blob: 6e41048544a3351d8990d7c1f276828b4042865c [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Owen Andersond13db2c2010-07-21 22:09:45 +0000106INITIALIZE_PASS(ScalarEvolution, "scalar-evolution",
107 "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
Oscar Fuentesee56c422010-08-02 06:00:15 +0000254 if (llvm::next(I) != E)
Dan Gohmana5145c82010-04-16 15:03:25 +0000255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Dan Gohmanab37f502010-08-02 23:49:30 +0000340void SCEVUnknown::deleted() {
341 // Clear this SCEVUnknown from ValuesAtScopes.
342 SE->ValuesAtScopes.erase(this);
343
344 // Remove this SCEVUnknown from the uniquing map.
345 SE->UniqueSCEVs.RemoveNode(this);
346
347 // Release the value.
348 setValPtr(0);
349}
350
351void SCEVUnknown::allUsesReplacedWith(Value *New) {
352 // Clear this SCEVUnknown from ValuesAtScopes.
353 SE->ValuesAtScopes.erase(this);
354
355 // Remove this SCEVUnknown from the uniquing map.
356 SE->UniqueSCEVs.RemoveNode(this);
357
358 // Update this SCEVUnknown to point to the new value. This is needed
359 // because there may still be outstanding SCEVs which still point to
360 // this SCEVUnknown.
361 setValPtr(New);
362}
363
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000364bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
365 // All non-instruction values are loop invariant. All instructions are loop
366 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000367 // Instructions are never considered invariant in the function body
368 // (null loop) because they are defined within the "loop".
Dan Gohmanab37f502010-08-02 23:49:30 +0000369 if (Instruction *I = dyn_cast<Instruction>(getValue()))
Dan Gohman92329c72009-12-18 01:24:09 +0000370 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000371 return true;
372}
Chris Lattner53e677a2004-04-02 20:23:17 +0000373
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000374bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
375 if (Instruction *I = dyn_cast<Instruction>(getValue()))
376 return DT->dominates(I->getParent(), BB);
377 return true;
378}
379
Dan Gohman6e70e312009-09-27 15:26:03 +0000380bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
381 if (Instruction *I = dyn_cast<Instruction>(getValue()))
382 return DT->properlyDominates(I->getParent(), BB);
383 return true;
384}
385
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000386const Type *SCEVUnknown::getType() const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000387 return getValue()->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000388}
Chris Lattner53e677a2004-04-02 20:23:17 +0000389
Dan Gohman0f5efe52010-01-28 02:15:55 +0000390bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000391 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000392 if (VCE->getOpcode() == Instruction::PtrToInt)
393 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000394 if (CE->getOpcode() == Instruction::GetElementPtr &&
395 CE->getOperand(0)->isNullValue() &&
396 CE->getNumOperands() == 2)
397 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
398 if (CI->isOne()) {
399 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
400 ->getElementType();
401 return true;
402 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000403
404 return false;
405}
406
407bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000408 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman0f5efe52010-01-28 02:15:55 +0000409 if (VCE->getOpcode() == Instruction::PtrToInt)
410 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000411 if (CE->getOpcode() == Instruction::GetElementPtr &&
412 CE->getOperand(0)->isNullValue()) {
413 const Type *Ty =
414 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
415 if (const StructType *STy = dyn_cast<StructType>(Ty))
416 if (!STy->isPacked() &&
417 CE->getNumOperands() == 3 &&
418 CE->getOperand(1)->isNullValue()) {
419 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
420 if (CI->isOne() &&
421 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000422 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000423 AllocTy = STy->getElementType(1);
424 return true;
425 }
426 }
427 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000428
429 return false;
430}
431
Dan Gohman4f8eea82010-02-01 18:27:38 +0000432bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
Dan Gohmanab37f502010-08-02 23:49:30 +0000433 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohman4f8eea82010-02-01 18:27:38 +0000434 if (VCE->getOpcode() == Instruction::PtrToInt)
435 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
436 if (CE->getOpcode() == Instruction::GetElementPtr &&
437 CE->getNumOperands() == 3 &&
438 CE->getOperand(0)->isNullValue() &&
439 CE->getOperand(1)->isNullValue()) {
440 const Type *Ty =
441 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
442 // Ignore vector types here so that ScalarEvolutionExpander doesn't
443 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000444 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000445 CTy = Ty;
446 FieldNo = CE->getOperand(2);
447 return true;
448 }
449 }
450
451 return false;
452}
453
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000454void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000455 const Type *AllocTy;
456 if (isSizeOf(AllocTy)) {
457 OS << "sizeof(" << *AllocTy << ")";
458 return;
459 }
460 if (isAlignOf(AllocTy)) {
461 OS << "alignof(" << *AllocTy << ")";
462 return;
463 }
464
Dan Gohman4f8eea82010-02-01 18:27:38 +0000465 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000466 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000467 if (isOffsetOf(CTy, FieldNo)) {
468 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000469 WriteAsOperand(OS, FieldNo, false);
470 OS << ")";
471 return;
472 }
473
474 // Otherwise just print it normally.
Dan Gohmanab37f502010-08-02 23:49:30 +0000475 WriteAsOperand(OS, getValue(), false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000476}
477
Chris Lattner8d741b82004-06-20 06:23:15 +0000478//===----------------------------------------------------------------------===//
479// SCEV Utilities
480//===----------------------------------------------------------------------===//
481
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000482static bool CompareTypes(const Type *A, const Type *B) {
483 if (A->getTypeID() != B->getTypeID())
484 return A->getTypeID() < B->getTypeID();
485 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
486 const IntegerType *BI = cast<IntegerType>(B);
487 return AI->getBitWidth() < BI->getBitWidth();
488 }
489 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
490 const PointerType *BI = cast<PointerType>(B);
491 return CompareTypes(AI->getElementType(), BI->getElementType());
492 }
493 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
494 const ArrayType *BI = cast<ArrayType>(B);
495 if (AI->getNumElements() != BI->getNumElements())
496 return AI->getNumElements() < BI->getNumElements();
497 return CompareTypes(AI->getElementType(), BI->getElementType());
498 }
499 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
500 const VectorType *BI = cast<VectorType>(B);
501 if (AI->getNumElements() != BI->getNumElements())
502 return AI->getNumElements() < BI->getNumElements();
503 return CompareTypes(AI->getElementType(), BI->getElementType());
504 }
505 if (const StructType *AI = dyn_cast<StructType>(A)) {
506 const StructType *BI = cast<StructType>(B);
507 if (AI->getNumElements() != BI->getNumElements())
508 return AI->getNumElements() < BI->getNumElements();
509 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
510 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
511 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
512 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
513 }
514 return false;
515}
516
Chris Lattner8d741b82004-06-20 06:23:15 +0000517namespace {
518 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
519 /// than the complexity of the RHS. This comparator is used to canonicalize
520 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000521 class SCEVComplexityCompare {
Dan Gohmane72079a2010-07-23 21:18:55 +0000522 const LoopInfo *LI;
Dan Gohman72861302009-05-07 14:39:04 +0000523 public:
Dan Gohmane72079a2010-07-23 21:18:55 +0000524 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman72861302009-05-07 14:39:04 +0000525
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000526 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000527 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
528 if (LHS == RHS)
529 return false;
530
Dan Gohman72861302009-05-07 14:39:04 +0000531 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman304a7a62010-07-23 21:20:52 +0000532 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
533 if (LType != RType)
534 return LType < RType;
Dan Gohman72861302009-05-07 14:39:04 +0000535
Dan Gohman3bf63762010-06-18 19:54:20 +0000536 // Aside from the getSCEVType() ordering, the particular ordering
537 // isn't very important except that it's beneficial to be consistent,
538 // so that (a + b) and (b + a) don't end up as different expressions.
539
540 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
541 // not as complete as it could be.
542 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
543 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
544
545 // Order pointer values after integer values. This helps SCEVExpander
546 // form GEPs.
Dan Gohman304a7a62010-07-23 21:20:52 +0000547 bool LIsPointer = LU->getType()->isPointerTy(),
548 RIsPointer = RU->getType()->isPointerTy();
549 if (LIsPointer != RIsPointer)
550 return RIsPointer;
Dan Gohman3bf63762010-06-18 19:54:20 +0000551
552 // Compare getValueID values.
Dan Gohman304a7a62010-07-23 21:20:52 +0000553 unsigned LID = LU->getValue()->getValueID(),
554 RID = RU->getValue()->getValueID();
555 if (LID != RID)
556 return LID < RID;
Dan Gohman3bf63762010-06-18 19:54:20 +0000557
558 // Sort arguments by their position.
559 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
560 const Argument *RA = cast<Argument>(RU->getValue());
561 return LA->getArgNo() < RA->getArgNo();
562 }
563
564 // For instructions, compare their loop depth, and their opcode.
565 // This is pretty loose.
Dan Gohman304a7a62010-07-23 21:20:52 +0000566 if (const Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
567 const Instruction *RV = cast<Instruction>(RU->getValue());
Dan Gohman3bf63762010-06-18 19:54:20 +0000568
569 // Compare loop depths.
Dan Gohman304a7a62010-07-23 21:20:52 +0000570 unsigned LDepth = LI->getLoopDepth(LV->getParent()),
571 RDepth = LI->getLoopDepth(RV->getParent());
572 if (LDepth != RDepth)
573 return LDepth < RDepth;
Dan Gohman3bf63762010-06-18 19:54:20 +0000574
575 // Compare the number of operands.
Dan Gohman304a7a62010-07-23 21:20:52 +0000576 unsigned LNumOps = LV->getNumOperands(),
577 RNumOps = RV->getNumOperands();
578 if (LNumOps != RNumOps)
579 return LNumOps < RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000580 }
581
582 return false;
583 }
584
585 // Compare constant values.
586 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
587 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000588 const ConstantInt *LCC = LC->getValue();
589 const ConstantInt *RCC = RC->getValue();
590 unsigned LBitWidth = LCC->getBitWidth(), RBitWidth = RCC->getBitWidth();
591 if (LBitWidth != RBitWidth)
592 return LBitWidth < RBitWidth;
593 return LCC->getValue().ult(RCC->getValue());
Dan Gohman3bf63762010-06-18 19:54:20 +0000594 }
595
596 // Compare addrec loop depths.
597 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
598 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000599 unsigned LDepth = LA->getLoop()->getLoopDepth(),
600 RDepth = RA->getLoop()->getLoopDepth();
601 if (LDepth != RDepth)
602 return LDepth < RDepth;
Dan Gohman3bf63762010-06-18 19:54:20 +0000603 }
604
605 // Lexicographically compare n-ary expressions.
606 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
607 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000608 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
609 for (unsigned i = 0; i != LNumOps; ++i) {
610 if (i >= RNumOps)
Dan Gohman3bf63762010-06-18 19:54:20 +0000611 return false;
Dan Gohman304a7a62010-07-23 21:20:52 +0000612 const SCEV *LOp = LC->getOperand(i), *ROp = RC->getOperand(i);
613 if (operator()(LOp, ROp))
Dan Gohman3bf63762010-06-18 19:54:20 +0000614 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000615 if (operator()(ROp, LOp))
Dan Gohman3bf63762010-06-18 19:54:20 +0000616 return false;
617 }
Dan Gohman304a7a62010-07-23 21:20:52 +0000618 return LNumOps < RNumOps;
Dan Gohman3bf63762010-06-18 19:54:20 +0000619 }
620
621 // Lexicographically compare udiv expressions.
622 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
623 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman304a7a62010-07-23 21:20:52 +0000624 const SCEV *LL = LC->getLHS(), *LR = LC->getRHS(),
625 *RL = RC->getLHS(), *RR = RC->getRHS();
626 if (operator()(LL, RL))
Dan Gohman3bf63762010-06-18 19:54:20 +0000627 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000628 if (operator()(RL, LL))
Dan Gohman3bf63762010-06-18 19:54:20 +0000629 return false;
Dan Gohman304a7a62010-07-23 21:20:52 +0000630 if (operator()(LR, RR))
Dan Gohman3bf63762010-06-18 19:54:20 +0000631 return true;
Dan Gohman304a7a62010-07-23 21:20:52 +0000632 if (operator()(RR, LR))
Dan Gohman3bf63762010-06-18 19:54:20 +0000633 return false;
634 return false;
635 }
636
637 // Compare cast expressions by operand.
638 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
639 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
640 return operator()(LC->getOperand(), RC->getOperand());
641 }
642
643 llvm_unreachable("Unknown SCEV kind!");
644 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000645 }
646 };
647}
648
649/// GroupByComplexity - Given a list of SCEV objects, order them by their
650/// complexity, and group objects of the same complexity together by value.
651/// When this routine is finished, we know that any duplicates in the vector are
652/// consecutive and that complexity is monotonically increasing.
653///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000654/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000655/// results from this routine. In other words, we don't want the results of
656/// this to depend on where the addresses of various SCEV objects happened to
657/// land in memory.
658///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000659static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000660 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000661 if (Ops.size() < 2) return; // Noop
662 if (Ops.size() == 2) {
663 // This is the common case, which also happens to be trivially simple.
664 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000665 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000666 std::swap(Ops[0], Ops[1]);
667 return;
668 }
669
Dan Gohman3bf63762010-06-18 19:54:20 +0000670 // Do the rough sort by complexity.
671 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
672
673 // Now that we are sorted by complexity, group elements of the same
674 // complexity. Note that this is, at worst, N^2, but the vector is likely to
675 // be extremely short in practice. Note that we take this approach because we
676 // do not want to depend on the addresses of the objects we are grouping.
677 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
678 const SCEV *S = Ops[i];
679 unsigned Complexity = S->getSCEVType();
680
681 // If there are any objects of the same complexity and same value as this
682 // one, group them.
683 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
684 if (Ops[j] == S) { // Found a duplicate.
685 // Move it to immediately after i'th element.
686 std::swap(Ops[i+1], Ops[j]);
687 ++i; // no need to rescan it.
688 if (i == e-2) return; // Done!
689 }
690 }
691 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000692}
693
Chris Lattner53e677a2004-04-02 20:23:17 +0000694
Chris Lattner53e677a2004-04-02 20:23:17 +0000695
696//===----------------------------------------------------------------------===//
697// Simple SCEV method implementations
698//===----------------------------------------------------------------------===//
699
Eli Friedmanb42a6262008-08-04 23:49:06 +0000700/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000701/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000702static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000703 ScalarEvolution &SE,
704 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000705 // Handle the simplest case efficiently.
706 if (K == 1)
707 return SE.getTruncateOrZeroExtend(It, ResultTy);
708
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000709 // We are using the following formula for BC(It, K):
710 //
711 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
712 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000713 // Suppose, W is the bitwidth of the return value. We must be prepared for
714 // overflow. Hence, we must assure that the result of our computation is
715 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
716 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000717 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000718 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000719 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000720 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
721 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000722 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000723 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000724 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000725 // This formula is trivially equivalent to the previous formula. However,
726 // this formula can be implemented much more efficiently. The trick is that
727 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
728 // arithmetic. To do exact division in modular arithmetic, all we have
729 // to do is multiply by the inverse. Therefore, this step can be done at
730 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000731 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000732 // The next issue is how to safely do the division by 2^T. The way this
733 // is done is by doing the multiplication step at a width of at least W + T
734 // bits. This way, the bottom W+T bits of the product are accurate. Then,
735 // when we perform the division by 2^T (which is equivalent to a right shift
736 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
737 // truncated out after the division by 2^T.
738 //
739 // In comparison to just directly using the first formula, this technique
740 // is much more efficient; using the first formula requires W * K bits,
741 // but this formula less than W + K bits. Also, the first formula requires
742 // a division step, whereas this formula only requires multiplies and shifts.
743 //
744 // It doesn't matter whether the subtraction step is done in the calculation
745 // width or the input iteration count's width; if the subtraction overflows,
746 // the result must be zero anyway. We prefer here to do it in the width of
747 // the induction variable because it helps a lot for certain cases; CodeGen
748 // isn't smart enough to ignore the overflow, which leads to much less
749 // efficient code if the width of the subtraction is wider than the native
750 // register width.
751 //
752 // (It's possible to not widen at all by pulling out factors of 2 before
753 // the multiplication; for example, K=2 can be calculated as
754 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
755 // extra arithmetic, so it's not an obvious win, and it gets
756 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000757
Eli Friedmanb42a6262008-08-04 23:49:06 +0000758 // Protection from insane SCEVs; this bound is conservative,
759 // but it probably doesn't matter.
760 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000761 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000762
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000763 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000764
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 // Calculate K! / 2^T and T; we divide out the factors of two before
766 // multiplying for calculating K! / 2^T to avoid overflow.
767 // Other overflow doesn't matter because we only care about the bottom
768 // W bits of the result.
769 APInt OddFactorial(W, 1);
770 unsigned T = 1;
771 for (unsigned i = 3; i <= K; ++i) {
772 APInt Mult(W, i);
773 unsigned TwoFactors = Mult.countTrailingZeros();
774 T += TwoFactors;
775 Mult = Mult.lshr(TwoFactors);
776 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000777 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000778
Eli Friedmanb42a6262008-08-04 23:49:06 +0000779 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000780 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000781
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000782 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000783 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
784
785 // Calculate the multiplicative inverse of K! / 2^T;
786 // this multiplication factor will perform the exact division by
787 // K! / 2^T.
788 APInt Mod = APInt::getSignedMinValue(W+1);
789 APInt MultiplyFactor = OddFactorial.zext(W+1);
790 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
791 MultiplyFactor = MultiplyFactor.trunc(W);
792
793 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000794 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
795 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000796 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000797 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000798 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000799 Dividend = SE.getMulExpr(Dividend,
800 SE.getTruncateOrZeroExtend(S, CalculationTy));
801 }
802
803 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000804 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000805
806 // Truncate the result, and divide by K! / 2^T.
807
808 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
809 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000810}
811
Chris Lattner53e677a2004-04-02 20:23:17 +0000812/// evaluateAtIteration - Return the value of this chain of recurrences at
813/// the specified iteration number. We can evaluate this recurrence by
814/// multiplying each element in the chain by the binomial coefficient
815/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
816///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000817/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000818///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000819/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000820///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000821const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000822 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000823 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000824 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000825 // The computation is correct in the face of overflow provided that the
826 // multiplication is performed _after_ the evaluation of the binomial
827 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000828 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000829 if (isa<SCEVCouldNotCompute>(Coeff))
830 return Coeff;
831
832 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000833 }
834 return Result;
835}
836
Chris Lattner53e677a2004-04-02 20:23:17 +0000837//===----------------------------------------------------------------------===//
838// SCEV Expression folder implementations
839//===----------------------------------------------------------------------===//
840
Dan Gohman0bba49c2009-07-07 17:06:11 +0000841const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000842 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000843 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000844 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000845 assert(isSCEVable(Ty) &&
846 "This is not a conversion to a SCEVable type!");
847 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000848
Dan Gohmanc050fd92009-07-13 20:50:19 +0000849 FoldingSetNodeID ID;
850 ID.AddInteger(scTruncate);
851 ID.AddPointer(Op);
852 ID.AddPointer(Ty);
853 void *IP = 0;
854 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
855
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000856 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000857 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000858 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000859 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
860 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000861
Dan Gohman20900ca2009-04-22 16:20:48 +0000862 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000863 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000864 return getTruncateExpr(ST->getOperand(), Ty);
865
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000866 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000867 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000868 return getTruncateOrSignExtend(SS->getOperand(), Ty);
869
870 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000871 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000872 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
873
Dan Gohman6864db62009-06-18 16:24:47 +0000874 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000875 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000876 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000877 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000878 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
879 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000880 }
881
Dan Gohmanf53462d2010-07-15 20:02:11 +0000882 // As a special case, fold trunc(undef) to undef. We don't want to
883 // know too much about SCEVUnknowns, but this special case is handy
884 // and harmless.
