blob: 9e7092bacda24c1831172d4154a7beb67aecdf98 [file] [log] [blame]
Chris Lattner12be9362011-01-02 21:47:05 +00001//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a simple dominator tree walk that eliminates trivially
11// redundant instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "early-cse"
16#include "llvm/Transforms/Scalar.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000017#include "llvm/Instructions.h"
Chris Lattner12be9362011-01-02 21:47:05 +000018#include "llvm/Pass.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000019#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000021#include "llvm/Target/TargetData.h"
22#include "llvm/Transforms/Utils/Local.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000023#include "llvm/Support/Debug.h"
Chris Lattner82dcd5e2011-01-03 01:42:46 +000024#include "llvm/Support/RecyclingAllocator.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000025#include "llvm/ADT/ScopedHashTable.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000026#include "llvm/ADT/Statistic.h"
Chris Lattner12be9362011-01-02 21:47:05 +000027using namespace llvm;
28
Chris Lattnera60a8b02011-01-03 03:28:23 +000029STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
30STATISTIC(NumCSE, "Number of instructions CSE'd");
Chris Lattner85db6102011-01-03 03:41:27 +000031STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
32STATISTIC(NumCSECall, "Number of call instructions CSE'd");
Chris Lattner75637152011-01-03 04:17:24 +000033STATISTIC(NumDSE, "Number of trivial dead stores removed");
Chris Lattner8e7f0d72011-01-03 03:18:43 +000034
35static unsigned getHash(const void *V) {
36 return DenseMapInfo<const void*>::getHashValue(V);
37}
Chris Lattner91139cc2011-01-02 23:19:45 +000038
Chris Lattnerf1974592011-01-03 02:20:48 +000039//===----------------------------------------------------------------------===//
40// SimpleValue
41//===----------------------------------------------------------------------===//
42
Chris Lattner12be9362011-01-02 21:47:05 +000043namespace {
Chris Lattnerf1974592011-01-03 02:20:48 +000044 /// SimpleValue - Instances of this struct represent available values in the
Chris Lattnercc9eab22011-01-02 23:04:14 +000045 /// scoped hash table.
Chris Lattnerf1974592011-01-03 02:20:48 +000046 struct SimpleValue {
Chris Lattnercc9eab22011-01-02 23:04:14 +000047 Instruction *Inst;
48
Chris Lattnera60a8b02011-01-03 03:28:23 +000049 SimpleValue(Instruction *I) : Inst(I) {
50 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
51 }
52
Chris Lattnercc9eab22011-01-02 23:04:14 +000053 bool isSentinel() const {
54 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
55 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
56 }
57
58 static bool canHandle(Instruction *Inst) {
Chris Lattner91139cc2011-01-02 23:19:45 +000059 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
60 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
61 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
62 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
63 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
Chris Lattnercc9eab22011-01-02 23:04:14 +000064 }
Chris Lattnercc9eab22011-01-02 23:04:14 +000065 };
66}
67
68namespace llvm {
Chris Lattnerf1974592011-01-03 02:20:48 +000069// SimpleValue is POD.
70template<> struct isPodLike<SimpleValue> {
Chris Lattnercc9eab22011-01-02 23:04:14 +000071 static const bool value = true;
72};
73
Chris Lattnerf1974592011-01-03 02:20:48 +000074template<> struct DenseMapInfo<SimpleValue> {
75 static inline SimpleValue getEmptyKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +000076 return DenseMapInfo<Instruction*>::getEmptyKey();
Chris Lattnercc9eab22011-01-02 23:04:14 +000077 }
Chris Lattnerf1974592011-01-03 02:20:48 +000078 static inline SimpleValue getTombstoneKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +000079 return DenseMapInfo<Instruction*>::getTombstoneKey();
Chris Lattnercc9eab22011-01-02 23:04:14 +000080 }
Chris Lattnerf1974592011-01-03 02:20:48 +000081 static unsigned getHashValue(SimpleValue Val);
82 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
Chris Lattnercc9eab22011-01-02 23:04:14 +000083};
84}
85
Chris Lattnerf1974592011-01-03 02:20:48 +000086unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Chris Lattnercc9eab22011-01-02 23:04:14 +000087 Instruction *Inst = Val.Inst;
Chris Lattnercc9eab22011-01-02 23:04:14 +000088
Chris Lattnerd957c712011-01-03 01:10:08 +000089 // Hash in all of the operands as pointers.
