blob: 927b1203d1b802cb0389f034c7add32d80e1ac8b [file] [log] [blame]
Chris Lattner58af2a12006-02-15 07:22:58 +00001//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the bison parser for LLVM assembly languages files.
11//
12//===----------------------------------------------------------------------===//
13
14%{
15#include "ParserInternals.h"
16#include "llvm/CallingConv.h"
17#include "llvm/InlineAsm.h"
18#include "llvm/Instructions.h"
19#include "llvm/Module.h"
20#include "llvm/SymbolTable.h"
21#include "llvm/Assembly/AutoUpgrade.h"
22#include "llvm/Support/GetElementPtrTypeIterator.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/MathExtras.h"
25#include <algorithm>
26#include <iostream>
27#include <list>
28#include <utility>
29
30int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
31int yylex(); // declaration" of xxx warnings.
32int yyparse();
33
34namespace llvm {
35 std::string CurFilename;
36}
37using namespace llvm;
38
39static Module *ParserResult;
40
41// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
42// relating to upreferences in the input stream.
43//
44//#define DEBUG_UPREFS 1
45#ifdef DEBUG_UPREFS
46#define UR_OUT(X) std::cerr << X
47#else
48#define UR_OUT(X)
49#endif
50
51#define YYERROR_VERBOSE 1
52
53static bool ObsoleteVarArgs;
54static bool NewVarArgs;
55static BasicBlock *CurBB;
56static GlobalVariable *CurGV;
57
58
59// This contains info used when building the body of a function. It is
60// destroyed when the function is completed.
61//
62typedef std::vector<Value *> ValueList; // Numbered defs
63static void
64ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
65 std::map<const Type *,ValueList> *FutureLateResolvers = 0);
66
67static struct PerModuleInfo {
68 Module *CurrentModule;
69 std::map<const Type *, ValueList> Values; // Module level numbered definitions
70 std::map<const Type *,ValueList> LateResolveValues;
71 std::vector<PATypeHolder> Types;
72 std::map<ValID, PATypeHolder> LateResolveTypes;
73
74 /// PlaceHolderInfo - When temporary placeholder objects are created, remember
75 /// how they were referenced and one which line of the input they came from so
76 /// that we can resolve them later and print error messages as appropriate.
77 std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
78
79 // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
80 // references to global values. Global values may be referenced before they
81 // are defined, and if so, the temporary object that they represent is held
82 // here. This is used for forward references of GlobalValues.
83 //
84 typedef std::map<std::pair<const PointerType *,
85 ValID>, GlobalValue*> GlobalRefsType;
86 GlobalRefsType GlobalRefs;
87
88 void ModuleDone() {
89 // If we could not resolve some functions at function compilation time
90 // (calls to functions before they are defined), resolve them now... Types
91 // are resolved when the constant pool has been completely parsed.
92 //
93 ResolveDefinitions(LateResolveValues);
94
95 // Check to make sure that all global value forward references have been
96 // resolved!
97 //
98 if (!GlobalRefs.empty()) {
99 std::string UndefinedReferences = "Unresolved global references exist:\n";
100
101 for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
102 I != E; ++I) {
103 UndefinedReferences += " " + I->first.first->getDescription() + " " +
104 I->first.second.getName() + "\n";
105 }
106 ThrowException(UndefinedReferences);
107 }
108
109 // Look for intrinsic functions and CallInst that need to be upgraded
Chris Lattnerd5efe842006-04-08 01:18:56 +0000110 for (Module::iterator FI = CurrentModule->begin(),
111 FE = CurrentModule->end(); FI != FE; )
Chris Lattnerc2c60382006-03-04 07:53:41 +0000112 UpgradeCallsToIntrinsic(FI++);
Chris Lattner58af2a12006-02-15 07:22:58 +0000113
114 Values.clear(); // Clear out function local definitions
115 Types.clear();
116 CurrentModule = 0;
117 }
118
119 // GetForwardRefForGlobal - Check to see if there is a forward reference
120 // for this global. If so, remove it from the GlobalRefs map and return it.
121 // If not, just return null.
122 GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
123 // Check to see if there is a forward reference to this global variable...
124 // if there is, eliminate it and patch the reference to use the new def'n.
125 GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
126 GlobalValue *Ret = 0;
127 if (I != GlobalRefs.end()) {
128 Ret = I->second;
129 GlobalRefs.erase(I);
130 }
131 return Ret;
132 }
133} CurModule;
134
135static struct PerFunctionInfo {
136 Function *CurrentFunction; // Pointer to current function being created
137
138 std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
139 std::map<const Type*, ValueList> LateResolveValues;
140 bool isDeclare; // Is this function a forward declararation?
141
142 /// BBForwardRefs - When we see forward references to basic blocks, keep
143 /// track of them here.
144 std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
145 std::vector<BasicBlock*> NumberedBlocks;
146 unsigned NextBBNum;
147
148 inline PerFunctionInfo() {
149 CurrentFunction = 0;
150 isDeclare = false;
151 }
152
153 inline void FunctionStart(Function *M) {
154 CurrentFunction = M;
155 NextBBNum = 0;
156 }
157
158 void FunctionDone() {
159 NumberedBlocks.clear();
160
161 // Any forward referenced blocks left?
162 if (!BBForwardRefs.empty())
163 ThrowException("Undefined reference to label " +
164 BBForwardRefs.begin()->first->getName());
165
166 // Resolve all forward references now.
167 ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
168
169 Values.clear(); // Clear out function local definitions
170 CurrentFunction = 0;
171 isDeclare = false;
172 }
173} CurFun; // Info for the current function...
174
175static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
176
177
178//===----------------------------------------------------------------------===//
179// Code to handle definitions of all the types
180//===----------------------------------------------------------------------===//
181
182static int InsertValue(Value *V,
183 std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
184 if (V->hasName()) return -1; // Is this a numbered definition?
185
186 // Yes, insert the value into the value table...
187 ValueList &List = ValueTab[V->getType()];
188 List.push_back(V);
189 return List.size()-1;
190}
191
192static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
193 switch (D.Type) {
194 case ValID::NumberVal: // Is it a numbered definition?
195 // Module constants occupy the lowest numbered slots...
196 if ((unsigned)D.Num < CurModule.Types.size())
197 return CurModule.Types[(unsigned)D.Num];
198 break;
199 case ValID::NameVal: // Is it a named definition?
200 if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
201 D.destroy(); // Free old strdup'd memory...
202 return N;
203 }
204 break;
205 default:
206 ThrowException("Internal parser error: Invalid symbol type reference!");
207 }
208
209 // If we reached here, we referenced either a symbol that we don't know about
210 // or an id number that hasn't been read yet. We may be referencing something
211 // forward, so just create an entry to be resolved later and get to it...
212 //
213 if (DoNotImprovise) return 0; // Do we just want a null to be returned?
214
215
216 if (inFunctionScope()) {
217 if (D.Type == ValID::NameVal)
218 ThrowException("Reference to an undefined type: '" + D.getName() + "'");
219 else
220 ThrowException("Reference to an undefined type: #" + itostr(D.Num));
221 }
222
223 std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
224 if (I != CurModule.LateResolveTypes.end())
225 return I->second;
226
227 Type *Typ = OpaqueType::get();
228 CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
229 return Typ;
230 }
231
232static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
233 SymbolTable &SymTab =
234 inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
235 CurModule.CurrentModule->getSymbolTable();
236 return SymTab.lookup(Ty, Name);
237}
238
239// getValNonImprovising - Look up the value specified by the provided type and
240// the provided ValID. If the value exists and has already been defined, return
241// it. Otherwise return null.
242//
243static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
244 if (isa<FunctionType>(Ty))
245 ThrowException("Functions are not values and "
246 "must be referenced as pointers");
247
248 switch (D.Type) {
249 case ValID::NumberVal: { // Is it a numbered definition?
250 unsigned Num = (unsigned)D.Num;
251
252 // Module constants occupy the lowest numbered slots...
253 std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
254 if (VI != CurModule.Values.end()) {
255 if (Num < VI->second.size())
256 return VI->second[Num];
257 Num -= VI->second.size();
258 }
259
260 // Make sure that our type is within bounds
261 VI = CurFun.Values.find(Ty);
262 if (VI == CurFun.Values.end()) return 0;
263
264 // Check that the number is within bounds...
265 if (VI->second.size() <= Num) return 0;
266
267 return VI->second[Num];
268 }
269
270 case ValID::NameVal: { // Is it a named definition?
271 Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
272 if (N == 0) return 0;
273
274 D.destroy(); // Free old strdup'd memory...
275 return N;
276 }
277
278 // Check to make sure that "Ty" is an integral type, and that our
279 // value will fit into the specified type...
280 case ValID::ConstSIntVal: // Is it a constant pool reference??
281 if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
282 ThrowException("Signed integral constant '" +
283 itostr(D.ConstPool64) + "' is invalid for type '" +
284 Ty->getDescription() + "'!");
285 return ConstantSInt::get(Ty, D.ConstPool64);
286
287 case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
288 if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
289 if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
290 ThrowException("Integral constant '" + utostr(D.UConstPool64) +
291 "' is invalid or out of range!");
292 } else { // This is really a signed reference. Transmogrify.
293 return ConstantSInt::get(Ty, D.ConstPool64);
294 }
295 } else {
296 return ConstantUInt::get(Ty, D.UConstPool64);
297 }
298
299 case ValID::ConstFPVal: // Is it a floating point const pool reference?
300 if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
301 ThrowException("FP constant invalid for type!!");
302 return ConstantFP::get(Ty, D.ConstPoolFP);
303
304 case ValID::ConstNullVal: // Is it a null value?
305 if (!isa<PointerType>(Ty))
306 ThrowException("Cannot create a a non pointer null!");
307 return ConstantPointerNull::get(cast<PointerType>(Ty));
308
309 case ValID::ConstUndefVal: // Is it an undef value?
310 return UndefValue::get(Ty);
311
312 case ValID::ConstZeroVal: // Is it a zero value?
313 return Constant::getNullValue(Ty);
314
315 case ValID::ConstantVal: // Fully resolved constant?
316 if (D.ConstantValue->getType() != Ty)
317 ThrowException("Constant expression type different from required type!");
318 return D.ConstantValue;
319
320 case ValID::InlineAsmVal: { // Inline asm expression
321 const PointerType *PTy = dyn_cast<PointerType>(Ty);
322 const FunctionType *FTy =
323 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
324 if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
325 ThrowException("Invalid type for asm constraint string!");
326 InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
327 D.IAD->HasSideEffects);
328 D.destroy(); // Free InlineAsmDescriptor.
329 return IA;
330 }
331 default:
332 assert(0 && "Unhandled case!");
333 return 0;
334 } // End of switch
335
336 assert(0 && "Unhandled case!");
337 return 0;
338}
339
340// getVal - This function is identical to getValNonImprovising, except that if a
341// value is not already defined, it "improvises" by creating a placeholder var
342// that looks and acts just like the requested variable. When the value is
343// defined later, all uses of the placeholder variable are replaced with the
344// real thing.
