // for fneg/fabs.
2754 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2755 // Make -1 and vspltisw -1:
2756 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2757
2758 // Make the VSLW intrinsic, computing 0x8000_0000.
2759 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2760 OnesV, DAG);
2761
2762 // xor by OnesV to invert it.
2763 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2764 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2765 }
2766
2767 // Check to see if this is a wide variety of vsplti*, binop self cases.
2768 unsigned SplatBitSize = SplatSize*8;
2769 static const signed char SplatCsts[] = {
2770 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2771 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2772 };
2773
Owen Anderson1636de92007-09-07 04:06:50 +00002774 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002775 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2776 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2777 int i = SplatCsts[idx];
2778
2779 // Figure out what shift amount will be used by altivec if shifted by i in
2780 // this splat size.
2781 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2782
2783 // vsplti + shl self.
2784 if (SextVal == (i << (int)TypeShiftAmt)) {
2785 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2786 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2787 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2788 Intrinsic::ppc_altivec_vslw
2789 };
2790 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2791 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2792 }
2793
2794 // vsplti + srl self.
2795 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2796 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2797 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2798 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2799 Intrinsic::ppc_altivec_vsrw
2800 };
2801 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2802 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2803 }
2804
2805 // vsplti + sra self.
2806 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2807 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2808 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2809 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2810 Intrinsic::ppc_altivec_vsraw
2811 };
2812 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2813 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2814 }
2815
2816 // vsplti + rol self.
2817 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2818 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2819 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2820 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2821 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2822 Intrinsic::ppc_altivec_vrlw
2823 };
2824 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2825 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2826 }
2827
2828 // t = vsplti c, result = vsldoi t, t, 1
2829 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2830 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2831 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2832 }
2833 // t = vsplti c, result = vsldoi t, t, 2
2834 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2835 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2836 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2837 }
2838 // t = vsplti c, result = vsldoi t, t, 3
2839 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2840 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2841 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2842 }
2843 }
2844
2845 // Three instruction sequences.
2846
2847 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2848 if (SextVal >= 0 && SextVal <= 31) {
2849 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2850 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002851 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002852 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2853 }
2854 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2855 if (SextVal >= -31 && SextVal <= 0) {
2856 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2857 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002858 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002859 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2860 }
2861 }
2862
2863 return SDOperand();
2864}
2865
2866/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2867/// the specified operations to build the shuffle.
2868static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2869 SDOperand RHS, SelectionDAG &DAG) {
2870 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2871 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2872 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2873
2874 enum {
2875 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2876 OP_VMRGHW,
2877 OP_VMRGLW,
2878 OP_VSPLTISW0,
2879 OP_VSPLTISW1,
2880 OP_VSPLTISW2,
2881 OP_VSPLTISW3,
2882 OP_VSLDOI4,
2883 OP_VSLDOI8,
2884 OP_VSLDOI12
2885 };
2886
2887 if (OpNum == OP_COPY) {
2888 if (LHSID == (1*9+2)*9+3) return LHS;
2889 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2890 return RHS;
2891 }
2892
2893 SDOperand OpLHS, OpRHS;
2894 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2895 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2896
2897 unsigned ShufIdxs[16];
2898 switch (OpNum) {
2899 default: assert(0 && "Unknown i32 permute!");
2900 case OP_VMRGHW:
2901 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2902 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2903 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2904 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2905 break;
2906 case OP_VMRGLW:
2907 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2908 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2909 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2910 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2911 break;
2912 case OP_VSPLTISW0:
2913 for (unsigned i = 0; i != 16; ++i)
2914 ShufIdxs[i] = (i&3)+0;
2915 break;
2916 case OP_VSPLTISW1:
2917 for (unsigned i = 0; i != 16; ++i)
2918 ShufIdxs[i] = (i&3)+4;
2919 break;
2920 case OP_VSPLTISW2:
2921 for (unsigned i = 0; i != 16; ++i)
2922 ShufIdxs[i] = (i&3)+8;
2923 break;
2924 case OP_VSPLTISW3:
2925 for (unsigned i = 0; i != 16; ++i)
2926 ShufIdxs[i] = (i&3)+12;
2927 break;
2928 case OP_VSLDOI4:
2929 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2930 case OP_VSLDOI8:
2931 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2932 case OP_VSLDOI12:
2933 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2934 }
2935 SDOperand Ops[16];
2936 for (unsigned i = 0; i != 16; ++i)
2937 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2938
2939 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2940 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2941}
2942
2943/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2944/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2945/// return the code it can be lowered into. Worst case, it can always be
2946/// lowered into a vperm.
