blob: 3c21e2039c1f3ab4dd78319fa757eda302662a95 [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000018#include "llvm/GlobalVariable.h"
Chris Lattner173234a2008-06-02 01:18:21 +000019#include "llvm/IntrinsicInst.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000020#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/MathExtras.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000023#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000024using namespace llvm;
25
26/// getOpcode - If this is an Instruction or a ConstantExpr, return the
27/// opcode value. Otherwise return UserOp1.
28static unsigned getOpcode(const Value *V) {
29 if (const Instruction *I = dyn_cast<Instruction>(V))
30 return I->getOpcode();
31 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
32 return CE->getOpcode();
33 // Use UserOp1 to mean there's no opcode.
34 return Instruction::UserOp1;
35}
36
37
38/// ComputeMaskedBits - Determine which of the bits specified in Mask are
39/// known to be either zero or one and return them in the KnownZero/KnownOne
40/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
41/// processing.
42/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
43/// we cannot optimize based on the assumption that it is zero without changing
44/// it to be an explicit zero. If we don't change it to zero, other code could
45/// optimized based on the contradictory assumption that it is non-zero.
46/// Because instcombine aggressively folds operations with undef args anyway,
47/// this won't lose us code quality.
48void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
49 APInt &KnownZero, APInt &KnownOne,
50 TargetData *TD, unsigned Depth) {
Dan Gohman9004c8a2009-05-21 02:28:33 +000051 const unsigned MaxDepth = 6;
Chris Lattner173234a2008-06-02 01:18:21 +000052 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000053 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000054 unsigned BitWidth = Mask.getBitWidth();
Chris Lattner173234a2008-06-02 01:18:21 +000055 assert((V->getType()->isInteger() || isa<PointerType>(V->getType())) &&
56 "Not integer or pointer type!");
57 assert((!TD || TD->getTypeSizeInBits(V->getType()) == BitWidth) &&
58 (!isa<IntegerType>(V->getType()) ||
59 V->getType()->getPrimitiveSizeInBits() == BitWidth) &&
60 KnownZero.getBitWidth() == BitWidth &&
61 KnownOne.getBitWidth() == BitWidth &&
62 "V, Mask, KnownOne and KnownZero should have same BitWidth");
63
64 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
65 // We know all of the bits for a constant!
66 KnownOne = CI->getValue() & Mask;
67 KnownZero = ~KnownOne & Mask;
68 return;
69 }
70 // Null is all-zeros.
71 if (isa<ConstantPointerNull>(V)) {
72 KnownOne.clear();
73 KnownZero = Mask;
74 return;
75 }
76 // The address of an aligned GlobalValue has trailing zeros.
77 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
78 unsigned Align = GV->getAlignment();
79 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
80 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
81 if (Align > 0)
82 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
83 CountTrailingZeros_32(Align));
84 else
85 KnownZero.clear();
86 KnownOne.clear();
87 return;
88 }
89
90 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
91
Dan Gohman9004c8a2009-05-21 02:28:33 +000092 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +000093 return; // Limit search depth.
94
95 User *I = dyn_cast<User>(V);
96 if (!I) return;
97
98 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
99 switch (getOpcode(I)) {
100 default: break;
101 case Instruction::And: {
102 // If either the LHS or the RHS are Zero, the result is zero.
103 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
104 APInt Mask2(Mask & ~KnownZero);
105 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
106 Depth+1);
107 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
108 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
109
110 // Output known-1 bits are only known if set in both the LHS & RHS.
111 KnownOne &= KnownOne2;
112 // Output known-0 are known to be clear if zero in either the LHS | RHS.
113 KnownZero |= KnownZero2;
114 return;
115 }
116 case Instruction::Or: {
117 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
118 APInt Mask2(Mask & ~KnownOne);
119 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
120 Depth+1);
121 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
122 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
123
124 // Output known-0 bits are only known if clear in both the LHS & RHS.
125 KnownZero &= KnownZero2;
126 // Output known-1 are known to be set if set in either the LHS | RHS.
127 KnownOne |= KnownOne2;
128 return;
129 }
130 case Instruction::Xor: {
131 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
132 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
133 Depth+1);
134 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
135 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
136
137 // Output known-0 bits are known if clear or set in both the LHS & RHS.