345//
346static Value *getVal(const Type *Ty, const ValID &ID) {
347 if (Ty == Type::LabelTy)
348 ThrowException("Cannot use a basic block here");
349
350 // See if the value has already been defined.
351 Value *V = getValNonImprovising(Ty, ID);
352 if (V) return V;
353
354 if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
355 ThrowException("Invalid use of a composite type!");
356
357 // If we reached here, we referenced either a symbol that we don't know about
358 // or an id number that hasn't been read yet. We may be referencing something
359 // forward, so just create an entry to be resolved later and get to it...
360 //
361 V = new Argument(Ty);
362
363 // Remember where this forward reference came from. FIXME, shouldn't we try
364 // to recycle these things??
365 CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
366 llvmAsmlineno)));
367
368 if (inFunctionScope())
369 InsertValue(V, CurFun.LateResolveValues);
370 else
371 InsertValue(V, CurModule.LateResolveValues);
372 return V;
373}
374
375/// getBBVal - This is used for two purposes:
376/// * If isDefinition is true, a new basic block with the specified ID is being
377/// defined.
378/// * If isDefinition is true, this is a reference to a basic block, which may
379/// or may not be a forward reference.
380///
381static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
382 assert(inFunctionScope() && "Can't get basic block at global scope!");
383
384 std::string Name;
385 BasicBlock *BB = 0;
386 switch (ID.Type) {
387 default: ThrowException("Illegal label reference " + ID.getName());
388 case ValID::NumberVal: // Is it a numbered definition?
389 if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
390 CurFun.NumberedBlocks.resize(ID.Num+1);
391 BB = CurFun.NumberedBlocks[ID.Num];
392 break;
393 case ValID::NameVal: // Is it a named definition?
394 Name = ID.Name;
395 if (Value *N = CurFun.CurrentFunction->
396 getSymbolTable().lookup(Type::LabelTy, Name))
397 BB = cast<BasicBlock>(N);
398 break;
399 }
400
401 // See if the block has already been defined.
402 if (BB) {
403 // If this is the definition of the block, make sure the existing value was
404 // just a forward reference. If it was a forward reference, there will be
405 // an entry for it in the PlaceHolderInfo map.
406 if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
407 // The existing value was a definition, not a forward reference.
408 ThrowException("Redefinition of label " + ID.getName());
409
410 ID.destroy(); // Free strdup'd memory.
411 return BB;
412 }
413
414 // Otherwise this block has not been seen before.
415 BB = new BasicBlock("", CurFun.CurrentFunction);
416 if (ID.Type == ValID::NameVal) {
417 BB->setName(ID.Name);
418 } else {
419 CurFun.NumberedBlocks[ID.Num] = BB;
420 }
421
422 // If this is not a definition, keep track of it so we can use it as a forward
423 // reference.
424 if (!isDefinition) {
425 // Remember where this forward reference came from.
426 CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno);
427 } else {
428 // The forward declaration could have been inserted anywhere in the
429 // function: insert it into the correct place now.
430 CurFun.CurrentFunction->getBasicBlockList().remove(BB);
431 CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
432 }
433 ID.destroy();
434 return BB;
435}
436
437
438//===----------------------------------------------------------------------===//
439// Code to handle forward references in instructions
440//===----------------------------------------------------------------------===//
441//
442// This code handles the late binding needed with statements that reference
443// values not defined yet... for example, a forward branch, or the PHI node for
444// a loop body.
445//
446// This keeps a table (CurFun.LateResolveValues) of all such forward references
447// and back patchs after we are done.
448//
449
450// ResolveDefinitions - If we could not resolve some defs at parsing
451// time (forward branches, phi functions for loops, etc...) resolve the
452// defs now...
453//
454static void
455ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
456 std::map<const Type*,ValueList> *FutureLateResolvers) {
457 // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
458 for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
459 E = LateResolvers.end(); LRI != E; ++LRI) {
460 ValueList &List = LRI->second;
461 while (!List.empty()) {
462 Value *V = List.back();
463 List.pop_back();
464
465 std::map<Value*, std::pair<ValID, int> >::iterator PHI =
466 CurModule.PlaceHolderInfo.find(V);
467 assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
468
469 ValID &DID = PHI->second.first;
470
471 Value *TheRealValue = getValNonImprovising(LRI->first, DID);
472 if (TheRealValue) {
473 V->replaceAllUsesWith(TheRealValue);
474 delete V;
475 CurModule.PlaceHolderInfo.erase(PHI);
476 } else if (FutureLateResolvers) {
477 // Functions have their unresolved items forwarded to the module late
478 // resolver table
479 InsertValue(V, *FutureLateResolvers);
480 } else {
481 if (DID.Type == ValID::NameVal)
482 ThrowException("Reference to an invalid definition: '" +DID.getName()+
483 "' of type '" + V->getType()->getDescription() + "'",
484 PHI->second.second);
485 else
486 ThrowException("Reference to an invalid definition: #" +
487 itostr(DID.Num) + " of type '" +
488 V->getType()->getDescription() + "'",
489 PHI->second.second);
490 }
491 }
492 }
493
494 LateResolvers.clear();
495}
496
497// ResolveTypeTo - A brand new type was just declared. This means that (if
498// name is not null) things referencing Name can be resolved. Otherwise, things
499// refering to the number can be resolved. Do this now.
500//
501static void ResolveTypeTo(char *Name, const Type *ToTy) {
502 ValID D;
503 if (Name) D = ValID::create(Name);
504 else D = ValID::create((int)CurModule.Types.size());
505
506 std::map<ValID, PATypeHolder>::iterator I =
507 CurModule.LateResolveTypes.find(D);
508 if (I != CurModule.LateResolveTypes.end()) {
509 ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
510 CurModule.LateResolveTypes.erase(I);
511 }
512}
513
514// setValueName - Set the specified value to the name given. The name may be
515// null potentially, in which case this is a noop. The string passed in is
516// assumed to be a malloc'd string buffer, and is free'd by this function.
517//
518static void setValueName(Value *V, char *NameStr) {
519 if (NameStr) {
520 std::string Name(NameStr); // Copy string
521 free(NameStr); // Free old string
522
523 if (V->getType() == Type::VoidTy)
524 ThrowException("Can't assign name '" + Name+"' to value with void type!");
525
526 assert(inFunctionScope() && "Must be in function scope!");
527 SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable();
528 if (ST.lookup(V->getType(), Name))
529 ThrowException("Redefinition of value named '" + Name + "' in the '" +
530 V->getType()->getDescription() + "' type plane!");
531
532 // Set the name.
533 V->setName(Name);
534 }
535}
536
537/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
538/// this is a declaration, otherwise it is a definition.
539static GlobalVariable *
540ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
541 bool isConstantGlobal, const Type *Ty,
542 Constant *Initializer) {
543 if (isa<FunctionType>(Ty))
544 ThrowException("Cannot declare global vars of function type!");
545
546 const PointerType *PTy = PointerType::get(Ty);
547
548 std::string Name;
549 if (NameStr) {
550 Name = NameStr; // Copy string
551 free(NameStr); // Free old string
552 }
553
554 // See if this global value was forward referenced. If so, recycle the
555 // object.
556 ValID ID;
557 if (!Name.empty()) {
558 ID = ValID::create((char*)Name.c_str());
559 } else {
560 ID = ValID::create((int)CurModule.Values[PTy].size());
561 }
562
563 if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
564 // Move the global to the end of the list, from whereever it was
565 // previously inserted.
566 GlobalVariable *GV = cast<GlobalVariable>(FWGV);
567 CurModule.CurrentModule->getGlobalList().remove(GV);
568 CurModule.CurrentModule->getGlobalList().push_back(GV);
569 GV->setInitializer(Initializer);
570 GV->setLinkage(Linkage);
571 GV->setConstant(isConstantGlobal);
572 InsertValue(GV, CurModule.Values);
573 return GV;
574 }
575
576 // If this global has a name, check to see if there is already a definition
577 // of this global in the module. If so, merge as appropriate. Note that
578 // this is really just a hack around problems in the CFE. :(
579 if (!Name.empty()) {
580 // We are a simple redefinition of a value, check to see if it is defined
581 // the same as the old one.
582 if (GlobalVariable *EGV =
583 CurModule.CurrentModule->getGlobalVariable(Name, Ty)) {
584 // We are allowed to redefine a global variable in two circumstances:
585 // 1. If at least one of the globals is uninitialized or
586 // 2. If both initializers have the same value.
587 //
588 if (!EGV->hasInitializer() || !Initializer ||
589 EGV->getInitializer() == Initializer) {
590
591 // Make sure the existing global version gets the initializer! Make
592 // sure that it also gets marked const if the new version is.
593 if (Initializer && !EGV->hasInitializer())
594 EGV->setInitializer(Initializer);
595 if (isConstantGlobal)
596 EGV->setConstant(true);
597 EGV->setLinkage(Linkage);
598 return EGV;
599 }
600
601 ThrowException("Redefinition of global variable named '" + Name +
602 "' in the '" + Ty->getDescription() + "' type plane!");
603 }
604 }
605
606 // Otherwise there is no existing GV to use, create one now.
607 GlobalVariable *GV =
608 new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
609 CurModule.CurrentModule);
610 InsertValue(GV, CurModule.Values);
611 return GV;
612}
613
614// setTypeName - Set the specified type to the name given. The name may be
615// null potentially, in which case this is a noop. The string passed in is
616// assumed to be a malloc'd string buffer, and is freed by this function.
617//
618// This function returns true if the type has already been defined, but is
619// allowed to be redefined in the specified context. If the name is a new name
620// for the type plane, it is inserted and false is returned.
621static bool setTypeName(const Type *T, char *NameStr) {
622 assert(!inFunctionScope() && "Can't give types function-local names!");
623 if (NameStr == 0) return false;
624
625 std::string Name(NameStr); // Copy string
626 free(NameStr); // Free old string
627
628 // We don't allow assigning names to void type
629 if (T == Type::VoidTy)
630 ThrowException("Can't assign name '" + Name + "' to the void type!");
631
632 // Set the type name, checking for conflicts as we do so.
633 bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
634
635 if (AlreadyExists) { // Inserting a name that is already defined???
636 const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
637 assert(Existing && "Conflict but no matching type?");
638
639 // There is only one case where this is allowed: when we are refining an
640 // opaque type. In this case, Existing will be an opaque type.
641 if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
642 // We ARE replacing an opaque type!
643 const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
644 return true;
645 }
646
647 // Otherwise, this is an attempt to redefine a type. That's okay if
648 // the redefinition is identical to the original. This will be so if
649 // Existing and T point to the same Type object. In this one case we
650 // allow the equivalent redefinition.
651 if (Existing == T) return true; // Yes, it's equal.
652
653 // Any other kind of (non-equivalent) redefinition is an error.
654 ThrowException("Redefinition of type named '" + Name + "' in the '" +
655 T->getDescription() + "' type plane!");
656 }
657
658 return false;
659}
660
661//===----------------------------------------------------------------------===//
662// Code for handling upreferences in type names...
