blob: e501ddc4b85d209a156ca8ee39ea362346e167b4 [file] [log] [blame]
Chris Lattner753a2b42010-01-05 07:32:13 +00001//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitCall and visitInvoke functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Support/CallSite.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19using namespace llvm;
20
21/// getPromotedType - Return the specified type promoted as it would be to pass
22/// though a va_arg area.
23static const Type *getPromotedType(const Type *Ty) {
24 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
25 if (ITy->getBitWidth() < 32)
26 return Type::getInt32Ty(Ty->getContext());
27 }
28 return Ty;
29}
30
31/// EnforceKnownAlignment - If the specified pointer points to an object that
32/// we control, modify the object's alignment to PrefAlign. This isn't
33/// often possible though. If alignment is important, a more reliable approach
34/// is to simply align all global variables and allocation instructions to
35/// their preferred alignment from the beginning.
36///
37static unsigned EnforceKnownAlignment(Value *V,
38 unsigned Align, unsigned PrefAlign) {
39
40 User *U = dyn_cast<User>(V);
41 if (!U) return Align;
42
43 switch (Operator::getOpcode(U)) {
44 default: break;
45 case Instruction::BitCast:
46 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
47 case Instruction::GetElementPtr: {
48 // If all indexes are zero, it is just the alignment of the base pointer.
49 bool AllZeroOperands = true;
50 for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
51 if (!isa<Constant>(*i) ||
52 !cast<Constant>(*i)->isNullValue()) {
53 AllZeroOperands = false;
54 break;
55 }
56
57 if (AllZeroOperands) {
58 // Treat this like a bitcast.
59 return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
60 }
61 break;
62 }
63 }
64
65 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
66 // If there is a large requested alignment and we can, bump up the alignment
67 // of the global.
68 if (!GV->isDeclaration()) {
69 if (GV->getAlignment() >= PrefAlign)
70 Align = GV->getAlignment();
71 else {
72 GV->setAlignment(PrefAlign);
73 Align = PrefAlign;
74 }
75 }
76 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
77 // If there is a requested alignment and if this is an alloca, round up.
78 if (AI->getAlignment() >= PrefAlign)
79 Align = AI->getAlignment();
80 else {
81 AI->setAlignment(PrefAlign);
82 Align = PrefAlign;
83 }
84 }
85
86 return Align;
87}
88
89/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
90/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
91/// and it is more than the alignment of the ultimate object, see if we can
92/// increase the alignment of the ultimate object, making this check succeed.
93unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
94 unsigned PrefAlign) {
95 unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
96 sizeof(PrefAlign) * CHAR_BIT;
97 APInt Mask = APInt::getAllOnesValue(BitWidth);
98 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
99 ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
100 unsigned TrailZ = KnownZero.countTrailingOnes();
101 unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
102
103 if (PrefAlign > Align)
104 Align = EnforceKnownAlignment(V, Align, PrefAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000105
Chris Lattner753a2b42010-01-05 07:32:13 +0000106 // We don't need to make any adjustment.
107 return Align;
108}
109
110Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
111 unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
112 unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
113 unsigned MinAlign = std::min(DstAlign, SrcAlign);
114 unsigned CopyAlign = MI->getAlignment();
115
116 if (CopyAlign < MinAlign) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000117 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Chris Lattner753a2b42010-01-05 07:32:13 +0000118 MinAlign, false));
119 return MI;
120 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000121
Chris Lattner753a2b42010-01-05 07:32:13 +0000122 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
123 // load/store.
124 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
125 if (MemOpLength == 0) return 0;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000126
Chris Lattner753a2b42010-01-05 07:32:13 +0000127 // Source and destination pointer types are always "i8*" for intrinsic. See
128 // if the size is something we can handle with a single primitive load/store.
129 // A single load+store correctly handles overlapping memory in the memmove
130 // case.
131 unsigned Size = MemOpLength->getZExtValue();
132 if (Size == 0) return MI; // Delete this mem transfer.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000133
Chris Lattner753a2b42010-01-05 07:32:13 +0000134 if (Size > 8 || (Size&(Size-1)))
135 return 0; // If not 1/2/4/8 bytes, exit.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000136
Chris Lattner753a2b42010-01-05 07:32:13 +0000137 // Use an integer load+store unless we can find something better.
138 Type *NewPtrTy =
139 PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000140
Chris Lattner753a2b42010-01-05 07:32:13 +0000141 // Memcpy forces the use of i8* for the source and destination. That means
142 // that if you're using memcpy to move one double around, you'll get a cast
143 // from double* to i8*. We'd much rather use a double load+store rather than
144 // an i64 load+store, here because this improves the odds that the source or
145 // dest address will be promotable. See if we can find a better type than the
146 // integer datatype.
147 Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
148 if (StrippedDest != MI->getOperand(1)) {
149 const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
150 ->getElementType();
151 if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
152 // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
153 // down through these levels if so.
154 while (!SrcETy->isSingleValueType()) {
155 if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
156 if (STy->getNumElements() == 1)
157 SrcETy = STy->getElementType(0);
158 else
159 break;
160 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
161 if (ATy->getNumElements() == 1)
162 SrcETy = ATy->getElementType();
163 else
164 break;
165 } else
166 break;
167 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000168
Chris Lattner753a2b42010-01-05 07:32:13 +0000169 if (SrcETy->isSingleValueType())
170 NewPtrTy = PointerType::getUnqual(SrcETy);
171 }
172 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000173
174
Chris Lattner753a2b42010-01-05 07:32:13 +0000175 // If the memcpy/memmove provides better alignment info than we can
176 // infer, use it.