885 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
886 if (isa<UndefValue>(U->getValue()))
887 return getSCEV(UndefValue::get(Ty));
888
Dan Gohman420ab912010-06-25 18:47:08 +0000889 // The cast wasn't folded; create an explicit cast node. We can reuse
890 // the existing insert position since if we get here, we won't have
891 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000892 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
893 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000894 UniqueSCEVs.InsertNode(S, IP);
895 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000896}
897
Dan Gohman0bba49c2009-07-07 17:06:11 +0000898const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000899 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000900 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000901 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000902 assert(isSCEVable(Ty) &&
903 "This is not a conversion to a SCEVable type!");
904 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000905
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000906 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
908 return getConstant(
909 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
910 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000911
Dan Gohman20900ca2009-04-22 16:20:48 +0000912 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000914 return getZeroExtendExpr(SZ->getOperand(), Ty);
915
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000916 // Before doing any expensive analysis, check to see if we've already
917 // computed a SCEV for this Op and Ty.
918 FoldingSetNodeID ID;
919 ID.AddInteger(scZeroExtend);
920 ID.AddPointer(Op);
921 ID.AddPointer(Ty);
922 void *IP = 0;
923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
924
Dan Gohman01ecca22009-04-27 20:16:15 +0000925 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000926 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000927 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000928 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000929 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000930 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000931 const SCEV *Start = AR->getStart();
932 const SCEV *Step = AR->getStepRecurrence(*this);
933 unsigned BitWidth = getTypeSizeInBits(AR->getType());
934 const Loop *L = AR->getLoop();
935
Dan Gohmaneb490a72009-07-25 01:22:26 +0000936 // If we have special knowledge that this addrec won't overflow,
937 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000938 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000939 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
940 getZeroExtendExpr(Step, Ty),
941 L);
942
Dan Gohman01ecca22009-04-27 20:16:15 +0000943 // Check whether the backedge-taken count is SCEVCouldNotCompute.
944 // Note that this serves two purposes: It filters out loops that are
945 // simply not analyzable, and it covers the case where this code is
946 // being called from within backedge-taken count analysis, such that
947 // attempting to ask for the backedge-taken count would likely result
948 // in infinite recursion. In the later case, the analysis code will
949 // cope with a conservative value, and it will take care to purge
950 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000951 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000952 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000953 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000954 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000955
956 // Check whether the backedge-taken count can be losslessly casted to
957 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000958 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000959 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000960 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000961 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
962 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000963 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000964 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000965 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000966 const SCEV *Add = getAddExpr(Start, ZMul);
967 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000968 getAddExpr(getZeroExtendExpr(Start, WideTy),
969 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
970 getZeroExtendExpr(Step, WideTy)));
971 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000972 // Return the expression with the addrec on the outside.
973 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
974 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000975 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000976
977 // Similar to above, only this time treat the step value as signed.
978 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000979 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000980 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000981 OperandExtendedAdd =
982 getAddExpr(getZeroExtendExpr(Start, WideTy),
983 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
984 getSignExtendExpr(Step, WideTy)));
985 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000986 // Return the expression with the addrec on the outside.
987 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
988 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000989 L);
990 }
991
992 // If the backedge is guarded by a comparison with the pre-inc value
993 // the addrec is safe. Also, if the entry is guarded by a comparison
994 // with the start value and the backedge is guarded by a comparison
995 // with the post-inc value, the addrec is safe.
996 if (isKnownPositive(Step)) {
997 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
998 getUnsignedRange(Step).getUnsignedMax());
999 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001000 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001001 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1002 AR->getPostIncExpr(*this), N)))
1003 // Return the expression with the addrec on the outside.
1004 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1005 getZeroExtendExpr(Step, Ty),
1006 L);
1007 } else if (isKnownNegative(Step)) {
1008 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1009 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +00001010 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1011 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001012 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1013 AR->getPostIncExpr(*this), N)))
1014 // Return the expression with the addrec on the outside.
1015 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1016 getSignExtendExpr(Step, Ty),
1017 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001018 }
1019 }
1020 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001021
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001022 // The cast wasn't folded; create an explicit cast node.
1023 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001024 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001025 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1026 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001027 UniqueSCEVs.InsertNode(S, IP);
1028 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001029}
1030
Dan Gohman0bba49c2009-07-07 17:06:11 +00001031const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00001032 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001033 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001034 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +00001035 assert(isSCEVable(Ty) &&
1036 "This is not a conversion to a SCEVable type!");
1037 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +00001038
Dan Gohmanc39f44b2009-06-30 20:13:32 +00001039 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +00001040 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1041 return getConstant(
1042 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1043 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001044
Dan Gohman20900ca2009-04-22 16:20:48 +00001045 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001046 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001047 return getSignExtendExpr(SS->getOperand(), Ty);
1048
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001049 // Before doing any expensive analysis, check to see if we've already
1050 // computed a SCEV for this Op and Ty.
1051 FoldingSetNodeID ID;
1052 ID.AddInteger(scSignExtend);
1053 ID.AddPointer(Op);
1054 ID.AddPointer(Ty);
1055 void *IP = 0;
1056 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1057
Dan Gohman01ecca22009-04-27 20:16:15 +00001058 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001059 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001060 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001061 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001062 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001063 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001064 const SCEV *Start = AR->getStart();
1065 const SCEV *Step = AR->getStepRecurrence(*this);
1066 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1067 const Loop *L = AR->getLoop();
1068
Dan Gohmaneb490a72009-07-25 01:22:26 +00001069 // If we have special knowledge that this addrec won't overflow,
1070 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001071 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001072 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1073 getSignExtendExpr(Step, Ty),
1074 L);
1075
Dan Gohman01ecca22009-04-27 20:16:15 +00001076 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1077 // Note that this serves two purposes: It filters out loops that are
1078 // simply not analyzable, and it covers the case where this code is
1079 // being called from within backedge-taken count analysis, such that
1080 // attempting to ask for the backedge-taken count would likely result
1081 // in infinite recursion. In the later case, the analysis code will
1082 // cope with a conservative value, and it will take care to purge
1083 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001084 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001085 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001086 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001087 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001088
1089 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001090 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001091 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001092 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001093 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001094 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1095 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001096 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001097 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001098 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001099 const SCEV *Add = getAddExpr(Start, SMul);
1100 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001101 getAddExpr(getSignExtendExpr(Start, WideTy),
1102 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1103 getSignExtendExpr(Step, WideTy)));
1104 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001105 // Return the expression with the addrec on the outside.
1106 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1107 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001108 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001109
1110 // Similar to above, only this time treat the step value as unsigned.
1111 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001112 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001113 Add = getAddExpr(Start, UMul);
1114 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001115 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001116 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1117 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001118 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001119 // Return the expression with the addrec on the outside.
1120 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1121 getZeroExtendExpr(Step, Ty),
1122 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001123 }
1124
1125 // If the backedge is guarded by a comparison with the pre-inc value
1126 // the addrec is safe. Also, if the entry is guarded by a comparison
1127 // with the start value and the backedge is guarded by a comparison
1128 // with the post-inc value, the addrec is safe.
1129 if (isKnownPositive(Step)) {
1130 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1131 getSignedRange(Step).getSignedMax());
1132 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001133 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001134 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1135 AR->getPostIncExpr(*this), N)))
1136 // Return the expression with the addrec on the outside.
1137 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1138 getSignExtendExpr(Step, Ty),
1139 L);
1140 } else if (isKnownNegative(Step)) {
1141 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1142 getSignedRange(Step).getSignedMin());
1143 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001144 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001145 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1146 AR->getPostIncExpr(*this), N)))
1147 // Return the expression with the addrec on the outside.
1148 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1149 getSignExtendExpr(Step, Ty),
1150 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001151 }
1152 }
1153 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001154
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001155 // The cast wasn't folded; create an explicit cast node.
1156 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001157 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001158 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1159 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001160 UniqueSCEVs.InsertNode(S, IP);
1161 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001162}
1163
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001164/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1165/// unspecified bits out to the given type.
1166///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001167const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001168 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001169 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1170 "This is not an extending conversion!");
1171 assert(isSCEVable(Ty) &&
1172 "This is not a conversion to a SCEVable type!");
1173 Ty = getEffectiveSCEVType(Ty);
1174
1175 // Sign-extend negative constants.
1176 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1177 if (SC->getValue()->getValue().isNegative())
1178 return getSignExtendExpr(Op, Ty);
1179
1180 // Peel off a truncate cast.
1181 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001182 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001183 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1184 return getAnyExtendExpr(NewOp, Ty);
1185 return getTruncateOrNoop(NewOp, Ty);
1186 }
1187
1188 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001189 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001190 if (!isa<SCEVZeroExtendExpr>(ZExt))
1191 return ZExt;
1192
1193 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001194 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001195 if (!isa<SCEVSignExtendExpr>(SExt))
1196 return SExt;
1197
Dan Gohmana10756e2010-01-21 02:09:26 +00001198 // Force the cast to be folded into the operands of an addrec.
1199 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1200 SmallVector<const SCEV *, 4> Ops;
1201 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1202 I != E; ++I)
1203 Ops.push_back(getAnyExtendExpr(*I, Ty));
1204 return getAddRecExpr(Ops, AR->getLoop());
1205 }
1206
Dan Gohmanf53462d2010-07-15 20:02:11 +00001207 // As a special case, fold anyext(undef) to undef. We don't want to
1208 // know too much about SCEVUnknowns, but this special case is handy
1209 // and harmless.
1210 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Op))
1211 if (isa<UndefValue>(U->getValue()))
1212 return getSCEV(UndefValue::get(Ty));
1213
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001214 // If the expression is obviously signed, use the sext cast value.
1215 if (isa<SCEVSMaxExpr>(Op))
1216 return SExt;
1217
1218 // Absent any other information, use the zext cast value.
1219 return ZExt;
1220}
1221
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001222/// CollectAddOperandsWithScales - Process the given Ops list, which is
1223/// a list of operands to be added under the given scale, update the given
1224/// map. This is a helper function for getAddRecExpr. As an example of
1225/// what it does, given a sequence of operands that would form an add
1226/// expression like this:
1227///
1228/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1229///
1230/// where A and B are constants, update the map with these values:
1231///
1232/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1233///
1234/// and add 13 + A*B*29 to AccumulatedConstant.
1235/// This will allow getAddRecExpr to produce this:
1236///
1237/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1238///
1239/// This form often exposes folding opportunities that are hidden in
1240/// the original operand list.
1241///
1242/// Return true iff it appears that any interesting folding opportunities
1243/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1244/// the common case where no interesting opportunities are present, and
1245/// is also used as a check to avoid infinite recursion.
1246///
1247static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001248CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1249 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001250 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001251 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001252 const APInt &Scale,
1253 ScalarEvolution &SE) {
1254 bool Interesting = false;
1255
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001256 // Iterate over the add operands. They are sorted, with constants first.
1257 unsigned i = 0;
1258 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1259 ++i;
1260 // Pull a buried constant out to the outside.
1261 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1262 Interesting = true;
1263 AccumulatedConstant += Scale * C->getValue()->getValue();
1264 }
1265
1266 // Next comes everything else. We're especially interested in multiplies
1267 // here, but they're in the middle, so just visit the rest with one loop.
1268 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001269 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1270 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1271 APInt NewScale =
1272 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1273 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1274 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001275 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001276 Interesting |=
1277 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001278 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001279 NewScale, SE);
1280 } else {
1281 // A multiplication of a constant with some other value. Update
1282 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001283 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1284 const SCEV *Key = SE.getMulExpr(MulOps);
1285 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001286 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001287 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001288 NewOps.push_back(Pair.first->first);
1289 } else {
1290 Pair.first->second += NewScale;
1291 // The map already had an entry for this value, which may indicate
1292 // a folding opportunity.
1293 Interesting = true;
1294 }
1295 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001296 } else {
1297 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001298 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001299 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001300 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001301 NewOps.push_back(Pair.first->first);
1302 } else {
1303 Pair.first->second += Scale;
1304 // The map already had an entry for this value, which may indicate
1305 // a folding opportunity.
1306 Interesting = true;
1307 }
1308 }
1309 }
1310
1311 return Interesting;
1312}
1313
1314namespace {
1315 struct APIntCompare {
1316 bool operator()(const APInt &LHS, const APInt &RHS) const {
1317 return LHS.ult(RHS);
1318 }
1319 };
1320}
1321
Dan Gohman6c0866c2009-05-24 23:45:28 +00001322/// getAddExpr - Get a canonical add expression, or something simpler if
1323/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001324const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1325 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001326 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001327 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001328#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001329 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001330 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001331 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001332 "SCEVAddExpr operand types don't match!");
1333#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001334
Dan Gohmana10756e2010-01-21 02:09:26 +00001335 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1336 if (!HasNUW && HasNSW) {
1337 bool All = true;
1338 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1339 if (!isKnownNonNegative(Ops[i])) {
1340 All = false;
1341 break;
1342 }
1343 if (All) HasNUW = true;
1344 }
1345
Chris Lattner53e677a2004-04-02 20:23:17 +00001346 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001347 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001348
1349 // If there are any constants, fold them together.
1350 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001351 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001352 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001353 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001354 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001355 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001356 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1357 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001358 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001359 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001360 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001361 }
1362
1363 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001364 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001365 Ops.erase(Ops.begin());
1366 --Idx;
1367 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001368
Dan Gohmanbca091d2010-04-12 23:08:18 +00001369 if (Ops.size() == 1) return Ops[0];
1370 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001371
Chris Lattner53e677a2004-04-02 20:23:17 +00001372 // Okay, check to see if the same value occurs in the operand list twice. If
1373 // so, merge them together into an multiply expression. Since we sorted the
1374 // list, these values are required to be adjacent.
1375 const Type *Ty = Ops[0]->getType();
Dan Gohmandc7692b2010-08-12 14:46:54 +00001376 bool FoundMatch = false;
Chris Lattner53e677a2004-04-02 20:23:17 +00001377 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1378 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1379 // Found a match, merge the two values into a multiply, and add any
1380 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001381 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001382 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001383 if (Ops.size() == 2)
1384 return Mul;
Dan Gohmandc7692b2010-08-12 14:46:54 +00001385 Ops[i] = Mul;
1386 Ops.erase(Ops.begin()+i+1);
1387 --i; --e;
1388 FoundMatch = true;
Chris Lattner53e677a2004-04-02 20:23:17 +00001389 }
Dan Gohmandc7692b2010-08-12 14:46:54 +00001390 if (FoundMatch)
1391 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001392
Dan Gohman728c7f32009-05-08 21:03:19 +00001393 // Check for truncates. If all the operands are truncated from the same
1394 // type, see if factoring out the truncate would permit the result to be
1395 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1396 // if the contents of the resulting outer trunc fold to something simple.
1397 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1398 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1399 const Type *DstType = Trunc->getType();
1400 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001401 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001402 bool Ok = true;
1403 // Check all the operands to see if they can be represented in the
1404 // source type of the truncate.
1405 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1406 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1407 if (T->getOperand()->getType() != SrcType) {
1408 Ok = false;
1409 break;
1410 }
1411 LargeOps.push_back(T->getOperand());
1412 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001413 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001414 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001415 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001416 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1417 if (const SCEVTruncateExpr *T =
1418 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1419 if (T->getOperand()->getType() != SrcType) {
1420 Ok = false;
1421 break;
1422 }
1423 LargeMulOps.push_back(T->getOperand());
1424 } else if (const SCEVConstant *C =
1425 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001426 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001427 } else {
1428 Ok = false;
1429 break;
1430 }
1431 }
1432 if (Ok)
1433 LargeOps.push_back(getMulExpr(LargeMulOps));
1434 } else {
1435 Ok = false;
1436 break;
1437 }
1438 }
1439 if (Ok) {
1440 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001441 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001442 // If it folds to something simple, use it. Otherwise, don't.
1443 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1444 return getTruncateExpr(Fold, DstType);
1445 }
1446 }
1447
1448 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001449 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1450 ++Idx;
1451
1452 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001453 if (Idx < Ops.size()) {
1454 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001455 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001456 // If we have an add, expand the add operands onto the end of the operands
1457 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001458 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001459 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001460 DeletedAdd = true;
1461 }
1462
1463 // If we deleted at least one add, we added operands to the end of the list,
1464 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001465 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001466 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001467 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001468 }
1469
1470 // Skip over the add expression until we get to a multiply.
1471 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1472 ++Idx;
1473
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001474 // Check to see if there are any folding opportunities present with
1475 // operands multiplied by constant values.
1476 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1477 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001478 DenseMap<const SCEV *, APInt> M;
1479 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001480 APInt AccumulatedConstant(BitWidth, 0);
1481 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001482 Ops.data(), Ops.size(),
1483 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001484 // Some interesting folding opportunity is present, so its worthwhile to
1485 // re-generate the operands list. Group the operands by constant scale,
1486 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001487 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1488 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001489 E = NewOps.end(); I != E; ++I)
1490 MulOpLists[M.find(*I)->second].push_back(*I);
1491 // Re-generate the operands list.
1492 Ops.clear();
1493 if (AccumulatedConstant != 0)
1494 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001495 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1496 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001497 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001498 Ops.push_back(getMulExpr(getConstant(I->first),
1499 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001500 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001501 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001502 if (Ops.size() == 1)
1503 return Ops[0];
1504 return getAddExpr(Ops);
1505 }
1506 }
1507
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 // If we are adding something to a multiply expression, make sure the
1509 // something is not already an operand of the multiply. If so, merge it into
1510 // the multiply.
1511 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001512 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001514 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001515 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001516 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001517 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001518 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001519 if (Mul->getNumOperands() != 2) {
1520 // If the multiply has more than two operands, we must get the
1521 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001522 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001523 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001524 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001525 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001526 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001527 const SCEV *AddOne = getAddExpr(InnerMul, One);
1528 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001529 if (Ops.size() == 2) return OuterMul;
1530 if (AddOp < Idx) {
1531 Ops.erase(Ops.begin()+AddOp);
1532 Ops.erase(Ops.begin()+Idx-1);
1533 } else {
1534 Ops.erase(Ops.begin()+Idx);
1535 Ops.erase(Ops.begin()+AddOp-1);
1536 }
1537 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001538 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001540
Chris Lattner53e677a2004-04-02 20:23:17 +00001541 // Check this multiply against other multiplies being added together.
1542 for (unsigned OtherMulIdx = Idx+1;
1543 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1544 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001545 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001546 // If MulOp occurs in OtherMul, we can fold the two multiplies
1547 // together.
1548 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1549 OMulOp != e; ++OMulOp)
1550 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1551 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001552 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001553 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001554 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1555 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001556 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001557 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001558 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001559 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001560 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001561 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1562 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001563 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001564 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001565 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001566 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1567 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001568 if (Ops.size() == 2) return OuterMul;
1569 Ops.erase(Ops.begin()+Idx);
1570 Ops.erase(Ops.begin()+OtherMulIdx-1);
1571 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001572 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001573 }
1574 }
1575 }
1576 }
1577
1578 // If there are any add recurrences in the operands list, see if any other
1579 // added values are loop invariant. If so, we can fold them into the
1580 // recurrence.
1581 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1582 ++Idx;
1583
1584 // Scan over all recurrences, trying to fold loop invariants into them.
1585 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1586 // Scan all of the other operands to this add and add them to the vector if
1587 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001588 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001589 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001590 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001591 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001592 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001593 LIOps.push_back(Ops[i]);
1594 Ops.erase(Ops.begin()+i);
1595 --i; --e;
1596 }
1597
1598 // If we found some loop invariants, fold them into the recurrence.
1599 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001600 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001601 LIOps.push_back(AddRec->getStart());
1602
Dan Gohman0bba49c2009-07-07 17:06:11 +00001603 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001604 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001605 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001606
Dan Gohmanb9f96512010-06-30 07:16:37 +00001607 // Build the new addrec. Propagate the NUW and NSW flags if both the
1608 // outer add and the inner addrec are guaranteed to have no overflow.
1609 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop,
1610 HasNUW && AddRec->hasNoUnsignedWrap(),
1611 HasNSW && AddRec->hasNoSignedWrap());
Dan Gohman59de33e2009-12-18 18:45:31 +00001612
Chris Lattner53e677a2004-04-02 20:23:17 +00001613 // If all of the other operands were loop invariant, we are done.
1614 if (Ops.size() == 1) return NewRec;
1615
1616 // Otherwise, add the folded AddRec by the non-liv parts.