663//
664
665// TypeContains - Returns true if Ty directly contains E in it.
666//
667static bool TypeContains(const Type *Ty, const Type *E) {
668 return std::find(Ty->subtype_begin(), Ty->subtype_end(),
669 E) != Ty->subtype_end();
670}
671
672namespace {
673 struct UpRefRecord {
674 // NestingLevel - The number of nesting levels that need to be popped before
675 // this type is resolved.
676 unsigned NestingLevel;
677
678 // LastContainedTy - This is the type at the current binding level for the
679 // type. Every time we reduce the nesting level, this gets updated.
680 const Type *LastContainedTy;
681
682 // UpRefTy - This is the actual opaque type that the upreference is
683 // represented with.
684 OpaqueType *UpRefTy;
685
686 UpRefRecord(unsigned NL, OpaqueType *URTy)
687 : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
688 };
689}
690
691// UpRefs - A list of the outstanding upreferences that need to be resolved.
692static std::vector<UpRefRecord> UpRefs;
693
694/// HandleUpRefs - Every time we finish a new layer of types, this function is
695/// called. It loops through the UpRefs vector, which is a list of the
696/// currently active types. For each type, if the up reference is contained in
697/// the newly completed type, we decrement the level count. When the level
698/// count reaches zero, the upreferenced type is the type that is passed in:
699/// thus we can complete the cycle.
700///
701static PATypeHolder HandleUpRefs(const Type *ty) {
702 if (!ty->isAbstract()) return ty;
703 PATypeHolder Ty(ty);
704 UR_OUT("Type '" << Ty->getDescription() <<
705 "' newly formed. Resolving upreferences.\n" <<
706 UpRefs.size() << " upreferences active!\n");
707
708 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
709 // to zero), we resolve them all together before we resolve them to Ty. At
710 // the end of the loop, if there is anything to resolve to Ty, it will be in
711 // this variable.
712 OpaqueType *TypeToResolve = 0;
713
714 for (unsigned i = 0; i != UpRefs.size(); ++i) {
715 UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
716 << UpRefs[i].second->getDescription() << ") = "
717 << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
718 if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
719 // Decrement level of upreference
720 unsigned Level = --UpRefs[i].NestingLevel;
721 UpRefs[i].LastContainedTy = Ty;
722 UR_OUT(" Uplevel Ref Level = " << Level << "\n");
723 if (Level == 0) { // Upreference should be resolved!
724 if (!TypeToResolve) {
725 TypeToResolve = UpRefs[i].UpRefTy;
726 } else {
727 UR_OUT(" * Resolving upreference for "
728 << UpRefs[i].second->getDescription() << "\n";
729 std::string OldName = UpRefs[i].UpRefTy->getDescription());
730 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
731 UR_OUT(" * Type '" << OldName << "' refined upreference to: "
732 << (const void*)Ty << ", " << Ty->getDescription() << "\n");
733 }
734 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
735 --i; // Do not skip the next element...
736 }
737 }
738 }
739
740 if (TypeToResolve) {
741 UR_OUT(" * Resolving upreference for "
742 << UpRefs[i].second->getDescription() << "\n";
743 std::string OldName = TypeToResolve->getDescription());
744 TypeToResolve->refineAbstractTypeTo(Ty);
745 }
746
747 return Ty;
748}
749
750
751// common code from the two 'RunVMAsmParser' functions
752 static Module * RunParser(Module * M) {
753
754 llvmAsmlineno = 1; // Reset the current line number...
755 ObsoleteVarArgs = false;
756 NewVarArgs = false;
757
758 CurModule.CurrentModule = M;
759 yyparse(); // Parse the file, potentially throwing exception
760
761 Module *Result = ParserResult;
762 ParserResult = 0;
763
764 //Not all functions use vaarg, so make a second check for ObsoleteVarArgs
765 {
766 Function* F;
767 if ((F = Result->getNamedFunction("llvm.va_start"))
768 && F->getFunctionType()->getNumParams() == 0)
769 ObsoleteVarArgs = true;
770 if((F = Result->getNamedFunction("llvm.va_copy"))
771 && F->getFunctionType()->getNumParams() == 1)
772 ObsoleteVarArgs = true;
773 }
774
775 if (ObsoleteVarArgs && NewVarArgs)
776 ThrowException("This file is corrupt: it uses both new and old style varargs");
777
778 if(ObsoleteVarArgs) {
779 if(Function* F = Result->getNamedFunction("llvm.va_start")) {
780 if (F->arg_size() != 0)
781 ThrowException("Obsolete va_start takes 0 argument!");
782
783 //foo = va_start()
784 // ->
785 //bar = alloca typeof(foo)
786 //va_start(bar)
787 //foo = load bar
788
789 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
790 const Type* ArgTy = F->getFunctionType()->getReturnType();
791 const Type* ArgTyPtr = PointerType::get(ArgTy);
792 Function* NF = Result->getOrInsertFunction("llvm.va_start",
793 RetTy, ArgTyPtr, (Type *)0);
794
795 while (!F->use_empty()) {
796 CallInst* CI = cast<CallInst>(F->use_back());
797 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
798 new CallInst(NF, bar, "", CI);
799 Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
800 CI->replaceAllUsesWith(foo);
801 CI->getParent()->getInstList().erase(CI);
802 }
803 Result->getFunctionList().erase(F);
804 }
805
806 if(Function* F = Result->getNamedFunction("llvm.va_end")) {
807 if(F->arg_size() != 1)
808 ThrowException("Obsolete va_end takes 1 argument!");
809
810 //vaend foo
811 // ->
812 //bar = alloca 1 of typeof(foo)
813 //vaend bar
814 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
815 const Type* ArgTy = F->getFunctionType()->getParamType(0);
816 const Type* ArgTyPtr = PointerType::get(ArgTy);
817 Function* NF = Result->getOrInsertFunction("llvm.va_end",
818 RetTy, ArgTyPtr, (Type *)0);
819
820 while (!F->use_empty()) {
821 CallInst* CI = cast<CallInst>(F->use_back());
822 AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
823 new StoreInst(CI->getOperand(1), bar, CI);
824 new CallInst(NF, bar, "", CI);
825 CI->getParent()->getInstList().erase(CI);
826 }
827 Result->getFunctionList().erase(F);
828 }
829
830 if(Function* F = Result->getNamedFunction("llvm.va_copy")) {
831 if(F->arg_size() != 1)
832 ThrowException("Obsolete va_copy takes 1 argument!");
833 //foo = vacopy(bar)
834 // ->
835 //a = alloca 1 of typeof(foo)
836 //b = alloca 1 of typeof(foo)
837 //store bar -> b
838 //vacopy(a, b)
839 //foo = load a
840
841 const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
842 const Type* ArgTy = F->getFunctionType()->getReturnType();
843 const Type* ArgTyPtr = PointerType::get(ArgTy);
844 Function* NF = Result->getOrInsertFunction("llvm.va_copy",
845 RetTy, ArgTyPtr, ArgTyPtr,
846 (Type *)0);
847
848 while (!F->use_empty()) {
849 CallInst* CI = cast<CallInst>(F->use_back());
850 AllocaInst* a = new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI);
851 AllocaInst* b = new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI);
852 new StoreInst(CI->getOperand(1), b, CI);
853 new CallInst(NF, a, b, "", CI);
854 Value* foo = new LoadInst(a, "vacopy.fix.3", CI);
855 CI->replaceAllUsesWith(foo);
856 CI->getParent()->getInstList().erase(CI);
857 }
858 Result->getFunctionList().erase(F);
859 }
860 }
861
862 return Result;
863
864 }
865
866//===----------------------------------------------------------------------===//
867// RunVMAsmParser - Define an interface to this parser
868//===----------------------------------------------------------------------===//
869//
870Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
871 set_scan_file(F);
872
873 CurFilename = Filename;
874 return RunParser(new Module(CurFilename));
875}
876
877Module *llvm::RunVMAsmParser(const char * AsmString, Module * M) {
878 set_scan_string(AsmString);
879
880 CurFilename = "from_memory";
881 if (M == NULL) {
882 return RunParser(new Module (CurFilename));
883 } else {
884 return RunParser(M);
885 }
886}
887
888%}
889
890%union {
891 llvm::Module *ModuleVal;
892 llvm::Function *FunctionVal;
893 std::pair<llvm::PATypeHolder*, char*> *ArgVal;
894 llvm::BasicBlock *BasicBlockVal;
895 llvm::TerminatorInst *TermInstVal;
896 llvm::Instruction *InstVal;
897 llvm::Constant *ConstVal;
898
899 const llvm::Type *PrimType;
900 llvm::PATypeHolder *TypeVal;
901 llvm::Value *ValueVal;
902
903 std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
904 std::vector<llvm::Value*> *ValueList;
905 std::list<llvm::PATypeHolder> *TypeList;
906 // Represent the RHS of PHI node
907 std::list<std::pair<llvm::Value*,
908 llvm::BasicBlock*> > *PHIList;
909 std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
910 std::vector<llvm::Constant*> *ConstVector;
911
912 llvm::GlobalValue::LinkageTypes Linkage;
913 int64_t SInt64Val;
914 uint64_t UInt64Val;
915 int SIntVal;
916 unsigned UIntVal;
917 double FPVal;
918 bool BoolVal;
919
920 char *StrVal; // This memory is strdup'd!
921 llvm::ValID ValIDVal; // strdup'd memory maybe!
922
923 llvm::Instruction::BinaryOps BinaryOpVal;
924 llvm::Instruction::TermOps TermOpVal;
925 llvm::Instruction::MemoryOps MemOpVal;
926 llvm::Instruction::OtherOps OtherOpVal;
927 llvm::Module::Endianness Endianness;
928}
929
930%type <ModuleVal> Module FunctionList
931%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
932%type <BasicBlockVal> BasicBlock InstructionList
933%type <TermInstVal> BBTerminatorInst
934%type <InstVal> Inst InstVal MemoryInst
935%type <ConstVal> ConstVal ConstExpr
936%type <ConstVector> ConstVector
937%type <ArgList> ArgList ArgListH
938%type <ArgVal> ArgVal
939%type <PHIList> PHIList
940%type <ValueList> ValueRefList ValueRefListE // For call param lists
941%type <ValueList> IndexList // For GEP derived indices
942%type <TypeList> TypeListI ArgTypeListI
943%type <JumpTable> JumpTable
944%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
945%type <BoolVal> OptVolatile // 'volatile' or not
946%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
947%type <BoolVal> OptSideEffect // 'sideeffect' or not.
948%type <Linkage> OptLinkage
949%type <Endianness> BigOrLittle
950
951// ValueRef - Unresolved reference to a definition or BB
952%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
953%type <ValueVal> ResolvedVal // <type> <valref> pair
954// Tokens and types for handling constant integer values
955//
956// ESINT64VAL - A negative number within long long range
957%token <SInt64Val> ESINT64VAL
958
959// EUINT64VAL - A positive number within uns. long long range
960%token <UInt64Val> EUINT64VAL
961%type <SInt64Val> EINT64VAL
962
963%token <SIntVal> SINTVAL // Signed 32 bit ints...