177 SrcAlign = std::max(SrcAlign, CopyAlign);
178 DstAlign = std::max(DstAlign, CopyAlign);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000179
Chris Lattner753a2b42010-01-05 07:32:13 +0000180 Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
181 Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
182 Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
183 InsertNewInstBefore(L, *MI);
184 InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
185
186 // Set the size of the copy to 0, it will be deleted on the next iteration.
187 MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
188 return MI;
189}
190
191Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
192 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
193 if (MI->getAlignment() < Alignment) {
194 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
195 Alignment, false));
196 return MI;
197 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000198
Chris Lattner753a2b42010-01-05 07:32:13 +0000199 // Extract the length and alignment and fill if they are constant.
200 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
201 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
Benjamin Kramer8c65f6e2010-01-05 21:05:54 +0000202 if (!LenC || !FillC || !FillC->getType()->isInteger(8))
Chris Lattner753a2b42010-01-05 07:32:13 +0000203 return 0;
204 uint64_t Len = LenC->getZExtValue();
205 Alignment = MI->getAlignment();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000206
Chris Lattner753a2b42010-01-05 07:32:13 +0000207 // If the length is zero, this is a no-op
208 if (Len == 0) return MI; // memset(d,c,0,a) -> noop
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000209
Chris Lattner753a2b42010-01-05 07:32:13 +0000210 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
211 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
212 const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000213
Chris Lattner753a2b42010-01-05 07:32:13 +0000214 Value *Dest = MI->getDest();
215 Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
216
217 // Alignment 0 is identity for alignment 1 for memset, but not store.
218 if (Alignment == 0) Alignment = 1;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000219
Chris Lattner753a2b42010-01-05 07:32:13 +0000220 // Extract the fill value and store.
221 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
222 InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
223 Dest, false, Alignment), *MI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000224
Chris Lattner753a2b42010-01-05 07:32:13 +0000225 // Set the size of the copy to 0, it will be deleted on the next iteration.
226 MI->setLength(Constant::getNullValue(LenC->getType()));
227 return MI;
228 }
229
230 return 0;
231}
232
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000233/// visitCallInst - CallInst simplification. This mostly only handles folding
Chris Lattner753a2b42010-01-05 07:32:13 +0000234/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
235/// the heavy lifting.
236///
237Instruction *InstCombiner::visitCallInst(CallInst &CI) {
238 if (isFreeCall(&CI))
239 return visitFree(CI);
240
241 // If the caller function is nounwind, mark the call as nounwind, even if the
242 // callee isn't.
243 if (CI.getParent()->getParent()->doesNotThrow() &&
244 !CI.doesNotThrow()) {
245 CI.setDoesNotThrow();
246 return &CI;
247 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000248
Chris Lattner753a2b42010-01-05 07:32:13 +0000249 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
250 if (!II) return visitCallSite(&CI);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000251
Chris Lattner753a2b42010-01-05 07:32:13 +0000252 // Intrinsics cannot occur in an invoke, so handle them here instead of in
253 // visitCallSite.
254 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
255 bool Changed = false;
256
257 // memmove/cpy/set of zero bytes is a noop.
258 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
259 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
260
261 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
262 if (CI->getZExtValue() == 1) {
263 // Replace the instruction with just byte operations. We would
264 // transform other cases to loads/stores, but we don't know if
265 // alignment is sufficient.
266 }
267 }
268
269 // If we have a memmove and the source operation is a constant global,
270 // then the source and dest pointers can't alias, so we can change this
271 // into a call to memcpy.
272 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
273 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
274 if (GVSrc->isConstant()) {
275 Module *M = CI.getParent()->getParent()->getParent();
276 Intrinsic::ID MemCpyID = Intrinsic::memcpy;
277 const Type *Tys[1];
278 Tys[0] = CI.getOperand(3)->getType();
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000279 CI.setOperand(0,
Chris Lattner753a2b42010-01-05 07:32:13 +0000280 Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
281 Changed = true;
282 }
283 }
284
285 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
286 // memmove(x,x,size) -> noop.
287 if (MTI->getSource() == MTI->getDest())
288 return EraseInstFromFunction(CI);
289 }
290
291 // If we can determine a pointer alignment that is bigger than currently
292 // set, update the alignment.
293 if (isa<MemTransferInst>(MI)) {
294 if (Instruction *I = SimplifyMemTransfer(MI))
295 return I;
296 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
297 if (Instruction *I = SimplifyMemSet(MSI))
298 return I;
299 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000300
Chris Lattner753a2b42010-01-05 07:32:13 +0000301 if (Changed) return II;
302 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000303
Chris Lattner753a2b42010-01-05 07:32:13 +0000304 switch (II->getIntrinsicID()) {
305 default: break;
Eric Christopher415326b2010-02-09 21:24:27 +0000306 case Intrinsic::objectsize: {
307 const Type *ReturnTy = CI.getType();
308 Value *Op1 = II->getOperand(1);
309 bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
310
Eric Christopher26d0e892010-02-11 01:48:54 +0000311 // We need target data for just about everything so depend on it.
Eric Christopher415326b2010-02-09 21:24:27 +0000312 if (!TD) break;
Eric Christopher26d0e892010-02-11 01:48:54 +0000313
314 // Get to the real allocated thing and offset as fast as possible.