1617 for (unsigned i = 0;; ++i)
1618 if (Ops[i] == AddRec) {
1619 Ops[i] = NewRec;
1620 break;
1621 }
Dan Gohman246b2562007-10-22 18:31:58 +00001622 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001623 }
1624
1625 // Okay, if there weren't any loop invariants to be folded, check to see if
1626 // there are multiple AddRec's with the same loop induction variable being
1627 // added together. If so, we can fold them.
1628 for (unsigned OtherIdx = Idx+1;
1629 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1630 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001631 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001632 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001633 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001634 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1635 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001636 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1637 if (i >= NewOps.size()) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001638 NewOps.append(OtherAddRec->op_begin()+i,
Chris Lattner53e677a2004-04-02 20:23:17 +00001639 OtherAddRec->op_end());
1640 break;
1641 }
Dan Gohman246b2562007-10-22 18:31:58 +00001642 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001643 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001644 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001645
1646 if (Ops.size() == 2) return NewAddRec;
1647
1648 Ops.erase(Ops.begin()+Idx);
1649 Ops.erase(Ops.begin()+OtherIdx-1);
1650 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001651 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001652 }
1653 }
1654
1655 // Otherwise couldn't fold anything into this recurrence. Move onto the
1656 // next one.
1657 }
1658
1659 // Okay, it looks like we really DO need an add expr. Check to see if we
1660 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001661 FoldingSetNodeID ID;
1662 ID.AddInteger(scAddExpr);
1663 ID.AddInteger(Ops.size());
1664 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1665 ID.AddPointer(Ops[i]);
1666 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001667 SCEVAddExpr *S =
1668 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1669 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001670 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1671 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001672 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1673 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001674 UniqueSCEVs.InsertNode(S, IP);
1675 }
Dan Gohman3645b012009-10-09 00:10:36 +00001676 if (HasNUW) S->setHasNoUnsignedWrap(true);
1677 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001678 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001679}
1680
Dan Gohman6c0866c2009-05-24 23:45:28 +00001681/// getMulExpr - Get a canonical multiply expression, or something simpler if
1682/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001683const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1684 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001685 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001686 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001687#ifndef NDEBUG
1688 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1689 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1690 getEffectiveSCEVType(Ops[0]->getType()) &&
1691 "SCEVMulExpr operand types don't match!");
1692#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001693
Dan Gohmana10756e2010-01-21 02:09:26 +00001694 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1695 if (!HasNUW && HasNSW) {
1696 bool All = true;
1697 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1698 if (!isKnownNonNegative(Ops[i])) {
1699 All = false;
1700 break;
1701 }
1702 if (All) HasNUW = true;
1703 }
1704
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001706 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001707
1708 // If there are any constants, fold them together.
1709 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001710 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001711
1712 // C1*(C2+V) -> C1*C2 + C1*V
1713 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001714 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 if (Add->getNumOperands() == 2 &&
1716 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001717 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1718 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001719
Chris Lattner53e677a2004-04-02 20:23:17 +00001720 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001721 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001722 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001723 ConstantInt *Fold = ConstantInt::get(getContext(),
1724 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001725 RHSC->getValue()->getValue());
1726 Ops[0] = getConstant(Fold);
1727 Ops.erase(Ops.begin()+1); // Erase the folded element
1728 if (Ops.size() == 1) return Ops[0];
1729 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001730 }
1731
1732 // If we are left with a constant one being multiplied, strip it off.
1733 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1734 Ops.erase(Ops.begin());
1735 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001736 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001737 // If we have a multiply of zero, it will always be zero.
1738 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001739 } else if (Ops[0]->isAllOnesValue()) {
1740 // If we have a mul by -1 of an add, try distributing the -1 among the
1741 // add operands.
1742 if (Ops.size() == 2)
1743 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1744 SmallVector<const SCEV *, 4> NewOps;
1745 bool AnyFolded = false;
1746 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1747 I != E; ++I) {
1748 const SCEV *Mul = getMulExpr(Ops[0], *I);
1749 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1750 NewOps.push_back(Mul);
1751 }
1752 if (AnyFolded)
1753 return getAddExpr(NewOps);
1754 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001755 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001756
1757 if (Ops.size() == 1)
1758 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001759 }
1760
1761 // Skip over the add expression until we get to a multiply.
1762 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1763 ++Idx;
1764
Chris Lattner53e677a2004-04-02 20:23:17 +00001765 // If there are mul operands inline them all into this expression.
1766 if (Idx < Ops.size()) {
1767 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001768 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001769 // If we have an mul, expand the mul operands onto the end of the operands
1770 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001771 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001772 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 DeletedMul = true;
1774 }
1775
1776 // If we deleted at least one mul, we added operands to the end of the list,
1777 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001778 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001779 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001780 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001781 }
1782
1783 // If there are any add recurrences in the operands list, see if any other
1784 // added values are loop invariant. If so, we can fold them into the
1785 // recurrence.
1786 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1787 ++Idx;
1788
1789 // Scan over all recurrences, trying to fold loop invariants into them.
1790 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1791 // Scan all of the other operands to this mul and add them to the vector if
1792 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001793 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001794 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001795 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1796 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1797 LIOps.push_back(Ops[i]);
1798 Ops.erase(Ops.begin()+i);
1799 --i; --e;
1800 }
1801
1802 // If we found some loop invariants, fold them into the recurrence.
1803 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001804 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001805 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001806 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001807 const SCEV *Scale = getMulExpr(LIOps);
1808 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1809 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001810
Dan Gohmanb9f96512010-06-30 07:16:37 +00001811 // Build the new addrec. Propagate the NUW and NSW flags if both the
1812 // outer mul and the inner addrec are guaranteed to have no overflow.
Dan Gohmana10756e2010-01-21 02:09:26 +00001813 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1814 HasNUW && AddRec->hasNoUnsignedWrap(),
Dan Gohmanb9f96512010-06-30 07:16:37 +00001815 HasNSW && AddRec->hasNoSignedWrap());
Chris Lattner53e677a2004-04-02 20:23:17 +00001816
1817 // If all of the other operands were loop invariant, we are done.
1818 if (Ops.size() == 1) return NewRec;
1819
1820 // Otherwise, multiply the folded AddRec by the non-liv parts.
1821 for (unsigned i = 0;; ++i)
1822 if (Ops[i] == AddRec) {
1823 Ops[i] = NewRec;
1824 break;
1825 }
Dan Gohman246b2562007-10-22 18:31:58 +00001826 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001827 }
1828
1829 // Okay, if there weren't any loop invariants to be folded, check to see if
1830 // there are multiple AddRec's with the same loop induction variable being
1831 // multiplied together. If so, we can fold them.
1832 for (unsigned OtherIdx = Idx+1;
1833 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1834 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001835 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001836 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1837 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001838 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001839 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001840 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001841 const SCEV *B = F->getStepRecurrence(*this);
1842 const SCEV *D = G->getStepRecurrence(*this);
1843 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001844 getMulExpr(G, B),
1845 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001846 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001847 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001848 if (Ops.size() == 2) return NewAddRec;
1849
1850 Ops.erase(Ops.begin()+Idx);
1851 Ops.erase(Ops.begin()+OtherIdx-1);
1852 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001853 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001854 }
1855 }
1856
1857 // Otherwise couldn't fold anything into this recurrence. Move onto the
1858 // next one.
1859 }
1860
1861 // Okay, it looks like we really DO need an mul expr. Check to see if we
1862 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001863 FoldingSetNodeID ID;
1864 ID.AddInteger(scMulExpr);
1865 ID.AddInteger(Ops.size());
1866 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1867 ID.AddPointer(Ops[i]);
1868 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001869 SCEVMulExpr *S =
1870 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1871 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001872 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1873 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001874 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1875 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001876 UniqueSCEVs.InsertNode(S, IP);
1877 }
Dan Gohman3645b012009-10-09 00:10:36 +00001878 if (HasNUW) S->setHasNoUnsignedWrap(true);
1879 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001880 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001881}
1882
Andreas Bolka8a11c982009-08-07 22:55:26 +00001883/// getUDivExpr - Get a canonical unsigned division expression, or something
1884/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001885const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1886 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001887 assert(getEffectiveSCEVType(LHS->getType()) ==
1888 getEffectiveSCEVType(RHS->getType()) &&
1889 "SCEVUDivExpr operand types don't match!");
1890
Dan Gohman622ed672009-05-04 22:02:23 +00001891 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001892 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001893 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001894 // If the denominator is zero, the result of the udiv is undefined. Don't
1895 // try to analyze it, because the resolution chosen here may differ from
1896 // the resolution chosen in other parts of the compiler.
1897 if (!RHSC->getValue()->isZero()) {
1898 // Determine if the division can be folded into the operands of
1899 // its operands.
1900 // TODO: Generalize this to non-constants by using known-bits information.
1901 const Type *Ty = LHS->getType();
1902 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmanddd3a882010-08-04 19:52:50 +00001903 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001904 // For non-power-of-two values, effectively round the value up to the
1905 // nearest power of two.
1906 if (!RHSC->getValue()->getValue().isPowerOf2())
1907 ++MaxShiftAmt;
1908 const IntegerType *ExtTy =
1909 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1910 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1911 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1912 if (const SCEVConstant *Step =
1913 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1914 if (!Step->getValue()->getValue()
1915 .urem(RHSC->getValue()->getValue()) &&
1916 getZeroExtendExpr(AR, ExtTy) ==
1917 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1918 getZeroExtendExpr(Step, ExtTy),
1919 AR->getLoop())) {
1920 SmallVector<const SCEV *, 4> Operands;
1921 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1922 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1923 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001924 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001925 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1926 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1927 SmallVector<const SCEV *, 4> Operands;
1928 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1929 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1930 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1931 // Find an operand that's safely divisible.
1932 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1933 const SCEV *Op = M->getOperand(i);
1934 const SCEV *Div = getUDivExpr(Op, RHSC);
1935 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1936 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1937 M->op_end());
1938 Operands[i] = Div;
1939 return getMulExpr(Operands);
1940 }
1941 }
Dan Gohman185cf032009-05-08 20:18:49 +00001942 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001943 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1944 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1945 SmallVector<const SCEV *, 4> Operands;
1946 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1947 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1948 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1949 Operands.clear();
1950 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1951 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1952 if (isa<SCEVUDivExpr>(Op) ||
1953 getMulExpr(Op, RHS) != A->getOperand(i))
1954 break;
1955 Operands.push_back(Op);
1956 }
1957 if (Operands.size() == A->getNumOperands())
1958 return getAddExpr(Operands);
1959 }
1960 }
Dan Gohman185cf032009-05-08 20:18:49 +00001961
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001962 // Fold if both operands are constant.
1963 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1964 Constant *LHSCV = LHSC->getValue();
1965 Constant *RHSCV = RHSC->getValue();
1966 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1967 RHSCV)));
1968 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001969 }
1970 }
1971
Dan Gohman1c343752009-06-27 21:21:31 +00001972 FoldingSetNodeID ID;
1973 ID.AddInteger(scUDivExpr);
1974 ID.AddPointer(LHS);
1975 ID.AddPointer(RHS);
1976 void *IP = 0;
1977 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001978 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1979 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001980 UniqueSCEVs.InsertNode(S, IP);
1981 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001982}
1983
1984
Dan Gohman6c0866c2009-05-24 23:45:28 +00001985/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1986/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001987const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001988 const SCEV *Step, const Loop *L,
1989 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001990 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001991 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001992 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001993 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001994 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001995 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001996 }
1997
1998 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001999 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002000}
2001
Dan Gohman6c0866c2009-05-24 23:45:28 +00002002/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2003/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00002004const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00002005ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00002006 const Loop *L,
2007 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002008 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002009#ifndef NDEBUG
2010 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2011 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
2012 getEffectiveSCEVType(Operands[0]->getType()) &&
2013 "SCEVAddRecExpr operand types don't match!");
2014#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00002015
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002016 if (Operands.back()->isZero()) {
2017 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00002018 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00002019 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002020
Dan Gohmanbc028532010-02-19 18:49:22 +00002021 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2022 // use that information to infer NUW and NSW flags. However, computing a
2023 // BE count requires calling getAddRecExpr, so we may not yet have a
2024 // meaningful BE count at this point (and if we don't, we'd be stuck
2025 // with a SCEVCouldNotCompute as the cached BE count).
2026
Dan Gohmana10756e2010-01-21 02:09:26 +00002027 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
2028 if (!HasNUW && HasNSW) {
2029 bool All = true;
2030 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2031 if (!isKnownNonNegative(Operands[i])) {
2032 All = false;
2033 break;
2034 }
2035 if (All) HasNUW = true;
2036 }
2037
Dan Gohmand9cc7492008-08-08 18:33:12 +00002038 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00002039 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00002040 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00002041 if (L->contains(NestedLoop->getHeader()) ?
2042 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2043 (!NestedLoop->contains(L->getHeader()) &&
2044 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002045 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00002046 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00002047 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00002048 // AddRecs require their operands be loop-invariant with respect to their
2049 // loops. Don't perform this transformation if it would break this
2050 // requirement.
2051 bool AllInvariant = true;
2052 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2053 if (!Operands[i]->isLoopInvariant(L)) {
2054 AllInvariant = false;
2055 break;
2056 }
2057 if (AllInvariant) {
2058 NestedOperands[0] = getAddRecExpr(Operands, L);
2059 AllInvariant = true;
2060 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2061 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2062 AllInvariant = false;
2063 break;
2064 }
2065 if (AllInvariant)
2066 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002067 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002068 }
2069 // Reset Operands to its original state.
2070 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002071 }
2072 }
2073
Dan Gohman67847532010-01-19 22:27:22 +00002074 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2075 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002076 FoldingSetNodeID ID;
2077 ID.AddInteger(scAddRecExpr);
2078 ID.AddInteger(Operands.size());
2079 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2080 ID.AddPointer(Operands[i]);
2081 ID.AddPointer(L);
2082 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002083 SCEVAddRecExpr *S =
2084 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2085 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002086 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2087 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002088 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2089 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002090 UniqueSCEVs.InsertNode(S, IP);
2091 }
Dan Gohman3645b012009-10-09 00:10:36 +00002092 if (HasNUW) S->setHasNoUnsignedWrap(true);
2093 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002094 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002095}
2096
Dan Gohman9311ef62009-06-24 14:49:00 +00002097const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2098 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002099 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002100 Ops.push_back(LHS);
2101 Ops.push_back(RHS);
2102 return getSMaxExpr(Ops);
2103}
2104
Dan Gohman0bba49c2009-07-07 17:06:11 +00002105const SCEV *
2106ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002107 assert(!Ops.empty() && "Cannot get empty smax!");
2108 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002109#ifndef NDEBUG
2110 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2111 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2112 getEffectiveSCEVType(Ops[0]->getType()) &&
2113 "SCEVSMaxExpr operand types don't match!");
2114#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002115
2116 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002117 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002118
2119 // If there are any constants, fold them together.
2120 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002121 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002122 ++Idx;
2123 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002124 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002125 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002126 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002127 APIntOps::smax(LHSC->getValue()->getValue(),
2128 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002129 Ops[0] = getConstant(Fold);
2130 Ops.erase(Ops.begin()+1); // Erase the folded element
2131 if (Ops.size() == 1) return Ops[0];
2132 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002133 }
2134
Dan Gohmane5aceed2009-06-24 14:46:22 +00002135 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002136 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2137 Ops.erase(Ops.begin());
2138 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002139 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2140 // If we have an smax with a constant maximum-int, it will always be
2141 // maximum-int.
2142 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002143 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002144
Dan Gohman3ab13122010-04-13 16:49:23 +00002145 if (Ops.size() == 1) return Ops[0];
2146 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002147
2148 // Find the first SMax
2149 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2150 ++Idx;
2151
2152 // Check to see if one of the operands is an SMax. If so, expand its operands
2153 // onto our operand list, and recurse to simplify.
2154 if (Idx < Ops.size()) {
2155 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002156 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002157 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002158 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002159 DeletedSMax = true;
2160 }
2161
2162 if (DeletedSMax)
2163 return getSMaxExpr(Ops);
2164 }
2165
2166 // Okay, check to see if the same value occurs in the operand list twice. If
2167 // so, delete one. Since we sorted the list, these values are required to
2168 // be adjacent.
2169 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002170 // X smax Y smax Y --> X smax Y
2171 // X smax Y --> X, if X is always greater than Y
2172 if (Ops[i] == Ops[i+1] ||
2173 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2174 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2175 --i; --e;
2176 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002177 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2178 --i; --e;
2179 }
2180
2181 if (Ops.size() == 1) return Ops[0];
2182
2183 assert(!Ops.empty() && "Reduced smax down to nothing!");
2184
Nick Lewycky3e630762008-02-20 06:48:22 +00002185 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002186 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002187 FoldingSetNodeID ID;
2188 ID.AddInteger(scSMaxExpr);
2189 ID.AddInteger(Ops.size());
2190 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2191 ID.AddPointer(Ops[i]);
2192 void *IP = 0;
2193 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002194 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2195 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002196 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2197 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002198 UniqueSCEVs.InsertNode(S, IP);
2199 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002200}
2201
Dan Gohman9311ef62009-06-24 14:49:00 +00002202const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2203 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002204 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002205 Ops.push_back(LHS);
2206 Ops.push_back(RHS);
2207 return getUMaxExpr(Ops);
2208}
2209
Dan Gohman0bba49c2009-07-07 17:06:11 +00002210const SCEV *
2211ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002212 assert(!Ops.empty() && "Cannot get empty umax!");
2213 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002214#ifndef NDEBUG
2215 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2216 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2217 getEffectiveSCEVType(Ops[0]->getType()) &&
2218 "SCEVUMaxExpr operand types don't match!");
2219#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002220
2221 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002222 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002223
2224 // If there are any constants, fold them together.
2225 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002226 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002227 ++Idx;
2228 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002229 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002230 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002231 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002232 APIntOps::umax(LHSC->getValue()->getValue(),
2233 RHSC->getValue()->getValue()));
2234 Ops[0] = getConstant(Fold);
2235 Ops.erase(Ops.begin()+1); // Erase the folded element
2236 if (Ops.size() == 1) return Ops[0];
2237 LHSC = cast<SCEVConstant>(Ops[0]);
2238 }
2239
Dan Gohmane5aceed2009-06-24 14:46:22 +00002240 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002241 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2242 Ops.erase(Ops.begin());
2243 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002244 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2245 // If we have an umax with a constant maximum-int, it will always be
2246 // maximum-int.
2247 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002248 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002249
Dan Gohman3ab13122010-04-13 16:49:23 +00002250 if (Ops.size() == 1) return Ops[0];
2251 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002252
2253 // Find the first UMax
2254 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2255 ++Idx;
2256
2257 // Check to see if one of the operands is a UMax. If so, expand its operands
2258 // onto our operand list, and recurse to simplify.
2259 if (Idx < Ops.size()) {
2260 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002261 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002262 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002263 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002264 DeletedUMax = true;
2265 }
2266
2267 if (DeletedUMax)
2268 return getUMaxExpr(Ops);
2269 }
2270
2271 // Okay, check to see if the same value occurs in the operand list twice. If
2272 // so, delete one. Since we sorted the list, these values are required to
2273 // be adjacent.
2274 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002275 // X umax Y umax Y --> X umax Y
2276 // X umax Y --> X, if X is always greater than Y
2277 if (Ops[i] == Ops[i+1] ||
2278 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2279 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2280 --i; --e;
2281 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002282 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2283 --i; --e;
2284 }
2285
2286 if (Ops.size() == 1) return Ops[0];
2287
2288 assert(!Ops.empty() && "Reduced umax down to nothing!");
2289
2290 // Okay, it looks like we really DO need a umax expr. Check to see if we
2291 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002292 FoldingSetNodeID ID;
2293 ID.AddInteger(scUMaxExpr);
2294 ID.AddInteger(Ops.size());
2295 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2296 ID.AddPointer(Ops[i]);
2297 void *IP = 0;
2298 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002299 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2300 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002301 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2302 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002303 UniqueSCEVs.InsertNode(S, IP);
2304 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002305}
2306
Dan Gohman9311ef62009-06-24 14:49:00 +00002307const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2308 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002309 // ~smax(~x, ~y) == smin(x, y).