Dale Johannesen8be83a72008-03-04 23:17:14 +00002947SDOperand PPCTargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op,
2948 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002949 SDOperand V1 = Op.getOperand(0);
2950 SDOperand V2 = Op.getOperand(1);
2951 SDOperand PermMask = Op.getOperand(2);
2952
2953 // Cases that are handled by instructions that take permute immediates
2954 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2955 // selected by the instruction selector.
2956 if (V2.getOpcode() == ISD::UNDEF) {
2957 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2958 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2959 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2960 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2961 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2962 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2963 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2964 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2965 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2966 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2967 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2968 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2969 return Op;
2970 }
2971 }
2972
2973 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2974 // and produce a fixed permutation. If any of these match, do not lower to
2975 // VPERM.
2976 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2977 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2978 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2979 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2980 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2981 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2982 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2983 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2984 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2985 return Op;
2986
2987 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2988 // perfect shuffle table to emit an optimal matching sequence.
2989 unsigned PFIndexes[4];
2990 bool isFourElementShuffle = true;
2991 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2992 unsigned EltNo = 8; // Start out undef.
2993 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2994 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2995 continue; // Undef, ignore it.
2996
2997 unsigned ByteSource =
2998 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2999 if ((ByteSource & 3) != j) {
3000 isFourElementShuffle = false;
3001 break;
3002 }
3003
3004 if (EltNo == 8) {
3005 EltNo = ByteSource/4;
3006 } else if (EltNo != ByteSource/4) {
3007 isFourElementShuffle = false;
3008 break;
3009 }
3010 }
3011 PFIndexes[i] = EltNo;
3012 }
3013
3014 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3015 // perfect shuffle vector to determine if it is cost effective to do this as
3016 // discrete instructions, or whether we should use a vperm.
3017 if (isFourElementShuffle) {
3018 // Compute the index in the perfect shuffle table.
3019 unsigned PFTableIndex =
3020 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3021
3022 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3023 unsigned Cost = (PFEntry >> 30);
3024
3025 // Determining when to avoid vperm is tricky. Many things affect the cost
3026 // of vperm, particularly how many times the perm mask needs to be computed.
3027 // For example, if the perm mask can be hoisted out of a loop or is already
3028 // used (perhaps because there are multiple permutes with the same shuffle
3029 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
3030 // the loop requires an extra register.
3031 //
3032 // As a compromise, we only emit discrete instructions if the shuffle can be
3033 // generated in 3 or fewer operations. When we have loop information
3034 // available, if this block is within a loop, we should avoid using vperm
3035 // for 3-operation perms and use a constant pool load instead.
3036 if (Cost < 3)
3037 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3038 }
3039
3040 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3041 // vector that will get spilled to the constant pool.
3042 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3043
3044 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3045 // that it is in input element units, not in bytes. Convert now.
3046 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
3047 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
3048
3049 SmallVector<SDOperand, 16> ResultMask;
3050 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3051 unsigned SrcElt;
3052 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3053 SrcElt = 0;
3054 else
3055 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3056
3057 for (unsigned j = 0; j != BytesPerElement; ++j)
3058 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3059 MVT::i8));
3060 }
3061
3062 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3063 &ResultMask[0], ResultMask.size());
3064 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3065}
3066
3067/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3068/// altivec comparison. If it is, return true and fill in Opc/isDot with
3069/// information about the intrinsic.
3070static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
3071 bool &isDot) {
3072 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3073 CompareOpc = -1;
3074 isDot = false;
3075 switch (IntrinsicID) {
3076 default: return false;
3077 // Comparison predicates.
3078 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
3079 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3080 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
3081 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
3082 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3083 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3084 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3085 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3086 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3087 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3088 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3089 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3090 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3091
3092 // Normal Comparisons.
