blob: b78eab8ad2eac47b97e569df80a35ccc316bc4bd [file] [log] [blame]
Chris Lattnerd213f0f2001-06-20 19:27:11 +00001//===- InductionVars.cpp - Induction Variable Cannonicalization code --------=//
2//
3// This file implements induction variable cannonicalization of loops.
4//
5// Specifically, after this executes, the following is true:
Chris Lattner364b1472001-06-22 02:24:38 +00006// - There is a single induction variable for each loop (at least loops that
7// used to contain at least one induction variable)
Chris Lattner3b34c592001-06-27 23:36:09 +00008// * This induction variable starts at 0 and steps by 1 per iteration
9// * This induction variable is represented by the first PHI node in the
Chris Lattner364b1472001-06-22 02:24:38 +000010// Header block, allowing it to be found easily.
Chris Lattnerd213f0f2001-06-20 19:27:11 +000011// - All other preexisting induction variables are adjusted to operate in
12// terms of this primary induction variable
Chris Lattnerd473a0a2001-06-25 07:32:19 +000013// - Induction variables with a step size of 0 have been eliminated.
Chris Lattnerd213f0f2001-06-20 19:27:11 +000014//
Chris Lattner364b1472001-06-22 02:24:38 +000015// This code assumes the following is true to perform its full job:
16// - The CFG has been simplified to not have multiple entrances into an
17// interval header. Interval headers should only have two predecessors,
18// one from inside of the loop and one from outside of the loop.
19//
Chris Lattnerd213f0f2001-06-20 19:27:11 +000020//===----------------------------------------------------------------------===//
21
Chris Lattner7e02b7e2001-06-30 04:36:40 +000022#include "llvm/Optimizations/InductionVars.h"
Chris Lattnerc9f39b22001-06-24 04:05:45 +000023#include "llvm/ConstPoolVals.h"
24#include "llvm/Analysis/IntervalPartition.h"
Chris Lattnerd213f0f2001-06-20 19:27:11 +000025#include "llvm/Assembly/Writer.h"
Chris Lattner57dbb3a2001-07-23 17:46:59 +000026#include "llvm/Support/STLExtras.h"
Chris Lattnerd473a0a2001-06-25 07:32:19 +000027#include "llvm/SymbolTable.h"
Chris Lattner364b1472001-06-22 02:24:38 +000028#include "llvm/iOther.h"
Chris Lattnerd473a0a2001-06-25 07:32:19 +000029#include "llvm/CFG.h"
Chris Lattnerc9f39b22001-06-24 04:05:45 +000030#include <algorithm>
Chris Lattnerd213f0f2001-06-20 19:27:11 +000031
Chris Lattner7e02b7e2001-06-30 04:36:40 +000032#include "llvm/Analysis/LoopDepth.h"
33
34using namespace opt;
35
Chris Lattner364b1472001-06-22 02:24:38 +000036// isLoopInvariant - Return true if the specified value/basic block source is
37// an interval invariant computation.
38//
39static bool isLoopInvariant(cfg::Interval *Int, Value *V) {
Chris Lattner3b34c592001-06-27 23:36:09 +000040 assert(V->isConstant() || V->isInstruction() || V->isMethodArgument());
Chris Lattnerd213f0f2001-06-20 19:27:11 +000041
Chris Lattner3b34c592001-06-27 23:36:09 +000042 if (!V->isInstruction())
Chris Lattner364b1472001-06-22 02:24:38 +000043 return true; // Constants and arguments are always loop invariant
44
45 BasicBlock *ValueBlock = ((Instruction*)V)->getParent();
46 assert(ValueBlock && "Instruction not embedded in basic block!");
47
48 // For now, only consider values from outside of the interval, regardless of
49 // whether the expression could be lifted out of the loop by some LICM.
50 //
51 // TODO: invoke LICM library if we find out it would be useful.
52 //
53 return !Int->contains(ValueBlock);
54}
55
56
57// isLinearInductionVariableH - Return isLIV if the expression V is a linear
58// expression defined in terms of loop invariant computations, and a single
59// instance of the PHI node PN. Return isLIC if the expression V is a loop
60// invariant computation. Return isNLIV if the expression is a negated linear
61// induction variable. Return isOther if it is neither.
62//
63// Currently allowed operators are: ADD, SUB, NEG
64// TODO: This should allow casts!
65//
66enum LIVType { isLIV, isLIC, isNLIV, isOther };
67//
68// neg - Negate the sign of a LIV expression.
