Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
Chris Lattner | 081ce94 | 2007-12-29 20:36:04 +0000 | [diff] [blame] | 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This transformation analyzes and transforms the induction variables (and |
| 11 | // computations derived from them) into simpler forms suitable for subsequent |
| 12 | // analysis and transformation. |
| 13 | // |
| 14 | // This transformation makes the following changes to each loop with an |
| 15 | // identifiable induction variable: |
| 16 | // 1. All loops are transformed to have a SINGLE canonical induction variable |
| 17 | // which starts at zero and steps by one. |
| 18 | // 2. The canonical induction variable is guaranteed to be the first PHI node |
| 19 | // in the loop header block. |
| 20 | // 3. Any pointer arithmetic recurrences are raised to use array subscripts. |
| 21 | // |
| 22 | // If the trip count of a loop is computable, this pass also makes the following |
| 23 | // changes: |
| 24 | // 1. The exit condition for the loop is canonicalized to compare the |
| 25 | // induction value against the exit value. This turns loops like: |
| 26 | // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' |
| 27 | // 2. Any use outside of the loop of an expression derived from the indvar |
| 28 | // is changed to compute the derived value outside of the loop, eliminating |
| 29 | // the dependence on the exit value of the induction variable. If the only |
| 30 | // purpose of the loop is to compute the exit value of some derived |
| 31 | // expression, this transformation will make the loop dead. |
| 32 | // |
| 33 | // This transformation should be followed by strength reduction after all of the |
| 34 | // desired loop transformations have been performed. Additionally, on targets |
| 35 | // where it is profitable, the loop could be transformed to count down to zero |
| 36 | // (the "do loop" optimization). |
| 37 | // |
| 38 | //===----------------------------------------------------------------------===// |
| 39 | |
| 40 | #define DEBUG_TYPE "indvars" |
| 41 | #include "llvm/Transforms/Scalar.h" |
| 42 | #include "llvm/BasicBlock.h" |
| 43 | #include "llvm/Constants.h" |
| 44 | #include "llvm/Instructions.h" |
| 45 | #include "llvm/Type.h" |
| 46 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| 47 | #include "llvm/Analysis/LoopInfo.h" |
| 48 | #include "llvm/Analysis/LoopPass.h" |
| 49 | #include "llvm/Support/CFG.h" |
| 50 | #include "llvm/Support/Compiler.h" |
| 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 53 | #include "llvm/Transforms/Utils/Local.h" |
| 54 | #include "llvm/Support/CommandLine.h" |
| 55 | #include "llvm/ADT/SmallVector.h" |
| 56 | #include "llvm/ADT/Statistic.h" |
| 57 | using namespace llvm; |
| 58 | |
| 59 | STATISTIC(NumRemoved , "Number of aux indvars removed"); |
| 60 | STATISTIC(NumPointer , "Number of pointer indvars promoted"); |
| 61 | STATISTIC(NumInserted, "Number of canonical indvars added"); |
| 62 | STATISTIC(NumReplaced, "Number of exit values replaced"); |
| 63 | STATISTIC(NumLFTR , "Number of loop exit tests replaced"); |
| 64 | |
| 65 | namespace { |
| 66 | class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass { |
| 67 | LoopInfo *LI; |
| 68 | ScalarEvolution *SE; |
| 69 | bool Changed; |
| 70 | public: |
| 71 | |
| 72 | static char ID; // Pass identification, replacement for typeid |
Dan Gohman | 26f8c27 | 2008-09-04 17:05:41 +0000 | [diff] [blame] | 73 | IndVarSimplify() : LoopPass(&ID) {} |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 74 | |
| 75 | bool runOnLoop(Loop *L, LPPassManager &LPM); |
| 76 | bool doInitialization(Loop *L, LPPassManager &LPM); |
| 77 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
Devang Patel | e6a8d48 | 2007-09-10 18:08:23 +0000 | [diff] [blame] | 78 | AU.addRequired<ScalarEvolution>(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 79 | AU.addRequiredID(LCSSAID); |
| 80 | AU.addRequiredID(LoopSimplifyID); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 81 | AU.addRequired<LoopInfo>(); |
| 82 | AU.addPreservedID(LoopSimplifyID); |
| 83 | AU.addPreservedID(LCSSAID); |
| 84 | AU.setPreservesCFG(); |
| 85 | } |
| 86 | |
| 87 | private: |
| 88 | |
| 89 | void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader, |
| 90 | std::set<Instruction*> &DeadInsts); |