138 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
139 // Output known-1 are known to be set if set in only one of the LHS, RHS.
140 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
141 KnownZero = KnownZeroOut;
142 return;
143 }
144 case Instruction::Mul: {
145 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
146 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
147 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
148 Depth+1);
149 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
150 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
151
152 // If low bits are zero in either operand, output low known-0 bits.
153 // Also compute a conserative estimate for high known-0 bits.
154 // More trickiness is possible, but this is sufficient for the
155 // interesting case of alignment computation.
156 KnownOne.clear();
157 unsigned TrailZ = KnownZero.countTrailingOnes() +
158 KnownZero2.countTrailingOnes();
159 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
160 KnownZero2.countLeadingOnes(),
161 BitWidth) - BitWidth;
162
163 TrailZ = std::min(TrailZ, BitWidth);
164 LeadZ = std::min(LeadZ, BitWidth);
165 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
166 APInt::getHighBitsSet(BitWidth, LeadZ);
167 KnownZero &= Mask;
168 return;
169 }
170 case Instruction::UDiv: {
171 // For the purposes of computing leading zeros we can conservatively
172 // treat a udiv as a logical right shift by the power of 2 known to
173 // be less than the denominator.
174 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
175 ComputeMaskedBits(I->getOperand(0),
176 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
177 unsigned LeadZ = KnownZero2.countLeadingOnes();
178
179 KnownOne2.clear();
180 KnownZero2.clear();
181 ComputeMaskedBits(I->getOperand(1),
182 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
183 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
184 if (RHSUnknownLeadingOnes != BitWidth)
185 LeadZ = std::min(BitWidth,
186 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
187
188 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
189 return;
190 }
191 case Instruction::Select:
192 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
193 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
194 Depth+1);
195 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
196 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
197
198 // Only known if known in both the LHS and RHS.
199 KnownOne &= KnownOne2;
200 KnownZero &= KnownZero2;
201 return;
202 case Instruction::FPTrunc:
203 case Instruction::FPExt:
204 case Instruction::FPToUI:
205 case Instruction::FPToSI:
206 case Instruction::SIToFP:
207 case Instruction::UIToFP:
208 return; // Can't work with floating point.
209 case Instruction::PtrToInt:
210 case Instruction::IntToPtr:
211 // We can't handle these if we don't know the pointer size.
212 if (!TD) return;
213 // FALL THROUGH and handle them the same as zext/trunc.
214 case Instruction::ZExt:
215 case Instruction::Trunc: {
216 // Note that we handle pointer operands here because of inttoptr/ptrtoint
217 // which fall through here.
218 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner79abedb2009-01-20 18:22:57 +0000219 unsigned SrcBitWidth = TD ?
Chris Lattner173234a2008-06-02 01:18:21 +0000220 TD->getTypeSizeInBits(SrcTy) :
221 SrcTy->getPrimitiveSizeInBits();
222 APInt MaskIn(Mask);
223 MaskIn.zextOrTrunc(SrcBitWidth);
224 KnownZero.zextOrTrunc(SrcBitWidth);
225 KnownOne.zextOrTrunc(SrcBitWidth);
226 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
227 Depth+1);
228 KnownZero.zextOrTrunc(BitWidth);
229 KnownOne.zextOrTrunc(BitWidth);
230 // Any top bits are known to be zero.
231 if (BitWidth > SrcBitWidth)
232 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
233 return;
234 }
235 case Instruction::BitCast: {
236 const Type *SrcTy = I->getOperand(0)->getType();
237 if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
238 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
239 Depth+1);
240 return;
241 }
242 break;
243 }
244 case Instruction::SExt: {
245 // Compute the bits in the result that are not present in the input.
246 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Chris Lattner79abedb2009-01-20 18:22:57 +0000247 unsigned SrcBitWidth = SrcTy->getBitWidth();
Chris Lattner173234a2008-06-02 01:18:21 +0000248
249 APInt MaskIn(Mask);
250 MaskIn.trunc(SrcBitWidth);
251 KnownZero.trunc(SrcBitWidth);
252 KnownOne.trunc(SrcBitWidth);
253 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
254 Depth+1);
255 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
256 KnownZero.zext(BitWidth);
257 KnownOne.zext(BitWidth);
258
259 // If the sign bit of the input is known set or clear, then we know the
260 // top bits of the result.