964%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
965%type <SIntVal> INTVAL
966%token <FPVal> FPVAL // Float or Double constant
967
968// Built in types...
969%type <TypeVal> Types TypesV UpRTypes UpRTypesV
970%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
971%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
972%token <PrimType> FLOAT DOUBLE TYPE LABEL
973
974%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
975%type <StrVal> Name OptName OptAssign
976%type <UIntVal> OptAlign OptCAlign
977%type <StrVal> OptSection SectionString
978
979%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
980%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
981%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
982%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
983%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
Chris Lattner75466192006-05-19 21:28:53 +0000984%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
Chris Lattner58af2a12006-02-15 07:22:58 +0000985%type <UIntVal> OptCallingConv
986
987// Basic Block Terminating Operators
988%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
989
990// Binary Operators
991%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
992%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
993%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
994
995// Memory Instructions
996%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
997
998// Other Operators
999%type <OtherOpVal> ShiftOps
1000%token <OtherOpVal> PHI_TOK CAST SELECT SHL SHR VAARG
Chris Lattnerd5efe842006-04-08 01:18:56 +00001001%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
Chris Lattner58af2a12006-02-15 07:22:58 +00001002%token VAARG_old VANEXT_old //OBSOLETE
1003
1004
1005%start Module
1006%%
1007
1008// Handle constant integer size restriction and conversion...
1009//
1010INTVAL : SINTVAL;
1011INTVAL : UINTVAL {
1012 if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
1013 ThrowException("Value too large for type!");
1014 $$ = (int32_t)$1;
1015};
1016
1017
1018EINT64VAL : ESINT64VAL; // These have same type and can't cause problems...
1019EINT64VAL : EUINT64VAL {
1020 if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
1021 ThrowException("Value too large for type!");
1022 $$ = (int64_t)$1;
1023};
1024
1025// Operations that are notably excluded from this list include:
1026// RET, BR, & SWITCH because they end basic blocks and are treated specially.
1027//
1028ArithmeticOps: ADD | SUB | MUL | DIV | REM;
1029LogicalOps : AND | OR | XOR;
1030SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
1031
1032ShiftOps : SHL | SHR;
1033
1034// These are some types that allow classification if we only want a particular
1035// thing... for example, only a signed, unsigned, or integral type.
1036SIntType : LONG | INT | SHORT | SBYTE;
1037UIntType : ULONG | UINT | USHORT | UBYTE;
1038IntType : SIntType | UIntType;
1039FPType : FLOAT | DOUBLE;
1040
1041// OptAssign - Value producing statements have an optional assignment component
1042OptAssign : Name '=' {
1043 $$ = $1;
1044 }
1045 | /*empty*/ {
1046 $$ = 0;
1047 };
1048
1049OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } |
1050 LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } |
1051 WEAK { $$ = GlobalValue::WeakLinkage; } |
1052 APPENDING { $$ = GlobalValue::AppendingLinkage; } |
1053 /*empty*/ { $$ = GlobalValue::ExternalLinkage; };
1054
1055OptCallingConv : /*empty*/ { $$ = CallingConv::C; } |
1056 CCC_TOK { $$ = CallingConv::C; } |
Chris Lattner75466192006-05-19 21:28:53 +00001057 CSRETCC_TOK { $$ = CallingConv::CSRet; } |
Chris Lattner58af2a12006-02-15 07:22:58 +00001058 FASTCC_TOK { $$ = CallingConv::Fast; } |
1059 COLDCC_TOK { $$ = CallingConv::Cold; } |
1060 CC_TOK EUINT64VAL {
1061 if ((unsigned)$2 != $2)
1062 ThrowException("Calling conv too large!");
1063 $$ = $2;
1064 };
1065
1066// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
1067// a comma before it.
1068OptAlign : /*empty*/ { $$ = 0; } |
1069 ALIGN EUINT64VAL {
1070 $$ = $2;
1071 if ($$ != 0 && !isPowerOf2_32($$))
1072 ThrowException("Alignment must be a power of two!");
1073};
1074OptCAlign : /*empty*/ { $$ = 0; } |
1075 ',' ALIGN EUINT64VAL {
1076 $$ = $3;
1077 if ($$ != 0 && !isPowerOf2_32($$))
1078 ThrowException("Alignment must be a power of two!");
1079};
1080
1081
1082SectionString : SECTION STRINGCONSTANT {
1083 for (unsigned i = 0, e = strlen($2); i != e; ++i)
1084 if ($2[i] == '"' || $2[i] == '\\')
1085 ThrowException("Invalid character in section name!");
1086 $$ = $2;
1087};
1088
1089OptSection : /*empty*/ { $$ = 0; } |
1090 SectionString { $$ = $1; };
1091
1092// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
1093// is set to be the global we are processing.
1094//
1095GlobalVarAttributes : /* empty */ {} |
1096 ',' GlobalVarAttribute GlobalVarAttributes {};
1097GlobalVarAttribute : SectionString {
1098 CurGV->setSection($1);
1099 free($1);
1100 }
1101 | ALIGN EUINT64VAL {
1102 if ($2 != 0 && !isPowerOf2_32($2))
1103 ThrowException("Alignment must be a power of two!");
1104 CurGV->setAlignment($2);
1105 };
1106
1107//===----------------------------------------------------------------------===//
1108// Types includes all predefined types... except void, because it can only be
1109// used in specific contexts (function returning void for example). To have
1110// access to it, a user must explicitly use TypesV.
1111//
1112
1113// TypesV includes all of 'Types', but it also includes the void type.
1114TypesV : Types | VOID { $$ = new PATypeHolder($1); };
1115UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
1116
1117Types : UpRTypes {
1118 if (!UpRefs.empty())
1119 ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
1120 $$ = $1;
1121 };
1122
1123
1124// Derived types are added later...
1125//
1126PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ;
1127PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL;
1128UpRTypes : OPAQUE {
1129 $$ = new PATypeHolder(OpaqueType::get());
1130 }
1131 | PrimType {
1132 $$ = new PATypeHolder($1);
1133 };
1134UpRTypes : SymbolicValueRef { // Named types are also simple types...
1135 $$ = new PATypeHolder(getTypeVal($1));
1136};
1137
1138// Include derived types in the Types production.
1139//
1140UpRTypes : '\\' EUINT64VAL { // Type UpReference
1141 if ($2 > (uint64_t)~0U) ThrowException("Value out of range!");
1142 OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
1143 UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
1144 $$ = new PATypeHolder(OT);
1145 UR_OUT("New Upreference!\n");
1146 }
1147 | UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
1148 std::vector<const Type*> Params;
1149 for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
1150 E = $3->end(); I != E; ++I)
1151 Params.push_back(*I);
1152 bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
1153 if (isVarArg) Params.pop_back();
1154
1155 $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
1156 delete $3; // Delete the argument list
1157 delete $1; // Delete the return type handle
1158 }
1159 | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
1160 $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
1161 delete $4;
1162 }
1163 | '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type?
1164 const llvm::Type* ElemTy = $4->get();
1165 if ((unsigned)$2 != $2)
1166 ThrowException("Unsigned result not equal to signed result");
1167 if (!ElemTy->isPrimitiveType())
1168 ThrowException("Elemental type of a PackedType must be primitive");
1169 if (!isPowerOf2_32($2))
1170 ThrowException("Vector length should be a power of 2!");
1171 $$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2)));
1172 delete $4;
1173 }
1174 | '{' TypeListI '}' { // Structure type?
1175 std::vector<const Type*> Elements;
1176 for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
1177 E = $2->end(); I != E; ++I)
1178 Elements.push_back(*I);
1179
1180 $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
1181 delete $2;
1182 }
1183 | '{' '}' { // Empty structure type?
1184 $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
1185 }
1186 | UpRTypes '*' { // Pointer type?
1187 $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
1188 delete $1;
1189 };
1190
1191// TypeList - Used for struct declarations and as a basis for function type
1192// declaration type lists
1193//
1194TypeListI : UpRTypes {
1195 $$ = new std::list<PATypeHolder>();
1196 $$->push_back(*$1); delete $1;
1197 }
1198 | TypeListI ',' UpRTypes {
1199 ($$=$1)->push_back(*$3); delete $3;
1200 };
1201
1202// ArgTypeList - List of types for a function type declaration...
1203ArgTypeListI : TypeListI
1204 | TypeListI ',' DOTDOTDOT {
1205 ($$=$1)->push_back(Type::VoidTy);
1206 }
1207 | DOTDOTDOT {
1208 ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
1209 }
1210 | /*empty*/ {
1211 $$ = new std::list<PATypeHolder>();
1212 };
1213
1214// ConstVal - The various declarations that go into the constant pool. This
1215// production is used ONLY to represent constants that show up AFTER a 'const',
1216// 'constant' or 'global' token at global scope. Constants that can be inlined
1217// into other expressions (such as integers and constexprs) are handled by the
1218// ResolvedVal, ValueRef and ConstValueRef productions.
1219//
1220ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
1221 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1222 if (ATy == 0)
1223 ThrowException("Cannot make array constant with type: '" +
1224 (*$1)->getDescription() + "'!");
1225 const Type *ETy = ATy->getElementType();
1226 int NumElements = ATy->getNumElements();
1227
1228 // Verify that we have the correct size...
1229 if (NumElements != -1 && NumElements != (int)$3->size())
1230 ThrowException("Type mismatch: constant sized array initialized with " +
1231 utostr($3->size()) + " arguments, but has size of " +
1232 itostr(NumElements) + "!");
1233
1234 // Verify all elements are correct type!
1235 for (unsigned i = 0; i < $3->size(); i++) {
1236 if (ETy != (*$3)[i]->getType())
1237 ThrowException("Element #" + utostr(i) + " is not of type '" +
1238 ETy->getDescription() +"' as required!\nIt is of type '"+
1239 (*$3)[i]->getType()->getDescription() + "'.");
1240 }
1241
1242 $$ = ConstantArray::get(ATy, *$3);
1243 delete $1; delete $3;
1244 }
1245 | Types '[' ']' {
1246 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1247 if (ATy == 0)
1248 ThrowException("Cannot make array constant with type: '" +
1249 (*$1)->getDescription() + "'!");
1250
1251 int NumElements = ATy->getNumElements();
1252 if (NumElements != -1 && NumElements != 0)
1253 ThrowException("Type mismatch: constant sized array initialized with 0"
1254 " arguments, but has size of " + itostr(NumElements) +"!");
1255 $$ = ConstantArray::get(ATy, std::vector<Constant*>());
1256 delete $1;
1257 }
1258 | Types 'c' STRINGCONSTANT {
1259 const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
1260 if (ATy == 0)
1261 ThrowException("Cannot make array constant with type: '" +
1262 (*$1)->getDescription() + "'!");
1263
1264 int NumElements = ATy->getNumElements();
1265 const Type *ETy = ATy->getElementType();
1266 char *EndStr = UnEscapeLexed($3, true);
1267 if (NumElements != -1 && NumElements != (EndStr-$3))
1268 ThrowException("Can't build string constant of size " +
1269 itostr((int)(EndStr-$3)) +
1270 " when array has size " + itostr(NumElements) + "!");
1271 std::vector<Constant*> Vals;
1272 if (ETy == Type::SByteTy) {
1273 for (signed char *C = (signed char *)$3; C != (signed char *)EndStr; ++C)
1274 Vals.push_back(ConstantSInt::get(ETy, *C));
1275 } else if (ETy == Type::UByteTy) {
1276 for (unsigned char *C = (unsigned char *)$3;
1277 C != (unsigned char*)EndStr; ++C)
1278 Vals.push_back(ConstantUInt::get(ETy, *C));
1279 } else {
1280 free($3);
1281 ThrowException("Cannot build string arrays of non byte sized elements!");
1282 }
1283 free($3);
1284 $$ = ConstantArray::get(ATy, Vals);
1285 delete $1;
1286 }
1287 | Types '<' ConstVector '>' { // Nonempty unsized arr
1288 const PackedType *PTy = dyn_cast<PackedType>($1->get());
1289 if (PTy == 0)
1290 ThrowException("Cannot make packed constant with type: '" +
1291 (*$1)->getDescription() + "'!");
1292 const Type *ETy = PTy->getElementType();
1293 int NumElements = PTy->getNumElements();
1294
1295 // Verify that we have the correct size...