Eric Christopher415326b2010-02-09 21:24:27 +0000315 Op1 = Op1->stripPointerCasts();
316
Eric Christopher26d0e892010-02-11 01:48:54 +0000317 // If we've stripped down to a single global variable that we
318 // can know the size of then just return that.
Eric Christopher415326b2010-02-09 21:24:27 +0000319 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
320 if (GV->hasDefinitiveInitializer()) {
321 Constant *C = GV->getInitializer();
322 size_t globalSize = TD->getTypeAllocSize(C->getType());
323 return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, globalSize));
324 } else {
325 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
326 return ReplaceInstUsesWith(CI, RetVal);
327 }
Eric Christopher26d0e892010-02-11 01:48:54 +0000328 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
329
330 // Only handle constant GEPs here.
331 if (CE->getOpcode() != Instruction::GetElementPtr) break;
332 GEPOperator *GEP = cast<GEPOperator>(CE);
333
Eric Christopherdfdddd82010-02-11 17:44:04 +0000334 // Make sure we're not a constant offset from an external
335 // global.
336 Value *Operand = GEP->getPointerOperand();
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000337 Operand = Operand->stripPointerCasts();
Eric Christopherdfdddd82010-02-11 17:44:04 +0000338 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
339 if (!GV->hasDefinitiveInitializer()) break;
340
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000341 // Get what we're pointing to and its size.
342 const PointerType *BaseType =
Eric Christopherdfdddd82010-02-11 17:44:04 +0000343 cast<PointerType>(Operand->getType());
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000344 size_t Size = TD->getTypeAllocSize(BaseType->getElementType());
Eric Christopher26d0e892010-02-11 01:48:54 +0000345
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000346 // Get the current byte offset into the thing. Use the original
347 // operand in case we're looking through a bitcast.
Eric Christopher26d0e892010-02-11 01:48:54 +0000348 SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
Eric Christopher77ffe3b2010-02-13 23:38:01 +0000349 const PointerType *OffsetType =
350 cast<PointerType>(GEP->getPointerOperand()->getType());
351 size_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
Eric Christopher26d0e892010-02-11 01:48:54 +0000352
353 assert(Size >= Offset);
354
355 Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
356 return ReplaceInstUsesWith(CI, RetVal);
357
Eric Christopherdfdddd82010-02-11 17:44:04 +0000358 }
Eric Christopher415326b2010-02-09 21:24:27 +0000359 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000360 case Intrinsic::bswap:
361 // bswap(bswap(x)) -> x
362 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
363 if (Operand->getIntrinsicID() == Intrinsic::bswap)
364 return ReplaceInstUsesWith(CI, Operand->getOperand(1));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000365
Chris Lattner753a2b42010-01-05 07:32:13 +0000366 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
367 if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
368 if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
369 if (Operand->getIntrinsicID() == Intrinsic::bswap) {
370 unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
371 TI->getType()->getPrimitiveSizeInBits();
372 Value *CV = ConstantInt::get(Operand->getType(), C);
373 Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
374 return new TruncInst(V, TI->getType());
375 }
376 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000377
Chris Lattner753a2b42010-01-05 07:32:13 +0000378 break;
379 case Intrinsic::powi:
380 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
381 // powi(x, 0) -> 1.0
382 if (Power->isZero())
383 return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
384 // powi(x, 1) -> x
385 if (Power->isOne())
386 return ReplaceInstUsesWith(CI, II->getOperand(1));
387 // powi(x, -1) -> 1/x
388 if (Power->isAllOnesValue())
389 return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
390 II->getOperand(1));
391 }
392 break;
393 case Intrinsic::cttz: {
394 // If all bits below the first known one are known zero,
395 // this value is constant.
396 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
397 uint32_t BitWidth = IT->getBitWidth();
398 APInt KnownZero(BitWidth, 0);
399 APInt KnownOne(BitWidth, 0);
400 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
401 KnownZero, KnownOne);
402 unsigned TrailingZeros = KnownOne.countTrailingZeros();
403 APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
404 if ((Mask & KnownZero) == Mask)
405 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
406 APInt(BitWidth, TrailingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000407
Chris Lattner753a2b42010-01-05 07:32:13 +0000408 }
409 break;
410 case Intrinsic::ctlz: {
411 // If all bits above the first known one are known zero,
412 // this value is constant.
413 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
414 uint32_t BitWidth = IT->getBitWidth();
415 APInt KnownZero(BitWidth, 0);
416 APInt KnownOne(BitWidth, 0);
417 ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
418 KnownZero, KnownOne);
419 unsigned LeadingZeros = KnownOne.countLeadingZeros();
420 APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
421 if ((Mask & KnownZero) == Mask)
422 return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
423 APInt(BitWidth, LeadingZeros)));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000424
Chris Lattner753a2b42010-01-05 07:32:13 +0000425 }
426 break;
427 case Intrinsic::uadd_with_overflow: {
428 Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
429 const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
430 uint32_t BitWidth = IT->getBitWidth();
431 APInt Mask = APInt::getSignBit(BitWidth);
432 APInt LHSKnownZero(BitWidth, 0);
433 APInt LHSKnownOne(BitWidth, 0);
434 ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
435 bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
436 bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
437
438 if (LHSKnownNegative || LHSKnownPositive) {
439 APInt RHSKnownZero(BitWidth, 0);
440 APInt RHSKnownOne(BitWidth, 0);
441 ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
442 bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
443 bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
444 if (LHSKnownNegative && RHSKnownNegative) {
445 // The sign bit is set in both cases: this MUST overflow.