261 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
262 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
263 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
264 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
265 return;
266 }
267 case Instruction::Shl:
268 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
269 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
270 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
271 APInt Mask2(Mask.lshr(ShiftAmt));
272 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
273 Depth+1);
274 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
275 KnownZero <<= ShiftAmt;
276 KnownOne <<= ShiftAmt;
277 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
278 return;
279 }
280 break;
281 case Instruction::LShr:
282 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
283 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
284 // Compute the new bits that are at the top now.
285 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
286
287 // Unsigned shift right.
288 APInt Mask2(Mask.shl(ShiftAmt));
289 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
290 Depth+1);
291 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
292 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
293 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
294 // high bits known zero.
295 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
296 return;
297 }
298 break;
299 case Instruction::AShr:
300 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
301 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
302 // Compute the new bits that are at the top now.
303 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
304
305 // Signed shift right.
306 APInt Mask2(Mask.shl(ShiftAmt));
307 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
308 Depth+1);
309 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
310 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
311 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
312
313 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
314 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
315 KnownZero |= HighBits;
316 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
317 KnownOne |= HighBits;
318 return;
319 }
320 break;
321 case Instruction::Sub: {
322 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
323 // We know that the top bits of C-X are clear if X contains less bits
324 // than C (i.e. no wrap-around can happen). For example, 20-X is
325 // positive if we can prove that X is >= 0 and < 16.
326 if (!CLHS->getValue().isNegative()) {
327 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
328 // NLZ can't be BitWidth with no sign bit
329 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
330 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
331 TD, Depth+1);
332
333 // If all of the MaskV bits are known to be zero, then we know the
334 // output top bits are zero, because we now know that the output is
335 // from [0-C].
336 if ((KnownZero2 & MaskV) == MaskV) {
337 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
338 // Top bits known zero.
339 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
340 }
341 }
342 }
343 }
344 // fall through
345 case Instruction::Add: {
346 // Output known-0 bits are known if clear or set in both the low clear bits
347 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
348 // low 3 bits clear.
349 APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
350 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
351 Depth+1);
352 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
353 unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
354
355 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
356 Depth+1);
357 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
358 KnownZeroOut = std::min(KnownZeroOut,
359 KnownZero2.countTrailingOnes());
360
361 KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
362 return;
363 }
364 case Instruction::SRem:
365 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
366 APInt RA = Rem->getValue();
367 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
368 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
369 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
370 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
371 Depth+1);
372
Dan Gohmana60832b2008-08-13 23:12:35 +0000373 // If the sign bit of the first operand is zero, the sign bit of
374 // the result is zero. If the first operand has no one bits below
375 // the second operand's single 1 bit, its sign will be zero.
Chris Lattner173234a2008-06-02 01:18:21 +0000376 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
377 KnownZero2 |= ~LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000378
379 KnownZero |= KnownZero2 & Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000380
381 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
382 }
383 }
384 break;
385 case Instruction::URem: {
386 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
387 APInt RA = Rem->getValue();
388 if (RA.isPowerOf2()) {
389 APInt LowBits = (RA - 1);
390 APInt Mask2 = LowBits & Mask;
391 KnownZero |= ~LowBits & Mask;
392 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
393 Depth+1);
394 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
395 break;
396 }
397 }
398
399 // Since the result is less than or equal to either operand, any leading
400 // zero bits in either operand must also exist in the result.
401 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
402 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
403 TD, Depth+1);
404 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
405 TD, Depth+1);
406
Chris Lattner79abedb2009-01-20 18:22:57 +0000407 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000408 KnownZero2.countLeadingOnes());
409 KnownOne.clear();
410 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
411 break;
412 }
413
414 case Instruction::Alloca:
415 case Instruction::Malloc: {
416 AllocationInst *AI = cast<AllocationInst>(V);
417 unsigned Align = AI->getAlignment();
418 if (Align == 0 && TD) {
419 if (isa<AllocaInst>(AI))
Chris Lattner0f2831c2009-01-08 19:28:38 +0000420 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000421 else if (isa<MallocInst>(AI)) {
422 // Malloc returns maximally aligned memory.