| 91 | Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount, |
| 92 | SCEVExpander &RW); |
Dan Gohman | d8dc3bb | 2008-08-05 22:34:21 +0000 | [diff] [blame] | 93 | void RewriteLoopExitValues(Loop *L, SCEV *IterationCount); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 94 | |
| 95 | void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts); |
Devang Patel | bda4380 | 2008-09-09 21:41:07 +0000 | [diff] [blame] | 96 | |
| 97 | void OptimizeCanonicalIVType(Loop *L); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 98 | }; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 99 | } |
| 100 | |
Dan Gohman | 089efff | 2008-05-13 00:00:25 +0000 | [diff] [blame] | 101 | char IndVarSimplify::ID = 0; |
| 102 | static RegisterPass<IndVarSimplify> |
| 103 | X("indvars", "Canonicalize Induction Variables"); |
| 104 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 105 | LoopPass *llvm::createIndVarSimplifyPass() { |
| 106 | return new IndVarSimplify(); |
| 107 | } |
| 108 | |
| 109 | /// DeleteTriviallyDeadInstructions - If any of the instructions is the |
| 110 | /// specified set are trivially dead, delete them and see if this makes any of |
| 111 | /// their operands subsequently dead. |
| 112 | void IndVarSimplify:: |
| 113 | DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) { |
| 114 | while (!Insts.empty()) { |
| 115 | Instruction *I = *Insts.begin(); |
| 116 | Insts.erase(Insts.begin()); |
| 117 | if (isInstructionTriviallyDead(I)) { |
| 118 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| 119 | if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i))) |
| 120 | Insts.insert(U); |
| 121 | SE->deleteValueFromRecords(I); |
| 122 | DOUT << "INDVARS: Deleting: " << *I; |
| 123 | I->eraseFromParent(); |
| 124 | Changed = true; |
| 125 | } |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | |
| 130 | /// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer |
| 131 | /// recurrence. If so, change it into an integer recurrence, permitting |
| 132 | /// analysis by the SCEV routines. |
| 133 | void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, |
| 134 | BasicBlock *Preheader, |
| 135 | std::set<Instruction*> &DeadInsts) { |
| 136 | assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!"); |
| 137 | unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader); |
| 138 | unsigned BackedgeIdx = PreheaderIdx^1; |
| 139 | if (GetElementPtrInst *GEPI = |
| 140 | dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx))) |
| 141 | if (GEPI->getOperand(0) == PN) { |
| 142 | assert(GEPI->getNumOperands() == 2 && "GEP types must match!"); |
| 143 | DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI; |
| 144 | |
| 145 | // Okay, we found a pointer recurrence. Transform this pointer |
| 146 | // recurrence into an integer recurrence. Compute the value that gets |
| 147 | // added to the pointer at every iteration. |
| 148 | Value *AddedVal = GEPI->getOperand(1); |
| 149 | |
| 150 | // Insert a new integer PHI node into the top of the block. |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 151 | PHINode *NewPhi = PHINode::Create(AddedVal->getType(), |
| 152 | PN->getName()+".rec", PN); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 153 | NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader); |
| 154 | |
| 155 | // Create the new add instruction. |
Gabor Greif | a645dd3 | 2008-05-16 19:29:10 +0000 | [diff] [blame] | 156 | Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal, |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 157 | GEPI->getName()+".rec", GEPI); |
| 158 | NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx)); |
| 159 | |
| 160 | // Update the existing GEP to use the recurrence. |
| 161 | GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx)); |
| 162 | |
| 163 | // Update the GEP to use the new recurrence we just inserted. |
| 164 | GEPI->setOperand(1, NewAdd); |
| 165 | |
| 166 | // If the incoming value is a constant expr GEP, try peeling out the array |
| 167 | // 0 index if possible to make things simpler. |
| 168 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0))) |
| 169 | if (CE->getOpcode() == Instruction::GetElementPtr) { |
| 170 | unsigned NumOps = CE->getNumOperands(); |
| 171 | assert(NumOps > 1 && "CE folding didn't work!"); |
| 172 | if (CE->getOperand(NumOps-1)->isNullValue()) { |