2310 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2311}
2312
Dan Gohman9311ef62009-06-24 14:49:00 +00002313const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2314 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002315 // ~umax(~x, ~y) == umin(x, y)
2316 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2317}
2318
Dan Gohman4f8eea82010-02-01 18:27:38 +00002319const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002320 // If we have TargetData, we can bypass creating a target-independent
2321 // constant expression and then folding it back into a ConstantInt.
2322 // This is just a compile-time optimization.
2323 if (TD)
2324 return getConstant(TD->getIntPtrType(getContext()),
2325 TD->getTypeAllocSize(AllocTy));
2326
Dan Gohman4f8eea82010-02-01 18:27:38 +00002327 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2328 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002329 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2330 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002331 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2332 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2333}
2334
2335const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2336 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2337 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002338 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2339 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002340 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2341 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2342}
2343
2344const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2345 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002346 // If we have TargetData, we can bypass creating a target-independent
2347 // constant expression and then folding it back into a ConstantInt.
2348 // This is just a compile-time optimization.
2349 if (TD)
2350 return getConstant(TD->getIntPtrType(getContext()),
2351 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2352
Dan Gohman0f5efe52010-01-28 02:15:55 +00002353 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2354 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002355 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2356 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002357 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002358 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002359}
2360
Dan Gohman4f8eea82010-02-01 18:27:38 +00002361const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2362 Constant *FieldNo) {
2363 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002364 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002365 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2366 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002367 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002368 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002369}
2370
Dan Gohman0bba49c2009-07-07 17:06:11 +00002371const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002372 // Don't attempt to do anything other than create a SCEVUnknown object
2373 // here. createSCEV only calls getUnknown after checking for all other
2374 // interesting possibilities, and any other code that calls getUnknown
2375 // is doing so in order to hide a value from SCEV canonicalization.
2376
Dan Gohman1c343752009-06-27 21:21:31 +00002377 FoldingSetNodeID ID;
2378 ID.AddInteger(scUnknown);
2379 ID.AddPointer(V);
2380 void *IP = 0;
Dan Gohmanab37f502010-08-02 23:49:30 +00002381 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2382 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2383 "Stale SCEVUnknown in uniquing map!");
2384 return S;
2385 }
2386 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2387 FirstUnknown);
2388 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohman1c343752009-06-27 21:21:31 +00002389 UniqueSCEVs.InsertNode(S, IP);
2390 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002391}
2392
Chris Lattner53e677a2004-04-02 20:23:17 +00002393//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002394// Basic SCEV Analysis and PHI Idiom Recognition Code
2395//
2396
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002397/// isSCEVable - Test if values of the given type are analyzable within
2398/// the SCEV framework. This primarily includes integer types, and it
2399/// can optionally include pointer types if the ScalarEvolution class
2400/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002401bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002402 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002403 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002404}
2405
2406/// getTypeSizeInBits - Return the size in bits of the specified type,
2407/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002408uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002409 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2410
2411 // If we have a TargetData, use it!
2412 if (TD)
2413 return TD->getTypeSizeInBits(Ty);
2414
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002415 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002416 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002417 return Ty->getPrimitiveSizeInBits();
2418
2419 // The only other support type is pointer. Without TargetData, conservatively
2420 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002421 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002422 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002423}
2424
2425/// getEffectiveSCEVType - Return a type with the same bitwidth as
2426/// the given type and which represents how SCEV will treat the given
2427/// type, for which isSCEVable must return true. For pointer types,
2428/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002429const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002430 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2431
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002432 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002433 return Ty;
2434
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002435 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002436 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002437 if (TD) return TD->getIntPtrType(getContext());
2438
2439 // Without TargetData, conservatively assume pointers are 64-bit.
2440 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002441}
Chris Lattner53e677a2004-04-02 20:23:17 +00002442
Dan Gohman0bba49c2009-07-07 17:06:11 +00002443const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002444 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002445}
2446
Chris Lattner53e677a2004-04-02 20:23:17 +00002447/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2448/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002449const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002450 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002451
Dan Gohman0bba49c2009-07-07 17:06:11 +00002452 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002453 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002454 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002455 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002456 return S;
2457}
2458
Dan Gohman2d1be872009-04-16 03:18:22 +00002459/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2460///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002461const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002462 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002463 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002464 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002465
2466 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002467 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002468 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002469 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002470}
2471
2472/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002473const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002474 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002475 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002476 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002477
2478 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002479 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002480 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002481 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002482 return getMinusSCEV(AllOnes, V);
2483}
2484
2485/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2486///
Dan Gohman9311ef62009-06-24 14:49:00 +00002487const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2488 const SCEV *RHS) {
Dan Gohmaneb4152c2010-07-20 16:53:00 +00002489 // Fast path: X - X --> 0.
2490 if (LHS == RHS)
2491 return getConstant(LHS->getType(), 0);
2492
Dan Gohman2d1be872009-04-16 03:18:22 +00002493 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002494 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002495}
2496
2497/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2498/// input value to the specified type. If the type must be extended, it is zero
2499/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002500const SCEV *
2501ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002502 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002503 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002504 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2505 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002506 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002507 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002508 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002509 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002510 return getTruncateExpr(V, Ty);
2511 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002512}
2513
2514/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2515/// input value to the specified type. If the type must be extended, it is sign
2516/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002517const SCEV *
2518ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002519 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002520 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002521 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2522 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002523 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002524 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002525 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002526 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002527 return getTruncateExpr(V, Ty);
2528 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002529}
2530
Dan Gohman467c4302009-05-13 03:46:30 +00002531/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2532/// input value to the specified type. If the type must be extended, it is zero
2533/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002534const SCEV *
2535ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002536 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002537 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2538 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002539 "Cannot noop or zero extend with non-integer arguments!");
2540 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2541 "getNoopOrZeroExtend cannot truncate!");
2542 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2543 return V; // No conversion
2544 return getZeroExtendExpr(V, Ty);
2545}
2546
2547/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2548/// input value to the specified type. If the type must be extended, it is sign
2549/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002550const SCEV *
2551ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002552 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002553 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2554 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002555 "Cannot noop or sign extend with non-integer arguments!");
2556 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2557 "getNoopOrSignExtend cannot truncate!");
2558 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2559 return V; // No conversion
2560 return getSignExtendExpr(V, Ty);
2561}
2562
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002563/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2564/// the input value to the specified type. If the type must be extended,
2565/// it is extended with unspecified bits. The conversion must not be
2566/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002567const SCEV *
2568ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002569 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002570 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2571 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002572 "Cannot noop or any extend with non-integer arguments!");
2573 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2574 "getNoopOrAnyExtend cannot truncate!");
2575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2576 return V; // No conversion
2577 return getAnyExtendExpr(V, Ty);
2578}
2579
Dan Gohman467c4302009-05-13 03:46:30 +00002580/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2581/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002582const SCEV *
2583ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002584 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002585 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2586 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002587 "Cannot truncate or noop with non-integer arguments!");
2588 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2589 "getTruncateOrNoop cannot extend!");
2590 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2591 return V; // No conversion
2592 return getTruncateExpr(V, Ty);
2593}
2594
Dan Gohmana334aa72009-06-22 00:31:57 +00002595/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2596/// the types using zero-extension, and then perform a umax operation
2597/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002598const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2599 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002600 const SCEV *PromotedLHS = LHS;
2601 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002602
2603 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2604 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2605 else
2606 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2607
2608 return getUMaxExpr(PromotedLHS, PromotedRHS);
2609}
2610
Dan Gohmanc9759e82009-06-22 15:03:27 +00002611/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2612/// the types using zero-extension, and then perform a umin operation
2613/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002614const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2615 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002616 const SCEV *PromotedLHS = LHS;
2617 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002618
2619 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2620 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2621 else
2622 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2623
2624 return getUMinExpr(PromotedLHS, PromotedRHS);
2625}
2626
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002627/// PushDefUseChildren - Push users of the given Instruction
2628/// onto the given Worklist.
2629static void
2630PushDefUseChildren(Instruction *I,
2631 SmallVectorImpl<Instruction *> &Worklist) {
2632 // Push the def-use children onto the Worklist stack.
2633 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2634 UI != UE; ++UI)
Gabor Greif96f1d8e2010-07-22 13:36:47 +00002635 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002636}
2637
2638/// ForgetSymbolicValue - This looks up computed SCEV values for all
2639/// instructions that depend on the given instruction and removes them from
2640/// the Scalars map if they reference SymName. This is used during PHI
2641/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002642void
Dan Gohman85669632010-02-25 06:57:05 +00002643ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002644 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002645 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002646
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002647 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002648 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002649 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002650 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002651 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002652
Dan Gohman5d984912009-12-18 01:14:11 +00002653 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002654 Scalars.find(static_cast<Value *>(I));
2655 if (It != Scalars.end()) {
2656 // Short-circuit the def-use traversal if the symbolic name
2657 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002658 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002659 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002660
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002661 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002662 // structure, it's a PHI that's in the progress of being computed
2663 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2664 // additional loop trip count information isn't going to change anything.
2665 // In the second case, createNodeForPHI will perform the necessary
2666 // updates on its own when it gets to that point. In the third, we do
2667 // want to forget the SCEVUnknown.
2668 if (!isa<PHINode>(I) ||
2669 !isa<SCEVUnknown>(It->second) ||
2670 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002671 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002672 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002673 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002674 }
2675
2676 PushDefUseChildren(I, Worklist);
2677 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002678}
Chris Lattner53e677a2004-04-02 20:23:17 +00002679
2680/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2681/// a loop header, making it a potential recurrence, or it doesn't.
2682///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002683const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002684 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2685 if (L->getHeader() == PN->getParent()) {
2686 // The loop may have multiple entrances or multiple exits; we can analyze
2687 // this phi as an addrec if it has a unique entry value and a unique
2688 // backedge value.
2689 Value *BEValueV = 0, *StartValueV = 0;
2690 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2691 Value *V = PN->getIncomingValue(i);
2692 if (L->contains(PN->getIncomingBlock(i))) {
2693 if (!BEValueV) {
2694 BEValueV = V;
2695 } else if (BEValueV != V) {
2696 BEValueV = 0;
2697 break;
2698 }
2699 } else if (!StartValueV) {
2700 StartValueV = V;
2701 } else if (StartValueV != V) {
2702 StartValueV = 0;
2703 break;
2704 }
2705 }
2706 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002707 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002708 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002709 assert(Scalars.find(PN) == Scalars.end() &&
2710 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002711 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002712
2713 // Using this symbolic name for the PHI, analyze the value coming around
2714 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002715 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002716
2717 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2718 // has a special value for the first iteration of the loop.
2719
2720 // If the value coming around the backedge is an add with the symbolic
2721 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002722 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002723 // If there is a single occurrence of the symbolic value, replace it
2724 // with a recurrence.
2725 unsigned FoundIndex = Add->getNumOperands();
2726 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2727 if (Add->getOperand(i) == SymbolicName)
2728 if (FoundIndex == e) {
2729 FoundIndex = i;
2730 break;
2731 }
2732
2733 if (FoundIndex != Add->getNumOperands()) {
2734 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002735 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002736 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2737 if (i != FoundIndex)
2738 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002739 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002740
2741 // This is not a valid addrec if the step amount is varying each
2742 // loop iteration, but is not itself an addrec in this loop.
2743 if (Accum->isLoopInvariant(L) ||
2744 (isa<SCEVAddRecExpr>(Accum) &&
2745 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002746 bool HasNUW = false;
2747 bool HasNSW = false;
2748
2749 // If the increment doesn't overflow, then neither the addrec nor
2750 // the post-increment will overflow.
2751 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2752 if (OBO->hasNoUnsignedWrap())
2753 HasNUW = true;
2754 if (OBO->hasNoSignedWrap())
2755 HasNSW = true;
2756 }
2757
Dan Gohman27dead42010-04-12 07:49:36 +00002758 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002759 const SCEV *PHISCEV =
2760 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002761
Dan Gohmana10756e2010-01-21 02:09:26 +00002762 // Since the no-wrap flags are on the increment, they apply to the
2763 // post-incremented value as well.
2764 if (Accum->isLoopInvariant(L))
2765 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2766 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002767
2768 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002769 // to be symbolic. We now need to go back and purge all of the
2770 // entries for the scalars that use the symbolic expression.
2771 ForgetSymbolicName(PN, SymbolicName);
2772 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002773 return PHISCEV;
2774 }
2775 }
Dan Gohman622ed672009-05-04 22:02:23 +00002776 } else if (const SCEVAddRecExpr *AddRec =
2777 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002778 // Otherwise, this could be a loop like this:
2779 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2780 // In this case, j = {1,+,1} and BEValue is j.
2781 // Because the other in-value of i (0) fits the evolution of BEValue
2782 // i really is an addrec evolution.
2783 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002784 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002785
2786 // If StartVal = j.start - j.stride, we can use StartVal as the
2787 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002788 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002789 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002790 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002791 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002792
2793 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002794 // to be symbolic. We now need to go back and purge all of the
2795 // entries for the scalars that use the symbolic expression.
2796 ForgetSymbolicName(PN, SymbolicName);
2797 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002798 return PHISCEV;
2799 }
2800 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002801 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002802 }
Dan Gohman27dead42010-04-12 07:49:36 +00002803 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002804
Dan Gohman85669632010-02-25 06:57:05 +00002805 // If the PHI has a single incoming value, follow that value, unless the
2806 // PHI's incoming blocks are in a different loop, in which case doing so
2807 // risks breaking LCSSA form. Instcombine would normally zap these, but
2808 // it doesn't have DominatorTree information, so it may miss cases.
2809 if (Value *V = PN->hasConstantValue(DT)) {
2810 bool AllSameLoop = true;
2811 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2812 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2813 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2814 AllSameLoop = false;
2815 break;
2816 }
2817 if (AllSameLoop)
2818 return getSCEV(V);
2819 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002820
Chris Lattner53e677a2004-04-02 20:23:17 +00002821 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002822 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002823}
2824
Dan Gohman26466c02009-05-08 20:26:55 +00002825/// createNodeForGEP - Expand GEP instructions into add and multiply
2826/// operations. This allows them to be analyzed by regular SCEV code.
2827///
Dan Gohmand281ed22009-12-18 02:09:29 +00002828const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002829
Dan Gohmanb9f96512010-06-30 07:16:37 +00002830 // Don't blindly transfer the inbounds flag from the GEP instruction to the
2831 // Add expression, because the Instruction may be guarded by control flow
2832 // and the no-overflow bits may not be valid for the expression in any
Dan Gohman70eff632010-06-30 17:27:11 +00002833 // context.
Dan Gohman7a642572010-06-29 01:41:41 +00002834
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002835 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002836 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002837 // Don't attempt to analyze GEPs over unsized objects.
2838 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2839 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002840 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002841 gep_type_iterator GTI = gep_type_begin(GEP);
Oscar Fuentesee56c422010-08-02 06:00:15 +00002842 for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
Dan Gohmane810b0d2009-05-08 20:36:47 +00002843 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002844 I != E; ++I) {
2845 Value *Index = *I;
2846 // Compute the (potentially symbolic) offset in bytes for this index.
2847 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2848 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002849 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanb9f96512010-06-30 07:16:37 +00002850 const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
2851
Dan Gohmanb9f96512010-06-30 07:16:37 +00002852 // Add the field offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002853 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002854 } else {
2855 // For an array, add the element offset, explicitly scaled.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002856 const SCEV *ElementSize = getSizeOfExpr(*GTI);
2857 const SCEV *IndexS = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002858 // Getelementptr indices are signed.
Dan Gohmanb9f96512010-06-30 07:16:37 +00002859 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
2860
Dan Gohmanb9f96512010-06-30 07:16:37 +00002861 // Multiply the index by the element size to compute the element offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002862 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize);
Dan Gohmanb9f96512010-06-30 07:16:37 +00002863
2864 // Add the element offset to the running total offset.
Dan Gohman70eff632010-06-30 17:27:11 +00002865 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002866 }
2867 }
Dan Gohmanb9f96512010-06-30 07:16:37 +00002868
2869 // Get the SCEV for the GEP base.
2870 const SCEV *BaseS = getSCEV(Base);
2871
Dan Gohmanb9f96512010-06-30 07:16:37 +00002872 // Add the total offset from all the GEP indices to the base.
Dan Gohman70eff632010-06-30 17:27:11 +00002873 return getAddExpr(BaseS, TotalOffset);
Dan Gohman26466c02009-05-08 20:26:55 +00002874}
2875
Nick Lewycky83bb0052007-11-22 07:59:40 +00002876/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2877/// guaranteed to end in (at every loop iteration). It is, at the same time,
2878/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2879/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002880uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002881ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002882 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002883 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002884
Dan Gohman622ed672009-05-04 22:02:23 +00002885 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002886 return std::min(GetMinTrailingZeros(T->getOperand()),
2887 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002888
Dan Gohman622ed672009-05-04 22:02:23 +00002889 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002890 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2891 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2892 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002893 }
2894
Dan Gohman622ed672009-05-04 22:02:23 +00002895 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002896 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2897 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2898 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002899 }
2900
Dan Gohman622ed672009-05-04 22:02:23 +00002901 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002902 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002903 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002904 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002905 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002906 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002907 }
2908
Dan Gohman622ed672009-05-04 22:02:23 +00002909 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002910 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002911 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2912 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002913 for (unsigned i = 1, e = M->getNumOperands();
2914 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002915 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002916 BitWidth);
2917 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002918 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002919
Dan Gohman622ed672009-05-04 22:02:23 +00002920 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002921 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002922 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002923 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002924 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002925 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002926 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002927
Dan Gohman622ed672009-05-04 22:02:23 +00002928 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002929 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002930 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002931 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002932 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002933 return MinOpRes;
2934 }
2935
Dan Gohman622ed672009-05-04 22:02:23 +00002936 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002937 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002938 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002939 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002940 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002941 return MinOpRes;
2942 }
2943
Dan Gohman2c364ad2009-06-19 23:29:04 +00002944 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2945 // For a SCEVUnknown, ask ValueTracking.
2946 unsigned BitWidth = getTypeSizeInBits(U->getType());
2947 APInt Mask = APInt::getAllOnesValue(BitWidth);
2948 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2949 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2950 return Zeros.countTrailingOnes();
2951 }
2952
2953 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002954 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002955}
Chris Lattner53e677a2004-04-02 20:23:17 +00002956
Dan Gohman85b05a22009-07-13 21:35:55 +00002957/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2958///
2959ConstantRange
2960ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002961
2962 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002963 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002964
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002965 unsigned BitWidth = getTypeSizeInBits(S->getType());
2966 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2967
2968 // If the value has known zeros, the maximum unsigned value will have those
2969 // known zeros as well.
2970 uint32_t TZ = GetMinTrailingZeros(S);
2971 if (TZ != 0)
2972 ConservativeResult =
2973 ConstantRange(APInt::getMinValue(BitWidth),
2974 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2975
Dan Gohman85b05a22009-07-13 21:35:55 +00002976 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2977 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2978 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2979 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002980 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002981 }
2982
2983 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2984 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2985 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2986 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002987 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002988 }
2989
2990 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2991 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2992 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2993 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002994 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002995 }
2996
2997 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2998 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2999 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3000 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003001 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003002 }
3003
3004 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3005 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3006 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003007 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003008 }
3009
3010 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3011 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003012 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003013 }
3014
3015 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3016 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003017 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003018 }
3019
3020 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3021 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003022 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003023 }
3024
Dan Gohman85b05a22009-07-13 21:35:55 +00003025 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003026 // If there's no unsigned wrap, the value will never be less than its
3027 // initial value.
3028 if (AddRec->hasNoUnsignedWrap())
3029 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00003030 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00003031 ConservativeResult =
Dan Gohman8a18d6b2010-06-30 06:58:35 +00003032 ConservativeResult.intersectWith(
3033 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohman85b05a22009-07-13 21:35:55 +00003034
3035 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003036 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003037 const Type *Ty = AddRec->getType();
3038 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003039 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3040 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003041 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3042
3043 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003044 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003045
3046 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003047 ConstantRange StepRange = getSignedRange(Step);
3048 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3049 ConstantRange EndRange =
3050 StartRange.add(MaxBECountRange.multiply(StepRange));
3051
3052 // Check for overflow. This must be done with ConstantRange arithmetic
3053 // because we could be called from within the ScalarEvolution overflow
3054 // checking code.