1296 if (NumElements != -1 && NumElements != (int)$3->size())
1297 ThrowException("Type mismatch: constant sized packed initialized with " +
1298 utostr($3->size()) + " arguments, but has size of " +
1299 itostr(NumElements) + "!");
1300
1301 // Verify all elements are correct type!
1302 for (unsigned i = 0; i < $3->size(); i++) {
1303 if (ETy != (*$3)[i]->getType())
1304 ThrowException("Element #" + utostr(i) + " is not of type '" +
1305 ETy->getDescription() +"' as required!\nIt is of type '"+
1306 (*$3)[i]->getType()->getDescription() + "'.");
1307 }
1308
1309 $$ = ConstantPacked::get(PTy, *$3);
1310 delete $1; delete $3;
1311 }
1312 | Types '{' ConstVector '}' {
1313 const StructType *STy = dyn_cast<StructType>($1->get());
1314 if (STy == 0)
1315 ThrowException("Cannot make struct constant with type: '" +
1316 (*$1)->getDescription() + "'!");
1317
1318 if ($3->size() != STy->getNumContainedTypes())
1319 ThrowException("Illegal number of initializers for structure type!");
1320
1321 // Check to ensure that constants are compatible with the type initializer!
1322 for (unsigned i = 0, e = $3->size(); i != e; ++i)
1323 if ((*$3)[i]->getType() != STy->getElementType(i))
1324 ThrowException("Expected type '" +
1325 STy->getElementType(i)->getDescription() +
1326 "' for element #" + utostr(i) +
1327 " of structure initializer!");
1328
1329 $$ = ConstantStruct::get(STy, *$3);
1330 delete $1; delete $3;
1331 }
1332 | Types '{' '}' {
1333 const StructType *STy = dyn_cast<StructType>($1->get());
1334 if (STy == 0)
1335 ThrowException("Cannot make struct constant with type: '" +
1336 (*$1)->getDescription() + "'!");
1337
1338 if (STy->getNumContainedTypes() != 0)
1339 ThrowException("Illegal number of initializers for structure type!");
1340
1341 $$ = ConstantStruct::get(STy, std::vector<Constant*>());
1342 delete $1;
1343 }
1344 | Types NULL_TOK {
1345 const PointerType *PTy = dyn_cast<PointerType>($1->get());
1346 if (PTy == 0)
1347 ThrowException("Cannot make null pointer constant with type: '" +
1348 (*$1)->getDescription() + "'!");
1349
1350 $$ = ConstantPointerNull::get(PTy);
1351 delete $1;
1352 }
1353 | Types UNDEF {
1354 $$ = UndefValue::get($1->get());
1355 delete $1;
1356 }
1357 | Types SymbolicValueRef {
1358 const PointerType *Ty = dyn_cast<PointerType>($1->get());
1359 if (Ty == 0)
1360 ThrowException("Global const reference must be a pointer type!");
1361
1362 // ConstExprs can exist in the body of a function, thus creating
1363 // GlobalValues whenever they refer to a variable. Because we are in
1364 // the context of a function, getValNonImprovising will search the functions
1365 // symbol table instead of the module symbol table for the global symbol,
1366 // which throws things all off. To get around this, we just tell
1367 // getValNonImprovising that we are at global scope here.
1368 //
1369 Function *SavedCurFn = CurFun.CurrentFunction;
1370 CurFun.CurrentFunction = 0;
1371
1372 Value *V = getValNonImprovising(Ty, $2);
1373
1374 CurFun.CurrentFunction = SavedCurFn;
1375
1376 // If this is an initializer for a constant pointer, which is referencing a
1377 // (currently) undefined variable, create a stub now that shall be replaced
1378 // in the future with the right type of variable.
1379 //
1380 if (V == 0) {
1381 assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
1382 const PointerType *PT = cast<PointerType>(Ty);
1383
1384 // First check to see if the forward references value is already created!
1385 PerModuleInfo::GlobalRefsType::iterator I =
1386 CurModule.GlobalRefs.find(std::make_pair(PT, $2));
1387
1388 if (I != CurModule.GlobalRefs.end()) {
1389 V = I->second; // Placeholder already exists, use it...
1390 $2.destroy();
1391 } else {
1392 std::string Name;
1393 if ($2.Type == ValID::NameVal) Name = $2.Name;
1394
1395 // Create the forward referenced global.
1396 GlobalValue *GV;
1397 if (const FunctionType *FTy =
1398 dyn_cast<FunctionType>(PT->getElementType())) {
1399 GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
1400 CurModule.CurrentModule);
1401 } else {
1402 GV = new GlobalVariable(PT->getElementType(), false,
1403 GlobalValue::ExternalLinkage, 0,
1404 Name, CurModule.CurrentModule);
1405 }
1406
1407 // Keep track of the fact that we have a forward ref to recycle it
1408 CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
1409 V = GV;
1410 }
1411 }
1412
1413 $$ = cast<GlobalValue>(V);
1414 delete $1; // Free the type handle
1415 }
1416 | Types ConstExpr {
1417 if ($1->get() != $2->getType())
1418 ThrowException("Mismatched types for constant expression!");
1419 $$ = $2;
1420 delete $1;
1421 }
1422 | Types ZEROINITIALIZER {
1423 const Type *Ty = $1->get();
1424 if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
1425 ThrowException("Cannot create a null initialized value of this type!");
1426 $$ = Constant::getNullValue(Ty);
1427 delete $1;
1428 };
1429
1430ConstVal : SIntType EINT64VAL { // integral constants
1431 if (!ConstantSInt::isValueValidForType($1, $2))
1432 ThrowException("Constant value doesn't fit in type!");
1433 $$ = ConstantSInt::get($1, $2);
1434 }
1435 | UIntType EUINT64VAL { // integral constants
1436 if (!ConstantUInt::isValueValidForType($1, $2))
1437 ThrowException("Constant value doesn't fit in type!");
1438 $$ = ConstantUInt::get($1, $2);
1439 }
1440 | BOOL TRUETOK { // Boolean constants
1441 $$ = ConstantBool::True;
1442 }
1443 | BOOL FALSETOK { // Boolean constants
1444 $$ = ConstantBool::False;
1445 }
1446 | FPType FPVAL { // Float & Double constants
1447 if (!ConstantFP::isValueValidForType($1, $2))
1448 ThrowException("Floating point constant invalid for type!!");
1449 $$ = ConstantFP::get($1, $2);
1450 };
1451
1452
1453ConstExpr: CAST '(' ConstVal TO Types ')' {
1454 if (!$3->getType()->isFirstClassType())
1455 ThrowException("cast constant expression from a non-primitive type: '" +
1456 $3->getType()->getDescription() + "'!");
1457 if (!$5->get()->isFirstClassType())
1458 ThrowException("cast constant expression to a non-primitive type: '" +
1459 $5->get()->getDescription() + "'!");
1460 $$ = ConstantExpr::getCast($3, $5->get());
1461 delete $5;
1462 }
1463 | GETELEMENTPTR '(' ConstVal IndexList ')' {
1464 if (!isa<PointerType>($3->getType()))
1465 ThrowException("GetElementPtr requires a pointer operand!");
1466
1467 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
1468 // indices to uint struct indices for compatibility.
1469 generic_gep_type_iterator<std::vector<Value*>::iterator>
1470 GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()),
1471 GTE = gep_type_end($3->getType(), $4->begin(), $4->end());
1472 for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
1473 if (isa<StructType>(*GTI)) // Only change struct indices
1474 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
1475 if (CUI->getType() == Type::UByteTy)
1476 (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
1477
1478 const Type *IdxTy =
1479 GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
1480 if (!IdxTy)
1481 ThrowException("Index list invalid for constant getelementptr!");
1482
1483 std::vector<Constant*> IdxVec;
1484 for (unsigned i = 0, e = $4->size(); i != e; ++i)
1485 if (Constant *C = dyn_cast<Constant>((*$4)[i]))
1486 IdxVec.push_back(C);
1487 else
1488 ThrowException("Indices to constant getelementptr must be constants!");
1489
1490 delete $4;
1491
1492 $$ = ConstantExpr::getGetElementPtr($3, IdxVec);
1493 }
1494 | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1495 if ($3->getType() != Type::BoolTy)
1496 ThrowException("Select condition must be of boolean type!");
1497 if ($5->getType() != $7->getType())
1498 ThrowException("Select operand types must match!");
1499 $$ = ConstantExpr::getSelect($3, $5, $7);
1500 }
1501 | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
1502 if ($3->getType() != $5->getType())
1503 ThrowException("Binary operator types must match!");
1504 // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
1505 // To retain backward compatibility with these early compilers, we emit a
1506 // cast to the appropriate integer type automatically if we are in the
1507 // broken case. See PR424 for more information.