3093 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
3094 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
3095 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
3096 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
3097 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
3098 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
3099 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
3100 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
3101 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
3102 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
3103 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
3104 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
3105 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
3106 }
3107 return true;
3108}
3109
3110/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3111/// lower, do it, otherwise return null.
Dale Johannesen8be83a72008-03-04 23:17:14 +00003112SDOperand PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op,
3113 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003114 // If this is a lowered altivec predicate compare, CompareOpc is set to the
3115 // opcode number of the comparison.
3116 int CompareOpc;
3117 bool isDot;
3118 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3119 return SDOperand(); // Don't custom lower most intrinsics.
3120
3121 // If this is a non-dot comparison, make the VCMP node and we are done.
3122 if (!isDot) {
3123 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3124 Op.getOperand(1), Op.getOperand(2),
3125 DAG.getConstant(CompareOpc, MVT::i32));
3126 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3127 }
3128
3129 // Create the PPCISD altivec 'dot' comparison node.
3130 SDOperand Ops[] = {
3131 Op.getOperand(2), // LHS
3132 Op.getOperand(3), // RHS
3133 DAG.getConstant(CompareOpc, MVT::i32)
3134 };
3135 std::vector<MVT::ValueType> VTs;
3136 VTs.push_back(Op.getOperand(2).getValueType());
3137 VTs.push_back(MVT::Flag);
3138 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3139
3140 // Now that we have the comparison, emit a copy from the CR to a GPR.
3141 // This is flagged to the above dot comparison.
3142 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3143 DAG.getRegister(PPC::CR6, MVT::i32),
3144 CompNode.getValue(1));
3145
3146 // Unpack the result based on how the target uses it.
3147 unsigned BitNo; // Bit # of CR6.
3148 bool InvertBit; // Invert result?
3149 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3150 default: // Can't happen, don't crash on invalid number though.
3151 case 0: // Return the value of the EQ bit of CR6.
3152 BitNo = 0; InvertBit = false;
3153 break;
3154 case 1: // Return the inverted value of the EQ bit of CR6.
3155 BitNo = 0; InvertBit = true;
3156 break;
3157 case 2: // Return the value of the LT bit of CR6.
3158 BitNo = 2; InvertBit = false;
3159 break;
3160 case 3: // Return the inverted value of the LT bit of CR6.
3161 BitNo = 2; InvertBit = true;
3162 break;
3163 }
3164
3165 // Shift the bit into the low position.
3166 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3167 DAG.getConstant(8-(3-BitNo), MVT::i32));
3168 // Isolate the bit.
3169 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3170 DAG.getConstant(1, MVT::i32));
3171
3172 // If we are supposed to, toggle the bit.
3173 if (InvertBit)
3174 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3175 DAG.getConstant(1, MVT::i32));
3176 return Flags;
3177}
3178
Dale Johannesen8be83a72008-03-04 23:17:14 +00003179SDOperand PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op,
3180 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003181 // Create a stack slot that is 16-byte aligned.
3182 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3183 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3184 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3185 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3186
3187 // Store the input value into Value#0 of the stack slot.
3188 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
3189 Op.getOperand(0), FIdx, NULL, 0);
3190 // Load it out.
3191 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3192}
3193
Dale Johannesen8be83a72008-03-04 23:17:14 +00003194SDOperand PPCTargetLowering::LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003195 if (Op.getValueType() == MVT::v4i32) {
3196 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3197
3198 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
3199 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3200
3201 SDOperand RHSSwap = // = vrlw RHS, 16
3202 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3203
3204 // Shrinkify inputs to v8i16.
3205 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3206 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3207 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3208
3209 // Low parts multiplied together, generating 32-bit results (we ignore the
3210 // top parts).
3211 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3212 LHS, RHS, DAG, MVT::v4i32);
3213
3214 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3215 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3216 // Shift the high parts up 16 bits.
3217 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3218 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3219 } else if (Op.getValueType() == MVT::v8i16) {
3220 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3221
3222 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3223
3224 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3225 LHS, RHS, Zero, DAG);
3226 } else if (Op.getValueType() == MVT::v16i8) {
3227 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3228
3229 // Multiply the even 8-bit parts, producing 16-bit sums.