3055 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3056 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3057 ConstantRange ExtMaxBECountRange =
3058 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3059 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3060 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3061 ExtEndRange)
3062 return ConservativeResult;
3063
Dan Gohman85b05a22009-07-13 21:35:55 +00003064 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3065 EndRange.getUnsignedMin());
3066 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3067 EndRange.getUnsignedMax());
3068 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003069 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003070 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00003071 }
3072 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003073
3074 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003075 }
3076
3077 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3078 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003079 APInt Mask = APInt::getAllOnesValue(BitWidth);
3080 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3081 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003082 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003083 return ConservativeResult;
3084 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003085 }
3086
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003087 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003088}
3089
Dan Gohman85b05a22009-07-13 21:35:55 +00003090/// getSignedRange - Determine the signed range for a particular SCEV.
3091///
3092ConstantRange
3093ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003094
Dan Gohman85b05a22009-07-13 21:35:55 +00003095 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3096 return ConstantRange(C->getValue()->getValue());
3097
Dan Gohman52fddd32010-01-26 04:40:18 +00003098 unsigned BitWidth = getTypeSizeInBits(S->getType());
3099 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3100
3101 // If the value has known zeros, the maximum signed value will have those
3102 // known zeros as well.
3103 uint32_t TZ = GetMinTrailingZeros(S);
3104 if (TZ != 0)
3105 ConservativeResult =
3106 ConstantRange(APInt::getSignedMinValue(BitWidth),
3107 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3108
Dan Gohman85b05a22009-07-13 21:35:55 +00003109 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3110 ConstantRange X = getSignedRange(Add->getOperand(0));
3111 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3112 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003113 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003114 }
3115
Dan Gohman85b05a22009-07-13 21:35:55 +00003116 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3117 ConstantRange X = getSignedRange(Mul->getOperand(0));
3118 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3119 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003120 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003121 }
3122
Dan Gohman85b05a22009-07-13 21:35:55 +00003123 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3124 ConstantRange X = getSignedRange(SMax->getOperand(0));
3125 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3126 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003127 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003128 }
Dan Gohman62849c02009-06-24 01:05:09 +00003129
Dan Gohman85b05a22009-07-13 21:35:55 +00003130 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3131 ConstantRange X = getSignedRange(UMax->getOperand(0));
3132 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3133 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003134 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003135 }
Dan Gohman62849c02009-06-24 01:05:09 +00003136
Dan Gohman85b05a22009-07-13 21:35:55 +00003137 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3138 ConstantRange X = getSignedRange(UDiv->getLHS());
3139 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003140 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003141 }
Dan Gohman62849c02009-06-24 01:05:09 +00003142
Dan Gohman85b05a22009-07-13 21:35:55 +00003143 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3144 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003145 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003146 }
3147
3148 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3149 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003150 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003151 }
3152
3153 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3154 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003155 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003156 }
3157
Dan Gohman85b05a22009-07-13 21:35:55 +00003158 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003159 // If there's no signed wrap, and all the operands have the same sign or
3160 // zero, the value won't ever change sign.
3161 if (AddRec->hasNoSignedWrap()) {
3162 bool AllNonNeg = true;
3163 bool AllNonPos = true;
3164 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3165 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3166 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3167 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003168 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003169 ConservativeResult = ConservativeResult.intersectWith(
3170 ConstantRange(APInt(BitWidth, 0),
3171 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003172 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003173 ConservativeResult = ConservativeResult.intersectWith(
3174 ConstantRange(APInt::getSignedMinValue(BitWidth),
3175 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003176 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003177
3178 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003179 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003180 const Type *Ty = AddRec->getType();
3181 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003182 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3183 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003184 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3185
3186 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003187 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003188
3189 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003190 ConstantRange StepRange = getSignedRange(Step);
3191 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3192 ConstantRange EndRange =
3193 StartRange.add(MaxBECountRange.multiply(StepRange));
3194
3195 // Check for overflow. This must be done with ConstantRange arithmetic
3196 // because we could be called from within the ScalarEvolution overflow
3197 // checking code.
3198 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3199 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3200 ConstantRange ExtMaxBECountRange =
3201 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3202 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3203 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3204 ExtEndRange)
3205 return ConservativeResult;
3206
Dan Gohman85b05a22009-07-13 21:35:55 +00003207 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3208 EndRange.getSignedMin());
3209 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3210 EndRange.getSignedMax());
3211 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003212 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003213 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003214 }
Dan Gohman62849c02009-06-24 01:05:09 +00003215 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003216
3217 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003218 }
3219
Dan Gohman2c364ad2009-06-19 23:29:04 +00003220 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3221 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003222 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003223 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003224 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3225 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003226 return ConservativeResult;
3227 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003228 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003229 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003230 }
3231
Dan Gohman52fddd32010-01-26 04:40:18 +00003232 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003233}
3234
Chris Lattner53e677a2004-04-02 20:23:17 +00003235/// createSCEV - We know that there is no SCEV for the specified value.
3236/// Analyze the expression.
3237///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003238const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003239 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003240 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003241
Dan Gohman6c459a22008-06-22 19:56:46 +00003242 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003243 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003244 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003245
3246 // Don't attempt to analyze instructions in blocks that aren't
3247 // reachable. Such instructions don't matter, and they aren't required
3248 // to obey basic rules for definitions dominating uses which this
3249 // analysis depends on.
3250 if (!DT->isReachableFromEntry(I->getParent()))
3251 return getUnknown(V);
3252 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003253 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003254 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3255 return getConstant(CI);
3256 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003257 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003258 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3259 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003260 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003261 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003262
Dan Gohmanca178902009-07-17 20:47:02 +00003263 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003264 switch (Opcode) {
Dan Gohman70eff632010-06-30 17:27:11 +00003265 case Instruction::Add:
3266 return getAddExpr(getSCEV(U->getOperand(0)),
3267 getSCEV(U->getOperand(1)));
3268 case Instruction::Mul:
3269 return getMulExpr(getSCEV(U->getOperand(0)),
3270 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003271 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003272 return getUDivExpr(getSCEV(U->getOperand(0)),
3273 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003274 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003275 return getMinusSCEV(getSCEV(U->getOperand(0)),
3276 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003277 case Instruction::And:
3278 // For an expression like x&255 that merely masks off the high bits,
3279 // use zext(trunc(x)) as the SCEV expression.
3280 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003281 if (CI->isNullValue())
3282 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003283 if (CI->isAllOnesValue())
3284 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003285 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003286
3287 // Instcombine's ShrinkDemandedConstant may strip bits out of
3288 // constants, obscuring what would otherwise be a low-bits mask.
3289 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3290 // knew about to reconstruct a low-bits mask value.
3291 unsigned LZ = A.countLeadingZeros();
3292 unsigned BitWidth = A.getBitWidth();
3293 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3294 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3295 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3296
3297 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3298
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003299 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003300 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003301 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003302 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003303 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003304 }
3305 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003306
Dan Gohman6c459a22008-06-22 19:56:46 +00003307 case Instruction::Or:
3308 // If the RHS of the Or is a constant, we may have something like:
3309 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3310 // optimizations will transparently handle this case.
3311 //
3312 // In order for this transformation to be safe, the LHS must be of the
3313 // form X*(2^n) and the Or constant must be less than 2^n.
3314 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003315 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003316 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003317 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003318 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3319 // Build a plain add SCEV.
3320 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3321 // If the LHS of the add was an addrec and it has no-wrap flags,
3322 // transfer the no-wrap flags, since an or won't introduce a wrap.
3323 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3324 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3325 if (OldAR->hasNoUnsignedWrap())
3326 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3327 if (OldAR->hasNoSignedWrap())
3328 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3329 }
3330 return S;
3331 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003332 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003333 break;
3334 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003335 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003336 // If the RHS of the xor is a signbit, then this is just an add.
3337 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003338 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003339 return getAddExpr(getSCEV(U->getOperand(0)),
3340 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003341
3342 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003343 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003344 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003345
3346 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3347 // This is a variant of the check for xor with -1, and it handles
3348 // the case where instcombine has trimmed non-demanded bits out
3349 // of an xor with -1.
3350 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3351 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3352 if (BO->getOpcode() == Instruction::And &&
3353 LCI->getValue() == CI->getValue())
3354 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003355 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003356 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003357 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003358 const Type *Z0Ty = Z0->getType();
3359 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3360
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003361 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003362 // mask off the high bits. Complement the operand and
3363 // re-apply the zext.
3364 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3365 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3366
3367 // If C is a single bit, it may be in the sign-bit position
3368 // before the zero-extend. In this case, represent the xor
3369 // using an add, which is equivalent, and re-apply the zext.
3370 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3371 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3372 Trunc.isSignBit())
3373 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3374 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003375 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003376 }
3377 break;
3378
3379 case Instruction::Shl:
3380 // Turn shift left of a constant amount into a multiply.
3381 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003382 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003383
3384 // If the shift count is not less than the bitwidth, the result of
3385 // the shift is undefined. Don't try to analyze it, because the
3386 // resolution chosen here may differ from the resolution chosen in
3387 // other parts of the compiler.
3388 if (SA->getValue().uge(BitWidth))
3389 break;
3390
Owen Andersoneed707b2009-07-24 23:12:02 +00003391 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003392 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003393 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003394 }
3395 break;
3396
Nick Lewycky01eaf802008-07-07 06:15:49 +00003397 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003398 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003399 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003400 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003401
3402 // If the shift count is not less than the bitwidth, the result of
3403 // the shift is undefined. Don't try to analyze it, because the
3404 // resolution chosen here may differ from the resolution chosen in
3405 // other parts of the compiler.
3406 if (SA->getValue().uge(BitWidth))
3407 break;
3408
Owen Andersoneed707b2009-07-24 23:12:02 +00003409 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003410 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003411 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003412 }
3413 break;
3414
Dan Gohman4ee29af2009-04-21 02:26:00 +00003415 case Instruction::AShr:
3416 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3417 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003418 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003419 if (L->getOpcode() == Instruction::Shl &&
3420 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003421 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3422
3423 // If the shift count is not less than the bitwidth, the result of
3424 // the shift is undefined. Don't try to analyze it, because the
3425 // resolution chosen here may differ from the resolution chosen in
3426 // other parts of the compiler.
3427 if (CI->getValue().uge(BitWidth))
3428 break;
3429
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003430 uint64_t Amt = BitWidth - CI->getZExtValue();
3431 if (Amt == BitWidth)
3432 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003433 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003434 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003435 IntegerType::get(getContext(),
3436 Amt)),
3437 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003438 }
3439 break;
3440
Dan Gohman6c459a22008-06-22 19:56:46 +00003441 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003442 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003443
3444 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003445 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003446
3447 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003448 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003449
3450 case Instruction::BitCast:
3451 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003452 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003453 return getSCEV(U->getOperand(0));
3454 break;
3455
Dan Gohman4f8eea82010-02-01 18:27:38 +00003456 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3457 // lead to pointer expressions which cannot safely be expanded to GEPs,
3458 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3459 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003460
Dan Gohman26466c02009-05-08 20:26:55 +00003461 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003462 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003463
Dan Gohman6c459a22008-06-22 19:56:46 +00003464 case Instruction::PHI:
3465 return createNodeForPHI(cast<PHINode>(U));
3466
3467 case Instruction::Select:
3468 // This could be a smax or umax that was lowered earlier.
3469 // Try to recover it.
3470 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3471 Value *LHS = ICI->getOperand(0);
3472 Value *RHS = ICI->getOperand(1);
3473 switch (ICI->getPredicate()) {
3474 case ICmpInst::ICMP_SLT:
3475 case ICmpInst::ICMP_SLE:
3476 std::swap(LHS, RHS);
3477 // fall through
3478 case ICmpInst::ICMP_SGT:
3479 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003480 // a >s b ? a+x : b+x -> smax(a, b)+x
3481 // a >s b ? b+x : a+x -> smin(a, b)+x
3482 if (LHS->getType() == U->getType()) {
3483 const SCEV *LS = getSCEV(LHS);
3484 const SCEV *RS = getSCEV(RHS);
3485 const SCEV *LA = getSCEV(U->getOperand(1));
3486 const SCEV *RA = getSCEV(U->getOperand(2));
3487 const SCEV *LDiff = getMinusSCEV(LA, LS);
3488 const SCEV *RDiff = getMinusSCEV(RA, RS);
3489 if (LDiff == RDiff)
3490 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3491 LDiff = getMinusSCEV(LA, RS);
3492 RDiff = getMinusSCEV(RA, LS);
3493 if (LDiff == RDiff)
3494 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3495 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003496 break;
3497 case ICmpInst::ICMP_ULT:
3498 case ICmpInst::ICMP_ULE:
3499 std::swap(LHS, RHS);
3500 // fall through
3501 case ICmpInst::ICMP_UGT:
3502 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003503 // a >u b ? a+x : b+x -> umax(a, b)+x
3504 // a >u b ? b+x : a+x -> umin(a, b)+x
3505 if (LHS->getType() == U->getType()) {
3506 const SCEV *LS = getSCEV(LHS);
3507 const SCEV *RS = getSCEV(RHS);
3508 const SCEV *LA = getSCEV(U->getOperand(1));
3509 const SCEV *RA = getSCEV(U->getOperand(2));
3510 const SCEV *LDiff = getMinusSCEV(LA, LS);
3511 const SCEV *RDiff = getMinusSCEV(RA, RS);
3512 if (LDiff == RDiff)
3513 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3514 LDiff = getMinusSCEV(LA, RS);
3515 RDiff = getMinusSCEV(RA, LS);
3516 if (LDiff == RDiff)
3517 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3518 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003519 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003520 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003521 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3522 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003523 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003524 cast<ConstantInt>(RHS)->isZero()) {
3525 const SCEV *One = getConstant(LHS->getType(), 1);
3526 const SCEV *LS = getSCEV(LHS);
3527 const SCEV *LA = getSCEV(U->getOperand(1));
3528 const SCEV *RA = getSCEV(U->getOperand(2));
3529 const SCEV *LDiff = getMinusSCEV(LA, LS);
3530 const SCEV *RDiff = getMinusSCEV(RA, One);
3531 if (LDiff == RDiff)
3532 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3533 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003534 break;
3535 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003536 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3537 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003538 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003539 cast<ConstantInt>(RHS)->isZero()) {
3540 const SCEV *One = getConstant(LHS->getType(), 1);
3541 const SCEV *LS = getSCEV(LHS);
3542 const SCEV *LA = getSCEV(U->getOperand(1));
3543 const SCEV *RA = getSCEV(U->getOperand(2));
3544 const SCEV *LDiff = getMinusSCEV(LA, One);
3545 const SCEV *RDiff = getMinusSCEV(RA, LS);
3546 if (LDiff == RDiff)
3547 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3548 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003549 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003550 default:
3551 break;
3552 }
3553 }
3554
3555 default: // We cannot analyze this expression.
3556 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003557 }
3558
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003559 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003560}
3561
3562
3563
3564//===----------------------------------------------------------------------===//
3565// Iteration Count Computation Code
3566//
3567
Dan Gohman46bdfb02009-02-24 18:55:53 +00003568/// getBackedgeTakenCount - If the specified loop has a predictable
3569/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3570/// object. The backedge-taken count is the number of times the loop header
3571/// will be branched to from within the loop. This is one less than the
3572/// trip count of the loop, since it doesn't count the first iteration,
3573/// when the header is branched to from outside the loop.
3574///
3575/// Note that it is not valid to call this method on a loop without a
3576/// loop-invariant backedge-taken count (see
3577/// hasLoopInvariantBackedgeTakenCount).
3578///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003579const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003580 return getBackedgeTakenInfo(L).Exact;
3581}
3582
3583/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3584/// return the least SCEV value that is known never to be less than the
3585/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003586const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003587 return getBackedgeTakenInfo(L).Max;
3588}
3589
Dan Gohman59ae6b92009-07-08 19:23:34 +00003590/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3591/// onto the given Worklist.
3592static void
3593PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3594 BasicBlock *Header = L->getHeader();
3595
3596 // Push all Loop-header PHIs onto the Worklist stack.
3597 for (BasicBlock::iterator I = Header->begin();
3598 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3599 Worklist.push_back(PN);
3600}
3601
Dan Gohmana1af7572009-04-30 20:47:05 +00003602const ScalarEvolution::BackedgeTakenInfo &
3603ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003604 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003605 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003606 // update the value. The temporary CouldNotCompute value tells SCEV
3607 // code elsewhere that it shouldn't attempt to request a new
3608 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003609 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003610 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3611 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003612 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3613 if (BECount.Exact != getCouldNotCompute()) {
3614 assert(BECount.Exact->isLoopInvariant(L) &&
3615 BECount.Max->isLoopInvariant(L) &&
3616 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003617 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003618
Dan Gohman01ecca22009-04-27 20:16:15 +00003619 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003620 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003621 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003622 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003623 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003624 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003625 if (isa<PHINode>(L->getHeader()->begin()))
3626 // Only count loops that have phi nodes as not being computable.
3627 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003628 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003629
3630 // Now that we know more about the trip count for this loop, forget any
3631 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003632 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003633 // information. This is similar to the code in forgetLoop, except that
3634 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003635 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003636 SmallVector<Instruction *, 16> Worklist;
3637 PushLoopPHIs(L, Worklist);
3638
3639 SmallPtrSet<Instruction *, 8> Visited;
3640 while (!Worklist.empty()) {
3641 Instruction *I = Worklist.pop_back_val();
3642 if (!Visited.insert(I)) continue;
3643
Dan Gohman5d984912009-12-18 01:14:11 +00003644 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003645 Scalars.find(static_cast<Value *>(I));
3646 if (It != Scalars.end()) {
3647 // SCEVUnknown for a PHI either means that it has an unrecognized
3648 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003649 // by createNodeForPHI. In the former case, additional loop trip
3650 // count information isn't going to change anything. In the later
3651 // case, createNodeForPHI will perform the necessary updates on its
3652 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003653 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3654 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003655 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003656 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003657 if (PHINode *PN = dyn_cast<PHINode>(I))
3658 ConstantEvolutionLoopExitValue.erase(PN);
3659 }
3660
3661 PushDefUseChildren(I, Worklist);
3662 }
3663 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003664 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003665 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003666}
3667
Dan Gohman4c7279a2009-10-31 15:04:55 +00003668/// forgetLoop - This method should be called by the client when it has
3669/// changed a loop in a way that may effect ScalarEvolution's ability to
3670/// compute a trip count, or if the loop is deleted.
3671void ScalarEvolution::forgetLoop(const Loop *L) {
3672 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003673 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003674
Dan Gohman4c7279a2009-10-31 15:04:55 +00003675 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003676 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003677 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003678
Dan Gohman59ae6b92009-07-08 19:23:34 +00003679 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003680 while (!Worklist.empty()) {
3681 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003682 if (!Visited.insert(I)) continue;
3683
Dan Gohman5d984912009-12-18 01:14:11 +00003684 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003685 Scalars.find(static_cast<Value *>(I));
3686 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003687 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003688 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003689 if (PHINode *PN = dyn_cast<PHINode>(I))
3690 ConstantEvolutionLoopExitValue.erase(PN);
3691 }
3692
3693 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003694 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003695}
3696
Eric Christophere6cbfa62010-07-29 01:25:38 +00003697/// forgetValue - This method should be called by the client when it has
3698/// changed a value in a way that may effect its value, or which may
3699/// disconnect it from a def-use chain linking it to a loop.
3700void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003701 Instruction *I = dyn_cast<Instruction>(V);
3702 if (!I) return;
3703
3704 // Drop information about expressions based on loop-header PHIs.