1508 if (!isa<PointerType>($3->getType())) {
1509 $$ = ConstantExpr::get($1, $3, $5);
1510 } else {
1511 const Type *IntPtrTy = 0;
1512 switch (CurModule.CurrentModule->getPointerSize()) {
1513 case Module::Pointer32: IntPtrTy = Type::IntTy; break;
1514 case Module::Pointer64: IntPtrTy = Type::LongTy; break;
1515 default: ThrowException("invalid pointer binary constant expr!");
1516 }
1517 $$ = ConstantExpr::get($1, ConstantExpr::getCast($3, IntPtrTy),
1518 ConstantExpr::getCast($5, IntPtrTy));
1519 $$ = ConstantExpr::getCast($$, $3->getType());
1520 }
1521 }
1522 | LogicalOps '(' ConstVal ',' ConstVal ')' {
1523 if ($3->getType() != $5->getType())
1524 ThrowException("Logical operator types must match!");
1525 if (!$3->getType()->isIntegral()) {
1526 if (!isa<PackedType>($3->getType()) ||
1527 !cast<PackedType>($3->getType())->getElementType()->isIntegral())
1528 ThrowException("Logical operator requires integral operands!");
1529 }
1530 $$ = ConstantExpr::get($1, $3, $5);
1531 }
1532 | SetCondOps '(' ConstVal ',' ConstVal ')' {
1533 if ($3->getType() != $5->getType())
1534 ThrowException("setcc operand types must match!");
1535 $$ = ConstantExpr::get($1, $3, $5);
1536 }
1537 | ShiftOps '(' ConstVal ',' ConstVal ')' {
1538 if ($5->getType() != Type::UByteTy)
1539 ThrowException("Shift count for shift constant must be unsigned byte!");
1540 if (!$3->getType()->isInteger())
1541 ThrowException("Shift constant expression requires integer operand!");
1542 $$ = ConstantExpr::get($1, $3, $5);
1543 }
1544 | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
Chris Lattnerf4bd7d82006-04-08 04:09:02 +00001545 if (!ExtractElementInst::isValidOperands($3, $5))
1546 ThrowException("Invalid extractelement operands!");
Chris Lattner58af2a12006-02-15 07:22:58 +00001547 $$ = ConstantExpr::getExtractElement($3, $5);
Chris Lattnerd25db202006-04-08 03:55:17 +00001548 }
1549 | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
Chris Lattnerf4bd7d82006-04-08 04:09:02 +00001550 if (!InsertElementInst::isValidOperands($3, $5, $7))
1551 ThrowException("Invalid insertelement operands!");
Chris Lattnerd25db202006-04-08 03:55:17 +00001552 $$ = ConstantExpr::getInsertElement($3, $5, $7);
1553 }
1554 | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
1555 if (!ShuffleVectorInst::isValidOperands($3, $5, $7))
1556 ThrowException("Invalid shufflevector operands!");
1557 $$ = ConstantExpr::getShuffleVector($3, $5, $7);
Chris Lattner58af2a12006-02-15 07:22:58 +00001558 };
1559
Chris Lattnerd25db202006-04-08 03:55:17 +00001560
Chris Lattner58af2a12006-02-15 07:22:58 +00001561// ConstVector - A list of comma separated constants.
1562ConstVector : ConstVector ',' ConstVal {
1563 ($$ = $1)->push_back($3);
1564 }
1565 | ConstVal {
1566 $$ = new std::vector<Constant*>();
1567 $$->push_back($1);
1568 };
1569
1570
1571// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
1572GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
1573
1574
1575//===----------------------------------------------------------------------===//
1576// Rules to match Modules
1577//===----------------------------------------------------------------------===//
1578
1579// Module rule: Capture the result of parsing the whole file into a result
1580// variable...
1581//
1582Module : FunctionList {
1583 $$ = ParserResult = $1;
1584 CurModule.ModuleDone();
1585};
1586
1587// FunctionList - A list of functions, preceeded by a constant pool.
1588//
1589FunctionList : FunctionList Function {
1590 $$ = $1;
1591 CurFun.FunctionDone();
1592 }
1593 | FunctionList FunctionProto {
1594 $$ = $1;
1595 }
1596 | FunctionList MODULE ASM_TOK AsmBlock {
1597 $$ = $1;
1598 }
1599 | FunctionList IMPLEMENTATION {
1600 $$ = $1;
1601 }
1602 | ConstPool {
1603 $$ = CurModule.CurrentModule;
1604 // Emit an error if there are any unresolved types left.
1605 if (!CurModule.LateResolveTypes.empty()) {
1606 const ValID &DID = CurModule.LateResolveTypes.begin()->first;
1607 if (DID.Type == ValID::NameVal)
1608 ThrowException("Reference to an undefined type: '"+DID.getName() + "'");
1609 else
1610 ThrowException("Reference to an undefined type: #" + itostr(DID.Num));
1611 }
1612 };
1613
1614// ConstPool - Constants with optional names assigned to them.
1615ConstPool : ConstPool OptAssign TYPE TypesV {
1616 // Eagerly resolve types. This is not an optimization, this is a
1617 // requirement that is due to the fact that we could have this:
1618 //
1619 // %list = type { %list * }
1620 // %list = type { %list * } ; repeated type decl
1621 //
1622 // If types are not resolved eagerly, then the two types will not be
1623 // determined to be the same type!
1624 //
1625 ResolveTypeTo($2, *$4);
1626
1627 if (!setTypeName(*$4, $2) && !$2) {
1628 // If this is a named type that is not a redefinition, add it to the slot
1629 // table.
1630 CurModule.Types.push_back(*$4);
1631 }
1632
1633 delete $4;
1634 }
1635 | ConstPool FunctionProto { // Function prototypes can be in const pool
1636 }
1637 | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
1638 }
1639 | ConstPool OptAssign OptLinkage GlobalType ConstVal {
1640 if ($5 == 0) ThrowException("Global value initializer is not a constant!");
1641 CurGV = ParseGlobalVariable($2, $3, $4, $5->getType(), $5);
1642 } GlobalVarAttributes {
1643 CurGV = 0;
1644 }
1645 | ConstPool OptAssign EXTERNAL GlobalType Types {
1646 CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage,
1647 $4, *$5, 0);
1648 delete $5;
1649 } GlobalVarAttributes {
1650 CurGV = 0;
1651 }
1652 | ConstPool TARGET TargetDefinition {
1653 }
1654 | ConstPool DEPLIBS '=' LibrariesDefinition {
1655 }
1656 | /* empty: end of list */ {
1657 };
1658
1659
1660AsmBlock : STRINGCONSTANT {
1661 const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
1662 char *EndStr = UnEscapeLexed($1, true);
1663 std::string NewAsm($1, EndStr);
1664 free($1);
1665
1666 if (AsmSoFar.empty())
1667 CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
1668 else
1669 CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
1670};
1671
1672BigOrLittle : BIG { $$ = Module::BigEndian; };
1673BigOrLittle : LITTLE { $$ = Module::LittleEndian; };
1674
1675TargetDefinition : ENDIAN '=' BigOrLittle {
1676 CurModule.CurrentModule->setEndianness($3);
1677 }
1678 | POINTERSIZE '=' EUINT64VAL {
1679 if ($3 == 32)
1680 CurModule.CurrentModule->setPointerSize(Module::Pointer32);
1681 else if ($3 == 64)
1682 CurModule.CurrentModule->setPointerSize(Module::Pointer64);
1683 else
1684 ThrowException("Invalid pointer size: '" + utostr($3) + "'!");
1685 }
1686 | TRIPLE '=' STRINGCONSTANT {
1687 CurModule.CurrentModule->setTargetTriple($3);
1688 free($3);
1689 };
1690
1691LibrariesDefinition : '[' LibList ']';
1692
1693LibList : LibList ',' STRINGCONSTANT {
1694 CurModule.CurrentModule->addLibrary($3);
1695 free($3);
1696 }
1697 | STRINGCONSTANT {
1698 CurModule.CurrentModule->addLibrary($1);
1699 free($1);
1700 }
1701 | /* empty: end of list */ {
1702 }
1703 ;
1704
1705//===----------------------------------------------------------------------===//
1706// Rules to match Function Headers
1707//===----------------------------------------------------------------------===//
1708
1709Name : VAR_ID | STRINGCONSTANT;
1710OptName : Name | /*empty*/ { $$ = 0; };
1711
1712ArgVal : Types OptName {
1713 if (*$1 == Type::VoidTy)
1714 ThrowException("void typed arguments are invalid!");
1715 $$ = new std::pair<PATypeHolder*, char*>($1, $2);
1716};
1717
1718ArgListH : ArgListH ',' ArgVal {
1719 $$ = $1;
1720 $1->push_back(*$3);
1721 delete $3;
1722 }
1723 | ArgVal {
1724 $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
1725 $$->push_back(*$1);
1726 delete $1;
1727 };
1728
1729ArgList : ArgListH {
1730 $$ = $1;
1731 }
1732 | ArgListH ',' DOTDOTDOT {
1733 $$ = $1;
1734 $$->push_back(std::pair<PATypeHolder*,
1735 char*>(new PATypeHolder(Type::VoidTy), 0));
1736 }
1737 | DOTDOTDOT {
1738 $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
1739 $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
1740 }
1741 | /* empty */ {
1742 $$ = 0;
1743 };
1744
1745FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')'
1746 OptSection OptAlign {
1747 UnEscapeLexed($3);
1748 std::string FunctionName($3);
1749 free($3); // Free strdup'd memory!
1750
1751 if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy)
1752 ThrowException("LLVM functions cannot return aggregate types!");
1753
1754 std::vector<const Type*> ParamTypeList;
1755 if ($5) { // If there are arguments...
1756 for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
1757 I != $5->end(); ++I)
1758 ParamTypeList.push_back(I->first->get());
1759 }
1760
1761 bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
1762 if (isVarArg) ParamTypeList.pop_back();
1763
1764 const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
1765 const PointerType *PFT = PointerType::get(FT);
1766 delete $2;
1767
1768 ValID ID;
1769 if (!FunctionName.empty()) {
1770 ID = ValID::create((char*)FunctionName.c_str());
1771 } else {
1772 ID = ValID::create((int)CurModule.Values[PFT].size());
1773 }
1774
1775 Function *Fn = 0;
1776 // See if this function was forward referenced. If so, recycle the object.
1777 if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
1778 // Move the function to the end of the list, from whereever it was
1779 // previously inserted.
1780 Fn = cast<Function>(FWRef);
1781 CurModule.CurrentModule->getFunctionList().remove(Fn);
1782 CurModule.CurrentModule->getFunctionList().push_back(Fn);
1783 } else if (!FunctionName.empty() && // Merge with an earlier prototype?
1784 (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
1785 // If this is the case, either we need to be a forward decl, or it needs
1786 // to be.
1787 if (!CurFun.isDeclare && !Fn->isExternal())
1788 ThrowException("Redefinition of function '" + FunctionName + "'!");
1789
1790 // Make sure to strip off any argument names so we can't get conflicts.
1791 if (Fn->isExternal())
1792 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
1793 AI != AE; ++AI)
1794 AI->setName("");
1795
1796 } else { // Not already defined?
1797 Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
1798 CurModule.CurrentModule);
1799 InsertValue(Fn, CurModule.Values);
1800 }
1801
1802 CurFun.FunctionStart(Fn);
1803 Fn->setCallingConv($1);
1804 Fn->setAlignment($8);
1805 if ($7) {
1806 Fn->setSection($7);
1807 free($7);
1808 }
1809
1810 // Add all of the arguments we parsed to the function...
1811 if ($5) { // Is null if empty...
1812 if (isVarArg) { // Nuke the last entry
1813 assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&&
1814 "Not a varargs marker!");
1815 delete $5->back().first;
1816 $5->pop_back(); // Delete the last entry
1817 }
1818 Function::arg_iterator ArgIt = Fn->arg_begin();
1819 for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $5->begin();
1820 I != $5->end(); ++I, ++ArgIt) {
1821 delete I->first; // Delete the typeholder...