3230 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3231 LHS, RHS, DAG, MVT::v8i16);
3232 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3233
3234 // Multiply the odd 8-bit parts, producing 16-bit sums.
3235 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3236 LHS, RHS, DAG, MVT::v8i16);
3237 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3238
3239 // Merge the results together.
3240 SDOperand Ops[16];
3241 for (unsigned i = 0; i != 8; ++i) {
3242 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
3243 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3244 }
3245 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3246 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3247 } else {
3248 assert(0 && "Unknown mul to lower!");
3249 abort();
3250 }
3251}
3252
3253/// LowerOperation - Provide custom lowering hooks for some operations.
3254///
3255SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3256 switch (Op.getOpcode()) {
3257 default: assert(0 && "Wasn't expecting to be able to lower this!");
3258 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3259 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3260 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3261 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3262 case ISD::SETCC: return LowerSETCC(Op, DAG);
3263 case ISD::VASTART:
3264 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3265 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3266
3267 case ISD::VAARG:
3268 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3269 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3270
3271 case ISD::FORMAL_ARGUMENTS:
3272 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3273 VarArgsStackOffset, VarArgsNumGPR,
3274 VarArgsNumFPR, PPCSubTarget);
3275
3276 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
3277 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3278 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3279 case ISD::DYNAMIC_STACKALLOC:
3280 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3281
3282 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3283 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3284 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003285 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohman819574c2008-01-31 00:41:03 +00003286 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003287
3288 // Lower 64-bit shifts.
3289 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3290 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3291 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3292
3293 // Vector-related lowering.
3294 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3295 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3296 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3297 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3298 case ISD::MUL: return LowerMUL(Op, DAG);
3299
Chris Lattnerf8b93372007-12-08 06:59:59 +00003300 // Frame & Return address.
3301 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003302 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3303 }
3304 return SDOperand();
3305}
3306
Chris Lattner28771092007-11-28 18:44:47 +00003307SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3308 switch (N->getOpcode()) {
3309 default: assert(0 && "Wasn't expecting to be able to lower this!");
3310 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3311 }
3312}
3313
3314
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003315//===----------------------------------------------------------------------===//
3316// Other Lowering Code
3317//===----------------------------------------------------------------------===//
3318
3319MachineBasicBlock *
Evan Chenge637db12008-01-30 18:18:23 +00003320PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3321 MachineBasicBlock *BB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003322 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3323 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3324 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3325 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3326 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3327 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3328 "Unexpected instr type to insert");
3329
3330 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3331 // control-flow pattern. The incoming instruction knows the destination vreg
3332 // to set, the condition code register to branch on, the true/false values to
3333 // select between, and a branch opcode to use.
3334 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3335 ilist<MachineBasicBlock>::iterator It = BB;
3336 ++It;
3337
3338 // thisMBB:
3339 // ...
3340 // TrueVal = ...
3341 // cmpTY ccX, r1, r2
3342 // bCC copy1MBB
3343 // fallthrough --> copy0MBB
3344 MachineBasicBlock *thisMBB = BB;
3345 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3346 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3347 unsigned SelectPred = MI->getOperand(4).getImm();
3348 BuildMI(BB, TII->get(PPC::BCC))
3349 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3350 MachineFunction *F = BB->getParent();
3351 F->getBasicBlockList().insert(It, copy0MBB);
3352 F->getBasicBlockList().insert(It, sinkMBB);
3353 // Update machine-CFG edges by first adding all successors of the current
3354 // block to the new block which will contain the Phi node for the select.
3355 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3356 e = BB->succ_end(); i != e; ++i)
3357 sinkMBB->addSuccessor(*i);
3358 // Next, remove all successors of the current block, and add the true
3359 // and fallthrough blocks as its successors.
3360 while(!BB->succ_empty())
3361 BB->removeSuccessor(BB->succ_begin());
3362 BB->addSuccessor(copy0MBB);
3363 BB->addSuccessor(sinkMBB);
3364
3365 // copy0MBB:
3366 // %FalseValue = ...