423 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
424 Align =
425 std::max(Align,
426 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
427 Align =
428 std::max(Align,
429 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
430 }
431 }
432
433 if (Align > 0)
434 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
435 CountTrailingZeros_32(Align));
436 break;
437 }
438 case Instruction::GetElementPtr: {
439 // Analyze all of the subscripts of this getelementptr instruction
440 // to determine if we can prove known low zero bits.
441 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
442 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
443 ComputeMaskedBits(I->getOperand(0), LocalMask,
444 LocalKnownZero, LocalKnownOne, TD, Depth+1);
445 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
446
447 gep_type_iterator GTI = gep_type_begin(I);
448 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
449 Value *Index = I->getOperand(i);
450 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
451 // Handle struct member offset arithmetic.
452 if (!TD) return;
453 const StructLayout *SL = TD->getStructLayout(STy);
454 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
455 uint64_t Offset = SL->getElementOffset(Idx);
456 TrailZ = std::min(TrailZ,
457 CountTrailingZeros_64(Offset));
458 } else {
459 // Handle array index arithmetic.
460 const Type *IndexedTy = GTI.getIndexedType();
461 if (!IndexedTy->isSized()) return;
462 unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000463 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000464 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
465 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
466 ComputeMaskedBits(Index, LocalMask,
467 LocalKnownZero, LocalKnownOne, TD, Depth+1);
468 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000469 unsigned(CountTrailingZeros_64(TypeSize) +
470 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000471 }
472 }
473
474 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
475 break;
476 }
477 case Instruction::PHI: {
478 PHINode *P = cast<PHINode>(I);
479 // Handle the case of a simple two-predecessor recurrence PHI.
480 // There's a lot more that could theoretically be done here, but
481 // this is sufficient to catch some interesting cases.
482 if (P->getNumIncomingValues() == 2) {
483 for (unsigned i = 0; i != 2; ++i) {
484 Value *L = P->getIncomingValue(i);
485 Value *R = P->getIncomingValue(!i);
486 User *LU = dyn_cast<User>(L);
487 if (!LU)
488 continue;
489 unsigned Opcode = getOpcode(LU);
490 // Check for operations that have the property that if
491 // both their operands have low zero bits, the result
492 // will have low zero bits.
493 if (Opcode == Instruction::Add ||
494 Opcode == Instruction::Sub ||
495 Opcode == Instruction::And ||
496 Opcode == Instruction::Or ||
497 Opcode == Instruction::Mul) {
498 Value *LL = LU->getOperand(0);
499 Value *LR = LU->getOperand(1);
500 // Find a recurrence.
501 if (LL == I)
502 L = LR;
503 else if (LR == I)
504 L = LL;
505 else
506 break;
507 // Ok, we have a PHI of the form L op= R. Check for low
508 // zero bits.
509 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
510 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
511 Mask2 = APInt::getLowBitsSet(BitWidth,
512 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000513
514 // We need to take the minimum number of known bits
515 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
516 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
517
Chris Lattner173234a2008-06-02 01:18:21 +0000518 KnownZero = Mask &
519 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000520 std::min(KnownZero2.countTrailingOnes(),
521 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000522 break;
523 }
524 }
525 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000526
527 // Otherwise take the unions of the known bit sets of the operands,
528 // taking conservative care to avoid excessive recursion.
529 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
530 KnownZero = APInt::getAllOnesValue(BitWidth);
531 KnownOne = APInt::getAllOnesValue(BitWidth);
532 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
533 // Skip direct self references.
534 if (P->getIncomingValue(i) == P) continue;
535
536 KnownZero2 = APInt(BitWidth, 0);
537 KnownOne2 = APInt(BitWidth, 0);
538 // Recurse, but cap the recursion to one level, because we don't
539 // want to waste time spinning around in loops.