| 173 | // Check to make sure the last index really is an array index. |
| 174 | gep_type_iterator GTI = gep_type_begin(CE); |
| 175 | for (unsigned i = 1, e = CE->getNumOperands()-1; |
| 176 | i != e; ++i, ++GTI) |
| 177 | /*empty*/; |
| 178 | if (isa<SequentialType>(*GTI)) { |
| 179 | // Pull the last index out of the constant expr GEP. |
| 180 | SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1); |
| 181 | Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0), |
| 182 | &CEIdxs[0], |
| 183 | CEIdxs.size()); |
David Greene | 393be88 | 2007-09-04 15:46:09 +0000 | [diff] [blame] | 184 | Value *Idx[2]; |
| 185 | Idx[0] = Constant::getNullValue(Type::Int32Ty); |
| 186 | Idx[1] = NewAdd; |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 187 | GetElementPtrInst *NGEPI = GetElementPtrInst::Create( |
David Greene | 393be88 | 2007-09-04 15:46:09 +0000 | [diff] [blame] | 188 | NCE, Idx, Idx + 2, |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 189 | GEPI->getName(), GEPI); |
| 190 | SE->deleteValueFromRecords(GEPI); |
| 191 | GEPI->replaceAllUsesWith(NGEPI); |
| 192 | GEPI->eraseFromParent(); |
| 193 | GEPI = NGEPI; |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | |
| 199 | // Finally, if there are any other users of the PHI node, we must |
| 200 | // insert a new GEP instruction that uses the pre-incremented version |
| 201 | // of the induction amount. |
| 202 | if (!PN->use_empty()) { |
| 203 | BasicBlock::iterator InsertPos = PN; ++InsertPos; |
| 204 | while (isa<PHINode>(InsertPos)) ++InsertPos; |
| 205 | Value *PreInc = |
Gabor Greif | d6da1d0 | 2008-04-06 20:25:17 +0000 | [diff] [blame] | 206 | GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx), |
| 207 | NewPhi, "", InsertPos); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 208 | PreInc->takeName(PN); |
| 209 | PN->replaceAllUsesWith(PreInc); |
| 210 | } |
| 211 | |
| 212 | // Delete the old PHI for sure, and the GEP if its otherwise unused. |
| 213 | DeadInsts.insert(PN); |
| 214 | |
| 215 | ++NumPointer; |
| 216 | Changed = true; |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | /// LinearFunctionTestReplace - This method rewrites the exit condition of the |
| 221 | /// loop to be a canonical != comparison against the incremented loop induction |
| 222 | /// variable. This pass is able to rewrite the exit tests of any loop where the |
| 223 | /// SCEV analysis can determine a loop-invariant trip count of the loop, which |
| 224 | /// is actually a much broader range than just linear tests. |
| 225 | /// |
| 226 | /// This method returns a "potentially dead" instruction whose computation chain |
| 227 | /// should be deleted when convenient. |
| 228 | Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L, |
| 229 | SCEV *IterationCount, |
| 230 | SCEVExpander &RW) { |
| 231 | // Find the exit block for the loop. We can currently only handle loops with |
| 232 | // a single exit. |
Devang Patel | 02451fa | 2007-08-21 00:31:24 +0000 | [diff] [blame] | 233 | SmallVector<BasicBlock*, 8> ExitBlocks; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 234 | L->getExitBlocks(ExitBlocks); |
| 235 | if (ExitBlocks.size() != 1) return 0; |
| 236 | BasicBlock *ExitBlock = ExitBlocks[0]; |
| 237 | |
| 238 | // Make sure there is only one predecessor block in the loop. |
| 239 | BasicBlock *ExitingBlock = 0; |
| 240 | for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); |
| 241 | PI != PE; ++PI) |
| 242 | if (L->contains(*PI)) { |
| 243 | if (ExitingBlock == 0) |
| 244 | ExitingBlock = *PI; |
| 245 | else |
| 246 | return 0; // Multiple exits from loop to this block. |
| 247 | } |
| 248 | assert(ExitingBlock && "Loop info is broken"); |
| 249 | |
| 250 | if (!isa<BranchInst>(ExitingBlock->getTerminator())) |
| 251 | return 0; // Can't rewrite non-branch yet |
| 252 | BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator()); |
| 253 | assert(BI->isConditional() && "Must be conditional to be part of loop!"); |
| 254 | |
| 255 | Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition()); |
| 256 | |
| 257 | // If the exiting block is not the same as the backedge block, we must compare |
| 258 | // against the preincremented value, otherwise we prefer to compare against |
| 259 | // the post-incremented value. |
| 260 | BasicBlock *Header = L->getHeader(); |