3367 // # fallthrough to sinkMBB
3368 BB = copy0MBB;
3369
3370 // Update machine-CFG edges
3371 BB->addSuccessor(sinkMBB);
3372
3373 // sinkMBB:
3374 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3375 // ...
3376 BB = sinkMBB;
3377 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3378 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3379 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3380
3381 delete MI; // The pseudo instruction is gone now.
3382 return BB;
3383}
3384
3385//===----------------------------------------------------------------------===//
3386// Target Optimization Hooks
3387//===----------------------------------------------------------------------===//
3388
3389SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3390 DAGCombinerInfo &DCI) const {
3391 TargetMachine &TM = getTargetMachine();
3392 SelectionDAG &DAG = DCI.DAG;
3393 switch (N->getOpcode()) {
3394 default: break;
3395 case PPCISD::SHL:
3396 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3397 if (C->getValue() == 0) // 0 << V -> 0.
3398 return N->getOperand(0);
3399 }
3400 break;
3401 case PPCISD::SRL:
3402 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3403 if (C->getValue() == 0) // 0 >>u V -> 0.
3404 return N->getOperand(0);
3405 }
3406 break;
3407 case PPCISD::SRA:
3408 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3409 if (C->getValue() == 0 || // 0 >>s V -> 0.
3410 C->isAllOnesValue()) // -1 >>s V -> -1.
3411 return N->getOperand(0);
3412 }
3413 break;
3414
3415 case ISD::SINT_TO_FP:
3416 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3417 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3418 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3419 // We allow the src/dst to be either f32/f64, but the intermediate
3420 // type must be i64.
Dale Johannesencbc03512007-10-23 23:20:14 +00003421 if (N->getOperand(0).getValueType() == MVT::i64 &&
3422 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003423 SDOperand Val = N->getOperand(0).getOperand(0);
3424 if (Val.getValueType() == MVT::f32) {
3425 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3426 DCI.AddToWorklist(Val.Val);
3427 }
3428
3429 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3430 DCI.AddToWorklist(Val.Val);
3431 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3432 DCI.AddToWorklist(Val.Val);
3433 if (N->getValueType(0) == MVT::f32) {
Chris Lattner5872a362008-01-17 07:00:52 +00003434 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
3435 DAG.getIntPtrConstant(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003436 DCI.AddToWorklist(Val.Val);
3437 }
3438 return Val;
3439 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3440 // If the intermediate type is i32, we can avoid the load/store here
3441 // too.
3442 }
3443 }
3444 }
3445 break;
3446 case ISD::STORE:
3447 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3448 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
Chris Lattnerdf7a4ae2008-01-18 16:54:56 +00003449 !cast<StoreSDNode>(N)->isTruncatingStore() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003450 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
Dale Johannesencbc03512007-10-23 23:20:14 +00003451 N->getOperand(1).getValueType() == MVT::i32 &&
3452 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003453 SDOperand Val = N->getOperand(1).getOperand(0);
3454 if (Val.getValueType() == MVT::f32) {
3455 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3456 DCI.AddToWorklist(Val.Val);
3457 }
3458 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3459 DCI.AddToWorklist(Val.Val);
3460
3461 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3462 N->getOperand(2), N->getOperand(3));
3463 DCI.AddToWorklist(Val.Val);
3464 return Val;
3465 }
3466
3467 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3468 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3469 N->getOperand(1).Val->hasOneUse() &&
3470 (N->getOperand(1).getValueType() == MVT::i32 ||
3471 N->getOperand(1).getValueType() == MVT::i16)) {
3472 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3473 // Do an any-extend to 32-bits if this is a half-word input.
3474 if (BSwapOp.getValueType() == MVT::i16)
3475 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3476
3477 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3478 N->getOperand(2), N->getOperand(3),
3479 DAG.getValueType(N->getOperand(1).getValueType()));
3480 }
3481 break;
3482 case ISD::BSWAP:
3483 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3484 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3485 N->getOperand(0).hasOneUse() &&
3486 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3487 SDOperand Load = N->getOperand(0);
3488 LoadSDNode *LD = cast<LoadSDNode>(Load);
3489 // Create the byte-swapping load.