540 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
541 KnownZero2, KnownOne2, TD, MaxDepth-1);
542 KnownZero &= KnownZero2;
543 KnownOne &= KnownOne2;
544 // If all bits have been ruled out, there's no need to check
545 // more operands.
546 if (!KnownZero && !KnownOne)
547 break;
548 }
549 }
Chris Lattner173234a2008-06-02 01:18:21 +0000550 break;
551 }
552 case Instruction::Call:
553 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
554 switch (II->getIntrinsicID()) {
555 default: break;
556 case Intrinsic::ctpop:
557 case Intrinsic::ctlz:
558 case Intrinsic::cttz: {
559 unsigned LowBits = Log2_32(BitWidth)+1;
560 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
561 break;
562 }
563 }
564 }
565 break;
566 }
567}
568
569/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
570/// this predicate to simplify operations downstream. Mask is known to be zero
571/// for bits that V cannot have.
572bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
573 TargetData *TD, unsigned Depth) {
574 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
575 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
576 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
577 return (KnownZero & Mask) == Mask;
578}
579
580
581
582/// ComputeNumSignBits - Return the number of times the sign bit of the
583/// register is replicated into the other bits. We know that at least 1 bit
584/// is always equal to the sign bit (itself), but other cases can give us
585/// information. For example, immediately after an "ashr X, 2", we know that
586/// the top 3 bits are all equal to each other, so we return 3.
587///
588/// 'Op' must have a scalar integer type.
589///
590unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
591 const IntegerType *Ty = cast<IntegerType>(V->getType());
592 unsigned TyBits = Ty->getBitWidth();
593 unsigned Tmp, Tmp2;
594 unsigned FirstAnswer = 1;
595
Chris Lattnerd82e5112008-06-02 18:39:07 +0000596 // Note that ConstantInt is handled by the general ComputeMaskedBits case
597 // below.
598
Chris Lattner173234a2008-06-02 01:18:21 +0000599 if (Depth == 6)
600 return 1; // Limit search depth.
601
602 User *U = dyn_cast<User>(V);
603 switch (getOpcode(V)) {
604 default: break;
605 case Instruction::SExt:
606 Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
607 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
608
609 case Instruction::AShr:
610 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
611 // ashr X, C -> adds C sign bits.
612 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
613 Tmp += C->getZExtValue();
614 if (Tmp > TyBits) Tmp = TyBits;
615 }
616 return Tmp;
617 case Instruction::Shl:
618 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
619 // shl destroys sign bits.
620 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
621 if (C->getZExtValue() >= TyBits || // Bad shift.
622 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
623 return Tmp - C->getZExtValue();
624 }
625 break;
626 case Instruction::And:
627 case Instruction::Or:
628 case Instruction::Xor: // NOT is handled here.
629 // Logical binary ops preserve the number of sign bits at the worst.
630 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
631 if (Tmp != 1) {
632 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
633 FirstAnswer = std::min(Tmp, Tmp2);
634 // We computed what we know about the sign bits as our first
635 // answer. Now proceed to the generic code that uses
636 // ComputeMaskedBits, and pick whichever answer is better.
637 }
638 break;
639
640 case Instruction::Select:
641 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
642 if (Tmp == 1) return 1; // Early out.
643 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
644 return std::min(Tmp, Tmp2);
645
646 case Instruction::Add:
647 // Add can have at most one carry bit. Thus we know that the output
648 // is, at worst, one more bit than the inputs.
649 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
650 if (Tmp == 1) return 1; // Early out.
651
652 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +0000653 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +0000654 if (CRHS->isAllOnesValue()) {
655 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
656 APInt Mask = APInt::getAllOnesValue(TyBits);
657 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
658 Depth+1);
659
660 // If the input is known to be 0 or 1, the output is 0/-1, which is all
661 // sign bits set.
662 if ((KnownZero | APInt(TyBits, 1)) == Mask)
663 return TyBits;
664
665 // If we are subtracting one from a positive number, there is no carry
666 // out of the result.
667 if (KnownZero.isNegative())
668 return Tmp;
669 }
670
671 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
672 if (Tmp2 == 1) return 1;
673 return std::min(Tmp, Tmp2)-1;
674 break;
675
676 case Instruction::Sub:
677 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
678 if (Tmp2 == 1) return 1;
679
680 // Handle NEG.