| 261 | pred_iterator HPI = pred_begin(Header); |
| 262 | assert(HPI != pred_end(Header) && "Loop with zero preds???"); |
| 263 | if (!L->contains(*HPI)) ++HPI; |
| 264 | assert(HPI != pred_end(Header) && L->contains(*HPI) && |
| 265 | "No backedge in loop?"); |
| 266 | |
| 267 | SCEVHandle TripCount = IterationCount; |
| 268 | Value *IndVar; |
| 269 | if (*HPI == ExitingBlock) { |
| 270 | // The IterationCount expression contains the number of times that the |
| 271 | // backedge actually branches to the loop header. This is one less than the |
| 272 | // number of times the loop executes, so add one to it. |
| 273 | ConstantInt *OneC = ConstantInt::get(IterationCount->getType(), 1); |
Dan Gohman | 89f8505 | 2007-10-22 18:31:58 +0000 | [diff] [blame] | 274 | TripCount = SE->getAddExpr(IterationCount, SE->getConstant(OneC)); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 275 | IndVar = L->getCanonicalInductionVariableIncrement(); |
| 276 | } else { |
| 277 | // We have to use the preincremented value... |
| 278 | IndVar = L->getCanonicalInductionVariable(); |
| 279 | } |
| 280 | |
| 281 | DOUT << "INDVARS: LFTR: TripCount = " << *TripCount |
| 282 | << " IndVar = " << *IndVar << "\n"; |
| 283 | |
| 284 | // Expand the code for the iteration count into the preheader of the loop. |
| 285 | BasicBlock *Preheader = L->getLoopPreheader(); |
| 286 | Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator()); |
| 287 | |
| 288 | // Insert a new icmp_ne or icmp_eq instruction before the branch. |
| 289 | ICmpInst::Predicate Opcode; |
| 290 | if (L->contains(BI->getSuccessor(0))) |
| 291 | Opcode = ICmpInst::ICMP_NE; |
| 292 | else |
| 293 | Opcode = ICmpInst::ICMP_EQ; |
| 294 | |
| 295 | Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI); |
| 296 | BI->setCondition(Cond); |
| 297 | ++NumLFTR; |
| 298 | Changed = true; |
| 299 | return PotentiallyDeadInst; |
| 300 | } |
| 301 | |
| 302 | |
| 303 | /// RewriteLoopExitValues - Check to see if this loop has a computable |
| 304 | /// loop-invariant execution count. If so, this means that we can compute the |
| 305 | /// final value of any expressions that are recurrent in the loop, and |
| 306 | /// substitute the exit values from the loop into any instructions outside of |
| 307 | /// the loop that use the final values of the current expressions. |
Dan Gohman | d8dc3bb | 2008-08-05 22:34:21 +0000 | [diff] [blame] | 308 | void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 309 | BasicBlock *Preheader = L->getLoopPreheader(); |
| 310 | |
| 311 | // Scan all of the instructions in the loop, looking at those that have |
| 312 | // extra-loop users and which are recurrences. |
| 313 | SCEVExpander Rewriter(*SE, *LI); |
| 314 | |
| 315 | // We insert the code into the preheader of the loop if the loop contains |
| 316 | // multiple exit blocks, or in the exit block if there is exactly one. |
| 317 | BasicBlock *BlockToInsertInto; |
Devang Patel | 02451fa | 2007-08-21 00:31:24 +0000 | [diff] [blame] | 318 | SmallVector<BasicBlock*, 8> ExitBlocks; |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 319 | L->getUniqueExitBlocks(ExitBlocks); |
| 320 | if (ExitBlocks.size() == 1) |
| 321 | BlockToInsertInto = ExitBlocks[0]; |
| 322 | else |
| 323 | BlockToInsertInto = Preheader; |
Dan Gohman | 514277c | 2008-05-23 21:05:58 +0000 | [diff] [blame] | 324 | BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 325 | |
Dan Gohman | d8dc3bb | 2008-08-05 22:34:21 +0000 | [diff] [blame] | 326 | bool HasConstantItCount = isa<SCEVConstant>(IterationCount); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 327 | |
| 328 | std::set<Instruction*> InstructionsToDelete; |
| 329 | std::map<Instruction*, Value*> ExitValues; |
| 330 | |
| 331 | // Find all values that are computed inside the loop, but used outside of it. |
| 332 | // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan |
| 333 | // the exit blocks of the loop to find them. |
| 334 | for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { |
| 335 | BasicBlock *ExitBB = ExitBlocks[i]; |
| 336 | |
| 337 | // If there are no PHI nodes in this exit block, then no values defined |
| 338 | // inside the loop are used on this path, skip it. |
| 339 | PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); |
| 340 | if (!PN) continue; |