90 unsigned Res = 0;
91 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
92 Res ^= getHash(Inst->getOperand(i)) << i;
93
94 if (CastInst *CI = dyn_cast<CastInst>(Inst))
95 Res ^= getHash(CI->getType());
96 else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
97 Res ^= CI->getPredicate();
98 else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
99 for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
100 E = EVI->idx_end(); I != E; ++I)
101 Res ^= *I;
102 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
103 for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
104 E = IVI->idx_end(); I != E; ++I)
105 Res ^= *I;
106 } else {
107 // nothing extra to hash in.
108 assert((isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
109 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
110 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
111 "Invalid/unknown instruction");
112 }
113
114 // Mix in the opcode.
Chris Lattnercc9eab22011-01-02 23:04:14 +0000115 return (Res << 1) ^ Inst->getOpcode();
116}
117
Chris Lattnerf1974592011-01-03 02:20:48 +0000118bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
Chris Lattnercc9eab22011-01-02 23:04:14 +0000119 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
120
121 if (LHS.isSentinel() || RHS.isSentinel())
122 return LHSI == RHSI;
123
124 if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
125 return LHSI->isIdenticalTo(RHSI);
126}
127
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000128//===----------------------------------------------------------------------===//
Chris Lattner85db6102011-01-03 03:41:27 +0000129// CallValue
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000130//===----------------------------------------------------------------------===//
131
132namespace {
Chris Lattner85db6102011-01-03 03:41:27 +0000133 /// CallValue - Instances of this struct represent available call values in
134 /// the scoped hash table.
135 struct CallValue {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000136 Instruction *Inst;
137
Chris Lattner85db6102011-01-03 03:41:27 +0000138 CallValue(Instruction *I) : Inst(I) {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000139 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
140 }
141
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000142 bool isSentinel() const {
143 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
144 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
145 }
146
147 static bool canHandle(Instruction *Inst) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000148 if (CallInst *CI = dyn_cast<CallInst>(Inst))
149 return CI->onlyReadsMemory();
150 return false;
151 }
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000152 };
153}
154
155namespace llvm {
Chris Lattner85db6102011-01-03 03:41:27 +0000156 // CallValue is POD.
157 template<> struct isPodLike<CallValue> {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000158 static const bool value = true;
159 };
160
Chris Lattner85db6102011-01-03 03:41:27 +0000161 template<> struct DenseMapInfo<CallValue> {
162 static inline CallValue getEmptyKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000163 return DenseMapInfo<Instruction*>::getEmptyKey();
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000164 }
Chris Lattner85db6102011-01-03 03:41:27 +0000165 static inline CallValue getTombstoneKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000166 return DenseMapInfo<Instruction*>::getTombstoneKey();
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000167 }
Chris Lattner85db6102011-01-03 03:41:27 +0000168 static unsigned getHashValue(CallValue Val);
169 static bool isEqual(CallValue LHS, CallValue RHS);
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000170 };
171}
Chris Lattner85db6102011-01-03 03:41:27 +0000172unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000173 Instruction *Inst = Val.Inst;
174 // Hash in all of the operands as pointers.
175 unsigned Res = 0;
176 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
177 Res ^= getHash(Inst->getOperand(i)) << i;
178 // Mix in the opcode.