69inline LIVType neg(LIVType T) {
70 assert(T == isLIV || T == isNLIV && "Negate Only works on LIV expressions");
71 return T == isLIV ? isNLIV : isLIV;
72}
73//
74static LIVType isLinearInductionVariableH(cfg::Interval *Int, Value *V,
75 PHINode *PN) {
76 if (V == PN) { return isLIV; } // PHI node references are (0+PHI)
77 if (isLoopInvariant(Int, V)) return isLIC;
78
Chris Lattner3b34c592001-06-27 23:36:09 +000079 // loop variant computations must be instructions!
80 Instruction *I = V->castInstructionAsserting();
Chris Lattnera41f50d2001-07-07 19:24:15 +000081 switch (I->getOpcode()) { // Handle each instruction seperately
Chris Lattner364b1472001-06-22 02:24:38 +000082 case Instruction::Add:
83 case Instruction::Sub: {
84 Value *SubV1 = ((BinaryOperator*)I)->getOperand(0);
85 Value *SubV2 = ((BinaryOperator*)I)->getOperand(1);
86 LIVType SubLIVType1 = isLinearInductionVariableH(Int, SubV1, PN);
87 if (SubLIVType1 == isOther) return isOther; // Early bailout
88 LIVType SubLIVType2 = isLinearInductionVariableH(Int, SubV2, PN);
89
90 switch (SubLIVType2) {
91 case isOther: return isOther; // Unknown subexpression type
92 case isLIC: return SubLIVType1; // Constant offset, return type #1
93 case isLIV:
94 case isNLIV:
95 // So now we know that we have a linear induction variable on the RHS of
96 // the ADD or SUB instruction. SubLIVType1 cannot be isOther, so it is
97 // either a Loop Invariant computation, or a LIV type.
98 if (SubLIVType1 == isLIC) {
99 // Loop invariant computation, we know this is a LIV then.
Chris Lattnera41f50d2001-07-07 19:24:15 +0000100 return (I->getOpcode() == Instruction::Add) ?
Chris Lattner364b1472001-06-22 02:24:38 +0000101 SubLIVType2 : neg(SubLIVType2);
102 }
103
104 // If the LHS is also a LIV Expression, we cannot add two LIVs together
Chris Lattnera41f50d2001-07-07 19:24:15 +0000105 if (I->getOpcode() == Instruction::Add) return isOther;
Chris Lattner364b1472001-06-22 02:24:38 +0000106
107 // We can only subtract two LIVs if they are the same type, which yields
108 // a LIC, because the LIVs cancel each other out.
109 return (SubLIVType1 == SubLIVType2) ? isLIC : isOther;
110 }
111 // NOT REACHED
112 }
113
114 default: // Any other instruction is not a LINEAR induction var
115 return isOther;
116 }
117}
118
119// isLinearInductionVariable - Return true if the specified expression is a
120// "linear induction variable", which is an expression involving a single
121// instance of the PHI node and a loop invariant value that is added or
122// subtracted to the PHI node. This is calculated by walking the SSA graph
123//
124static inline bool isLinearInductionVariable(cfg::Interval *Int, Value *V,
125 PHINode *PN) {
126 return isLinearInductionVariableH(Int, V, PN) == isLIV;
127}
128
129
130// isSimpleInductionVar - Return true iff the cannonical induction variable PN
131// has an initializer of the constant value 0, and has a step size of constant
132// 1.
133static inline bool isSimpleInductionVar(PHINode *PN) {
134 assert(PN->getNumIncomingValues() == 2 && "Must have cannonical PHI node!");
135 Value *Initializer = PN->getIncomingValue(0);
Chris Lattner3b34c592001-06-27 23:36:09 +0000136 if (!Initializer->isConstant()) return false;
Chris Lattner364b1472001-06-22 02:24:38 +0000137
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000138 if (Initializer->getType()->isSigned()) { // Signed constant value...
139 if (((ConstPoolSInt*)Initializer)->getValue() != 0) return false;
140 } else if (Initializer->getType()->isUnsigned()) { // Unsigned constant value
141 if (((ConstPoolUInt*)Initializer)->getValue() != 0) return false;
142 } else {
143 return false; // Not signed or unsigned? Must be FP type or something
144 }
145
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000146 Value *StepExpr = PN->getIncomingValue(1);
Chris Lattner3b34c592001-06-27 23:36:09 +0000147 if (!StepExpr->isInstruction() ||
Chris Lattnera41f50d2001-07-07 19:24:15 +0000148 ((Instruction*)StepExpr)->getOpcode() != Instruction::Add)
Chris Lattner3b34c592001-06-27 23:36:09 +0000149 return false;
150
Chris Lattner364b1472001-06-22 02:24:38 +0000151 BinaryOperator *I = (BinaryOperator*)StepExpr;
Chris Lattner3b34c592001-06-27 23:36:09 +0000152 assert(I->getOperand(0)->isInstruction() &&
153 ((Instruction*)I->getOperand(0))->isPHINode() &&
Chris Lattner364b1472001-06-22 02:24:38 +0000154 "PHI node should be first operand of ADD instruction!");
155
156 // Get the right hand side of the ADD node. See if it is a constant 1.