446 // Create a simple add instruction, and insert it into the struct.
447 Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
448 Worklist.Add(Add);
449 Constant *V[] = {
450 UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
451 };
452 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
453 return InsertValueInst::Create(Struct, Add, 0);
454 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000455
Chris Lattner753a2b42010-01-05 07:32:13 +0000456 if (LHSKnownPositive && RHSKnownPositive) {
457 // The sign bit is clear in both cases: this CANNOT overflow.
458 // Create a simple add instruction, and insert it into the struct.
459 Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
460 Worklist.Add(Add);
461 Constant *V[] = {
462 UndefValue::get(LHS->getType()),
463 ConstantInt::getFalse(II->getContext())
464 };
465 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
466 return InsertValueInst::Create(Struct, Add, 0);
467 }
468 }
469 }
470 // FALL THROUGH uadd into sadd
471 case Intrinsic::sadd_with_overflow:
472 // Canonicalize constants into the RHS.
473 if (isa<Constant>(II->getOperand(1)) &&
474 !isa<Constant>(II->getOperand(2))) {
475 Value *LHS = II->getOperand(1);
476 II->setOperand(1, II->getOperand(2));
477 II->setOperand(2, LHS);
478 return II;
479 }
480
481 // X + undef -> undef
482 if (isa<UndefValue>(II->getOperand(2)))
483 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000484
Chris Lattner753a2b42010-01-05 07:32:13 +0000485 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
486 // X + 0 -> {X, false}
487 if (RHS->isZero()) {
488 Constant *V[] = {
489 UndefValue::get(II->getOperand(0)->getType()),
490 ConstantInt::getFalse(II->getContext())
491 };
492 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
493 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
494 }
495 }
496 break;
497 case Intrinsic::usub_with_overflow:
498 case Intrinsic::ssub_with_overflow:
499 // undef - X -> undef
500 // X - undef -> undef
501 if (isa<UndefValue>(II->getOperand(1)) ||
502 isa<UndefValue>(II->getOperand(2)))
503 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000504
Chris Lattner753a2b42010-01-05 07:32:13 +0000505 if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
506 // X - 0 -> {X, false}
507 if (RHS->isZero()) {
508 Constant *V[] = {
509 UndefValue::get(II->getOperand(1)->getType()),
510 ConstantInt::getFalse(II->getContext())
511 };
512 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
513 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
514 }
515 }
516 break;
517 case Intrinsic::umul_with_overflow:
518 case Intrinsic::smul_with_overflow:
519 // Canonicalize constants into the RHS.
520 if (isa<Constant>(II->getOperand(1)) &&
521 !isa<Constant>(II->getOperand(2))) {
522 Value *LHS = II->getOperand(1);
523 II->setOperand(1, II->getOperand(2));
524 II->setOperand(2, LHS);
525 return II;
526 }
527
528 // X * undef -> undef
529 if (isa<UndefValue>(II->getOperand(2)))
530 return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000531
Chris Lattner753a2b42010-01-05 07:32:13 +0000532 if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
533 // X*0 -> {0, false}
534 if (RHSI->isZero())
535 return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000536
Chris Lattner753a2b42010-01-05 07:32:13 +0000537 // X * 1 -> {X, false}
538 if (RHSI->equalsInt(1)) {
539 Constant *V[] = {
540 UndefValue::get(II->getOperand(1)->getType()),
541 ConstantInt::getFalse(II->getContext())
542 };
543 Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
544 return InsertValueInst::Create(Struct, II->getOperand(1), 0);
545 }
546 }
547 break;
548 case Intrinsic::ppc_altivec_lvx:
549 case Intrinsic::ppc_altivec_lvxl:
550 case Intrinsic::x86_sse_loadu_ps:
551 case Intrinsic::x86_sse2_loadu_pd:
552 case Intrinsic::x86_sse2_loadu_dq:
553 // Turn PPC lvx -> load if the pointer is known aligned.
554 // Turn X86 loadups -> load if the pointer is known aligned.
555 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
556 Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
557 PointerType::getUnqual(II->getType()));
558 return new LoadInst(Ptr);
559 }
560 break;
561 case Intrinsic::ppc_altivec_stvx:
562 case Intrinsic::ppc_altivec_stvxl:
563 // Turn stvx -> store if the pointer is known aligned.
564 if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000565 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000566 PointerType::getUnqual(II->getOperand(1)->getType());
567 Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
568 return new StoreInst(II->getOperand(1), Ptr);
569 }
570 break;
571 case Intrinsic::x86_sse_storeu_ps:
572 case Intrinsic::x86_sse2_storeu_pd:
573 case Intrinsic::x86_sse2_storeu_dq:
574 // Turn X86 storeu -> store if the pointer is known aligned.
575 if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000576 const Type *OpPtrTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000577 PointerType::getUnqual(II->getOperand(2)->getType());
578 Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
579 return new StoreInst(II->getOperand(2), Ptr);
580 }
581 break;
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000582
Chris Lattner753a2b42010-01-05 07:32:13 +0000583 case Intrinsic::x86_sse_cvttss2si: {
584 // These intrinsics only demands the 0th element of its input vector. If
585 // we can simplify the input based on that, do so now.
586 unsigned VWidth =
587 cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
588 APInt DemandedElts(VWidth, 1);
589 APInt UndefElts(VWidth, 0);
590 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
591 UndefElts)) {
592 II->setOperand(1, V);
593 return II;
594 }
595 break;
596 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000597
Chris Lattner753a2b42010-01-05 07:32:13 +0000598 case Intrinsic::ppc_altivec_vperm:
599 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
600 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
601 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000602
Chris Lattner753a2b42010-01-05 07:32:13 +0000603 // Check that all of the elements are integer constants or undefs.