| 341 | |
| 342 | unsigned NumPreds = PN->getNumIncomingValues(); |
| 343 | |
| 344 | // Iterate over all of the PHI nodes. |
| 345 | BasicBlock::iterator BBI = ExitBB->begin(); |
| 346 | while ((PN = dyn_cast<PHINode>(BBI++))) { |
| 347 | |
| 348 | // Iterate over all of the values in all the PHI nodes. |
| 349 | for (unsigned i = 0; i != NumPreds; ++i) { |
| 350 | // If the value being merged in is not integer or is not defined |
| 351 | // in the loop, skip it. |
| 352 | Value *InVal = PN->getIncomingValue(i); |
| 353 | if (!isa<Instruction>(InVal) || |
| 354 | // SCEV only supports integer expressions for now. |
| 355 | !isa<IntegerType>(InVal->getType())) |
| 356 | continue; |
| 357 | |
| 358 | // If this pred is for a subloop, not L itself, skip it. |
| 359 | if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) |
| 360 | continue; // The Block is in a subloop, skip it. |
| 361 | |
| 362 | // Check that InVal is defined in the loop. |
| 363 | Instruction *Inst = cast<Instruction>(InVal); |
| 364 | if (!L->contains(Inst->getParent())) |
| 365 | continue; |
| 366 | |
| 367 | // We require that this value either have a computable evolution or that |
| 368 | // the loop have a constant iteration count. In the case where the loop |
| 369 | // has a constant iteration count, we can sometimes force evaluation of |
| 370 | // the exit value through brute force. |
| 371 | SCEVHandle SH = SE->getSCEV(Inst); |
| 372 | if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount) |
| 373 | continue; // Cannot get exit evolution for the loop value. |
| 374 | |
| 375 | // Okay, this instruction has a user outside of the current loop |
| 376 | // and varies predictably *inside* the loop. Evaluate the value it |
| 377 | // contains when the loop exits, if possible. |
| 378 | SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); |
| 379 | if (isa<SCEVCouldNotCompute>(ExitValue) || |
| 380 | !ExitValue->isLoopInvariant(L)) |
| 381 | continue; |
| 382 | |
| 383 | Changed = true; |
| 384 | ++NumReplaced; |
| 385 | |
| 386 | // See if we already computed the exit value for the instruction, if so, |
| 387 | // just reuse it. |
| 388 | Value *&ExitVal = ExitValues[Inst]; |
| 389 | if (!ExitVal) |
| 390 | ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt); |
| 391 | |
| 392 | DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal |
| 393 | << " LoopVal = " << *Inst << "\n"; |
| 394 | |
| 395 | PN->setIncomingValue(i, ExitVal); |
| 396 | |
| 397 | // If this instruction is dead now, schedule it to be removed. |
| 398 | if (Inst->use_empty()) |
| 399 | InstructionsToDelete.insert(Inst); |
| 400 | |
| 401 | // See if this is a single-entry LCSSA PHI node. If so, we can (and |
| 402 | // have to) remove |
| 403 | // the PHI entirely. This is safe, because the NewVal won't be variant |
| 404 | // in the loop, so we don't need an LCSSA phi node anymore. |
| 405 | if (NumPreds == 1) { |
| 406 | SE->deleteValueFromRecords(PN); |
| 407 | PN->replaceAllUsesWith(ExitVal); |
| 408 | PN->eraseFromParent(); |
| 409 | break; |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | DeleteTriviallyDeadInstructions(InstructionsToDelete); |
| 416 | } |
| 417 | |
| 418 | bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) { |
| 419 | |
| 420 | Changed = false; |
| 421 | // First step. Check to see if there are any trivial GEP pointer recurrences. |
| 422 | // If there are, change them into integer recurrences, permitting analysis by |
| 423 | // the SCEV routines. |
| 424 | // |
| 425 | BasicBlock *Header = L->getHeader(); |
| 426 | BasicBlock *Preheader = L->getLoopPreheader(); |
| 427 | SE = &LPM.getAnalysis<ScalarEvolution>(); |
| 428 | |
| 429 | std::set<Instruction*> DeadInsts; |
| 430 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| 431 | PHINode *PN = cast<PHINode>(I); |
| 432 | if (isa<PointerType>(PN->getType())) |
| 433 | EliminatePointerRecurrence(PN, Preheader, DeadInsts); |
| 434 | } |
| 435 | |
| 436 | if (!DeadInsts.empty()) |
| 437 | DeleteTriviallyDeadInstructions(DeadInsts); |
| 438 | |
| 439 | return Changed; |
| 440 | } |
| 441 | |
| 442 | bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { |
| 443 | |
| 444 | |
| 445 | LI = &getAnalysis<LoopInfo>(); |
| 446 | SE = &getAnalysis<ScalarEvolution>(); |
| 447 | |
| 448 | Changed = false; |