157 Value *StepSize = I->getOperand(1);
Chris Lattner3b34c592001-06-27 23:36:09 +0000158 if (!StepSize->isConstant()) return false;
Chris Lattner364b1472001-06-22 02:24:38 +0000159
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000160 if (StepSize->getType()->isSigned()) { // Signed constant value...
161 if (((ConstPoolSInt*)StepSize)->getValue() != 1) return false;
162 } else if (StepSize->getType()->isUnsigned()) { // Unsigned constant value
163 if (((ConstPoolUInt*)StepSize)->getValue() != 1) return false;
164 } else {
165 return false; // Not signed or unsigned? Must be FP type or something
166 }
Chris Lattner364b1472001-06-22 02:24:38 +0000167
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000168 // At this point, we know the initializer is a constant value 0 and the step
169 // size is a constant value 1. This is our simple induction variable!
170 return true;
Chris Lattnerda956802001-06-21 05:27:22 +0000171}
172
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000173// InjectSimpleInductionVariable - Insert a cannonical induction variable into
174// the interval header Header. This assumes that the flow graph is in
175// simplified form (so we know that the header block has exactly 2 predecessors)
176//
177// TODO: This should inherit the largest type that is being used by the already
178// present induction variables (instead of always using uint)
179//
180static PHINode *InjectSimpleInductionVariable(cfg::Interval *Int) {
181 string PHIName, AddName;
182
183 BasicBlock *Header = Int->getHeaderNode();
184 Method *M = Header->getParent();
185
186 if (M->hasSymbolTable()) {
187 // Only name the induction variable if the method isn't stripped.
188 PHIName = M->getSymbolTable()->getUniqueName(Type::UIntTy, "ind_var");
189 AddName = M->getSymbolTable()->getUniqueName(Type::UIntTy, "ind_var_next");
190 }
191
192 // Create the neccesary instructions...
193 PHINode *PN = new PHINode(Type::UIntTy, PHIName);
Chris Lattner73657452001-09-07 16:42:26 +0000194 ConstPoolVal *One = ConstPoolUInt::get(Type::UIntTy, 1);
195 ConstPoolVal *Zero = ConstPoolUInt::get(Type::UIntTy, 0);
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000196 BinaryOperator *AddNode = BinaryOperator::create(Instruction::Add,
197 PN, One, AddName);
198
199 // Figure out which predecessors I have to play with... there should be
200 // exactly two... one of which is a loop predecessor, and one of which is not.
201 //
202 cfg::pred_iterator PI = cfg::pred_begin(Header);
203 assert(PI != cfg::pred_end(Header) && "Header node should have 2 preds!");
204 BasicBlock *Pred1 = *PI; ++PI;
205 assert(PI != cfg::pred_end(Header) && "Header node should have 2 preds!");
206 BasicBlock *Pred2 = *PI;
207 assert(++PI == cfg::pred_end(Header) && "Header node should have 2 preds!");
208
209 // Make Pred1 be the loop entrance predecessor, Pred2 be the Loop predecessor
210 if (Int->contains(Pred1)) swap(Pred1, Pred2);
211
212 assert(!Int->contains(Pred1) && "Pred1 should be loop entrance!");
213 assert( Int->contains(Pred2) && "Pred2 should be looping edge!");
214
215 // Link the instructions into the PHI node...
216 PN->addIncoming(Zero, Pred1); // The initializer is first argument
217 PN->addIncoming(AddNode, Pred2); // The step size is second PHI argument
218
219 // Insert the PHI node into the Header of the loop. It shall be the first
220 // instruction, because the "Simple" Induction Variable must be first in the
221 // block.
222 //
223 BasicBlock::InstListType &IL = Header->getInstList();
224 IL.push_front(PN);
225
226 // Insert the Add instruction as the first (non-phi) instruction in the
227 // header node's basic block.