604 bool AllEltsOk = true;
605 for (unsigned i = 0; i != 16; ++i) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000606 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
Chris Lattner753a2b42010-01-05 07:32:13 +0000607 !isa<UndefValue>(Mask->getOperand(i))) {
608 AllEltsOk = false;
609 break;
610 }
611 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000612
Chris Lattner753a2b42010-01-05 07:32:13 +0000613 if (AllEltsOk) {
614 // Cast the input vectors to byte vectors.
615 Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
616 Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
617 Value *Result = UndefValue::get(Op0->getType());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000618
Chris Lattner753a2b42010-01-05 07:32:13 +0000619 // Only extract each element once.
620 Value *ExtractedElts[32];
621 memset(ExtractedElts, 0, sizeof(ExtractedElts));
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000622
Chris Lattner753a2b42010-01-05 07:32:13 +0000623 for (unsigned i = 0; i != 16; ++i) {
624 if (isa<UndefValue>(Mask->getOperand(i)))
625 continue;
626 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
627 Idx &= 31; // Match the hardware behavior.
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000628
Chris Lattner753a2b42010-01-05 07:32:13 +0000629 if (ExtractedElts[Idx] == 0) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000630 ExtractedElts[Idx] =
631 Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
Chris Lattner753a2b42010-01-05 07:32:13 +0000632 ConstantInt::get(Type::getInt32Ty(II->getContext()),
633 Idx&15, false), "tmp");
634 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000635
Chris Lattner753a2b42010-01-05 07:32:13 +0000636 // Insert this value into the result vector.
637 Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
638 ConstantInt::get(Type::getInt32Ty(II->getContext()),
639 i, false), "tmp");
640 }
641 return CastInst::Create(Instruction::BitCast, Result, CI.getType());
642 }
643 }
644 break;
645
646 case Intrinsic::stackrestore: {
647 // If the save is right next to the restore, remove the restore. This can
648 // happen when variable allocas are DCE'd.
649 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
650 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
651 BasicBlock::iterator BI = SS;
652 if (&*++BI == II)
653 return EraseInstFromFunction(CI);
654 }
655 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000656
Chris Lattner753a2b42010-01-05 07:32:13 +0000657 // Scan down this block to see if there is another stack restore in the
658 // same block without an intervening call/alloca.
659 BasicBlock::iterator BI = II;
660 TerminatorInst *TI = II->getParent()->getTerminator();
661 bool CannotRemove = false;
662 for (++BI; &*BI != TI; ++BI) {
663 if (isa<AllocaInst>(BI) || isMalloc(BI)) {
664 CannotRemove = true;
665 break;
666 }
667 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
668 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
669 // If there is a stackrestore below this one, remove this one.
670 if (II->getIntrinsicID() == Intrinsic::stackrestore)
671 return EraseInstFromFunction(CI);
672 // Otherwise, ignore the intrinsic.
673 } else {
674 // If we found a non-intrinsic call, we can't remove the stack
675 // restore.
676 CannotRemove = true;
677 break;
678 }
679 }
680 }
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000681
Chris Lattner753a2b42010-01-05 07:32:13 +0000682 // If the stack restore is in a return/unwind block and if there are no
683 // allocas or calls between the restore and the return, nuke the restore.
684 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
685 return EraseInstFromFunction(CI);
686 break;
687 }
Chris Lattner753a2b42010-01-05 07:32:13 +0000688 }
689
690 return visitCallSite(II);
691}
692
693// InvokeInst simplification
694//
695Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
696 return visitCallSite(&II);
697}
698
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000699/// isSafeToEliminateVarargsCast - If this cast does not affect the value
Chris Lattner753a2b42010-01-05 07:32:13 +0000700/// passed through the varargs area, we can eliminate the use of the cast.
701static bool isSafeToEliminateVarargsCast(const CallSite CS,
702 const CastInst * const CI,
703 const TargetData * const TD,
704 const int ix) {
705 if (!CI->isLosslessCast())
706 return false;
707
708 // The size of ByVal arguments is derived from the type, so we
709 // can't change to a type with a different size. If the size were
710 // passed explicitly we could avoid this check.
711 if (!CS.paramHasAttr(ix, Attribute::ByVal))
712 return true;
713
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000714 const Type* SrcTy =
Chris Lattner753a2b42010-01-05 07:32:13 +0000715 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
716 const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
717 if (!SrcTy->isSized() || !DstTy->isSized())
718 return false;
719 if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
720 return false;
721 return true;
722}
723
724// visitCallSite - Improvements for call and invoke instructions.
725//
726Instruction *InstCombiner::visitCallSite(CallSite CS) {
727 bool Changed = false;
728
729 // If the callee is a constexpr cast of a function, attempt to move the cast
730 // to the arguments of the call/invoke.
731 if (transformConstExprCastCall(CS)) return 0;
732
733 Value *Callee = CS.getCalledValue();
734
735 if (Function *CalleeF = dyn_cast<Function>(Callee))
Chris Lattnerd5695612010-02-01 18:11:34 +0000736 // If the call and callee calling conventions don't match, this call must
737 // be unreachable, as the call is undefined.
738 if (CalleeF->getCallingConv() != CS.getCallingConv() &&
739 // Only do this for calls to a function with a body. A prototype may
740 // not actually end up matching the implementation's calling conv for a
741 // variety of reasons (e.g. it may be written in assembly).
