blob: be7e9fce63c954f7894962fd3ece9b1116e75a72 [file] [log] [blame]
Nick Lewycky81e48042013-07-27 01:24:00 +00001//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions performs analyses on basic blocks, and instructions
11// contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/CFG.h"
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/Analysis/Dominators.h"
19#include "llvm/Analysis/LoopInfo.h"
20
21using namespace llvm;
22
23/// FindFunctionBackedges - Analyze the specified function to find all of the
24/// loop backedges in the function and return them. This is a relatively cheap
25/// (compared to computing dominators and loop info) analysis.
26///
27/// The output is added to Result, as pairs of <from,to> edge info.
28void llvm::FindFunctionBackedges(const Function &F,
29 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
30 const BasicBlock *BB = &F.getEntryBlock();
31 if (succ_begin(BB) == succ_end(BB))
32 return;
33
34 SmallPtrSet<const BasicBlock*, 8> Visited;
35 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
36 SmallPtrSet<const BasicBlock*, 8> InStack;
37
38 Visited.insert(BB);
39 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
40 InStack.insert(BB);
41 do {
42 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
43 const BasicBlock *ParentBB = Top.first;
44 succ_const_iterator &I = Top.second;
45
46 bool FoundNew = false;
47 while (I != succ_end(ParentBB)) {
48 BB = *I++;
49 if (Visited.insert(BB)) {
50 FoundNew = true;
51 break;
52 }
53 // Successor is in VisitStack, it's a back edge.
54 if (InStack.count(BB))
55 Result.push_back(std::make_pair(ParentBB, BB));
56 }
57
58 if (FoundNew) {
59 // Go down one level if there is a unvisited successor.
60 InStack.insert(BB);
61 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
62 } else {
63 // Go up one level.
64 InStack.erase(VisitStack.pop_back_val().first);
65 }
66 } while (!VisitStack.empty());
67}
68
69/// GetSuccessorNumber - Search for the specified successor of basic block BB
70/// and return its position in the terminator instruction's list of
71/// successors. It is an error to call this with a block that is not a
72/// successor.
73unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
74 TerminatorInst *Term = BB->getTerminator();
75#ifndef NDEBUG
76 unsigned e = Term->getNumSuccessors();
77#endif
78 for (unsigned i = 0; ; ++i) {
79 assert(i != e && "Didn't find edge?");
80 if (Term->getSuccessor(i) == Succ)
81 return i;
82 }
83}
84
85/// isCriticalEdge - Return true if the specified edge is a critical edge.
86/// Critical edges are edges from a block with multiple successors to a block
87/// with multiple predecessors.
88bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
89 bool AllowIdenticalEdges) {
90 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
91 if (TI->getNumSuccessors() == 1) return false;
92
93 const BasicBlock *Dest = TI->getSuccessor(SuccNum);
94 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
95
96 // If there is more than one predecessor, this is a critical edge...
97 assert(I != E && "No preds, but we have an edge to the block?");
98 const BasicBlock *FirstPred = *I;
99 ++I; // Skip one edge due to the incoming arc from TI.
100 if (!AllowIdenticalEdges)
101 return I != E;
102
103 // If AllowIdenticalEdges is true, then we allow this edge to be considered
104 // non-critical iff all preds come from TI's block.
105 while (I != E) {
106 const BasicBlock *P = *I;
107 if (P != FirstPred)
108 return true;
109 // Note: leave this as is until no one ever compiles with either gcc 4.0.1
110 // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
111 E = pred_end(P);
112 ++I;
113 }
114 return false;
115}
116
117// LoopInfo contains a mapping from basic block to the innermost loop. Find
118// the outermost loop in the loop nest that contains BB.
119static const Loop *getOutermostLoop(LoopInfo *LI, const BasicBlock *BB) {
120 const Loop *L = LI->getLoopFor(BB);
121 if (L) {
122 while (const Loop *Parent = L->getParentLoop())
123 L = Parent;
124 }
125 return L;
126}
127
128// True if there is a loop which contains both BB1 and BB2.