Chris Lattner3b34c592001-06-27 23:36:09 +0000228 BasicBlock::iterator I = IL.begin();
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000229 while ((*I)->isPHINode()) ++I;
230 IL.insert(I, AddNode);
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000231 return PN;
232}
233
Chris Lattner364b1472001-06-22 02:24:38 +0000234// ProcessInterval - This function is invoked once for each interval in the
235// IntervalPartition of the program. It looks for auxilliary induction
236// variables in loops. If it finds one, it:
237// * Cannonicalizes the induction variable. This consists of:
238// A. Making the first element of the PHI node be the loop invariant
239// computation, and the second element be the linear induction portion.
240// B. Changing the first element of the linear induction portion of the PHI
241// node to be of the form ADD(PHI, <loop invariant expr>).
242// * Add the induction variable PHI to a list of induction variables found.
243//
244// After this, a list of cannonical induction variables is known. This list
245// is searched to see if there is an induction variable that counts from
246// constant 0 with a step size of constant 1. If there is not one, one is
247// injected into the loop. Thus a "simple" induction variable is always known
248//
249// One a simple induction variable is known, all other induction variables are
250// modified to refer to the "simple" induction variable.
251//
252static bool ProcessInterval(cfg::Interval *Int) {
253 if (!Int->isLoop()) return false; // Not a loop? Ignore it!
254
255 vector<PHINode *> InductionVars;
256
257 BasicBlock *Header = Int->getHeaderNode();
258 // Loop over all of the PHI nodes in the interval header...
Chris Lattner3b34c592001-06-27 23:36:09 +0000259 for (BasicBlock::iterator I = Header->begin(), E = Header->end();
260 I != E && (*I)->isPHINode(); ++I) {
Chris Lattner364b1472001-06-22 02:24:38 +0000261 PHINode *PN = (PHINode*)*I;
262 if (PN->getNumIncomingValues() != 2) { // These should be eliminated by now.
263 cerr << "Found interval header with more than 2 predecessors! Ignoring\n";
264 return false; // Todo, make an assertion.
265 }
266
267 // For this to be an induction variable, one of the arguments must be a
268 // loop invariant expression, and the other must be an expression involving
269 // the PHI node, along with possible additions and subtractions of loop
270 // invariant values.
271 //
272 BasicBlock *BB1 = PN->getIncomingBlock(0);
273 Value *V1 = PN->getIncomingValue(0);
274 BasicBlock *BB2 = PN->getIncomingBlock(1);
275 Value *V2 = PN->getIncomingValue(1);
276
277 // Figure out which computation is loop invariant...
278 if (!isLoopInvariant(Int, V1)) {
279 // V1 is *not* loop invariant. Check to see if V2 is:
280 if (isLoopInvariant(Int, V2)) {
281 // They *are* loop invariant. Exchange BB1/BB2 and V1/V2 so that
282 // V1 is always the loop invariant computation.
283 swap(V1, V2); swap(BB1, BB2);
284 } else {
285 // Neither value is loop invariant. Must not be an induction variable.
286 // This case can happen if there is an unreachable loop in the CFG that
287 // has two tail loops in it that was not split by the cleanup phase
288 // before.
289 continue;
290 }
291 }
292
293 // At this point, we know that BB1/V1 are loop invariant. We don't know
294 // anything about BB2/V2. Check now to see if V2 is a linear induction
295 // variable.
296 //
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000297 cerr << "Found loop invariant computation: " << V1 << endl;
Chris Lattner364b1472001-06-22 02:24:38 +0000298
299 if (!isLinearInductionVariable(Int, V2, PN))
300 continue; // No, it is not a linear ind var, ignore the PHI node.
301 cerr << "Found linear induction variable: " << V2;
302
303 // TODO: Cannonicalize V2
304
305 // Add this PHI node to the list of induction variables found...
306 InductionVars.push_back(PN);
307 }
308
309 // No induction variables found?
310 if (InductionVars.empty()) return false;
311
Chris Lattner364b1472001-06-22 02:24:38 +0000312 // Search to see if there is already a "simple" induction variable.
313 vector<PHINode*>::iterator It =
314 find_if(InductionVars.begin(), InductionVars.end(), isSimpleInductionVar);
315
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000316 PHINode *PrimaryIndVar;
317
Chris Lattner364b1472001-06-22 02:24:38 +0000318 // A simple induction variable was not found, inject one now...
319 if (It == InductionVars.end()) {
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000320 PrimaryIndVar = InjectSimpleInductionVariable(Int);
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000321 } else {
322 // Move the PHI node for this induction variable to the start of the PHI
323 // list in HeaderNode... we do not need to do this for the inserted case
324 // because the inserted node will always be placed at the beginning of
325 // HeaderNode.