742 !CalleeF->isDeclaration()) {
Chris Lattner753a2b42010-01-05 07:32:13 +0000743 Instruction *OldCall = CS.getInstruction();
Chris Lattner753a2b42010-01-05 07:32:13 +0000744 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000745 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
Chris Lattner753a2b42010-01-05 07:32:13 +0000746 OldCall);
747 // If OldCall dues not return void then replaceAllUsesWith undef.
748 // This allows ValueHandlers and custom metadata to adjust itself.
749 if (!OldCall->getType()->isVoidTy())
750 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
Chris Lattner830f3f22010-02-01 18:04:58 +0000751 if (isa<CallInst>(OldCall))
Chris Lattner753a2b42010-01-05 07:32:13 +0000752 return EraseInstFromFunction(*OldCall);
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000753
Chris Lattner830f3f22010-02-01 18:04:58 +0000754 // We cannot remove an invoke, because it would change the CFG, just
755 // change the callee to a null pointer.
756 cast<InvokeInst>(OldCall)->setOperand(0,
757 Constant::getNullValue(CalleeF->getType()));
Chris Lattner753a2b42010-01-05 07:32:13 +0000758 return 0;
759 }
760
761 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
762 // This instruction is not reachable, just remove it. We insert a store to
763 // undef so that we know that this code is not reachable, despite the fact
764 // that we can't modify the CFG here.
765 new StoreInst(ConstantInt::getTrue(Callee->getContext()),
766 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
767 CS.getInstruction());
768
769 // If CS dues not return void then replaceAllUsesWith undef.
770 // This allows ValueHandlers and custom metadata to adjust itself.
771 if (!CS.getInstruction()->getType()->isVoidTy())
772 CS.getInstruction()->
773 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
774
775 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
776 // Don't break the CFG, insert a dummy cond branch.
777 BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
778 ConstantInt::getTrue(Callee->getContext()), II);
779 }
780 return EraseInstFromFunction(*CS.getInstruction());
781 }
782
783 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
784 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
785 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
786 return transformCallThroughTrampoline(CS);
787
788 const PointerType *PTy = cast<PointerType>(Callee->getType());
789 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
790 if (FTy->isVarArg()) {
791 int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
792 // See if we can optimize any arguments passed through the varargs area of
793 // the call.
794 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
795 E = CS.arg_end(); I != E; ++I, ++ix) {
796 CastInst *CI = dyn_cast<CastInst>(*I);
797 if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
798 *I = CI->getOperand(0);
799 Changed = true;
800 }
801 }
802 }
803
804 if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
805 // Inline asm calls cannot throw - mark them 'nounwind'.
806 CS.setDoesNotThrow();
807 Changed = true;
808 }
809
810 return Changed ? CS.getInstruction() : 0;
811}
812
813// transformConstExprCastCall - If the callee is a constexpr cast of a function,
814// attempt to move the cast to the arguments of the call/invoke.
815//
816bool InstCombiner::transformConstExprCastCall(CallSite CS) {
817 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
818 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000819 if (CE->getOpcode() != Instruction::BitCast ||
Chris Lattner753a2b42010-01-05 07:32:13 +0000820 !isa<Function>(CE->getOperand(0)))
821 return false;
822 Function *Callee = cast<Function>(CE->getOperand(0));
823 Instruction *Caller = CS.getInstruction();
824 const AttrListPtr &CallerPAL = CS.getAttributes();
825
826 // Okay, this is a cast from a function to a different type. Unless doing so
827 // would cause a type conversion of one of our arguments, change this call to
828 // be a direct call with arguments casted to the appropriate types.
829 //
830 const FunctionType *FT = Callee->getFunctionType();
831 const Type *OldRetTy = Caller->getType();
832 const Type *NewRetTy = FT->getReturnType();
833
834 if (isa<StructType>(NewRetTy))
835 return false; // TODO: Handle multiple return values.
836
837 // Check to see if we are changing the return type...
838 if (OldRetTy != NewRetTy) {
839 if (Callee->isDeclaration() &&
840 // Conversion is ok if changing from one pointer type to another or from
841 // a pointer to an integer of the same size.
842 !((isa<PointerType>(OldRetTy) || !TD ||
843 OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
844 (isa<PointerType>(NewRetTy) || !TD ||
845 NewRetTy == TD->getIntPtrType(Caller->getContext()))))
846 return false; // Cannot transform this return value.
847
848 if (!Caller->use_empty() &&
849 // void -> non-void is handled specially
850 !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
851 return false; // Cannot transform this return value.
852
853 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
854 Attributes RAttrs = CallerPAL.getRetAttributes();
855 if (RAttrs & Attribute::typeIncompatible(NewRetTy))
856 return false; // Attribute not compatible with transformed value.
857 }
858
859 // If the callsite is an invoke instruction, and the return value is used by
860 // a PHI node in a successor, we cannot change the return type of the call
861 // because there is no place to put the cast instruction (without breaking
862 // the critical edge). Bail out in this case.
863 if (!Caller->use_empty())
864 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
865 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
866 UI != E; ++UI)
867 if (PHINode *PN = dyn_cast<PHINode>(*UI))
868 if (PN->getParent() == II->getNormalDest() ||
869 PN->getParent() == II->getUnwindDest())
870 return false;
871 }
872
873 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
874 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
875
876 CallSite::arg_iterator AI = CS.arg_begin();
877 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
878 const Type *ParamTy = FT->getParamType(i);
879 const Type *ActTy = (*AI)->getType();
880
881 if (!CastInst::isCastable(ActTy, ParamTy))
882 return false; // Cannot transform this parameter value.