3705 SmallVector<Instruction *, 16> Worklist;
3706 Worklist.push_back(I);
3707
3708 SmallPtrSet<Instruction *, 8> Visited;
3709 while (!Worklist.empty()) {
3710 I = Worklist.pop_back_val();
3711 if (!Visited.insert(I)) continue;
3712
3713 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3714 Scalars.find(static_cast<Value *>(I));
3715 if (It != Scalars.end()) {
3716 ValuesAtScopes.erase(It->second);
3717 Scalars.erase(It);
3718 if (PHINode *PN = dyn_cast<PHINode>(I))
3719 ConstantEvolutionLoopExitValue.erase(PN);
3720 }
3721
3722 PushDefUseChildren(I, Worklist);
3723 }
3724}
3725
Dan Gohman46bdfb02009-02-24 18:55:53 +00003726/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3727/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003728ScalarEvolution::BackedgeTakenInfo
3729ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003730 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003731 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003732
Dan Gohmana334aa72009-06-22 00:31:57 +00003733 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003734 const SCEV *BECount = getCouldNotCompute();
3735 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003736 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003737 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3738 BackedgeTakenInfo NewBTI =
3739 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003740
Dan Gohman1c343752009-06-27 21:21:31 +00003741 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003742 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003743 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003744 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003745 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003746 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003747 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003748 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003749 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003750 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003751 }
Dan Gohman1c343752009-06-27 21:21:31 +00003752 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003753 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003754 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003755 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003756 }
3757
3758 return BackedgeTakenInfo(BECount, MaxBECount);
3759}
3760
3761/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3762/// of the specified loop will execute if it exits via the specified block.
3763ScalarEvolution::BackedgeTakenInfo
3764ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3765 BasicBlock *ExitingBlock) {
3766
3767 // Okay, we've chosen an exiting block. See what condition causes us to
3768 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003769 //
3770 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003771 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003772 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003773 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003774
Chris Lattner8b0e3602007-01-07 02:24:26 +00003775 // At this point, we know we have a conditional branch that determines whether
3776 // the loop is exited. However, we don't know if the branch is executed each
3777 // time through the loop. If not, then the execution count of the branch will
3778 // not be equal to the trip count of the loop.
3779 //
3780 // Currently we check for this by checking to see if the Exit branch goes to
3781 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003782 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003783 // loop header. This is common for un-rotated loops.
3784 //
3785 // If both of those tests fail, walk up the unique predecessor chain to the
3786 // header, stopping if there is an edge that doesn't exit the loop. If the
3787 // header is reached, the execution count of the branch will be equal to the
3788 // trip count of the loop.
3789 //
3790 // More extensive analysis could be done to handle more cases here.
3791 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003792 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003793 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003794 ExitBr->getParent() != L->getHeader()) {
3795 // The simple checks failed, try climbing the unique predecessor chain
3796 // up to the header.
3797 bool Ok = false;
3798 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3799 BasicBlock *Pred = BB->getUniquePredecessor();
3800 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003801 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003802 TerminatorInst *PredTerm = Pred->getTerminator();
3803 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3804 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3805 if (PredSucc == BB)
3806 continue;
3807 // If the predecessor has a successor that isn't BB and isn't
3808 // outside the loop, assume the worst.
3809 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003810 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003811 }
3812 if (Pred == L->getHeader()) {
3813 Ok = true;
3814 break;
3815 }
3816 BB = Pred;
3817 }
3818 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003819 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 }
3821
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003822 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003823 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3824 ExitBr->getSuccessor(0),
3825 ExitBr->getSuccessor(1));
3826}
3827
3828/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3829/// backedge of the specified loop will execute if its exit condition
3830/// were a conditional branch of ExitCond, TBB, and FBB.
3831ScalarEvolution::BackedgeTakenInfo
3832ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3833 Value *ExitCond,
3834 BasicBlock *TBB,
3835 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003836 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003837 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3838 if (BO->getOpcode() == Instruction::And) {
3839 // Recurse on the operands of the and.
3840 BackedgeTakenInfo BTI0 =
3841 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3842 BackedgeTakenInfo BTI1 =
3843 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003844 const SCEV *BECount = getCouldNotCompute();
3845 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003846 if (L->contains(TBB)) {
3847 // Both conditions must be true for the loop to continue executing.
3848 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003849 if (BTI0.Exact == getCouldNotCompute() ||
3850 BTI1.Exact == getCouldNotCompute())
3851 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003852 else
3853 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003854 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003855 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003856 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003857 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003858 else
3859 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003860 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003861 // Both conditions must be true at the same time for the loop to exit.
3862 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003863 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003864 if (BTI0.Max == BTI1.Max)
3865 MaxBECount = BTI0.Max;
3866 if (BTI0.Exact == BTI1.Exact)
3867 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003868 }
3869
3870 return BackedgeTakenInfo(BECount, MaxBECount);
3871 }
3872 if (BO->getOpcode() == Instruction::Or) {
3873 // Recurse on the operands of the or.
3874 BackedgeTakenInfo BTI0 =
3875 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3876 BackedgeTakenInfo BTI1 =
3877 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003878 const SCEV *BECount = getCouldNotCompute();
3879 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003880 if (L->contains(FBB)) {
3881 // Both conditions must be false for the loop to continue executing.
3882 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003883 if (BTI0.Exact == getCouldNotCompute() ||
3884 BTI1.Exact == getCouldNotCompute())
3885 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003886 else
3887 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003888 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003889 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003890 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003891 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003892 else
3893 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003894 } else {
Dan Gohman4ee87392010-08-11 00:12:36 +00003895 // Both conditions must be false at the same time for the loop to exit.
3896 // For now, be conservative.
Dan Gohmana334aa72009-06-22 00:31:57 +00003897 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman4ee87392010-08-11 00:12:36 +00003898 if (BTI0.Max == BTI1.Max)
3899 MaxBECount = BTI0.Max;
3900 if (BTI0.Exact == BTI1.Exact)
3901 BECount = BTI0.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003902 }
3903
3904 return BackedgeTakenInfo(BECount, MaxBECount);
3905 }
3906 }
3907
3908 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003909 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003910 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3911 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003912
Dan Gohman00cb5b72010-02-19 18:12:07 +00003913 // Check for a constant condition. These are normally stripped out by
3914 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3915 // preserve the CFG and is temporarily leaving constant conditions
3916 // in place.
3917 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3918 if (L->contains(FBB) == !CI->getZExtValue())
3919 // The backedge is always taken.
3920 return getCouldNotCompute();
3921 else
3922 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003923 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003924 }
3925
Eli Friedman361e54d2009-05-09 12:32:42 +00003926 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003927 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3928}
3929
3930/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3931/// backedge of the specified loop will execute if its exit condition
3932/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3933ScalarEvolution::BackedgeTakenInfo
3934ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3935 ICmpInst *ExitCond,
3936 BasicBlock *TBB,
3937 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003938
Reid Spencere4d87aa2006-12-23 06:05:41 +00003939 // If the condition was exit on true, convert the condition to exit on false
3940 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003941 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003942 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003943 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003944 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003945
3946 // Handle common loops like: for (X = "string"; *X; ++X)
3947 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3948 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003949 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003950 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003951 if (ItCnt.hasAnyInfo())
3952 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003953 }
3954
Dan Gohman0bba49c2009-07-07 17:06:11 +00003955 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3956 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003957
3958 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003959 LHS = getSCEVAtScope(LHS, L);
3960 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003961
Dan Gohman64a845e2009-06-24 04:48:43 +00003962 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003963 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003964 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3965 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003966 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003967 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003968 }
3969
Dan Gohman03557dc2010-05-03 16:35:17 +00003970 // Simplify the operands before analyzing them.
3971 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3972
Chris Lattner53e677a2004-04-02 20:23:17 +00003973 // If we have a comparison of a chrec against a constant, try to use value
3974 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003975 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3976 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003977 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003978 // Form the constant range.
3979 ConstantRange CompRange(
3980 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003981
Dan Gohman0bba49c2009-07-07 17:06:11 +00003982 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003983 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003984 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003985
Chris Lattner53e677a2004-04-02 20:23:17 +00003986 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003987 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003988 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003989 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3990 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003991 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003992 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003993 case ICmpInst::ICMP_EQ: { // while (X == Y)
3994 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003995 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3996 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003997 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003998 }
3999 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004000 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
4001 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004002 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004003 }
4004 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004005 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4006 getNotSCEV(RHS), L, true);
4007 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004008 break;
4009 }
4010 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004011 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
4012 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00004013 break;
4014 }
4015 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00004016 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
4017 getNotSCEV(RHS), L, false);
4018 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00004019 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00004020 }
Chris Lattner53e677a2004-04-02 20:23:17 +00004021 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004022#if 0
David Greene25e0e872009-12-23 22:18:14 +00004023 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00004024 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00004025 dbgs() << "[unsigned] ";
4026 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00004027 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00004028 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004029#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00004030 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00004031 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00004032 return
Dan Gohmana334aa72009-06-22 00:31:57 +00004033 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00004034}
4035
Chris Lattner673e02b2004-10-12 01:49:27 +00004036static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00004037EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4038 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004039 const SCEV *InVal = SE.getConstant(C);
4040 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00004041 assert(isa<SCEVConstant>(Val) &&
4042 "Evaluation of SCEV at constant didn't fold correctly?");
4043 return cast<SCEVConstant>(Val)->getValue();
4044}
4045
4046/// GetAddressedElementFromGlobal - Given a global variable with an initializer
4047/// and a GEP expression (missing the pointer index) indexing into it, return
4048/// the addressed element of the initializer or null if the index expression is
4049/// invalid.
4050static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004051GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00004052 const std::vector<ConstantInt*> &Indices) {
4053 Constant *Init = GV->getInitializer();
4054 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00004055 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00004056 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
4057 assert(Idx < CS->getNumOperands() && "Bad struct index!");
4058 Init = cast<Constant>(CS->getOperand(Idx));
4059 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
4060 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
4061 Init = cast<Constant>(CA->getOperand(Idx));
4062 } else if (isa<ConstantAggregateZero>(Init)) {
4063 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
4064 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00004065 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00004066 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
4067 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004068 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004069 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004070 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004071 }
4072 return 0;
4073 } else {
4074 return 0; // Unknown initializer type
4075 }
4076 }
4077 return Init;
4078}
4079
Dan Gohman46bdfb02009-02-24 18:55:53 +00004080/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4081/// 'icmp op load X, cst', try to see if we can compute the backedge
4082/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004083ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004084ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4085 LoadInst *LI,
4086 Constant *RHS,
4087 const Loop *L,
4088 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004089 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004090
4091 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004092 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004093 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004094 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004095
4096 // Make sure that it is really a constant global we are gepping, with an
4097 // initializer, and make sure the first IDX is really 0.
4098 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004099 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004100 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4101 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004102 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004103
4104 // Okay, we allow one non-constant index into the GEP instruction.
4105 Value *VarIdx = 0;
4106 std::vector<ConstantInt*> Indexes;
4107 unsigned VarIdxNum = 0;
4108 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4109 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4110 Indexes.push_back(CI);
4111 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004112 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004113 VarIdx = GEP->getOperand(i);
4114 VarIdxNum = i-2;
4115 Indexes.push_back(0);
4116 }
4117
4118 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4119 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004120 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004121 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004122
4123 // We can only recognize very limited forms of loop index expressions, in
4124 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004125 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004126 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4127 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4128 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004129 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004130
4131 unsigned MaxSteps = MaxBruteForceIterations;
4132 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004133 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004134 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004135 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004136
4137 // Form the GEP offset.
4138 Indexes[VarIdxNum] = Val;
4139
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004140 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004141 if (Result == 0) break; // Cannot compute!
4142
4143 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004144 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004145 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004146 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004147#if 0
David Greene25e0e872009-12-23 22:18:14 +00004148 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004149 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4150 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004151#endif
4152 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004153 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004154 }
4155 }
Dan Gohman1c343752009-06-27 21:21:31 +00004156 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004157}
4158
4159
Chris Lattner3221ad02004-04-17 22:58:41 +00004160/// CanConstantFold - Return true if we can constant fold an instruction of the
4161/// specified type, assuming that all operands were constants.
4162static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004163 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004164 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4165 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004166
Chris Lattner3221ad02004-04-17 22:58:41 +00004167 if (const CallInst *CI = dyn_cast<CallInst>(I))
4168 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004169 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004170 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004171}
4172
Chris Lattner3221ad02004-04-17 22:58:41 +00004173/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4174/// in the loop that V is derived from. We allow arbitrary operations along the
4175/// way, but the operands of an operation must either be constants or a value
4176/// derived from a constant PHI. If this expression does not fit with these
4177/// constraints, return null.
4178static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4179 // If this is not an instruction, or if this is an instruction outside of the
4180 // loop, it can't be derived from a loop PHI.
4181 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004182 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004183
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004184 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004185 if (L->getHeader() == I->getParent())
4186 return PN;
4187 else
4188 // We don't currently keep track of the control flow needed to evaluate
4189 // PHIs, so we cannot handle PHIs inside of loops.
4190 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004191 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004192
4193 // If we won't be able to constant fold this expression even if the operands
4194 // are constants, return early.
4195 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004196
Chris Lattner3221ad02004-04-17 22:58:41 +00004197 // Otherwise, we can evaluate this instruction if all of its operands are
4198 // constant or derived from a PHI node themselves.
4199 PHINode *PHI = 0;
4200 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004201 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004202 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4203 if (P == 0) return 0; // Not evolving from PHI
4204 if (PHI == 0)
4205 PHI = P;
4206 else if (PHI != P)
4207 return 0; // Evolving from multiple different PHIs.
4208 }
4209
4210 // This is a expression evolving from a constant PHI!
4211 return PHI;
4212}
4213
4214/// EvaluateExpression - Given an expression that passes the
4215/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4216/// in the loop has the value PHIVal. If we can't fold this expression for some
4217/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004218static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4219 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004220 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004221 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004222 Instruction *I = cast<Instruction>(V);
4223
Dan Gohman9d4588f2010-06-22 13:15:46 +00004224 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004225
4226 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004227 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004228 if (Operands[i] == 0) return 0;
4229 }
4230
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004231 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004232 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004233 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004234 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004235 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004236}
4237
4238/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4239/// in the header of its containing loop, we know the loop executes a
4240/// constant number of times, and the PHI node is just a recurrence
4241/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004242Constant *
4243ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004244 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004245 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004246 std::map<PHINode*, Constant*>::iterator I =
4247 ConstantEvolutionLoopExitValue.find(PN);
4248 if (I != ConstantEvolutionLoopExitValue.end())
4249 return I->second;
4250
Dan Gohmane0567812010-04-08 23:03:40 +00004251 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004252 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4253
4254 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4255
4256 // Since the loop is canonicalized, the PHI node must have two entries. One
4257 // entry must be a constant (coming in from outside of the loop), and the
4258 // second must be derived from the same PHI.
4259 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4260 Constant *StartCST =
4261 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4262 if (StartCST == 0)
4263 return RetVal = 0; // Must be a constant.
4264
4265 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004266 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4267 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004268 return RetVal = 0; // Not derived from same PHI.
4269
4270 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004271 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004272 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004273
Dan Gohman46bdfb02009-02-24 18:55:53 +00004274 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004275 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004276 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4277 if (IterationNum == NumIterations)
4278 return RetVal = PHIVal; // Got exit value!
4279
4280 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004281 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004282 if (NextPHI == PHIVal)
4283 return RetVal = NextPHI; // Stopped evolving!
4284 if (NextPHI == 0)
4285 return 0; // Couldn't evaluate!
4286 PHIVal = NextPHI;
4287 }
4288}
4289
Dan Gohman07ad19b2009-07-27 16:09:48 +00004290/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004291/// constant number of times (the condition evolves only from constants),
4292/// try to evaluate a few iterations of the loop until we get the exit
4293/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004294/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004295const SCEV *
4296ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4297 Value *Cond,
4298 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004299 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004300 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004301
Dan Gohmanb92654d2010-06-19 14:17:24 +00004302 // If the loop is canonicalized, the PHI will have exactly two entries.
4303 // That's the only form we support here.
4304 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4305
4306 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004307 // second must be derived from the same PHI.
4308 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4309 Constant *StartCST =
4310 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004311 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004312
4313 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004314 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4315 !isa<Constant>(BEValue))
4316 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004317
4318 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4319 // the loop symbolically to determine when the condition gets a value of
4320 // "ExitWhen".
4321 unsigned IterationNum = 0;
4322 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4323 for (Constant *PHIVal = StartCST;
4324 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004325 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004326 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004327
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004328 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004329 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004330
Reid Spencere8019bb2007-03-01 07:25:48 +00004331 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004332 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004333 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004334 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004335
Chris Lattner3221ad02004-04-17 22:58:41 +00004336 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004337 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004338 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004339 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004340 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004341 }
4342
4343 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004344 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004345}
4346
Dan Gohmane7125f42009-09-03 15:00:26 +00004347/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004348/// at the specified scope in the program. The L value specifies a loop
4349/// nest to evaluate the expression at, where null is the top-level or a
4350/// specified loop is immediately inside of the loop.
4351///
4352/// This method can be used to compute the exit value for a variable defined
4353/// in a loop by querying what the value will hold in the parent loop.
4354///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004355/// In the case that a relevant loop exit value cannot be computed, the
4356/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004357const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004358 // Check to see if we've folded this expression at this loop before.
4359 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4360 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4361 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4362 if (!Pair.second)
4363 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004364
Dan Gohman42214892009-08-31 21:15:23 +00004365 // Otherwise compute it.
4366 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004367 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004368 return C;
4369}
4370
4371const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004372 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004373
Nick Lewycky3e630762008-02-20 06:48:22 +00004374 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004375 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004376 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004377 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004378 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004379 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4380 if (PHINode *PN = dyn_cast<PHINode>(I))
4381 if (PN->getParent() == LI->getHeader()) {
4382 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004383 // to see if the loop that contains it has a known backedge-taken
4384 // count. If so, we may be able to force computation of the exit
4385 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004386 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004387 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004388 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004389 // Okay, we know how many times the containing loop executes. If
4390 // this is a constant evolving PHI node, get the final value at
4391 // the specified iteration number.
4392 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004393 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004394 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004395 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004396 }
4397 }
4398
Reid Spencer09906f32006-12-04 21:33:23 +00004399 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004400 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004401 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004402 // result. This is particularly useful for computing loop exit values.
4403 if (CanConstantFold(I)) {
Dan Gohman11046452010-06-29 23:43:06 +00004404 SmallVector<Constant *, 4> Operands;
4405 bool MadeImprovement = false;
Chris Lattner3221ad02004-04-17 22:58:41 +00004406 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4407 Value *Op = I->getOperand(i);
4408 if (Constant *C = dyn_cast<Constant>(Op)) {
4409 Operands.push_back(C);
Dan Gohman11046452010-06-29 23:43:06 +00004410 continue;
Chris Lattner3221ad02004-04-17 22:58:41 +00004411 }
Dan Gohman11046452010-06-29 23:43:06 +00004412
4413 // If any of the operands is non-constant and if they are
4414 // non-integer and non-pointer, don't even try to analyze them
4415 // with scev techniques.
4416 if (!isSCEVable(Op->getType()))
4417 return V;
4418
4419 const SCEV *OrigV = getSCEV(Op);
4420 const SCEV *OpV = getSCEVAtScope(OrigV, L);
4421 MadeImprovement |= OrigV != OpV;
4422
4423 Constant *C = 0;
4424 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
4425 C = SC->getValue();
4426 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV))
4427 C = dyn_cast<Constant>(SU->getValue());
4428 if (!C) return V;
4429 if (C->getType() != Op->getType())
4430 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4431 Op->getType(),
4432 false),
4433 C, Op->getType());
4434 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004435 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004436
Dan Gohman11046452010-06-29 23:43:06 +00004437 // Check to see if getSCEVAtScope actually made an improvement.
4438 if (MadeImprovement) {
4439 Constant *C = 0;
4440 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4441 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
4442 Operands[0], Operands[1], TD);
4443 else
4444 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
4445 &Operands[0], Operands.size(), TD);
4446 if (!C) return V;
Dan Gohmane177c9a2010-02-24 19:31:47 +00004447 return getSCEV(C);
Dan Gohman11046452010-06-29 23:43:06 +00004448 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004449 }
4450 }
4451
4452 // This is some other type of SCEVUnknown, just return it.
4453 return V;
4454 }
4455
Dan Gohman622ed672009-05-04 22:02:23 +00004456 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004457 // Avoid performing the look-up in the common case where the specified
4458 // expression has no loop-variant portions.
4459 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004460 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004461 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004462 // Okay, at least one of these operands is loop variant but might be
4463 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004464 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4465 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004466 NewOps.push_back(OpAtScope);
4467
4468 for (++i; i != e; ++i) {
4469 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004470 NewOps.push_back(OpAtScope);
4471 }
4472 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004473 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004474 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004475 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004476 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004477 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004478 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004479 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004480 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004481 }
4482 }
4483 // If we got here, all operands are loop invariant.