179 return (Res << 1) ^ Inst->getOpcode();
180}
181
Chris Lattner85db6102011-01-03 03:41:27 +0000182bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000183 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000184 if (LHS.isSentinel() || RHS.isSentinel())
185 return LHSI == RHSI;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000186 return LHSI->isIdenticalTo(RHSI);
187}
188
Chris Lattnercc9eab22011-01-02 23:04:14 +0000189
Chris Lattnerf1974592011-01-03 02:20:48 +0000190//===----------------------------------------------------------------------===//
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000191// EarlyCSE pass.
Chris Lattnerf1974592011-01-03 02:20:48 +0000192//===----------------------------------------------------------------------===//
193
Chris Lattnercc9eab22011-01-02 23:04:14 +0000194namespace {
195
Chris Lattner12be9362011-01-02 21:47:05 +0000196/// EarlyCSE - This pass does a simple depth-first walk over the dominator
197/// tree, eliminating trivially redundant instructions and using instsimplify
198/// to canonicalize things as it goes. It is intended to be fast and catch
199/// obvious cases so that instcombine and other passes are more effective. It
200/// is expected that a later pass of GVN will catch the interesting/hard
201/// cases.
202class EarlyCSE : public FunctionPass {
203public:
Chris Lattnercc9eab22011-01-02 23:04:14 +0000204 const TargetData *TD;
205 DominatorTree *DT;
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000206 typedef RecyclingAllocator<BumpPtrAllocator,
Chris Lattnerf1974592011-01-03 02:20:48 +0000207 ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
208 typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000209 AllocatorTy> ScopedHTType;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000210
Chris Lattnerf1974592011-01-03 02:20:48 +0000211 /// AvailableValues - This scoped hash table contains the current values of
212 /// all of our simple scalar expressions. As we walk down the domtree, we
213 /// look to see if instructions are in this: if so, we replace them with what
214 /// we find, otherwise we insert them so that dominated values can succeed in
215 /// their lookup.
216 ScopedHTType *AvailableValues;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000217
Chris Lattner85db6102011-01-03 03:41:27 +0000218 /// AvailableLoads - This scoped hash table contains the current values
219 /// of loads. This allows us to get efficient access to dominating loads when
220 /// we have a fully redundant load. In addition to the most recent load, we
221 /// keep track of a generation count of the read, which is compared against
222 /// the current generation count. The current generation count is
223 /// incremented after every possibly writing memory operation, which ensures
224 /// that we only CSE loads with other loads that have no intervening store.
Chris Lattner71230ac2011-01-03 03:53:50 +0000225 typedef RecyclingAllocator<BumpPtrAllocator,
226 ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
227 typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
228 DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
Chris Lattner85db6102011-01-03 03:41:27 +0000229 LoadHTType *AvailableLoads;
230
231 /// AvailableCalls - This scoped hash table contains the current values
232 /// of read-only call values. It uses the same generation count as loads.
233 typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
234 CallHTType *AvailableCalls;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000235
236 /// CurrentGeneration - This is the current generation of the memory value.
237 unsigned CurrentGeneration;
238
Chris Lattner12be9362011-01-02 21:47:05 +0000239 static char ID;
Chris Lattnerf1974592011-01-03 02:20:48 +0000240 explicit EarlyCSE() : FunctionPass(ID) {
Chris Lattner12be9362011-01-02 21:47:05 +0000241 initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
242 }
243
244 bool runOnFunction(Function &F);
245
246private:
Chris Lattnercc9eab22011-01-02 23:04:14 +0000247
248 bool processNode(DomTreeNode *Node);
249
Chris Lattner12be9362011-01-02 21:47:05 +0000250 // This transformation requires dominator postdominator info
251 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
252 AU.addRequired<DominatorTree>();
253 AU.setPreservesCFG();
254 }
255};
256}
257
258char EarlyCSE::ID = 0;
259
260// createEarlyCSEPass - The public interface to this file.