1822
1823 setValueName(ArgIt, I->second); // Insert arg into symtab...
1824 InsertValue(ArgIt);
1825 }
1826
1827 delete $5; // We're now done with the argument list
1828 }
1829};
1830
1831BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
1832
1833FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
1834 $$ = CurFun.CurrentFunction;
1835
1836 // Make sure that we keep track of the linkage type even if there was a
1837 // previous "declare".
1838 $$->setLinkage($1);
1839};
1840
1841END : ENDTOK | '}'; // Allow end of '}' to end a function
1842
1843Function : BasicBlockList END {
1844 $$ = $1;
1845};
1846
1847FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH {
1848 $$ = CurFun.CurrentFunction;
1849 CurFun.FunctionDone();
1850};
1851
1852//===----------------------------------------------------------------------===//
1853// Rules to match Basic Blocks
1854//===----------------------------------------------------------------------===//
1855
1856OptSideEffect : /* empty */ {
1857 $$ = false;
1858 }
1859 | SIDEEFFECT {
1860 $$ = true;
1861 };
1862
1863ConstValueRef : ESINT64VAL { // A reference to a direct constant
1864 $$ = ValID::create($1);
1865 }
1866 | EUINT64VAL {
1867 $$ = ValID::create($1);
1868 }
1869 | FPVAL { // Perhaps it's an FP constant?
1870 $$ = ValID::create($1);
1871 }
1872 | TRUETOK {
1873 $$ = ValID::create(ConstantBool::True);
1874 }
1875 | FALSETOK {
1876 $$ = ValID::create(ConstantBool::False);
1877 }
1878 | NULL_TOK {
1879 $$ = ValID::createNull();
1880 }
1881 | UNDEF {
1882 $$ = ValID::createUndef();
1883 }
1884 | ZEROINITIALIZER { // A vector zero constant.
1885 $$ = ValID::createZeroInit();
1886 }
1887 | '<' ConstVector '>' { // Nonempty unsized packed vector
1888 const Type *ETy = (*$2)[0]->getType();
1889 int NumElements = $2->size();
1890
1891 PackedType* pt = PackedType::get(ETy, NumElements);
1892 PATypeHolder* PTy = new PATypeHolder(
1893 HandleUpRefs(
1894 PackedType::get(
1895 ETy,
1896 NumElements)
1897 )
1898 );
1899
1900 // Verify all elements are correct type!
1901 for (unsigned i = 0; i < $2->size(); i++) {
1902 if (ETy != (*$2)[i]->getType())
1903 ThrowException("Element #" + utostr(i) + " is not of type '" +
1904 ETy->getDescription() +"' as required!\nIt is of type '" +
1905 (*$2)[i]->getType()->getDescription() + "'.");
1906 }
1907
1908 $$ = ValID::create(ConstantPacked::get(pt, *$2));
1909 delete PTy; delete $2;
1910 }
1911 | ConstExpr {
1912 $$ = ValID::create($1);
1913 }
1914 | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
1915 char *End = UnEscapeLexed($3, true);
1916 std::string AsmStr = std::string($3, End);
1917 End = UnEscapeLexed($5, true);
1918 std::string Constraints = std::string($5, End);
1919 $$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
1920 free($3);
1921 free($5);
1922 };
1923
1924// SymbolicValueRef - Reference to one of two ways of symbolically refering to
1925// another value.
1926//
1927SymbolicValueRef : INTVAL { // Is it an integer reference...?
1928 $$ = ValID::create($1);
1929 }
1930 | Name { // Is it a named reference...?
1931 $$ = ValID::create($1);
1932 };
1933
1934// ValueRef - A reference to a definition... either constant or symbolic
1935ValueRef : SymbolicValueRef | ConstValueRef;
1936
1937
1938// ResolvedVal - a <type> <value> pair. This is used only in cases where the
1939// type immediately preceeds the value reference, and allows complex constant
1940// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
1941ResolvedVal : Types ValueRef {
1942 $$ = getVal(*$1, $2); delete $1;
1943 };
1944
1945BasicBlockList : BasicBlockList BasicBlock {
1946 $$ = $1;
1947 }
1948 | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
1949 $$ = $1;
1950 };
1951
1952
1953// Basic blocks are terminated by branching instructions:
1954// br, br/cc, switch, ret
1955//
1956BasicBlock : InstructionList OptAssign BBTerminatorInst {
1957 setValueName($3, $2);
1958 InsertValue($3);
1959
1960 $1->getInstList().push_back($3);
1961 InsertValue($1);
1962 $$ = $1;
1963 };
1964
1965InstructionList : InstructionList Inst {
1966 $1->getInstList().push_back($2);
1967 $$ = $1;
1968 }
1969 | /* empty */ {
1970 $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
1971
1972 // Make sure to move the basic block to the correct location in the
1973 // function, instead of leaving it inserted wherever it was first
1974 // referenced.
1975 Function::BasicBlockListType &BBL =
1976 CurFun.CurrentFunction->getBasicBlockList();
1977 BBL.splice(BBL.end(), BBL, $$);
1978 }
1979 | LABELSTR {
1980 $$ = CurBB = getBBVal(ValID::create($1), true);
1981
1982 // Make sure to move the basic block to the correct location in the
1983 // function, instead of leaving it inserted wherever it was first
1984 // referenced.
1985 Function::BasicBlockListType &BBL =
1986 CurFun.CurrentFunction->getBasicBlockList();
1987 BBL.splice(BBL.end(), BBL, $$);
1988 };
1989
1990BBTerminatorInst : RET ResolvedVal { // Return with a result...
1991 $$ = new ReturnInst($2);
1992 }
1993 | RET VOID { // Return with no result...
1994 $$ = new ReturnInst();
1995 }
1996 | BR LABEL ValueRef { // Unconditional Branch...
1997 $$ = new BranchInst(getBBVal($3));
1998 } // Conditional Branch...
1999 | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
2000 $$ = new BranchInst(getBBVal($6), getBBVal($9), getVal(Type::BoolTy, $3));
2001 }
2002 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
2003 SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), $8->size());
2004 $$ = S;
2005
2006 std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
2007 E = $8->end();
2008 for (; I != E; ++I) {
2009 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
2010 S->addCase(CI, I->second);
2011 else
2012 ThrowException("Switch case is constant, but not a simple integer!");
2013 }
2014 delete $8;
2015 }
2016 | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
2017 SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), 0);
2018 $$ = S;
2019 }
2020 | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
2021 TO LABEL ValueRef UNWIND LABEL ValueRef {
2022 const PointerType *PFTy;
2023 const FunctionType *Ty;
2024
2025 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2026 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2027 // Pull out the types of all of the arguments...
2028 std::vector<const Type*> ParamTypes;
2029 if ($6) {
2030 for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
2031 I != E; ++I)
2032 ParamTypes.push_back((*I)->getType());
2033 }
2034
2035 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
2036 if (isVarArg) ParamTypes.pop_back();
2037
2038 Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
2039 PFTy = PointerType::get(Ty);
2040 }
2041
2042 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2043
2044 BasicBlock *Normal = getBBVal($10);
2045 BasicBlock *Except = getBBVal($13);
2046
2047 // Create the call node...
2048 if (!$6) { // Has no arguments?
2049 $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
2050 } else { // Has arguments?
2051 // Loop through FunctionType's arguments and ensure they are specified
2052 // correctly!
2053 //
2054 FunctionType::param_iterator I = Ty->param_begin();
2055 FunctionType::param_iterator E = Ty->param_end();
2056 std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
2057
2058 for (; ArgI != ArgE && I != E; ++ArgI, ++I)
2059 if ((*ArgI)->getType() != *I)
2060 ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
2061 (*I)->getDescription() + "'!");
2062
2063 if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
2064 ThrowException("Invalid number of parameters detected!");
2065
2066 $$ = new InvokeInst(V, Normal, Except, *$6);
2067 }
2068 cast<InvokeInst>($$)->setCallingConv($2);
2069
2070 delete $3;
2071 delete $6;
2072 }
2073 | UNWIND {
2074 $$ = new UnwindInst();
2075 }
2076 | UNREACHABLE {
2077 $$ = new UnreachableInst();
2078 };
2079
2080
2081
2082JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
2083 $$ = $1;
2084 Constant *V = cast<Constant>(getValNonImprovising($2, $3));
2085 if (V == 0)
2086 ThrowException("May only switch on a constant pool value!");
2087
2088 $$->push_back(std::make_pair(V, getBBVal($6)));
2089 }
2090 | IntType ConstValueRef ',' LABEL ValueRef {
2091 $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
2092 Constant *V = cast<Constant>(getValNonImprovising($1, $2));
2093
2094 if (V == 0)
2095 ThrowException("May only switch on a constant pool value!");
2096
2097 $$->push_back(std::make_pair(V, getBBVal($5)));
2098 };
2099
2100Inst : OptAssign InstVal {
2101 // Is this definition named?? if so, assign the name...
2102 setValueName($2, $1);
2103 InsertValue($2);
2104 $$ = $2;
2105};
2106
2107PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
2108 $$ = new std::list<std::pair<Value*, BasicBlock*> >();
2109 $$->push_back(std::make_pair(getVal(*$1, $3), getBBVal($5)));
2110 delete $1;
2111 }
2112 | PHIList ',' '[' ValueRef ',' ValueRef ']' {
2113 $$ = $1;
2114 $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4),
2115 getBBVal($6)));
2116 };
2117
2118
2119ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
2120 $$ = new std::vector<Value*>();
2121 $$->push_back($1);
2122 }
2123 | ValueRefList ',' ResolvedVal {
2124 $$ = $1;
2125 $1->push_back($3);
2126 };
2127
2128// ValueRefListE - Just like ValueRefList, except that it may also be empty!