| 449 | BasicBlock *Header = L->getHeader(); |
| 450 | std::set<Instruction*> DeadInsts; |
| 451 | |
| 452 | // Verify the input to the pass in already in LCSSA form. |
| 453 | assert(L->isLCSSAForm()); |
| 454 | |
| 455 | // Check to see if this loop has a computable loop-invariant execution count. |
| 456 | // If so, this means that we can compute the final value of any expressions |
| 457 | // that are recurrent in the loop, and substitute the exit values from the |
| 458 | // loop into any instructions outside of the loop that use the final values of |
| 459 | // the current expressions. |
| 460 | // |
| 461 | SCEVHandle IterationCount = SE->getIterationCount(L); |
| 462 | if (!isa<SCEVCouldNotCompute>(IterationCount)) |
Dan Gohman | d8dc3bb | 2008-08-05 22:34:21 +0000 | [diff] [blame] | 463 | RewriteLoopExitValues(L, IterationCount); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 464 | |
| 465 | // Next, analyze all of the induction variables in the loop, canonicalizing |
| 466 | // auxillary induction variables. |
| 467 | std::vector<std::pair<PHINode*, SCEVHandle> > IndVars; |
| 468 | |
| 469 | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| 470 | PHINode *PN = cast<PHINode>(I); |
| 471 | if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable! |
| 472 | SCEVHandle SCEV = SE->getSCEV(PN); |
| 473 | if (SCEV->hasComputableLoopEvolution(L)) |
| 474 | // FIXME: It is an extremely bad idea to indvar substitute anything more |
| 475 | // complex than affine induction variables. Doing so will put expensive |
| 476 | // polynomial evaluations inside of the loop, and the str reduction pass |
| 477 | // currently can only reduce affine polynomials. For now just disable |
| 478 | // indvar subst on anything more complex than an affine addrec. |
| 479 | if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV)) |
| 480 | if (AR->isAffine()) |
| 481 | IndVars.push_back(std::make_pair(PN, SCEV)); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | // If there are no induction variables in the loop, there is nothing more to |
| 486 | // do. |
| 487 | if (IndVars.empty()) { |
| 488 | // Actually, if we know how many times the loop iterates, lets insert a |
| 489 | // canonical induction variable to help subsequent passes. |
| 490 | if (!isa<SCEVCouldNotCompute>(IterationCount)) { |
| 491 | SCEVExpander Rewriter(*SE, *LI); |
| 492 | Rewriter.getOrInsertCanonicalInductionVariable(L, |
| 493 | IterationCount->getType()); |
| 494 | if (Instruction *I = LinearFunctionTestReplace(L, IterationCount, |
| 495 | Rewriter)) { |
| 496 | std::set<Instruction*> InstructionsToDelete; |
| 497 | InstructionsToDelete.insert(I); |
| 498 | DeleteTriviallyDeadInstructions(InstructionsToDelete); |
| 499 | } |
| 500 | } |
| 501 | return Changed; |
| 502 | } |
| 503 | |
| 504 | // Compute the type of the largest recurrence expression. |
| 505 | // |
| 506 | const Type *LargestType = IndVars[0].first->getType(); |
| 507 | bool DifferingSizes = false; |
| 508 | for (unsigned i = 1, e = IndVars.size(); i != e; ++i) { |
| 509 | const Type *Ty = IndVars[i].first->getType(); |
| 510 | DifferingSizes |= |
| 511 | Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits(); |
| 512 | if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits()) |
| 513 | LargestType = Ty; |
| 514 | } |
| 515 | |
| 516 | // Create a rewriter object which we'll use to transform the code with. |
| 517 | SCEVExpander Rewriter(*SE, *LI); |
| 518 | |
| 519 | // Now that we know the largest of of the induction variables in this loop, |
| 520 | // insert a canonical induction variable of the largest size. |
| 521 | Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType); |
| 522 | ++NumInserted; |
| 523 | Changed = true; |
| 524 | DOUT << "INDVARS: New CanIV: " << *IndVar; |
| 525 | |
| 526 | if (!isa<SCEVCouldNotCompute>(IterationCount)) { |
Wojciech Matyjewicz | c561c13 | 2008-06-13 17:02:03 +0000 | [diff] [blame] | 527 | IterationCount = SE->getTruncateOrZeroExtend(IterationCount, LargestType); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 528 | if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter)) |
| 529 | DeadInsts.insert(DI); |
| 530 | } |
| 531 | |
| 532 | // Now that we have a canonical induction variable, we can rewrite any |
| 533 | // recurrences in terms of the induction variable. Start with the auxillary |