681 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
682 if (CLHS->isNullValue()) {
683 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
684 APInt Mask = APInt::getAllOnesValue(TyBits);
685 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
686 TD, Depth+1);
687 // If the input is known to be 0 or 1, the output is 0/-1, which is all
688 // sign bits set.
689 if ((KnownZero | APInt(TyBits, 1)) == Mask)
690 return TyBits;
691
692 // If the input is known to be positive (the sign bit is known clear),
693 // the output of the NEG has the same number of sign bits as the input.
694 if (KnownZero.isNegative())
695 return Tmp2;
696
697 // Otherwise, we treat this like a SUB.
698 }
699
700 // Sub can have at most one carry bit. Thus we know that the output
701 // is, at worst, one more bit than the inputs.
702 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
703 if (Tmp == 1) return 1; // Early out.
704 return std::min(Tmp, Tmp2)-1;
705 break;
706 case Instruction::Trunc:
707 // FIXME: it's tricky to do anything useful for this, but it is an important
708 // case for targets like X86.
709 break;
710 }
711
712 // Finally, if we can prove that the top bits of the result are 0's or 1's,
713 // use this information.
714 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
715 APInt Mask = APInt::getAllOnesValue(TyBits);
716 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
717
718 if (KnownZero.isNegative()) { // sign bit is 0
719 Mask = KnownZero;
720 } else if (KnownOne.isNegative()) { // sign bit is 1;
721 Mask = KnownOne;
722 } else {
723 // Nothing known.
724 return FirstAnswer;
725 }
726
727 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
728 // the number of identical bits in the top of the input value.
729 Mask = ~Mask;
730 Mask <<= Mask.getBitWidth()-TyBits;
731 // Return # leading zeros. We use 'min' here in case Val was zero before
732 // shifting. We don't want to return '64' as for an i32 "0".
733 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
734}
Chris Lattner833f25d2008-06-02 01:29:46 +0000735
736/// CannotBeNegativeZero - Return true if we can prove that the specified FP
737/// value is never equal to -0.0.
738///
739/// NOTE: this function will need to be revisited when we support non-default
740/// rounding modes!
741///
742bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
743 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
744 return !CFP->getValueAPF().isNegZero();
745
746 if (Depth == 6)
747 return 1; // Limit search depth.
748
749 const Instruction *I = dyn_cast<Instruction>(V);
750 if (I == 0) return false;
751
752 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
753 if (I->getOpcode() == Instruction::Add &&
754 isa<ConstantFP>(I->getOperand(1)) &&
755 cast<ConstantFP>(I->getOperand(1))->isNullValue())
756 return true;
757
758 // sitofp and uitofp turn into +0.0 for zero.
759 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
760 return true;
761
762 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
763 // sqrt(-0.0) = -0.0, no other negative results are possible.
764 if (II->getIntrinsicID() == Intrinsic::sqrt)
765 return CannotBeNegativeZero(II->getOperand(1), Depth+1);
766
767 if (const CallInst *CI = dyn_cast<CallInst>(I))
768 if (const Function *F = CI->getCalledFunction()) {
769 if (F->isDeclaration()) {
770 switch (F->getNameLen()) {
771 case 3: // abs(x) != -0.0
772 if (!strcmp(F->getNameStart(), "abs")) return true;
773 break;
774 case 4: // abs[lf](x) != -0.0
775 if (!strcmp(F->getNameStart(), "absf")) return true;
776 if (!strcmp(F->getNameStart(), "absl")) return true;
777 break;
778 }
779 }
780 }
781
782 return false;
783}
784
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000785// This is the recursive version of BuildSubAggregate. It takes a few different
786// arguments. Idxs is the index within the nested struct From that we are
787// looking at now (which is of type IndexedType). IdxSkip is the number of
788// indices from Idxs that should be left out when inserting into the resulting
789// struct. To is the result struct built so far, new insertvalue instructions
790// build on that.
791Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
792 SmallVector<unsigned, 10> &Idxs,
793 unsigned IdxSkip,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000794 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000795 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
796 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000797 // Save the original To argument so we can modify it
798 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000799 // General case, the type indexed by Idxs is a struct
800 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
801 // Process each struct element recursively
802 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000803 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000804 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
805 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000806 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000807 if (!To) {
808 // Couldn't find any inserted value for this index? Cleanup
809 while (PrevTo != OrigTo) {
810 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
811 PrevTo = Del->getAggregateOperand();
812 Del->eraseFromParent();
813 }
814 // Stop processing elements
815 break;
816 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000817 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000818 // If we succesfully found a value for each of our subaggregates
819 if (To)
820 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000821 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000822 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
823 // the struct's elements had a value that was inserted directly. In the latter
824 // case, perhaps we can't determine each of the subelements individually, but
825 // we might be able to find the complete struct somewhere.
826
827 // Find the value that is at that particular spot
828 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
829
830 if (!V)
831 return NULL;
832
833 // Insert the value in the new (sub) aggregrate
834 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
835 Idxs.end(), "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000836}
837
838// This helper takes a nested struct and extracts a part of it (which is again a
839// struct) into a new value. For example, given the struct:
840// { a, { b, { c, d }, e } }
841// and the indices "1, 1" this returns
842// { c, d }.
843//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000844// It does this by inserting an insertvalue for each element in the resulting
845// struct, as opposed to just inserting a single struct. This will only work if
846// each of the elements of the substruct are known (ie, inserted into From by an
847// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000848//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000849// All inserted insertvalue instructions are inserted before InsertBefore
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000850Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000851 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000852 assert(InsertBefore && "Must have someplace to insert!");
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000853 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
854 idx_begin,
855 idx_end);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000856 Value *To = UndefValue::get(IndexedType);
857 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
858 unsigned IdxSkip = Idxs.size();
859
860 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
861}
862
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000863/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
864/// the scalar value indexed is already around as a register, for example if it
865/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000866///
867/// If InsertBefore is not null, this function will duplicate (modified)
868/// insertvalues when a part of a nested struct is extracted.
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000869Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000870 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000871 // Nothing to index? Just return V then (this is useful at the end of our
872 // recursion)
873 if (idx_begin == idx_end)
874 return V;
875 // We have indices, so V should have an indexable type
876 assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
877 && "Not looking at a struct or array?");
878 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
879 && "Invalid indices for type?");
880 const CompositeType *PTy = cast<CompositeType>(V->getType());
881
882 if (isa<UndefValue>(V))
883 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
884 idx_begin,
885 idx_end));
886 else if (isa<ConstantAggregateZero>(V))
887 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
888 idx_begin,
889 idx_end));
890 else if (Constant *C = dyn_cast<Constant>(V)) {
891 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
892 // Recursively process this constant
Matthijs Kooijmandddc8272008-07-16 10:47:35 +0000893 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end,
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000894 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000895 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
896 // Loop the indices for the insertvalue instruction in parallel with the
897 // requested indices
898 const unsigned *req_idx = idx_begin;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000899 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
900 i != e; ++i, ++req_idx) {
Duncan Sands9954c762008-06-19 08:47:31 +0000901 if (req_idx == idx_end) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000902 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000903 // The requested index identifies a part of a nested aggregate. Handle
904 // this specially. For example,
905 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
906 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
907 // %C = extractvalue {i32, { i32, i32 } } %B, 1
908 // This can be changed into
909 // %A = insertvalue {i32, i32 } undef, i32 10, 0
910 // %C = insertvalue {i32, i32 } %A, i32 11, 1
911 // which allows the unused 0,0 element from the nested struct to be
912 // removed.
Matthijs Kooijman97728912008-06-16 13:28:31 +0000913 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
914 else
915 // We can't handle this without inserting insertvalues
916 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +0000917 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000918
919 // This insert value inserts something else than what we are looking for.
920 // See if the (aggregrate) value inserted into has the value we are
921 // looking for, then.
922 if (*req_idx != *i)
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000923 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
924 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000925 }
926 // If we end up here, the indices of the insertvalue match with those
927 // requested (though possibly only partially). Now we recursively look at
928 // the inserted value, passing any remaining indices.
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000929 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
930 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000931 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
932 // If we're extracting a value from an aggregrate that was extracted from
933 // something else, we can extract from that something else directly instead.