4484 return Comm;
4485 }
4486
Dan Gohman622ed672009-05-04 22:02:23 +00004487 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004488 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4489 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004490 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4491 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004492 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004493 }
4494
4495 // If this is a loop recurrence for a loop that does not contain L, then we
4496 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004497 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman11046452010-06-29 23:43:06 +00004498 // First, attempt to evaluate each operand.
4499 // Avoid performing the look-up in the common case where the specified
4500 // expression has no loop-variant portions.
4501 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4502 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
4503 if (OpAtScope == AddRec->getOperand(i))
4504 continue;
4505
4506 // Okay, at least one of these operands is loop variant but might be
4507 // foldable. Build a new instance of the folded commutative expression.
4508 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
4509 AddRec->op_begin()+i);
4510 NewOps.push_back(OpAtScope);
4511 for (++i; i != e; ++i)
4512 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
4513
4514 AddRec = cast<SCEVAddRecExpr>(getAddRecExpr(NewOps, AddRec->getLoop()));
4515 break;
4516 }
4517
4518 // If the scope is outside the addrec's loop, evaluate it by using the
4519 // loop exit value of the addrec.
4520 if (!AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004521 // To evaluate this recurrence, we need to know how many times the AddRec
4522 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004523 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004524 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004525
Eli Friedmanb42a6262008-08-04 23:49:06 +00004526 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004527 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004528 }
Dan Gohman11046452010-06-29 23:43:06 +00004529
Dan Gohmand594e6f2009-05-24 23:25:42 +00004530 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004531 }
4532
Dan Gohman622ed672009-05-04 22:02:23 +00004533 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004534 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004535 if (Op == Cast->getOperand())
4536 return Cast; // must be loop invariant
4537 return getZeroExtendExpr(Op, Cast->getType());
4538 }
4539
Dan Gohman622ed672009-05-04 22:02:23 +00004540 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004541 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004542 if (Op == Cast->getOperand())
4543 return Cast; // must be loop invariant
4544 return getSignExtendExpr(Op, Cast->getType());
4545 }
4546
Dan Gohman622ed672009-05-04 22:02:23 +00004547 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004548 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004549 if (Op == Cast->getOperand())
4550 return Cast; // must be loop invariant
4551 return getTruncateExpr(Op, Cast->getType());
4552 }
4553
Torok Edwinc23197a2009-07-14 16:55:14 +00004554 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004555 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004556}
4557
Dan Gohman66a7e852009-05-08 20:38:54 +00004558/// getSCEVAtScope - This is a convenience function which does
4559/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004560const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004561 return getSCEVAtScope(getSCEV(V), L);
4562}
4563
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004564/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4565/// following equation:
4566///
4567/// A * X = B (mod N)
4568///
4569/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4570/// A and B isn't important.
4571///
4572/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004573static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004574 ScalarEvolution &SE) {
4575 uint32_t BW = A.getBitWidth();
4576 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4577 assert(A != 0 && "A must be non-zero.");
4578
4579 // 1. D = gcd(A, N)
4580 //
4581 // The gcd of A and N may have only one prime factor: 2. The number of
4582 // trailing zeros in A is its multiplicity
4583 uint32_t Mult2 = A.countTrailingZeros();
4584 // D = 2^Mult2
4585
4586 // 2. Check if B is divisible by D.
4587 //
4588 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4589 // is not less than multiplicity of this prime factor for D.
4590 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004591 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004592
4593 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4594 // modulo (N / D).
4595 //
4596 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4597 // bit width during computations.
4598 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4599 APInt Mod(BW + 1, 0);
4600 Mod.set(BW - Mult2); // Mod = N / D
4601 APInt I = AD.multiplicativeInverse(Mod);
4602
4603 // 4. Compute the minimum unsigned root of the equation:
4604 // I * (B / D) mod (N / D)
4605 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4606
4607 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4608 // bits.
4609 return SE.getConstant(Result.trunc(BW));
4610}
Chris Lattner53e677a2004-04-02 20:23:17 +00004611
4612/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4613/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4614/// might be the same) or two SCEVCouldNotCompute objects.
4615///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004616static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004617SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004618 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004619 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4620 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4621 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004622
Chris Lattner53e677a2004-04-02 20:23:17 +00004623 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004624 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004625 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004626 return std::make_pair(CNC, CNC);
4627 }
4628
Reid Spencere8019bb2007-03-01 07:25:48 +00004629 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004630 const APInt &L = LC->getValue()->getValue();
4631 const APInt &M = MC->getValue()->getValue();
4632 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004633 APInt Two(BitWidth, 2);
4634 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004635
Dan Gohman64a845e2009-06-24 04:48:43 +00004636 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004637 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004638 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004639 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4640 // The B coefficient is M-N/2
4641 APInt B(M);
4642 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004643
Reid Spencere8019bb2007-03-01 07:25:48 +00004644 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004645 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004646
Reid Spencere8019bb2007-03-01 07:25:48 +00004647 // Compute the B^2-4ac term.
4648 APInt SqrtTerm(B);
4649 SqrtTerm *= B;
4650 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004651
Reid Spencere8019bb2007-03-01 07:25:48 +00004652 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4653 // integer value or else APInt::sqrt() will assert.
4654 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004655
Dan Gohman64a845e2009-06-24 04:48:43 +00004656 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004657 // The divisions must be performed as signed divisions.
4658 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004659 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004660 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004661 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004662 return std::make_pair(CNC, CNC);
4663 }
4664
Owen Andersone922c022009-07-22 00:24:57 +00004665 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004666
4667 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004668 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004669 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004670 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004671
Dan Gohman64a845e2009-06-24 04:48:43 +00004672 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004673 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004674 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004675}
4676
4677/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004678/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004679ScalarEvolution::BackedgeTakenInfo
4680ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004681 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004682 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004683 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004684 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004685 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004686 }
4687
Dan Gohman35738ac2009-05-04 22:30:44 +00004688 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004689 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004690 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004691
4692 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004693 // If this is an affine expression, the execution count of this branch is
4694 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004695 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004696 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004697 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004698 // equivalent to:
4699 //
4700 // Step*N = -Start (mod 2^BW)
4701 //
4702 // where BW is the common bit width of Start and Step.
4703
Chris Lattner53e677a2004-04-02 20:23:17 +00004704 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004705 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4706 L->getParentLoop());
4707 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4708 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004709
Dan Gohman622ed672009-05-04 22:02:23 +00004710 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004711 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004712
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004713 // First, handle unitary steps.
4714 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004715 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004716 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4717 return Start; // N = Start (as unsigned)
4718
4719 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004720 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004721 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004722 -StartC->getValue()->getValue(),
4723 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004724 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004725 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004726 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4727 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004728 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004729 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004730 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4731 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004732 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004733#if 0
David Greene25e0e872009-12-23 22:18:14 +00004734 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004735 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004736#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004737 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004738 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004739 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004740 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004741 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004742 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004743
Chris Lattner53e677a2004-04-02 20:23:17 +00004744 // We can only use this value if the chrec ends up with an exact zero
4745 // value at this index. When solving for "X*X != 5", for example, we
4746 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004747 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004748 if (Val->isZero())
4749 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004750 }
4751 }
4752 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004753
Dan Gohman1c343752009-06-27 21:21:31 +00004754 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004755}
4756
4757/// HowFarToNonZero - Return the number of times a backedge checking the
4758/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004759/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004760ScalarEvolution::BackedgeTakenInfo
4761ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004762 // Loops that look like: while (X == 0) are very strange indeed. We don't
4763 // handle them yet except for the trivial case. This could be expanded in the
4764 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004765
Chris Lattner53e677a2004-04-02 20:23:17 +00004766 // If the value is a constant, check to see if it is known to be non-zero
4767 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004768 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004769 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004770 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004771 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004772 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004773
Chris Lattner53e677a2004-04-02 20:23:17 +00004774 // We could implement others, but I really doubt anyone writes loops like
4775 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004776 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004777}
4778
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004779/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4780/// (which may not be an immediate predecessor) which has exactly one
4781/// successor from which BB is reachable, or null if no such block is
4782/// found.
4783///
Dan Gohman005752b2010-04-15 16:19:08 +00004784std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004785ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004786 // If the block has a unique predecessor, then there is no path from the
4787 // predecessor to the block that does not go through the direct edge
4788 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004789 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004790 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004791
4792 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004793 // If the header has a unique predecessor outside the loop, it must be
4794 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004795 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004796 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004797
Dan Gohman005752b2010-04-15 16:19:08 +00004798 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004799}
4800
Dan Gohman763bad12009-06-20 00:35:32 +00004801/// HasSameValue - SCEV structural equivalence is usually sufficient for
4802/// testing whether two expressions are equal, however for the purposes of
4803/// looking for a condition guarding a loop, it can be useful to be a little
4804/// more general, since a front-end may have replicated the controlling
4805/// expression.
4806///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004807static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004808 // Quick check to see if they are the same SCEV.
4809 if (A == B) return true;
4810
4811 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4812 // two different instructions with the same value. Check for this case.
4813 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4814 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4815 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4816 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004817 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004818 return true;
4819
4820 // Otherwise assume they may have a different value.
4821 return false;
4822}
4823
Dan Gohmane9796502010-04-24 01:28:42 +00004824/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4825/// predicate Pred. Return true iff any changes were made.
4826///
4827bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4828 const SCEV *&LHS, const SCEV *&RHS) {
4829 bool Changed = false;
4830
4831 // Canonicalize a constant to the right side.
4832 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4833 // Check for both operands constant.
4834 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4835 if (ConstantExpr::getICmp(Pred,
4836 LHSC->getValue(),
4837 RHSC->getValue())->isNullValue())
4838 goto trivially_false;
4839 else
4840 goto trivially_true;
4841 }
4842 // Otherwise swap the operands to put the constant on the right.
4843 std::swap(LHS, RHS);
4844 Pred = ICmpInst::getSwappedPredicate(Pred);
4845 Changed = true;
4846 }
4847
4848 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004849 // addrec's loop, put the addrec on the left. Also make a dominance check,
4850 // as both operands could be addrecs loop-invariant in each other's loop.
4851 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4852 const Loop *L = AR->getLoop();
4853 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004854 std::swap(LHS, RHS);
4855 Pred = ICmpInst::getSwappedPredicate(Pred);
4856 Changed = true;
4857 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004858 }
Dan Gohmane9796502010-04-24 01:28:42 +00004859
4860 // If there's a constant operand, canonicalize comparisons with boundary
4861 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4862 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4863 const APInt &RA = RC->getValue()->getValue();
4864 switch (Pred) {
4865 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4866 case ICmpInst::ICMP_EQ:
4867 case ICmpInst::ICMP_NE:
4868 break;
4869 case ICmpInst::ICMP_UGE:
4870 if ((RA - 1).isMinValue()) {
4871 Pred = ICmpInst::ICMP_NE;
4872 RHS = getConstant(RA - 1);
4873 Changed = true;
4874 break;
4875 }
4876 if (RA.isMaxValue()) {
4877 Pred = ICmpInst::ICMP_EQ;
4878 Changed = true;
4879 break;
4880 }
4881 if (RA.isMinValue()) goto trivially_true;
4882
4883 Pred = ICmpInst::ICMP_UGT;
4884 RHS = getConstant(RA - 1);
4885 Changed = true;
4886 break;
4887 case ICmpInst::ICMP_ULE:
4888 if ((RA + 1).isMaxValue()) {
4889 Pred = ICmpInst::ICMP_NE;
4890 RHS = getConstant(RA + 1);
4891 Changed = true;
4892 break;
4893 }
4894 if (RA.isMinValue()) {
4895 Pred = ICmpInst::ICMP_EQ;
4896 Changed = true;
4897 break;
4898 }
4899 if (RA.isMaxValue()) goto trivially_true;
4900
4901 Pred = ICmpInst::ICMP_ULT;
4902 RHS = getConstant(RA + 1);
4903 Changed = true;
4904 break;
4905 case ICmpInst::ICMP_SGE:
4906 if ((RA - 1).isMinSignedValue()) {
4907 Pred = ICmpInst::ICMP_NE;
4908 RHS = getConstant(RA - 1);
4909 Changed = true;
4910 break;
4911 }
4912 if (RA.isMaxSignedValue()) {
4913 Pred = ICmpInst::ICMP_EQ;
4914 Changed = true;
4915 break;
4916 }
4917 if (RA.isMinSignedValue()) goto trivially_true;
4918
4919 Pred = ICmpInst::ICMP_SGT;
4920 RHS = getConstant(RA - 1);
4921 Changed = true;
4922 break;
4923 case ICmpInst::ICMP_SLE:
4924 if ((RA + 1).isMaxSignedValue()) {
4925 Pred = ICmpInst::ICMP_NE;
4926 RHS = getConstant(RA + 1);
4927 Changed = true;
4928 break;
4929 }
4930 if (RA.isMinSignedValue()) {
4931 Pred = ICmpInst::ICMP_EQ;
4932 Changed = true;
4933 break;
4934 }
4935 if (RA.isMaxSignedValue()) goto trivially_true;
4936
4937 Pred = ICmpInst::ICMP_SLT;
4938 RHS = getConstant(RA + 1);
4939 Changed = true;
4940 break;
4941 case ICmpInst::ICMP_UGT:
4942 if (RA.isMinValue()) {
4943 Pred = ICmpInst::ICMP_NE;
4944 Changed = true;
4945 break;
4946 }
4947 if ((RA + 1).isMaxValue()) {
4948 Pred = ICmpInst::ICMP_EQ;
4949 RHS = getConstant(RA + 1);
4950 Changed = true;
4951 break;
4952 }
4953 if (RA.isMaxValue()) goto trivially_false;
4954 break;
4955 case ICmpInst::ICMP_ULT:
4956 if (RA.isMaxValue()) {
4957 Pred = ICmpInst::ICMP_NE;
4958 Changed = true;
4959 break;
4960 }
4961 if ((RA - 1).isMinValue()) {
4962 Pred = ICmpInst::ICMP_EQ;
4963 RHS = getConstant(RA - 1);
4964 Changed = true;
4965 break;
4966 }
4967 if (RA.isMinValue()) goto trivially_false;
4968 break;
4969 case ICmpInst::ICMP_SGT:
4970 if (RA.isMinSignedValue()) {
4971 Pred = ICmpInst::ICMP_NE;
4972 Changed = true;
4973 break;
4974 }
4975 if ((RA + 1).isMaxSignedValue()) {
4976 Pred = ICmpInst::ICMP_EQ;
4977 RHS = getConstant(RA + 1);
4978 Changed = true;
4979 break;
4980 }
4981 if (RA.isMaxSignedValue()) goto trivially_false;
4982 break;
4983 case ICmpInst::ICMP_SLT:
4984 if (RA.isMaxSignedValue()) {
4985 Pred = ICmpInst::ICMP_NE;
4986 Changed = true;
4987 break;
4988 }
4989 if ((RA - 1).isMinSignedValue()) {
4990 Pred = ICmpInst::ICMP_EQ;
4991 RHS = getConstant(RA - 1);
4992 Changed = true;
4993 break;
4994 }
4995 if (RA.isMinSignedValue()) goto trivially_false;
4996 break;
4997 }
4998 }
4999
5000 // Check for obvious equality.
5001 if (HasSameValue(LHS, RHS)) {
5002 if (ICmpInst::isTrueWhenEqual(Pred))
5003 goto trivially_true;
5004 if (ICmpInst::isFalseWhenEqual(Pred))
5005 goto trivially_false;
5006 }
5007
Dan Gohman03557dc2010-05-03 16:35:17 +00005008 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5009 // adding or subtracting 1 from one of the operands.
5010 switch (Pred) {
5011 case ICmpInst::ICMP_SLE:
5012 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5013 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5014 /*HasNUW=*/false, /*HasNSW=*/true);
5015 Pred = ICmpInst::ICMP_SLT;
5016 Changed = true;
5017 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005018 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005019 /*HasNUW=*/false, /*HasNSW=*/true);
5020 Pred = ICmpInst::ICMP_SLT;
5021 Changed = true;
5022 }
5023 break;
5024 case ICmpInst::ICMP_SGE:
5025 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005026 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005027 /*HasNUW=*/false, /*HasNSW=*/true);
5028 Pred = ICmpInst::ICMP_SGT;
5029 Changed = true;
5030 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5031 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5032 /*HasNUW=*/false, /*HasNSW=*/true);
5033 Pred = ICmpInst::ICMP_SGT;
5034 Changed = true;
5035 }
5036 break;
5037 case ICmpInst::ICMP_ULE:
5038 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005039 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005040 /*HasNUW=*/true, /*HasNSW=*/false);
5041 Pred = ICmpInst::ICMP_ULT;
5042 Changed = true;
5043 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005044 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005045 /*HasNUW=*/true, /*HasNSW=*/false);
5046 Pred = ICmpInst::ICMP_ULT;
5047 Changed = true;
5048 }
5049 break;
5050 case ICmpInst::ICMP_UGE:
5051 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005052 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005053 /*HasNUW=*/true, /*HasNSW=*/false);
5054 Pred = ICmpInst::ICMP_UGT;
5055 Changed = true;
5056 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00005057 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00005058 /*HasNUW=*/true, /*HasNSW=*/false);
5059 Pred = ICmpInst::ICMP_UGT;
5060 Changed = true;
5061 }
5062 break;
5063 default:
5064 break;
5065 }
5066
Dan Gohmane9796502010-04-24 01:28:42 +00005067 // TODO: More simplifications are possible here.
5068
5069 return Changed;
5070
5071trivially_true:
5072 // Return 0 == 0.
5073 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5074 Pred = ICmpInst::ICMP_EQ;
5075 return true;
5076
5077trivially_false:
5078 // Return 0 != 0.
5079 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
5080 Pred = ICmpInst::ICMP_NE;
5081 return true;
5082}
5083
Dan Gohman85b05a22009-07-13 21:35:55 +00005084bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5085 return getSignedRange(S).getSignedMax().isNegative();
5086}
5087
5088bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5089 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5090}
5091
5092bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5093 return !getSignedRange(S).getSignedMin().isNegative();
5094}
5095
5096bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5097 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5098}
5099
5100bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5101 return isKnownNegative(S) || isKnownPositive(S);
5102}
5103
5104bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5105 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005106 // Canonicalize the inputs first.
5107 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5108
Dan Gohman53c66ea2010-04-11 22:16:48 +00005109 // If LHS or RHS is an addrec, check to see if the condition is true in
5110 // every iteration of the loop.
5111 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5112 if (isLoopEntryGuardedByCond(
5113 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5114 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005115 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005116 return true;
5117 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5118 if (isLoopEntryGuardedByCond(
5119 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5120 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005121 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005122 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005123
Dan Gohman53c66ea2010-04-11 22:16:48 +00005124 // Otherwise see what can be done with known constant ranges.
5125 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5126}
5127
5128bool
5129ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5130 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005131 if (HasSameValue(LHS, RHS))
5132 return ICmpInst::isTrueWhenEqual(Pred);
5133
Dan Gohman53c66ea2010-04-11 22:16:48 +00005134 // This code is split out from isKnownPredicate because it is called from
5135 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005136 switch (Pred) {
5137 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005138 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005139 break;
5140 case ICmpInst::ICMP_SGT:
5141 Pred = ICmpInst::ICMP_SLT;
5142 std::swap(LHS, RHS);
5143 case ICmpInst::ICMP_SLT: {
5144 ConstantRange LHSRange = getSignedRange(LHS);
5145 ConstantRange RHSRange = getSignedRange(RHS);
5146 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5147 return true;
5148 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5149 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005150 break;
5151 }
5152 case ICmpInst::ICMP_SGE:
5153 Pred = ICmpInst::ICMP_SLE;
5154 std::swap(LHS, RHS);
5155 case ICmpInst::ICMP_SLE: {
5156 ConstantRange LHSRange = getSignedRange(LHS);
5157 ConstantRange RHSRange = getSignedRange(RHS);
5158 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5159 return true;
5160 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5161 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005162 break;
5163 }
5164 case ICmpInst::ICMP_UGT:
5165 Pred = ICmpInst::ICMP_ULT;
5166 std::swap(LHS, RHS);
5167 case ICmpInst::ICMP_ULT: {
5168 ConstantRange LHSRange = getUnsignedRange(LHS);
5169 ConstantRange RHSRange = getUnsignedRange(RHS);
5170 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5171 return true;
5172 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5173 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005174 break;
5175 }
5176 case ICmpInst::ICMP_UGE:
5177 Pred = ICmpInst::ICMP_ULE;
5178 std::swap(LHS, RHS);
5179 case ICmpInst::ICMP_ULE: {
5180 ConstantRange LHSRange = getUnsignedRange(LHS);
5181 ConstantRange RHSRange = getUnsignedRange(RHS);
5182 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5183 return true;
5184 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5185 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005186 break;
5187 }
5188 case ICmpInst::ICMP_NE: {
5189 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5190 return true;
5191 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5192 return true;
5193
5194 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5195 if (isKnownNonZero(Diff))
5196 return true;
5197 break;
5198 }
5199 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005200 // The check at the top of the function catches the case where
5201 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005202 break;
5203 }
5204 return false;
5205}
5206
5207/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5208/// protected by a conditional between LHS and RHS. This is used to
5209/// to eliminate casts.