| 534 | // induction variables, and recursively rewrite any of their uses. |
Dan Gohman | 514277c | 2008-05-23 21:05:58 +0000 | [diff] [blame] | 535 | BasicBlock::iterator InsertPt = Header->getFirstNonPHI(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 536 | |
| 537 | // If there were induction variables of other sizes, cast the primary |
| 538 | // induction variable to the right size for them, avoiding the need for the |
| 539 | // code evaluation methods to insert induction variables of different sizes. |
| 540 | if (DifferingSizes) { |
| 541 | SmallVector<unsigned,4> InsertedSizes; |
| 542 | InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits()); |
| 543 | for (unsigned i = 0, e = IndVars.size(); i != e; ++i) { |
| 544 | unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits(); |
| 545 | if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize) |
| 546 | == InsertedSizes.end()) { |
| 547 | PHINode *PN = IndVars[i].first; |
| 548 | InsertedSizes.push_back(ithSize); |
| 549 | Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar", |
| 550 | InsertPt); |
| 551 | Rewriter.addInsertedValue(New, SE->getSCEV(New)); |
| 552 | DOUT << "INDVARS: Made trunc IV for " << *PN |
| 553 | << " NewVal = " << *New << "\n"; |
| 554 | } |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | // Rewrite all induction variables in terms of the canonical induction |
| 559 | // variable. |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 560 | while (!IndVars.empty()) { |
| 561 | PHINode *PN = IndVars.back().first; |
| 562 | Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt); |
| 563 | DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN |
| 564 | << " into = " << *NewVal << "\n"; |
| 565 | NewVal->takeName(PN); |
| 566 | |
| 567 | // Replace the old PHI Node with the inserted computation. |
| 568 | PN->replaceAllUsesWith(NewVal); |
| 569 | DeadInsts.insert(PN); |
| 570 | IndVars.pop_back(); |
| 571 | ++NumRemoved; |
| 572 | Changed = true; |
| 573 | } |
| 574 | |
| 575 | #if 0 |
| 576 | // Now replace all derived expressions in the loop body with simpler |
| 577 | // expressions. |
Dan Gohman | 4d2e8ae | 2008-06-22 20:18:58 +0000 | [diff] [blame] | 578 | for (LoopInfo::block_iterator I = L->block_begin(), E = L->block_end(); |
| 579 | I != E; ++I) { |
| 580 | BasicBlock *BB = *I; |
| 581 | if (LI->getLoopFor(BB) == L) { // Not in a subloop... |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 582 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| 583 | if (I->getType()->isInteger() && // Is an integer instruction |
| 584 | !I->use_empty() && |
| 585 | !Rewriter.isInsertedInstruction(I)) { |
| 586 | SCEVHandle SH = SE->getSCEV(I); |
| 587 | Value *V = Rewriter.expandCodeFor(SH, I, I->getType()); |
| 588 | if (V != I) { |
| 589 | if (isa<Instruction>(V)) |
| 590 | V->takeName(I); |
| 591 | I->replaceAllUsesWith(V); |
| 592 | DeadInsts.insert(I); |
| 593 | ++NumRemoved; |
| 594 | Changed = true; |
| 595 | } |
| 596 | } |
| 597 | } |
Dan Gohman | 4d2e8ae | 2008-06-22 20:18:58 +0000 | [diff] [blame] | 598 | } |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 599 | #endif |
| 600 | |
| 601 | DeleteTriviallyDeadInstructions(DeadInsts); |
Devang Patel | bda4380 | 2008-09-09 21:41:07 +0000 | [diff] [blame] | 602 | OptimizeCanonicalIVType(L); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 603 | assert(L->isLCSSAForm()); |
| 604 | return Changed; |
| 605 | } |
Devang Patel | bda4380 | 2008-09-09 21:41:07 +0000 | [diff] [blame] | 606 | |
| 607 | /// OptimizeCanonicalIVType - If loop induction variable is always |
Devang Patel | 7c9fc2a | 2008-09-10 14:49:55 +0000 | [diff] [blame^] | 608 | /// sign or zero extended then extend the type of the induction |
Devang Patel | bda4380 | 2008-09-09 21:41:07 +0000 | [diff] [blame] | 609 | /// variable. |
| 610 | void IndVarSimplify::OptimizeCanonicalIVType(Loop *L) { |
| 611 | PHINode *PH = L->getCanonicalInductionVariable(); |
| 612 | if (!PH) return; |
| 613 | |
| 614 | // Check loop iteration count. |
| 615 | SCEVHandle IC = SE->getIterationCount(L); |
| 616 | if (isa<SCEVCouldNotCompute>(IC)) return; |
| 617 | SCEVConstant *IterationCount = dyn_cast<SCEVConstant>(IC); |
| 618 | if (!IterationCount) return; |
| 619 | |
| 620 | unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0)); |