3490 std::vector<MVT::ValueType> VTs;
3491 VTs.push_back(MVT::i32);
3492 VTs.push_back(MVT::Other);
Dan Gohman12a9c082008-02-06 22:27:42 +00003493 SDOperand MO = DAG.getMemOperand(LD->getMemOperand());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003494 SDOperand Ops[] = {
3495 LD->getChain(), // Chain
3496 LD->getBasePtr(), // Ptr
Dan Gohman12a9c082008-02-06 22:27:42 +00003497 MO, // MemOperand
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003498 DAG.getValueType(N->getValueType(0)) // VT
3499 };
3500 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3501
3502 // If this is an i16 load, insert the truncate.
3503 SDOperand ResVal = BSLoad;
3504 if (N->getValueType(0) == MVT::i16)
3505 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3506
3507 // First, combine the bswap away. This makes the value produced by the
3508 // load dead.
3509 DCI.CombineTo(N, ResVal);
3510
3511 // Next, combine the load away, we give it a bogus result value but a real
3512 // chain result. The result value is dead because the bswap is dead.
3513 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3514
3515 // Return N so it doesn't get rechecked!
3516 return SDOperand(N, 0);
3517 }
3518
3519 break;
3520 case PPCISD::VCMP: {
3521 // If a VCMPo node already exists with exactly the same operands as this
3522 // node, use its result instead of this node (VCMPo computes both a CR6 and
3523 // a normal output).
3524 //
3525 if (!N->getOperand(0).hasOneUse() &&
3526 !N->getOperand(1).hasOneUse() &&
3527 !N->getOperand(2).hasOneUse()) {
3528
3529 // Scan all of the users of the LHS, looking for VCMPo's that match.
3530 SDNode *VCMPoNode = 0;
3531
3532 SDNode *LHSN = N->getOperand(0).Val;
3533 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3534 UI != E; ++UI)
3535 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3536 (*UI)->getOperand(1) == N->getOperand(1) &&
3537 (*UI)->getOperand(2) == N->getOperand(2) &&
3538 (*UI)->getOperand(0) == N->getOperand(0)) {
3539 VCMPoNode = *UI;
3540 break;
3541 }
3542
3543 // If there is no VCMPo node, or if the flag value has a single use, don't
3544 // transform this.
3545 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3546 break;
3547
3548 // Look at the (necessarily single) use of the flag value. If it has a
3549 // chain, this transformation is more complex. Note that multiple things
3550 // could use the value result, which we should ignore.
3551 SDNode *FlagUser = 0;
3552 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3553 FlagUser == 0; ++UI) {
3554 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3555 SDNode *User = *UI;
3556 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3557 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3558 FlagUser = User;
3559 break;
3560 }
3561 }
3562 }
3563
3564 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3565 // give up for right now.
3566 if (FlagUser->getOpcode() == PPCISD::MFCR)
3567 return SDOperand(VCMPoNode, 0);
3568 }
3569 break;
3570 }
3571 case ISD::BR_CC: {
3572 // If this is a branch on an altivec predicate comparison, lower this so
3573 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3574 // lowering is done pre-legalize, because the legalizer lowers the predicate
3575 // compare down to code that is difficult to reassemble.
3576 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3577 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3578 int CompareOpc;
3579 bool isDot;
3580
3581 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3582 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3583 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3584 assert(isDot && "Can't compare against a vector result!");
3585
3586 // If this is a comparison against something other than 0/1, then we know
3587 // that the condition is never/always true.
3588 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3589 if (Val != 0 && Val != 1) {
3590 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3591 return N->getOperand(0);
3592 // Always !=, turn it into an unconditional branch.
3593 return DAG.getNode(ISD::BR, MVT::Other,
3594 N->getOperand(0), N->getOperand(4));
3595 }
3596
3597 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3598
3599 // Create the PPCISD altivec 'dot' comparison node.