883
Eric Christopher0c6a8f92010-02-03 00:21:58 +0000884 if (CallerPAL.getParamAttributes(i + 1)
Chris Lattner753a2b42010-01-05 07:32:13 +0000885 & Attribute::typeIncompatible(ParamTy))
886 return false; // Attribute not compatible with transformed value.
887
888 // Converting from one pointer type to another or between a pointer and an
889 // integer of the same size is safe even if we do not have a body.
890 bool isConvertible = ActTy == ParamTy ||
891 (TD && ((isa<PointerType>(ParamTy) ||
892 ParamTy == TD->getIntPtrType(Caller->getContext())) &&
893 (isa<PointerType>(ActTy) ||
894 ActTy == TD->getIntPtrType(Caller->getContext()))));
895 if (Callee->isDeclaration() && !isConvertible) return false;
896 }
897
898 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
899 Callee->isDeclaration())
900 return false; // Do not delete arguments unless we have a function body.
901
902 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
903 !CallerPAL.isEmpty())
904 // In this case we have more arguments than the new function type, but we
905 // won't be dropping them. Check that these extra arguments have attributes
906 // that are compatible with being a vararg call argument.
907 for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
908 if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
909 break;
910 Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
911 if (PAttrs & Attribute::VarArgsIncompatible)
912 return false;
913 }
914
915 // Okay, we decided that this is a safe thing to do: go ahead and start
916 // inserting cast instructions as necessary...
917 std::vector<Value*> Args;
918 Args.reserve(NumActualArgs);
919 SmallVector<AttributeWithIndex, 8> attrVec;
920 attrVec.reserve(NumCommonArgs);
921
922 // Get any return attributes.
923 Attributes RAttrs = CallerPAL.getRetAttributes();
924
925 // If the return value is not being used, the type may not be compatible
926 // with the existing attributes. Wipe out any problematic attributes.
927 RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
928
929 // Add the new return attributes.
930 if (RAttrs)
931 attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
932
933 AI = CS.arg_begin();
934 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
935 const Type *ParamTy = FT->getParamType(i);
936 if ((*AI)->getType() == ParamTy) {
937 Args.push_back(*AI);
938 } else {
939 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
940 false, ParamTy, false);
941 Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
942 }
943
944 // Add any parameter attributes.
945 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
946 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
947 }
948
949 // If the function takes more arguments than the call was taking, add them
950 // now.
951 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
952 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
953
954 // If we are removing arguments to the function, emit an obnoxious warning.
955 if (FT->getNumParams() < NumActualArgs) {
956 if (!FT->isVarArg()) {
957 errs() << "WARNING: While resolving call to function '"
958 << Callee->getName() << "' arguments were dropped!\n";
959 } else {
960 // Add all of the arguments in their promoted form to the arg list.
961 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
962 const Type *PTy = getPromotedType((*AI)->getType());
963 if (PTy != (*AI)->getType()) {
964 // Must promote to pass through va_arg area!
965 Instruction::CastOps opcode =
966 CastInst::getCastOpcode(*AI, false, PTy, false);
967 Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
968 } else {
969 Args.push_back(*AI);
970 }
971
972 // Add any parameter attributes.
973 if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
974 attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
975 }
976 }
977 }
978
979 if (Attributes FnAttrs = CallerPAL.getFnAttributes())
980 attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
981
982 if (NewRetTy->isVoidTy())
983 Caller->setName(""); // Void type should not have a name.
984
985 const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
986 attrVec.end());
987
988 Instruction *NC;
989 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
990 NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
991 Args.begin(), Args.end(),
992 Caller->getName(), Caller);
993 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
994 cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
995 } else {
996 NC = CallInst::Create(Callee, Args.begin(), Args.end(),
997 Caller->getName(), Caller);
998 CallInst *CI = cast<CallInst>(Caller);
999 if (CI->isTailCall())
1000 cast<CallInst>(NC)->setTailCall();
1001 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
1002 cast<CallInst>(NC)->setAttributes(NewCallerPAL);
1003 }
1004
1005 // Insert a cast of the return type as necessary.
1006 Value *NV = NC;
1007 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
1008 if (!NV->getType()->isVoidTy()) {
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001009 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Chris Lattner753a2b42010-01-05 07:32:13 +00001010 OldRetTy, false);
1011 NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
1012
1013 // If this is an invoke instruction, we should insert it after the first
1014 // non-phi, instruction in the normal successor block.
1015 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1016 BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
1017 InsertNewInstBefore(NC, *I);
1018 } else {
1019 // Otherwise, it's a call, just insert cast right after the call instr
1020 InsertNewInstBefore(NC, *Caller);
1021 }
1022 Worklist.AddUsersToWorkList(*Caller);
1023 } else {
1024 NV = UndefValue::get(Caller->getType());
1025 }
1026 }
1027
1028
1029 if (!Caller->use_empty())
1030 Caller->replaceAllUsesWith(NV);
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001031
Chris Lattner753a2b42010-01-05 07:32:13 +00001032 EraseInstFromFunction(*Caller);
1033 return true;
1034}
1035
1036// transformCallThroughTrampoline - Turn a call to a function created by the
1037// init_trampoline intrinsic into a direct call to the underlying function.
