blob: 9ed605cf9f3ac045e77973fd4fb53936edef4cab [file] [log] [blame]
Duncan Sands9e89ba32008-12-31 16:14:43 +00001//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a simple interprocedural pass which walks the
11// call-graph, looking for functions which do not access or only read
12// non-local memory, and marking them readnone/readonly. It implements
13// this as a bottom-up traversal of the call-graph.
14//
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "functionattrs"
18#include "llvm/Transforms/IPO.h"
19#include "llvm/CallGraphSCCPass.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Instructions.h"
22#include "llvm/Analysis/CallGraph.h"
23#include "llvm/ADT/SmallPtrSet.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/InstIterator.h"
27using namespace llvm;
28
29STATISTIC(NumReadNone, "Number of functions marked readnone");
30STATISTIC(NumReadOnly, "Number of functions marked readonly");
31STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
32
33namespace {
34 struct VISIBILITY_HIDDEN FunctionAttrs : public CallGraphSCCPass {
35 static char ID; // Pass identification, replacement for typeid
36 FunctionAttrs() : CallGraphSCCPass(&ID) {}
37
38 // runOnSCC - Analyze the SCC, performing the transformation if possible.
39 bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
40
41 // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
42 bool AddReadAttrs(const std::vector<CallGraphNode *> &SCC);
43
44 // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
45 bool AddNoCaptureAttrs(const std::vector<CallGraphNode *> &SCC);
46
47 // isCaptured - Returns whether this pointer value is captured.
48 bool isCaptured(Function &F, Value *V);
49
50 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
51 AU.setPreservesCFG();
52 CallGraphSCCPass::getAnalysisUsage(AU);
53 }
54
55 bool PointsToLocalMemory(Value *V);
56 };
57}
58
59char FunctionAttrs::ID = 0;
60static RegisterPass<FunctionAttrs>
61X("functionattrs", "Deduce function attributes");
62
63Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
64
65
66/// PointsToLocalMemory - Returns whether the given pointer value points to
67/// memory that is local to the function. Global constants are considered
68/// local to all functions.
69bool FunctionAttrs::PointsToLocalMemory(Value *V) {
70 V = V->getUnderlyingObject();
71 // An alloca instruction defines local memory.
72 if (isa<AllocaInst>(V))
73 return true;
74 // A global constant counts as local memory for our purposes.
75 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
76 return GV->isConstant();
77 // Could look through phi nodes and selects here, but it doesn't seem
78 // to be useful in practice.
79 return false;
80}
81
82/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
83bool FunctionAttrs::AddReadAttrs(const std::vector<CallGraphNode *> &SCC) {
84 SmallPtrSet<CallGraphNode*, 8> SCCNodes;
85 CallGraph &CG = getAnalysis<CallGraph>();
86
87 // Fill SCCNodes with the elements of the SCC. Used for quickly
88 // looking up whether a given CallGraphNode is in this SCC.
89 for (unsigned i = 0, e = SCC.size(); i != e; ++i)
90 SCCNodes.insert(SCC[i]);
91
92 // Check if any of the functions in the SCC read or write memory. If they
93 // write memory then they can't be marked readnone or readonly.
94 bool ReadsMemory = false;
95 for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
96 Function *F = SCC[i]->getFunction();
97
98 if (F == 0)
99 // External node - may write memory. Just give up.
100 return false;
101
102 if (F->doesNotAccessMemory())
103 // Already perfect!
104 continue;
105
106 // Definitions with weak linkage may be overridden at linktime with
107 // something that writes memory, so treat them like declarations.
108 if (F->isDeclaration() || F->mayBeOverridden()) {
109 if (!F->onlyReadsMemory())
110 // May write memory. Just give up.
111 return false;
112
113 ReadsMemory = true;
114 continue;
115 }
116
117 // Scan the function body for instructions that may read or write memory.
118 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
119 Instruction *I = &*II;
120
121 // Some instructions can be ignored even if they read or write memory.
122 // Detect these now, skipping to the next instruction if one is found.
123 CallSite CS = CallSite::get(I);
124 if (CS.getInstruction()) {
125 // Ignore calls to functions in the same SCC.
126 if (SCCNodes.count(CG[CS.getCalledFunction()]))
127 continue;
128 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
129 // Ignore loads from local memory.
130 if (PointsToLocalMemory(LI->getPointerOperand()))
131 continue;
132 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
133 // Ignore stores to local memory.