3600 std::vector<MVT::ValueType> VTs;
3601 SDOperand Ops[] = {
3602 LHS.getOperand(2), // LHS of compare
3603 LHS.getOperand(3), // RHS of compare
3604 DAG.getConstant(CompareOpc, MVT::i32)
3605 };
3606 VTs.push_back(LHS.getOperand(2).getValueType());
3607 VTs.push_back(MVT::Flag);
3608 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3609
3610 // Unpack the result based on how the target uses it.
3611 PPC::Predicate CompOpc;
3612 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3613 default: // Can't happen, don't crash on invalid number though.
3614 case 0: // Branch on the value of the EQ bit of CR6.
3615 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3616 break;
3617 case 1: // Branch on the inverted value of the EQ bit of CR6.
3618 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3619 break;
3620 case 2: // Branch on the value of the LT bit of CR6.
3621 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3622 break;
3623 case 3: // Branch on the inverted value of the LT bit of CR6.
3624 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3625 break;
3626 }
3627
3628 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3629 DAG.getConstant(CompOpc, MVT::i32),
3630 DAG.getRegister(PPC::CR6, MVT::i32),
3631 N->getOperand(4), CompNode.getValue(1));
3632 }
3633 break;
3634 }
3635 }
3636
3637 return SDOperand();
3638}
3639
3640//===----------------------------------------------------------------------===//
3641// Inline Assembly Support
3642//===----------------------------------------------------------------------===//
3643
3644void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
Dan Gohmand0dfc772008-02-13 22:28:48 +00003645 const APInt &Mask,
Dan Gohman229fa052008-02-13 00:35:47 +00003646 APInt &KnownZero,
3647 APInt &KnownOne,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 const SelectionDAG &DAG,
3649 unsigned Depth) const {
Dan Gohman229fa052008-02-13 00:35:47 +00003650 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003651 switch (Op.getOpcode()) {
3652 default: break;
3653 case PPCISD::LBRX: {
3654 // lhbrx is known to have the top bits cleared out.
3655 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3656 KnownZero = 0xFFFF0000;
3657 break;
3658 }
3659 case ISD::INTRINSIC_WO_CHAIN: {
3660 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3661 default: break;
3662 case Intrinsic::ppc_altivec_vcmpbfp_p:
3663 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3664 case Intrinsic::ppc_altivec_vcmpequb_p:
3665 case Intrinsic::ppc_altivec_vcmpequh_p:
3666 case Intrinsic::ppc_altivec_vcmpequw_p:
3667 case Intrinsic::ppc_altivec_vcmpgefp_p:
3668 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3669 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3670 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3671 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3672 case Intrinsic::ppc_altivec_vcmpgtub_p:
3673 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3674 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3675 KnownZero = ~1U; // All bits but the low one are known to be zero.
3676 break;
3677 }
3678 }
3679 }
3680}
3681
3682
3683/// getConstraintType - Given a constraint, return the type of
3684/// constraint it is for this target.
3685PPCTargetLowering::ConstraintType
3686PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3687 if (Constraint.size() == 1) {
3688 switch (Constraint[0]) {
3689 default: break;
3690 case 'b':
3691 case 'r':
3692 case 'f':
3693 case 'v':
3694 case 'y':
3695 return C_RegisterClass;
3696 }
3697 }
3698 return TargetLowering::getConstraintType(Constraint);
3699}
3700
3701std::pair<unsigned, const TargetRegisterClass*>
3702PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3703 MVT::ValueType VT) const {
3704 if (Constraint.size() == 1) {
3705 // GCC RS6000 Constraint Letters
3706 switch (Constraint[0]) {
3707 case 'b': // R1-R31
3708 case 'r': // R0-R31
3709 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3710 return std::make_pair(0U, PPC::G8RCRegisterClass);
3711 return std::make_pair(0U, PPC::GPRCRegisterClass);
3712 case 'f':
3713 if (VT == MVT::f32)
3714 return std::make_pair(0U, PPC::F4RCRegisterClass);
3715 else if (VT == MVT::f64)
3716 return std::make_pair(0U, PPC::F8RCRegisterClass);
3717 break;
3718 case 'v':
3719 return std::make_pair(0U, PPC::VRRCRegisterClass);
3720 case 'y': // crrc
3721 return std::make_pair(0U, PPC::CRRCRegisterClass);
3722 }
3723 }
3724
3725 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3726}
3727
3728
Chris Lattnera531abc2007-08-25 00:47:38 +00003729/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3730/// vector. If it is invalid, don't add anything to Ops.