326 //
327 PrimaryIndVar = *It;
Chris Lattner3b34c592001-06-27 23:36:09 +0000328 BasicBlock::iterator i =
329 find(Header->begin(), Header->end(), PrimaryIndVar);
330 assert(i != Header->end() &&
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000331 "How could Primary IndVar not be in the header!?!!?");
332
Chris Lattner3b34c592001-06-27 23:36:09 +0000333 if (i != Header->begin())
334 iter_swap(i, Header->begin());
Chris Lattner364b1472001-06-22 02:24:38 +0000335 }
336
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000337 // Now we know that there is a simple induction variable PrimaryIndVar.
338 // Simplify all of the other induction variables to use this induction
339 // variable as their counter, and destroy the PHI nodes that correspond to
340 // the old indvars.
Chris Lattner364b1472001-06-22 02:24:38 +0000341 //
342 // TODO
343
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000344
345 cerr << "Found Interval Header with indvars (primary indvar should be first "
Chris Lattner3b34c592001-06-27 23:36:09 +0000346 << "phi): \n" << Header << "\nPrimaryIndVar: " << PrimaryIndVar;
Chris Lattnerc9f39b22001-06-24 04:05:45 +0000347
Chris Lattner364b1472001-06-22 02:24:38 +0000348 return false; // TODO: true;
349}
350
351
352// ProcessIntervalPartition - This function loops over the interval partition
353// processing each interval with ProcessInterval
354//
Chris Lattnerda956802001-06-21 05:27:22 +0000355static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) {
356 // This currently just prints out information about the interval structure
357 // of the method...
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000358#if 0
Chris Lattnerda956802001-06-21 05:27:22 +0000359 static unsigned N = 0;
360 cerr << "\n***********Interval Partition #" << (++N) << "************\n\n";
361 copy(IP.begin(), IP.end(), ostream_iterator<cfg::Interval*>(cerr, "\n"));
362
363 cerr << "\n*********** PERFORMING WORK ************\n\n";
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000364#endif
Chris Lattnerda956802001-06-21 05:27:22 +0000365 // Loop over all of the intervals in the partition and look for induction
366 // variables in intervals that represent loops.
367 //
368 return reduce_apply(IP.begin(), IP.end(), bitwise_or<bool>(), false,
369 ptr_fun(ProcessInterval));
Chris Lattnerd213f0f2001-06-20 19:27:11 +0000370}
371
Chris Lattner364b1472001-06-22 02:24:38 +0000372// DoInductionVariableCannonicalize - Simplify induction variables in loops.
373// This function loops over an interval partition of a program, reducing it
374// until the graph is gone.
Chris Lattnerd213f0f2001-06-20 19:27:11 +0000375//
Chris Lattner7e02b7e2001-06-30 04:36:40 +0000376bool opt::DoInductionVariableCannonicalize(Method *M) {
Chris Lattnerd473a0a2001-06-25 07:32:19 +0000377 // TODO: REMOVE
378 if (0) { // Print basic blocks with their depth
Chris Lattner53b1c012001-06-25 03:55:37 +0000379 LoopDepthCalculator LDC(M);
Chris Lattner3b34c592001-06-27 23:36:09 +0000380 for (Method::iterator I = M->begin(); I != M->end(); ++I) {
Chris Lattner53b1c012001-06-25 03:55:37 +0000381 cerr << "Basic Block Depth: " << LDC.getLoopDepth(*I) << *I;
382 }
Chris Lattner53b1c012001-06-25 03:55:37 +0000383 }
384
385
Chris Lattnerda956802001-06-21 05:27:22 +0000386 cfg::IntervalPartition *IP = new cfg::IntervalPartition(M);
387 bool Changed = false;
Chris Lattnerd213f0f2001-06-20 19:27:11 +0000388
Chris Lattnerda956802001-06-21 05:27:22 +0000389 while (!IP->isDegeneratePartition()) {
390 Changed |= ProcessIntervalPartition(*IP);
Chris Lattner56832052001-06-20 22:44:38 +0000391
Chris Lattnerda956802001-06-21 05:27:22 +0000392 // Calculate the reduced version of this graph until we get to an
393 // irreducible graph or a degenerate graph...
394 //
395 cfg::IntervalPartition *NewIP = new cfg::IntervalPartition(*IP, false);
396 if (NewIP->size() == IP->size()) {
397 cerr << "IRREDUCIBLE GRAPH FOUND!!!\n";
398 return Changed;
399 }
400 delete IP;
401 IP = NewIP;
402 }
Chris Lattner56832052001-06-20 22:44:38 +0000403
Chris Lattnerda956802001-06-21 05:27:22 +0000404 delete IP;
405 return Changed;
Chris Lattnerd213f0f2001-06-20 19:27:11 +0000406}