134 if (PointsToLocalMemory(SI->getPointerOperand()))
135 continue;
136 }
137
138 // Any remaining instructions need to be taken seriously! Check if they
139 // read or write memory.
140 if (I->mayWriteToMemory())
141 // Writes memory. Just give up.
142 return false;
143 // If this instruction may read memory, remember that.
144 ReadsMemory |= I->mayReadFromMemory();
145 }
146 }
147
148 // Success! Functions in this SCC do not access memory, or only read memory.
149 // Give them the appropriate attribute.
150 bool MadeChange = false;
151 for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
152 Function *F = SCC[i]->getFunction();
153
154 if (F->doesNotAccessMemory())
155 // Already perfect!
156 continue;
157
158 if (F->onlyReadsMemory() && ReadsMemory)
159 // No change.
160 continue;
161
162 MadeChange = true;
163
164 // Clear out any existing attributes.
165 F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
166
167 // Add in the new attribute.
168 F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
169
170 if (ReadsMemory)
171 NumReadOnly++;
172 else
173 NumReadNone++;
174 }
175
176 return MadeChange;
177}
178
179/// isCaptured - Returns whether this pointer value is captured.
180bool FunctionAttrs::isCaptured(Function &F, Value *V) {
181 SmallVector<Use*, 16> Worklist;
182 SmallPtrSet<Use*, 16> Visited;
183
184 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
185 ++UI) {
186 Use *U = &UI.getUse();
187 Visited.insert(U);
188 Worklist.push_back(U);
189 }
190
191 while (!Worklist.empty()) {
192 Use *U = Worklist.pop_back_val();
193 Instruction *I = cast<Instruction>(U->getUser());
194 V = U->get();
195
196 if (isa<LoadInst>(I)) {
197 // Loading a pointer does not cause it to escape.
198 continue;
199 }
200
201 if (isa<StoreInst>(I)) {
202 if (V == I->getOperand(0))
203 // Stored the pointer - escapes. TODO: improve this.
204 return true;
205 // Storing to the pointee does not cause the pointer to escape.
206 continue;
207 }
208
209 CallSite CS = CallSite::get(I);
210 if (CS.getInstruction()) {
211 // Does not escape if only passed via 'nocapture' arguments. Note
212 // that calling a function pointer does not in itself cause that
213 // function pointer to escape. This is a subtle point considering
214 // that (for example) the callee might return its own address. It
215 // is analogous to saying that loading a value from a pointer does
216 // not cause the pointer to escape, even though the loaded value
217 // might be the pointer itself (think of self-referential objects).
218 CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
219 for (CallSite::arg_iterator A = B; A != E; ++A)
220 if (A->get() == V && !CS.paramHasAttr(A-B+1, Attribute::NoCapture))
221 // The parameter is not marked 'nocapture' - escapes.
222 return true;
223 // Only passed via 'nocapture' arguments, or is the called function.
224 // Does not escape.
225 continue;
226 }
227
228 if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
229 // Type conversion or calculating an offset. Does not escape if the new
230 // value doesn't.
231 for (Instruction::use_iterator UI = I->use_begin(), UE = I->use_end();
232 UI != UE; ++UI) {
233 Use *U = &UI.getUse();
234 if (Visited.insert(U))
235 Worklist.push_back(U);
236 }
237 continue;
238 }
239
240 // Something else - be conservative and say it escapes.
241 return true;
242 }
243
244 return false;
245}
246
247/// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
248bool FunctionAttrs::AddNoCaptureAttrs(const std::vector<CallGraphNode *> &SCC) {
249 bool Changed = false;
250
251 // Check each function in turn, determining which pointer arguments are not
252 // captured.
253 for (unsigned i = 0, e = SCC.size(); i != e; ++i) {
254 Function *F = SCC[i]->getFunction();
255
256 if (F == 0)
257 // External node - skip it;
258 continue;
259
260 // Definitions with weak linkage may be overridden at linktime with
261 // something that writes memory, so treat them like declarations.
262 if (F->isDeclaration() || F->mayBeOverridden())
263 continue;
264
265 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
266 if (isa<PointerType>(A->getType()) && !isCaptured(*F, A)) {
267 A->addAttr(Attribute::NoCapture);
268 NumNoCapture++;
269 Changed = true;
270 }
271 }
272
273 return Changed;
274}
275
276bool FunctionAttrs::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
277 bool Changed = AddReadAttrs(SCC);
278 Changed |= AddNoCaptureAttrs(SCC);
279 return Changed;
280}