| 621 | unsigned BackEdge = IncomingEdge^1; |
| 622 | |
| 623 | // Check IV uses. If all IV uses are either SEXT or ZEXT (except |
| 624 | // IV increment instruction) then this IV is suitable for this |
Devang Patel | 7c9fc2a | 2008-09-10 14:49:55 +0000 | [diff] [blame^] | 625 | // transformation. |
| 626 | bool isSEXT = false; |
Devang Patel | bda4380 | 2008-09-09 21:41:07 +0000 | [diff] [blame] | 627 | BinaryOperator *Incr = NULL; |
Devang Patel | 7c9fc2a | 2008-09-10 14:49:55 +0000 | [diff] [blame^] | 628 | const Type *NewType = NULL; |
Devang Patel | bda4380 | 2008-09-09 21:41:07 +0000 | [diff] [blame] | 629 | for(Value::use_iterator UI = PH->use_begin(), UE = PH->use_end(); |
| 630 | UI != UE; ++UI) { |
| 631 | const Type *CandidateType = NULL; |
| 632 | if (ZExtInst *ZI = dyn_cast<ZExtInst>(UI)) |
| 633 | CandidateType = ZI->getDestTy(); |
| 634 | else if (SExtInst *SI = dyn_cast<SExtInst>(UI)) { |
| 635 | CandidateType = SI->getDestTy(); |
Devang Patel | 7c9fc2a | 2008-09-10 14:49:55 +0000 | [diff] [blame^] | 636 | isSEXT = true; |
Devang Patel | bda4380 | 2008-09-09 21:41:07 +0000 | [diff] [blame] | 637 | } |
| 638 | else if ((Incr = dyn_cast<BinaryOperator>(UI))) { |
| 639 | // Validate IV increment instruction. |
| 640 | if (PH->getIncomingValue(BackEdge) == Incr) |
| 641 | continue; |
| 642 | } |
| 643 | if (!CandidateType) { |
| 644 | NewType = NULL; |
| 645 | break; |
| 646 | } |
| 647 | if (!NewType) |
| 648 | NewType = CandidateType; |
| 649 | else if (NewType != CandidateType) { |
| 650 | NewType = NULL; |
| 651 | break; |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | // IV uses are not suitable then avoid this transformation. |
| 656 | if (!NewType || !Incr) |
| 657 | return; |
| 658 | |
| 659 | // IV increment instruction has two uses, one is loop exit condition |
| 660 | // and second is the IV (phi node) itself. |
| 661 | ICmpInst *Exit = NULL; |
| 662 | for(Value::use_iterator II = Incr->use_begin(), IE = Incr->use_end(); |
| 663 | II != IE; ++II) { |
| 664 | if (PH == *II) continue; |
| 665 | Exit = dyn_cast<ICmpInst>(*II); |
| 666 | break; |
| 667 | } |
| 668 | if (!Exit) return; |
| 669 | ConstantInt *EV = dyn_cast<ConstantInt>(Exit->getOperand(0)); |
| 670 | if (!EV) |
| 671 | EV = dyn_cast<ConstantInt>(Exit->getOperand(1)); |
| 672 | if (!EV) return; |
| 673 | |
| 674 | // Check iteration count max value to avoid loops that wrap around IV. |
| 675 | APInt ICount = IterationCount->getValue()->getValue(); |
| 676 | if (ICount.isNegative()) return; |
| 677 | uint32_t BW = PH->getType()->getPrimitiveSizeInBits(); |
| 678 | APInt Max = (isSEXT ? APInt::getSignedMaxValue(BW) : APInt::getMaxValue(BW)); |
| 679 | if (ICount.getZExtValue() > Max.getZExtValue()) return; |
| 680 | |
| 681 | // Extend IV type. |
| 682 | |
| 683 | SCEVExpander Rewriter(*SE, *LI); |
| 684 | Value *NewIV = Rewriter.getOrInsertCanonicalInductionVariable(L,NewType); |
| 685 | PHINode *NewPH = cast<PHINode>(NewIV); |
| 686 | Instruction *NewIncr = cast<Instruction>(NewPH->getIncomingValue(BackEdge)); |
| 687 | |
| 688 | // Replace all SEXT or ZEXT uses. |
| 689 | SmallVector<Instruction *, 4> PHUses; |
| 690 | for(Value::use_iterator UI = PH->use_begin(), UE = PH->use_end(); |
| 691 | UI != UE; ++UI) { |
| 692 | Instruction *I = cast<Instruction>(UI); |
| 693 | PHUses.push_back(I); |
| 694 | } |
| 695 | while (!PHUses.empty()){ |
| 696 | Instruction *Use = PHUses.back(); PHUses.pop_back(); |
| 697 | if (Incr == Use) continue; |
| 698 | |
| 699 | SE->deleteValueFromRecords(Use); |
| 700 | Use->replaceAllUsesWith(NewIV); |
| 701 | Use->eraseFromParent(); |
| 702 | } |
| 703 | |
| 704 | // Replace exit condition. |
| 705 | ConstantInt *NEV = ConstantInt::get(NewType, EV->getZExtValue()); |
| 706 | Instruction *NE = new ICmpInst(Exit->getPredicate(), |
| 707 | NewIncr, NEV, "new.exit", |
| 708 | Exit->getParent()->getTerminator()); |
| 709 | SE->deleteValueFromRecords(Exit); |
| 710 | Exit->replaceAllUsesWith(NE); |
| 711 | Exit->eraseFromParent(); |
| 712 | |
| 713 | // Remove old IV and increment instructions. |
| 714 | SE->deleteValueFromRecords(PH); |
| 715 | PH->removeIncomingValue((unsigned)0); |
| 716 | PH->removeIncomingValue((unsigned)0); |
| 717 | SE->deleteValueFromRecords(Incr); |
| 718 | Incr->eraseFromParent(); |
| 719 | } |
| 720 | |