2129ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
2130
2131OptTailCall : TAIL CALL {
2132 $$ = true;
2133 }
2134 | CALL {
2135 $$ = false;
2136 };
2137
2138
2139
2140InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
2141 if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
2142 !isa<PackedType>((*$2).get()))
2143 ThrowException(
2144 "Arithmetic operator requires integer, FP, or packed operands!");
2145 if (isa<PackedType>((*$2).get()) && $1 == Instruction::Rem)
2146 ThrowException("Rem not supported on packed types!");
2147 $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
2148 if ($$ == 0)
2149 ThrowException("binary operator returned null!");
2150 delete $2;
2151 }
2152 | LogicalOps Types ValueRef ',' ValueRef {
2153 if (!(*$2)->isIntegral()) {
2154 if (!isa<PackedType>($2->get()) ||
2155 !cast<PackedType>($2->get())->getElementType()->isIntegral())
2156 ThrowException("Logical operator requires integral operands!");
2157 }
2158 $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
2159 if ($$ == 0)
2160 ThrowException("binary operator returned null!");
2161 delete $2;
2162 }
2163 | SetCondOps Types ValueRef ',' ValueRef {
2164 if(isa<PackedType>((*$2).get())) {
2165 ThrowException(
2166 "PackedTypes currently not supported in setcc instructions!");
2167 }
2168 $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
2169 if ($$ == 0)
2170 ThrowException("binary operator returned null!");
2171 delete $2;
2172 }
2173 | NOT ResolvedVal {
2174 std::cerr << "WARNING: Use of eliminated 'not' instruction:"
2175 << " Replacing with 'xor'.\n";
2176
2177 Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
2178 if (Ones == 0)
2179 ThrowException("Expected integral type for not instruction!");
2180
2181 $$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
2182 if ($$ == 0)
2183 ThrowException("Could not create a xor instruction!");
2184 }
2185 | ShiftOps ResolvedVal ',' ResolvedVal {
2186 if ($4->getType() != Type::UByteTy)
2187 ThrowException("Shift amount must be ubyte!");
2188 if (!$2->getType()->isInteger())
2189 ThrowException("Shift constant expression requires integer operand!");
2190 $$ = new ShiftInst($1, $2, $4);
2191 }
2192 | CAST ResolvedVal TO Types {
2193 if (!$4->get()->isFirstClassType())
2194 ThrowException("cast instruction to a non-primitive type: '" +
2195 $4->get()->getDescription() + "'!");
2196 $$ = new CastInst($2, *$4);
2197 delete $4;
2198 }
2199 | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
2200 if ($2->getType() != Type::BoolTy)
2201 ThrowException("select condition must be boolean!");
2202 if ($4->getType() != $6->getType())
2203 ThrowException("select value types should match!");
2204 $$ = new SelectInst($2, $4, $6);
2205 }
2206 | VAARG ResolvedVal ',' Types {
2207 NewVarArgs = true;
2208 $$ = new VAArgInst($2, *$4);
2209 delete $4;
2210 }
2211 | VAARG_old ResolvedVal ',' Types {
2212 ObsoleteVarArgs = true;
2213 const Type* ArgTy = $2->getType();
2214 Function* NF = CurModule.CurrentModule->
2215 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0);
2216
2217 //b = vaarg a, t ->
2218 //foo = alloca 1 of t
2219 //bar = vacopy a
2220 //store bar -> foo
2221 //b = vaarg foo, t
2222 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
2223 CurBB->getInstList().push_back(foo);
2224 CallInst* bar = new CallInst(NF, $2);
2225 CurBB->getInstList().push_back(bar);
2226 CurBB->getInstList().push_back(new StoreInst(bar, foo));
2227 $$ = new VAArgInst(foo, *$4);
2228 delete $4;
2229 }
2230 | VANEXT_old ResolvedVal ',' Types {
2231 ObsoleteVarArgs = true;
2232 const Type* ArgTy = $2->getType();
2233 Function* NF = CurModule.CurrentModule->
2234 getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0);
2235
2236 //b = vanext a, t ->
2237 //foo = alloca 1 of t
2238 //bar = vacopy a
2239 //store bar -> foo
2240 //tmp = vaarg foo, t
2241 //b = load foo
2242 AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
2243 CurBB->getInstList().push_back(foo);
2244 CallInst* bar = new CallInst(NF, $2);
2245 CurBB->getInstList().push_back(bar);
2246 CurBB->getInstList().push_back(new StoreInst(bar, foo));
2247 Instruction* tmp = new VAArgInst(foo, *$4);
2248 CurBB->getInstList().push_back(tmp);
2249 $$ = new LoadInst(foo);
2250 delete $4;
2251 }
2252 | EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
Chris Lattnerf4bd7d82006-04-08 04:09:02 +00002253 if (!ExtractElementInst::isValidOperands($2, $4))
2254 ThrowException("Invalid extractelement operands!");
Chris Lattner58af2a12006-02-15 07:22:58 +00002255 $$ = new ExtractElementInst($2, $4);
2256 }
2257 | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Chris Lattnerf4bd7d82006-04-08 04:09:02 +00002258 if (!InsertElementInst::isValidOperands($2, $4, $6))
2259 ThrowException("Invalid insertelement operands!");
Chris Lattner58af2a12006-02-15 07:22:58 +00002260 $$ = new InsertElementInst($2, $4, $6);
2261 }
Chris Lattnerd5efe842006-04-08 01:18:56 +00002262 | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
Chris Lattnerd25db202006-04-08 03:55:17 +00002263 if (!ShuffleVectorInst::isValidOperands($2, $4, $6))
2264 ThrowException("Invalid shufflevector operands!");
Chris Lattnerd5efe842006-04-08 01:18:56 +00002265 $$ = new ShuffleVectorInst($2, $4, $6);
2266 }
Chris Lattner58af2a12006-02-15 07:22:58 +00002267 | PHI_TOK PHIList {
2268 const Type *Ty = $2->front().first->getType();
2269 if (!Ty->isFirstClassType())
2270 ThrowException("PHI node operands must be of first class type!");
2271 $$ = new PHINode(Ty);
2272 ((PHINode*)$$)->reserveOperandSpace($2->size());
2273 while ($2->begin() != $2->end()) {
2274 if ($2->front().first->getType() != Ty)
2275 ThrowException("All elements of a PHI node must be of the same type!");
2276 cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
2277 $2->pop_front();
2278 }
2279 delete $2; // Free the list...
2280 }
2281 | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
2282 const PointerType *PFTy;
2283 const FunctionType *Ty;
2284
2285 if (!(PFTy = dyn_cast<PointerType>($3->get())) ||
2286 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
2287 // Pull out the types of all of the arguments...
2288 std::vector<const Type*> ParamTypes;
2289 if ($6) {
2290 for (std::vector<Value*>::iterator I = $6->begin(), E = $6->end();
2291 I != E; ++I)
2292 ParamTypes.push_back((*I)->getType());
2293 }
2294
2295 bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
2296 if (isVarArg) ParamTypes.pop_back();
2297
2298 if (!(*$3)->isFirstClassType() && *$3 != Type::VoidTy)
2299 ThrowException("LLVM functions cannot return aggregate types!");
2300
2301 Ty = FunctionType::get($3->get(), ParamTypes, isVarArg);
2302 PFTy = PointerType::get(Ty);
2303 }
2304
2305 Value *V = getVal(PFTy, $4); // Get the function we're calling...
2306
2307 // Create the call node...
2308 if (!$6) { // Has no arguments?
2309 // Make sure no arguments is a good thing!
2310 if (Ty->getNumParams() != 0)
2311 ThrowException("No arguments passed to a function that "
2312 "expects arguments!");
2313
2314 $$ = new CallInst(V, std::vector<Value*>());
2315 } else { // Has arguments?
2316 // Loop through FunctionType's arguments and ensure they are specified
2317 // correctly!
2318 //
2319 FunctionType::param_iterator I = Ty->param_begin();
2320 FunctionType::param_iterator E = Ty->param_end();
2321 std::vector<Value*>::iterator ArgI = $6->begin(), ArgE = $6->end();
2322
2323 for (; ArgI != ArgE && I != E; ++ArgI, ++I)
2324 if ((*ArgI)->getType() != *I)
2325 ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
2326 (*I)->getDescription() + "'!");
2327
2328 if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
2329 ThrowException("Invalid number of parameters detected!");
2330
2331 $$ = new CallInst(V, *$6);
2332 }
2333 cast<CallInst>($$)->setTailCall($1);
2334 cast<CallInst>($$)->setCallingConv($2);
2335 delete $3;
2336 delete $6;
2337 }
2338 | MemoryInst {
2339 $$ = $1;
2340 };
2341
2342
2343// IndexList - List of indices for GEP based instructions...
2344IndexList : ',' ValueRefList {
2345 $$ = $2;
2346 } | /* empty */ {
2347 $$ = new std::vector<Value*>();
2348 };
2349
2350OptVolatile : VOLATILE {
2351 $$ = true;
2352 }
2353 | /* empty */ {
2354 $$ = false;
2355 };
2356
2357
2358
2359MemoryInst : MALLOC Types OptCAlign {
2360 $$ = new MallocInst(*$2, 0, $3);
2361 delete $2;
2362 }
2363 | MALLOC Types ',' UINT ValueRef OptCAlign {
2364 $$ = new MallocInst(*$2, getVal($4, $5), $6);
2365 delete $2;
2366 }
2367 | ALLOCA Types OptCAlign {
2368 $$ = new AllocaInst(*$2, 0, $3);
2369 delete $2;
2370 }
2371 | ALLOCA Types ',' UINT ValueRef OptCAlign {
2372 $$ = new AllocaInst(*$2, getVal($4, $5), $6);
2373 delete $2;
2374 }
2375 | FREE ResolvedVal {
2376 if (!isa<PointerType>($2->getType()))
2377 ThrowException("Trying to free nonpointer type " +
2378 $2->getType()->getDescription() + "!");
2379 $$ = new FreeInst($2);
2380 }
2381
2382 | OptVolatile LOAD Types ValueRef {
2383 if (!isa<PointerType>($3->get()))
2384 ThrowException("Can't load from nonpointer type: " +
2385 (*$3)->getDescription());
2386 if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
2387 ThrowException("Can't load from pointer of non-first-class type: " +
2388 (*$3)->getDescription());
2389 $$ = new LoadInst(getVal(*$3, $4), "", $1);
2390 delete $3;
2391 }
2392 | OptVolatile STORE ResolvedVal ',' Types ValueRef {
2393 const PointerType *PT = dyn_cast<PointerType>($5->get());
2394 if (!PT)
2395 ThrowException("Can't store to a nonpointer type: " +
2396 (*$5)->getDescription());
2397 const Type *ElTy = PT->getElementType();
2398 if (ElTy != $3->getType())
2399 ThrowException("Can't store '" + $3->getType()->getDescription() +
2400 "' into space of type '" + ElTy->getDescription() + "'!");
2401
2402 $$ = new StoreInst($3, getVal(*$5, $6), $1);
2403 delete $5;
2404 }
2405 | GETELEMENTPTR Types ValueRef IndexList {
2406 if (!isa<PointerType>($2->get()))
2407 ThrowException("getelementptr insn requires pointer operand!");
2408
2409 // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
2410 // indices to uint struct indices for compatibility.
2411 generic_gep_type_iterator<std::vector<Value*>::iterator>
2412 GTI = gep_type_begin($2->get(), $4->begin(), $4->end()),
2413 GTE = gep_type_end($2->get(), $4->begin(), $4->end());
2414 for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
2415 if (isa<StructType>(*GTI)) // Only change struct indices
2416 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
2417 if (CUI->getType() == Type::UByteTy)
2418 (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
2419
2420 if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
2421 ThrowException("Invalid getelementptr indices for type '" +
2422 (*$2)->getDescription()+ "'!");
2423 $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
2424 delete $2; delete $4;
2425 };
2426
2427
2428%%
2429int yyerror(const char *ErrorMsg) {
2430 std::string where
2431 = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
2432 + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
2433 std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
2434 if (yychar == YYEMPTY || yychar == 0)
2435 errMsg += "end-of-file.";
2436 else
2437 errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
2438 ThrowException(errMsg);
2439 return 0;
2440}