934 // However, we will need to chain I's indices with the requested indices.
935
936 // Calculate the number of indices required
937 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
938 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000939 SmallVector<unsigned, 5> Idxs;
940 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000941 // Add indices from the extract value instruction
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000942 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000943 i != e; ++i)
944 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000945
946 // Add requested indices
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000947 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
948 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000949
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000950 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000951 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000952
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000953 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000954 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000955 }
956 // Otherwise, we don't know (such as, extracting from a function return value
957 // or load instruction)
958 return 0;
959}
Evan Cheng0ff39b32008-06-30 07:31:25 +0000960
961/// GetConstantStringInfo - This function computes the length of a
962/// null-terminated C string pointed to by V. If successful, it returns true
963/// and returns the string in Str. If unsuccessful, it returns false.
Bill Wendling0582ae92009-03-13 04:39:26 +0000964bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
965 bool StopAtNul) {
966 // If V is NULL then return false;
967 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +0000968
969 // Look through bitcast instructions.
970 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +0000971 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
972
Evan Cheng0ff39b32008-06-30 07:31:25 +0000973 // If the value is not a GEP instruction nor a constant expression with a
974 // GEP instruction, then return false because ConstantArray can't occur
975 // any other way
976 User *GEP = 0;
977 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
978 GEP = GEPI;
979 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
980 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +0000981 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
982 if (CE->getOpcode() != Instruction::GetElementPtr)
983 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +0000984 GEP = CE;
985 }
986
987 if (GEP) {
988 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +0000989 if (GEP->getNumOperands() != 3)
990 return false;
991
Evan Cheng0ff39b32008-06-30 07:31:25 +0000992 // Make sure the index-ee is a pointer to array of i8.
993 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
994 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Bill Wendling0582ae92009-03-13 04:39:26 +0000995 if (AT == 0 || AT->getElementType() != Type::Int8Ty)
996 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +0000997
998 // Check to make sure that the first operand of the GEP is an integer and
999 // has value 0 so that we are sure we're indexing into the initializer.
1000 ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001001 if (FirstIdx == 0 || !FirstIdx->isZero())
1002 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001003
1004 // If the second index isn't a ConstantInt, then this is a variable index
1005 // into the array. If this occurs, we can't say anything meaningful about
1006 // the string.
1007 uint64_t StartIdx = 0;
Bill Wendling0582ae92009-03-13 04:39:26 +00001008 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001009 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001010 else
1011 return false;
1012 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001013 StopAtNul);
1014 }
1015
1016 // The GEP instruction, constant or instruction, must reference a global
1017 // variable that is a constant and is initialized. The referenced constant
1018 // initializer is the array that we'll use for optimization.
1019 GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Bill Wendling0582ae92009-03-13 04:39:26 +00001020 if (!GV || !GV->isConstant() || !GV->hasInitializer())
1021 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001022 Constant *GlobalInit = GV->getInitializer();
1023
1024 // Handle the ConstantAggregateZero case
Bill Wendling0582ae92009-03-13 04:39:26 +00001025 if (isa<ConstantAggregateZero>(GlobalInit)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001026 // This is a degenerate case. The initializer is constant zero so the
1027 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001028 Str.clear();
1029 return true;
1030 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001031
1032 // Must be a Constant Array
1033 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Bill Wendling0582ae92009-03-13 04:39:26 +00001034 if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
1035 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001036
1037 // Get the number of elements in the array
1038 uint64_t NumElts = Array->getType()->getNumElements();
1039
Bill Wendling0582ae92009-03-13 04:39:26 +00001040 if (Offset > NumElts)
1041 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001042
1043 // Traverse the constant array from 'Offset' which is the place the GEP refers
1044 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001045 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001046 for (unsigned i = Offset; i != NumElts; ++i) {
1047 Constant *Elt = Array->getOperand(i);
1048 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001049 if (!CI) // This array isn't suitable, non-int initializer.
1050 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001051 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001052 return true; // we found end of string, success!
1053 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001054 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001055
Evan Cheng0ff39b32008-06-30 07:31:25 +00001056 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001057 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001058}