3731void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3732 std::vector<SDOperand>&Ops,
3733 SelectionDAG &DAG) {
3734 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003735 switch (Letter) {
3736 default: break;
3737 case 'I':
3738 case 'J':
3739 case 'K':
3740 case 'L':
3741 case 'M':
3742 case 'N':
3743 case 'O':
3744 case 'P': {
3745 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003746 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003747 unsigned Value = CST->getValue();
3748 switch (Letter) {
3749 default: assert(0 && "Unknown constraint letter!");
3750 case 'I': // "I" is a signed 16-bit constant.
3751 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003752 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003753 break;
3754 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3755 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3756 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003757 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003758 break;
3759 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3760 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003761 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003762 break;
3763 case 'M': // "M" is a constant that is greater than 31.
3764 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003765 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003766 break;
3767 case 'N': // "N" is a positive constant that is an exact power of two.
3768 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003769 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003770 break;
3771 case 'O': // "O" is the constant zero.
3772 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003773 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774 break;
3775 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3776 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003777 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003778 break;
3779 }
3780 break;
3781 }
3782 }
3783
Chris Lattnera531abc2007-08-25 00:47:38 +00003784 if (Result.Val) {
3785 Ops.push_back(Result);
3786 return;
3787 }
3788
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003789 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003790 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003791}
3792
3793// isLegalAddressingMode - Return true if the addressing mode represented
3794// by AM is legal for this target, for a load/store of the specified type.
3795bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3796 const Type *Ty) const {
3797 // FIXME: PPC does not allow r+i addressing modes for vectors!
3798
3799 // PPC allows a sign-extended 16-bit immediate field.
3800 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3801 return false;
3802
3803 // No global is ever allowed as a base.
3804 if (AM.BaseGV)
3805 return false;
3806
3807 // PPC only support r+r,
3808 switch (AM.Scale) {
3809 case 0: // "r+i" or just "i", depending on HasBaseReg.
3810 break;
3811 case 1:
3812 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3813 return false;
3814 // Otherwise we have r+r or r+i.
3815 break;
3816 case 2:
3817 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3818 return false;
3819 // Allow 2*r as r+r.
3820 break;
3821 default:
3822 // No other scales are supported.
3823 return false;
3824 }
3825
3826 return true;
3827}
3828
3829/// isLegalAddressImmediate - Return true if the integer value can be used
3830/// as the offset of the target addressing mode for load / store of the
3831/// given type.
3832bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3833 // PPC allows a sign-extended 16-bit immediate field.
3834 return (V > -(1 << 16) && V < (1 << 16)-1);
3835}
3836
3837bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3838 return false;
3839}
3840
Chris Lattnerf8b93372007-12-08 06:59:59 +00003841SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3842 // Depths > 0 not supported yet!
3843 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3844 return SDOperand();
3845
3846 MachineFunction &MF = DAG.getMachineFunction();
3847 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3848 int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3849 if (RAIdx == 0) {
3850 bool isPPC64 = PPCSubTarget.isPPC64();
3851 int Offset =
3852 PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3853
3854 // Set up a frame object for the return address.
3855 RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3856
3857 // Remember it for next time.
3858 FuncInfo->setReturnAddrSaveIndex(RAIdx);
3859
3860 // Make sure the function really does not optimize away the store of the RA
3861 // to the stack.
3862 FuncInfo->setLRStoreRequired();
3863 }
3864
3865 // Just load the return address off the stack.
3866 SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy());
3867 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3868}
3869
3870SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003871 // Depths > 0 not supported yet!
3872 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3873 return SDOperand();
3874
3875 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3876 bool isPPC64 = PtrVT == MVT::i64;
3877
3878 MachineFunction &MF = DAG.getMachineFunction();
3879 MachineFrameInfo *MFI = MF.getFrameInfo();
3880 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3881 && MFI->getStackSize();
3882
3883 if (isPPC64)
3884 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00003885 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003886 else
3887 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3888 MVT::i32);
3889}