129static bool loopContainsBoth(LoopInfo *LI,
130 const BasicBlock *BB1, const BasicBlock *BB2) {
131 const Loop *L1 = getOutermostLoop(LI, BB1);
132 const Loop *L2 = getOutermostLoop(LI, BB2);
133 return L1 != NULL && L1 == L2;
134}
135
Nick Lewycky72dba2542013-08-13 00:03:47 +0000136static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist,
137 BasicBlock *StopBB,
138 DominatorTree *DT, LoopInfo *LI) {
Nick Lewycky81e48042013-07-27 01:24:00 +0000139 // When the stop block is unreachable, it's dominated from everywhere,
140 // regardless of whether there's a path between the two blocks.
141 if (DT && !DT->isReachableFromEntry(StopBB))
142 DT = 0;
143
144 // Limit the number of blocks we visit. The goal is to avoid run-away compile
145 // times on large CFGs without hampering sensible code. Arbitrarily chosen.
146 unsigned Limit = 32;
Nick Lewycky81e48042013-07-27 01:24:00 +0000147 SmallSet<const BasicBlock*, 64> Visited;
Nick Lewycky81e48042013-07-27 01:24:00 +0000148 do {
149 BasicBlock *BB = Worklist.pop_back_val();
150 if (!Visited.insert(BB))
151 continue;
152 if (BB == StopBB)
153 return true;
154 if (DT && DT->dominates(BB, StopBB))
155 return true;
156 if (LI && loopContainsBoth(LI, BB, StopBB))
157 return true;
158
159 if (!--Limit) {
160 // We haven't been able to prove it one way or the other. Conservatively
161 // answer true -- that there is potentially a path.
162 return true;
163 }
164
165 if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : 0) {
166 // All blocks in a single loop are reachable from all other blocks. From
167 // any of these blocks, we can skip directly to the exits of the loop,
168 // ignoring any other blocks inside the loop body.
169 Outer->getExitBlocks(Worklist);
170 } else {
171 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
172 Worklist.push_back(*I);
173 }
174 } while (!Worklist.empty());
175
Nick Lewycky72dba2542013-08-13 00:03:47 +0000176 // We have exhausted all possible paths and are certain that 'To' can not be
177 // reached from 'From'.
Nick Lewycky81e48042013-07-27 01:24:00 +0000178 return false;
179}
Nick Lewycky72dba2542013-08-13 00:03:47 +0000180
181bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
182 DominatorTree *DT, LoopInfo *LI) {
183 assert(A->getParent() == B->getParent() &&
184 "This analysis is function-local!");
185
186 SmallVector<BasicBlock*, 32> Worklist;
187 Worklist.push_back(const_cast<BasicBlock*>(A));
188
189 return isPotentiallyReachableInner(Worklist, const_cast<BasicBlock*>(B),
190 DT, LI);
191}
192
193bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
194 DominatorTree *DT, LoopInfo *LI) {
195 assert(A->getParent()->getParent() == B->getParent()->getParent() &&
196 "This analysis is function-local!");
197
198 SmallVector<BasicBlock*, 32> Worklist;
199
200 if (A->getParent() == B->getParent()) {
201 // The same block case is special because it's the only time we're looking
202 // within a single block to see which instruction comes first. Once we
203 // start looking at multiple blocks, the first instruction of the block is
204 // reachable, so we only need to determine reachability between whole
205 // blocks.
206 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
207
208 // If the block is in a loop then we can reach any instruction in the block
209 // from any other instruction in the block by going around a backedge.
210 if (LI && LI->getLoopFor(BB) != 0)
211 return true;
212
213 // Linear scan, start at 'A', see whether we hit 'B' or the end first.
214 for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
215 if (&*I == B)
216 return true;
217 }
218
219 // Can't be in a loop if it's the entry block -- the entry block may not
220 // have predecessors.
221 if (BB == &BB->getParent()->getEntryBlock())
222 return false;
223
224 // Otherwise, continue doing the normal per-BB CFG walk.
225 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
226 Worklist.push_back(*I);
227
228 if (Worklist.empty()) {
229 // We've proven that there's no path!
230 return false;
231 }
232 } else {
233 Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
234 }
235
236 if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
237 return true;
238 if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
239 return false;
240
241 return isPotentiallyReachableInner(Worklist,
242 const_cast<BasicBlock*>(B->getParent()),
243 DT, LI);
244}