1038//
1039Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
1040 Value *Callee = CS.getCalledValue();
1041 const PointerType *PTy = cast<PointerType>(Callee->getType());
1042 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1043 const AttrListPtr &Attrs = CS.getAttributes();
1044
1045 // If the call already has the 'nest' attribute somewhere then give up -
1046 // otherwise 'nest' would occur twice after splicing in the chain.
1047 if (Attrs.hasAttrSomewhere(Attribute::Nest))
1048 return 0;
1049
1050 IntrinsicInst *Tramp =
1051 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
1052
1053 Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
1054 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
1055 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
1056
1057 const AttrListPtr &NestAttrs = NestF->getAttributes();
1058 if (!NestAttrs.isEmpty()) {
1059 unsigned NestIdx = 1;
1060 const Type *NestTy = 0;
1061 Attributes NestAttr = Attribute::None;
1062
1063 // Look for a parameter marked with the 'nest' attribute.
1064 for (FunctionType::param_iterator I = NestFTy->param_begin(),
1065 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
1066 if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
1067 // Record the parameter type and any other attributes.
1068 NestTy = *I;
1069 NestAttr = NestAttrs.getParamAttributes(NestIdx);
1070 break;
1071 }
1072
1073 if (NestTy) {
1074 Instruction *Caller = CS.getInstruction();
1075 std::vector<Value*> NewArgs;
1076 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
1077
1078 SmallVector<AttributeWithIndex, 8> NewAttrs;
1079 NewAttrs.reserve(Attrs.getNumSlots() + 1);
1080
1081 // Insert the nest argument into the call argument list, which may
1082 // mean appending it. Likewise for attributes.
1083
1084 // Add any result attributes.
1085 if (Attributes Attr = Attrs.getRetAttributes())
1086 NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
1087
1088 {
1089 unsigned Idx = 1;
1090 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1091 do {
1092 if (Idx == NestIdx) {
1093 // Add the chain argument and attributes.
1094 Value *NestVal = Tramp->getOperand(3);
1095 if (NestVal->getType() != NestTy)
1096 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
1097 NewArgs.push_back(NestVal);
1098 NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
1099 }
1100
1101 if (I == E)
1102 break;
1103
1104 // Add the original argument and attributes.
1105 NewArgs.push_back(*I);
1106 if (Attributes Attr = Attrs.getParamAttributes(Idx))
1107 NewAttrs.push_back
1108 (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
1109
1110 ++Idx, ++I;
1111 } while (1);
1112 }
1113
1114 // Add any function attributes.
1115 if (Attributes Attr = Attrs.getFnAttributes())
1116 NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
1117
1118 // The trampoline may have been bitcast to a bogus type (FTy).
1119 // Handle this by synthesizing a new function type, equal to FTy
1120 // with the chain parameter inserted.
1121
1122 std::vector<const Type*> NewTypes;
1123 NewTypes.reserve(FTy->getNumParams()+1);
1124
1125 // Insert the chain's type into the list of parameter types, which may
1126 // mean appending it.
1127 {
1128 unsigned Idx = 1;
1129 FunctionType::param_iterator I = FTy->param_begin(),
1130 E = FTy->param_end();
1131
1132 do {
1133 if (Idx == NestIdx)
1134 // Add the chain's type.
1135 NewTypes.push_back(NestTy);
1136
1137 if (I == E)
1138 break;
1139
1140 // Add the original type.
1141 NewTypes.push_back(*I);
1142
1143 ++Idx, ++I;
1144 } while (1);
1145 }
1146
1147 // Replace the trampoline call with a direct call. Let the generic
1148 // code sort out any function type mismatches.
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001149 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
Chris Lattner753a2b42010-01-05 07:32:13 +00001150 FTy->isVarArg());
1151 Constant *NewCallee =
1152 NestF->getType() == PointerType::getUnqual(NewFTy) ?
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001153 NestF : ConstantExpr::getBitCast(NestF,
Chris Lattner753a2b42010-01-05 07:32:13 +00001154 PointerType::getUnqual(NewFTy));
1155 const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
1156 NewAttrs.end());
1157
1158 Instruction *NewCaller;
1159 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
1160 NewCaller = InvokeInst::Create(NewCallee,
1161 II->getNormalDest(), II->getUnwindDest(),
1162 NewArgs.begin(), NewArgs.end(),
1163 Caller->getName(), Caller);
1164 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
1165 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
1166 } else {
1167 NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
1168 Caller->getName(), Caller);
1169 if (cast<CallInst>(Caller)->isTailCall())
1170 cast<CallInst>(NewCaller)->setTailCall();
1171 cast<CallInst>(NewCaller)->
1172 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
1173 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
1174 }
1175 if (!Caller->getType()->isVoidTy())
1176 Caller->replaceAllUsesWith(NewCaller);
1177 Caller->eraseFromParent();
1178 Worklist.Remove(Caller);
1179 return 0;
1180 }
1181 }
1182
1183 // Replace the trampoline call with a direct call. Since there is no 'nest'
1184 // parameter, there is no need to adjust the argument list. Let the generic
1185 // code sort out any function type mismatches.
1186 Constant *NewCallee =
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001187 NestF->getType() == PTy ? NestF :
Chris Lattner753a2b42010-01-05 07:32:13 +00001188 ConstantExpr::getBitCast(NestF, PTy);
1189 CS.setCalledFunction(NewCallee);
1190 return CS.getInstruction();
1191}
Eric Christopher0c6a8f92010-02-03 00:21:58 +00001192