5210bool
5211ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5212 ICmpInst::Predicate Pred,
5213 const SCEV *LHS, const SCEV *RHS) {
5214 // Interpret a null as meaning no loop, where there is obviously no guard
5215 // (interprocedural conditions notwithstanding).
5216 if (!L) return true;
5217
5218 BasicBlock *Latch = L->getLoopLatch();
5219 if (!Latch)
5220 return false;
5221
5222 BranchInst *LoopContinuePredicate =
5223 dyn_cast<BranchInst>(Latch->getTerminator());
5224 if (!LoopContinuePredicate ||
5225 LoopContinuePredicate->isUnconditional())
5226 return false;
5227
Dan Gohmanaf08a362010-08-10 23:46:30 +00005228 return isImpliedCond(Pred, LHS, RHS,
5229 LoopContinuePredicate->getCondition(),
Dan Gohman0f4b2852009-07-21 23:03:19 +00005230 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005231}
5232
Dan Gohman3948d0b2010-04-11 19:27:13 +00005233/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005234/// by a conditional between LHS and RHS. This is used to help avoid max
5235/// expressions in loop trip counts, and to eliminate casts.
5236bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005237ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5238 ICmpInst::Predicate Pred,
5239 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005240 // Interpret a null as meaning no loop, where there is obviously no guard
5241 // (interprocedural conditions notwithstanding).
5242 if (!L) return false;
5243
Dan Gohman859b4822009-05-18 15:36:09 +00005244 // Starting at the loop predecessor, climb up the predecessor chain, as long
5245 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005246 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005247 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005248 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005249 Pair.first;
5250 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005251
5252 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005253 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005254 if (!LoopEntryPredicate ||
5255 LoopEntryPredicate->isUnconditional())
5256 continue;
5257
Dan Gohmanaf08a362010-08-10 23:46:30 +00005258 if (isImpliedCond(Pred, LHS, RHS,
5259 LoopEntryPredicate->getCondition(),
Dan Gohman005752b2010-04-15 16:19:08 +00005260 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005261 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005262 }
5263
Dan Gohman38372182008-08-12 20:17:31 +00005264 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005265}
5266
Dan Gohman0f4b2852009-07-21 23:03:19 +00005267/// isImpliedCond - Test whether the condition described by Pred, LHS,
5268/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005269bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005270 const SCEV *LHS, const SCEV *RHS,
Dan Gohmanaf08a362010-08-10 23:46:30 +00005271 Value *FoundCondValue,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005272 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005273 // Recursively handle And and Or conditions.
Dan Gohmanaf08a362010-08-10 23:46:30 +00005274 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005275 if (BO->getOpcode() == Instruction::And) {
5276 if (!Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005277 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5278 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005279 } else if (BO->getOpcode() == Instruction::Or) {
5280 if (Inverse)
Dan Gohmanaf08a362010-08-10 23:46:30 +00005281 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
5282 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005283 }
5284 }
5285
Dan Gohmanaf08a362010-08-10 23:46:30 +00005286 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005287 if (!ICI) return false;
5288
Dan Gohman85b05a22009-07-13 21:35:55 +00005289 // Bail if the ICmp's operands' types are wider than the needed type
5290 // before attempting to call getSCEV on them. This avoids infinite
5291 // recursion, since the analysis of widening casts can require loop
5292 // exit condition information for overflow checking, which would
5293 // lead back here.
5294 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005295 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005296 return false;
5297
Dan Gohman0f4b2852009-07-21 23:03:19 +00005298 // Now that we found a conditional branch that dominates the loop, check to
5299 // see if it is the comparison we are looking for.
5300 ICmpInst::Predicate FoundPred;
5301 if (Inverse)
5302 FoundPred = ICI->getInversePredicate();
5303 else
5304 FoundPred = ICI->getPredicate();
5305
5306 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5307 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005308
5309 // Balance the types. The case where FoundLHS' type is wider than
5310 // LHS' type is checked for above.
5311 if (getTypeSizeInBits(LHS->getType()) >
5312 getTypeSizeInBits(FoundLHS->getType())) {
5313 if (CmpInst::isSigned(Pred)) {
5314 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5315 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5316 } else {
5317 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5318 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5319 }
5320 }
5321
Dan Gohman0f4b2852009-07-21 23:03:19 +00005322 // Canonicalize the query to match the way instcombine will have
5323 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005324 if (SimplifyICmpOperands(Pred, LHS, RHS))
5325 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005326 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005327 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5328 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005329 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005330
5331 // Check to see if we can make the LHS or RHS match.
5332 if (LHS == FoundRHS || RHS == FoundLHS) {
5333 if (isa<SCEVConstant>(RHS)) {
5334 std::swap(FoundLHS, FoundRHS);
5335 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5336 } else {
5337 std::swap(LHS, RHS);
5338 Pred = ICmpInst::getSwappedPredicate(Pred);
5339 }
5340 }
5341
5342 // Check whether the found predicate is the same as the desired predicate.
5343 if (FoundPred == Pred)
5344 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5345
5346 // Check whether swapping the found predicate makes it the same as the
5347 // desired predicate.
5348 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5349 if (isa<SCEVConstant>(RHS))
5350 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5351 else
5352 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5353 RHS, LHS, FoundLHS, FoundRHS);
5354 }
5355
5356 // Check whether the actual condition is beyond sufficient.
5357 if (FoundPred == ICmpInst::ICMP_EQ)
5358 if (ICmpInst::isTrueWhenEqual(Pred))
5359 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5360 return true;
5361 if (Pred == ICmpInst::ICMP_NE)
5362 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5363 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5364 return true;
5365
5366 // Otherwise assume the worst.
5367 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005368}
5369
Dan Gohman0f4b2852009-07-21 23:03:19 +00005370/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005371/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005372/// and FoundRHS is true.
5373bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5374 const SCEV *LHS, const SCEV *RHS,
5375 const SCEV *FoundLHS,
5376 const SCEV *FoundRHS) {
5377 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5378 FoundLHS, FoundRHS) ||
5379 // ~x < ~y --> x > y
5380 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5381 getNotSCEV(FoundRHS),
5382 getNotSCEV(FoundLHS));
5383}
5384
5385/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005386/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005387/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005388bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005389ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5390 const SCEV *LHS, const SCEV *RHS,
5391 const SCEV *FoundLHS,
5392 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005393 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005394 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5395 case ICmpInst::ICMP_EQ:
5396 case ICmpInst::ICMP_NE:
5397 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5398 return true;
5399 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005400 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005401 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005402 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5403 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005404 return true;
5405 break;
5406 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005407 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005408 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5409 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005410 return true;
5411 break;
5412 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005413 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005414 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5415 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005416 return true;
5417 break;
5418 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005419 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005420 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5421 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005422 return true;
5423 break;
5424 }
5425
5426 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005427}
5428
Dan Gohman51f53b72009-06-21 23:46:38 +00005429/// getBECount - Subtract the end and start values and divide by the step,
5430/// rounding up, to get the number of times the backedge is executed. Return
5431/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005432const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005433 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005434 const SCEV *Step,
5435 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005436 assert(!isKnownNegative(Step) &&
5437 "This code doesn't handle negative strides yet!");
5438
Dan Gohman51f53b72009-06-21 23:46:38 +00005439 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005440 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005441 const SCEV *Diff = getMinusSCEV(End, Start);
5442 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005443
5444 // Add an adjustment to the difference between End and Start so that
5445 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005446 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005447
Dan Gohman1f96e672009-09-17 18:05:20 +00005448 if (!NoWrap) {
5449 // Check Add for unsigned overflow.
5450 // TODO: More sophisticated things could be done here.
5451 const Type *WideTy = IntegerType::get(getContext(),
5452 getTypeSizeInBits(Ty) + 1);
5453 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5454 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5455 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5456 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5457 return getCouldNotCompute();
5458 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005459
5460 return getUDivExpr(Add, Step);
5461}
5462
Chris Lattnerdb25de42005-08-15 23:33:51 +00005463/// HowManyLessThans - Return the number of times a backedge containing the
5464/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005465/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005466ScalarEvolution::BackedgeTakenInfo
5467ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5468 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005469 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005470 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005471
Dan Gohman35738ac2009-05-04 22:30:44 +00005472 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005473 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005474 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005475
Dan Gohman1f96e672009-09-17 18:05:20 +00005476 // Check to see if we have a flag which makes analysis easy.
5477 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5478 AddRec->hasNoUnsignedWrap();
5479
Chris Lattnerdb25de42005-08-15 23:33:51 +00005480 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005481 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005482 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005483
Dan Gohman52fddd32010-01-26 04:40:18 +00005484 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005485 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005486 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005487 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005488 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005489 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005490 // value and past the maximum value for its type in a single step.
5491 // Note that it's not sufficient to check NoWrap here, because even
5492 // though the value after a wrap is undefined, it's not undefined
5493 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005494 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005495 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005496 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005497 if (isSigned) {
5498 APInt Max = APInt::getSignedMaxValue(BitWidth);
5499 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5500 .slt(getSignedRange(RHS).getSignedMax()))
5501 return getCouldNotCompute();
5502 } else {
5503 APInt Max = APInt::getMaxValue(BitWidth);
5504 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5505 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5506 return getCouldNotCompute();
5507 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005508 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005509 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005510 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005511
Dan Gohmana1af7572009-04-30 20:47:05 +00005512 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5513 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5514 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005515 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005516
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005517 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005518 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005519
Dan Gohmana1af7572009-04-30 20:47:05 +00005520 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005521 const SCEV *MinStart = getConstant(isSigned ?
5522 getSignedRange(Start).getSignedMin() :
5523 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005524
Dan Gohmana1af7572009-04-30 20:47:05 +00005525 // If we know that the condition is true in order to enter the loop,
5526 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005527 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5528 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005529 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005530 if (!isLoopEntryGuardedByCond(L,
5531 isSigned ? ICmpInst::ICMP_SLT :
5532 ICmpInst::ICMP_ULT,
5533 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005534 End = isSigned ? getSMaxExpr(RHS, Start)
5535 : getUMaxExpr(RHS, Start);
5536
5537 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005538 const SCEV *MaxEnd = getConstant(isSigned ?
5539 getSignedRange(End).getSignedMax() :
5540 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005541
Dan Gohman52fddd32010-01-26 04:40:18 +00005542 // If MaxEnd is within a step of the maximum integer value in its type,
5543 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005544 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005545 // compute the correct value.
5546 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005547 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005548 MaxEnd = isSigned ?
5549 getSMinExpr(MaxEnd,
5550 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5551 StepMinusOne)) :
5552 getUMinExpr(MaxEnd,
5553 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5554 StepMinusOne));
5555
Dan Gohmana1af7572009-04-30 20:47:05 +00005556 // Finally, we subtract these two values and divide, rounding up, to get
5557 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005558 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005559
5560 // The maximum backedge count is similar, except using the minimum start
5561 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005562 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005563
5564 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005565 }
5566
Dan Gohman1c343752009-06-27 21:21:31 +00005567 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005568}
5569
Chris Lattner53e677a2004-04-02 20:23:17 +00005570/// getNumIterationsInRange - Return the number of iterations of this loop that
5571/// produce values in the specified constant range. Another way of looking at
5572/// this is that it returns the first iteration number where the value is not in
5573/// the condition, thus computing the exit count. If the iteration count can't
5574/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005575const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005576 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005577 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005578 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005579
5580 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005581 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005582 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005583 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005584 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005585 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005586 if (const SCEVAddRecExpr *ShiftedAddRec =
5587 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005588 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005589 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005590 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005591 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005592 }
5593
5594 // The only time we can solve this is when we have all constant indices.
5595 // Otherwise, we cannot determine the overflow conditions.
5596 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5597 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005598 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005599
5600
5601 // Okay at this point we know that all elements of the chrec are constants and
5602 // that the start element is zero.
5603
5604 // First check to see if the range contains zero. If not, the first
5605 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005606 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005607 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005608 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005609
Chris Lattner53e677a2004-04-02 20:23:17 +00005610 if (isAffine()) {
5611 // If this is an affine expression then we have this situation:
5612 // Solve {0,+,A} in Range === Ax in Range
5613
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005614 // We know that zero is in the range. If A is positive then we know that
5615 // the upper value of the range must be the first possible exit value.
5616 // If A is negative then the lower of the range is the last possible loop
5617 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005618 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005619 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5620 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005621
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005622 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005623 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005624 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005625
5626 // Evaluate at the exit value. If we really did fall out of the valid
5627 // range, then we computed our trip count, otherwise wrap around or other
5628 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005629 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005630 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005631 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005632
5633 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005634 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005635 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005636 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005637 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005638 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005639 } else if (isQuadratic()) {
5640 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5641 // quadratic equation to solve it. To do this, we must frame our problem in
5642 // terms of figuring out when zero is crossed, instead of when
5643 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005644 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005645 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005646 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005647
5648 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005649 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005650 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005651 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5652 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005653 if (R1) {
5654 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005655 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005656 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005657 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005658 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005659 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005660
Chris Lattner53e677a2004-04-02 20:23:17 +00005661 // Make sure the root is not off by one. The returned iteration should
5662 // not be in the range, but the previous one should be. When solving
5663 // for "X*X < 5", for example, we should not return a root of 2.
5664 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005665 R1->getValue(),
5666 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005667 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005668 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005669 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005670 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005671
Dan Gohman246b2562007-10-22 18:31:58 +00005672 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005673 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005674 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005675 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005676 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005677
Chris Lattner53e677a2004-04-02 20:23:17 +00005678 // If R1 was not in the range, then it is a good return value. Make
5679 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005680 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005681 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005682 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005683 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005684 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005685 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005686 }
5687 }
5688 }
5689
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005690 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005691}
5692
5693
5694
5695//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005696// SCEVCallbackVH Class Implementation
5697//===----------------------------------------------------------------------===//
5698
Dan Gohman1959b752009-05-19 19:22:47 +00005699void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005700 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005701 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5702 SE->ConstantEvolutionLoopExitValue.erase(PN);
5703 SE->Scalars.erase(getValPtr());
5704 // this now dangles!
5705}
5706
Dan Gohman81f91212010-07-28 01:09:07 +00005707void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005708 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christophere6cbfa62010-07-29 01:25:38 +00005709
Dan Gohman35738ac2009-05-04 22:30:44 +00005710 // Forget all the expressions associated with users of the old value,
5711 // so that future queries will recompute the expressions using the new
5712 // value.
Dan Gohmanab37f502010-08-02 23:49:30 +00005713 Value *Old = getValPtr();
Dan Gohman35738ac2009-05-04 22:30:44 +00005714 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005715 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005716 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5717 UI != UE; ++UI)
5718 Worklist.push_back(*UI);
5719 while (!Worklist.empty()) {
5720 User *U = Worklist.pop_back_val();
5721 // Deleting the Old value will cause this to dangle. Postpone
5722 // that until everything else is done.
Dan Gohman59846ac2010-07-28 00:28:25 +00005723 if (U == Old)
Dan Gohman35738ac2009-05-04 22:30:44 +00005724 continue;
Dan Gohman69fcae92009-07-14 14:34:04 +00005725 if (!Visited.insert(U))
5726 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005727 if (PHINode *PN = dyn_cast<PHINode>(U))
5728 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005729 SE->Scalars.erase(U);
5730 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5731 UI != UE; ++UI)
5732 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005733 }
Dan Gohman59846ac2010-07-28 00:28:25 +00005734 // Delete the Old value.
5735 if (PHINode *PN = dyn_cast<PHINode>(Old))
5736 SE->ConstantEvolutionLoopExitValue.erase(PN);
5737 SE->Scalars.erase(Old);
5738 // this now dangles!
Dan Gohman35738ac2009-05-04 22:30:44 +00005739}
5740
Dan Gohman1959b752009-05-19 19:22:47 +00005741ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005742 : CallbackVH(V), SE(se) {}
5743
5744//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005745// ScalarEvolution Class Implementation
5746//===----------------------------------------------------------------------===//
5747
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005748ScalarEvolution::ScalarEvolution()
Owen Anderson90c579d2010-08-06 18:33:48 +00005749 : FunctionPass(ID), FirstUnknown(0) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005750}
5751
Chris Lattner53e677a2004-04-02 20:23:17 +00005752bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005753 this->F = &F;
5754 LI = &getAnalysis<LoopInfo>();
5755 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005756 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005757 return false;
5758}
5759
5760void ScalarEvolution::releaseMemory() {
Dan Gohmanab37f502010-08-02 23:49:30 +00005761 // Iterate through all the SCEVUnknown instances and call their
5762 // destructors, so that they release their references to their values.
5763 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
5764 U->~SCEVUnknown();
5765 FirstUnknown = 0;
5766
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005767 Scalars.clear();
5768 BackedgeTakenCounts.clear();
5769 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005770 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005771 UniqueSCEVs.clear();
5772 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005773}
5774
5775void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5776 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005777 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005778 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005779}
5780
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005781bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005782 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005783}
5784
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005785static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005786 const Loop *L) {
5787 // Print all inner loops first
5788 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5789 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005790
Dan Gohman30733292010-01-09 18:17:45 +00005791 OS << "Loop ";
5792 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5793 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005794
Dan Gohman5d984912009-12-18 01:14:11 +00005795 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005796 L->getExitBlocks(ExitBlocks);
5797 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005798 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005799
Dan Gohman46bdfb02009-02-24 18:55:53 +00005800 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5801 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005802 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005803 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005804 }
5805
Dan Gohman30733292010-01-09 18:17:45 +00005806 OS << "\n"
5807 "Loop ";
5808 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5809 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005810
5811 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5812 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5813 } else {
5814 OS << "Unpredictable max backedge-taken count. ";
5815 }
5816
5817 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005818}
5819
Dan Gohman5d984912009-12-18 01:14:11 +00005820void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005821 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005822 // out SCEV values of all instructions that are interesting. Doing
5823 // this potentially causes it to create new SCEV objects though,
5824 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005825 // observable from outside the class though, so casting away the
5826 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005827 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005828
Dan Gohman30733292010-01-09 18:17:45 +00005829 OS << "Classifying expressions for: ";
5830 WriteAsOperand(OS, F, /*PrintType=*/false);
5831 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005832 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005833 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005834 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005835 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005836 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005837 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005838
Dan Gohman0c689c52009-06-19 17:49:54 +00005839 const Loop *L = LI->getLoopFor((*I).getParent());
5840
Dan Gohman0bba49c2009-07-07 17:06:11 +00005841 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005842 if (AtUse != SV) {
5843 OS << " --> ";
5844 AtUse->print(OS);
5845 }
5846
5847 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005848 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005849 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005850 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005851 OS << "<<Unknown>>";
5852 } else {
5853 OS << *ExitValue;
5854 }
5855 }
5856
Chris Lattner53e677a2004-04-02 20:23:17 +00005857 OS << "\n";
5858 }
5859
Dan Gohman30733292010-01-09 18:17:45 +00005860 OS << "Determining loop execution counts for: ";
5861 WriteAsOperand(OS, F, /*PrintType=*/false);
5862 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005863 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5864 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005865}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005866