261FunctionPass *llvm::createEarlyCSEPass() {
262 return new EarlyCSE();
263}
264
265INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
266INITIALIZE_PASS_DEPENDENCY(DominatorTree)
267INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
268
Chris Lattnercc9eab22011-01-02 23:04:14 +0000269bool EarlyCSE::processNode(DomTreeNode *Node) {
Chris Lattnerf1974592011-01-03 02:20:48 +0000270 // Define a scope in the scoped hash table. When we are done processing this
271 // domtree node and recurse back up to our parent domtree node, this will pop
272 // off all the values we install.
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000273 ScopedHTType::ScopeTy Scope(*AvailableValues);
274
Chris Lattner85db6102011-01-03 03:41:27 +0000275 // Define a scope for the load values so that anything we add will get
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000276 // popped when we recurse back up to our parent domtree node.
Chris Lattner85db6102011-01-03 03:41:27 +0000277 LoadHTType::ScopeTy LoadScope(*AvailableLoads);
278
279 // Define a scope for the call values so that anything we add will get
280 // popped when we recurse back up to our parent domtree node.
281 CallHTType::ScopeTy CallScope(*AvailableCalls);
Chris Lattnercc9eab22011-01-02 23:04:14 +0000282
283 BasicBlock *BB = Node->getBlock();
284
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000285 // If this block has a single predecessor, then the predecessor is the parent
286 // of the domtree node and all of the live out memory values are still current
287 // in this block. If this block has multiple predecessors, then they could
288 // have invalidated the live-out memory values of our parent value. For now,
289 // just be conservative and invalidate memory if this block has multiple
290 // predecessors.
291 if (BB->getSinglePredecessor() == 0)
292 ++CurrentGeneration;
293
Chris Lattner75637152011-01-03 04:17:24 +0000294 /// LastStore - Keep track of the last non-volatile store that we saw... for
295 /// as long as there in no instruction that reads memory. If we see a store
296 /// to the same location, we delete the dead store. This zaps trivial dead
297 /// stores which can occur in bitfield code among other things.
298 StoreInst *LastStore = 0;
299
Chris Lattnercc9eab22011-01-02 23:04:14 +0000300 bool Changed = false;
301
302 // See if any instructions in the block can be eliminated. If so, do it. If
303 // not, add them to AvailableValues.
304 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
305 Instruction *Inst = I++;
306
307 // Dead instructions should just be removed.
308 if (isInstructionTriviallyDead(Inst)) {
Chris Lattner91139cc2011-01-02 23:19:45 +0000309 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
Chris Lattnercc9eab22011-01-02 23:04:14 +0000310 Inst->eraseFromParent();
311 Changed = true;
Chris Lattner91139cc2011-01-02 23:19:45 +0000312 ++NumSimplify;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000313 continue;
314 }
315
316 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
317 // its simpler value.
318 if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
Chris Lattner91139cc2011-01-02 23:19:45 +0000319 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Chris Lattnercc9eab22011-01-02 23:04:14 +0000320 Inst->replaceAllUsesWith(V);
321 Inst->eraseFromParent();
322 Changed = true;
Chris Lattner91139cc2011-01-02 23:19:45 +0000323 ++NumSimplify;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000324 continue;
325 }
326
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000327 // If this is a simple instruction that we can value number, process it.
328 if (SimpleValue::canHandle(Inst)) {
329 // See if the instruction has an available value. If so, use it.
Chris Lattnera60a8b02011-01-03 03:28:23 +0000330 if (Value *V = AvailableValues->lookup(Inst)) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000331 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
332 Inst->replaceAllUsesWith(V);
333 Inst->eraseFromParent();
334 Changed = true;
335 ++NumCSE;
336 continue;
337 }
338
339 // Otherwise, just remember that this value is available.
Chris Lattnera60a8b02011-01-03 03:28:23 +0000340 AvailableValues->insert(Inst, Inst);
Chris Lattnercc9eab22011-01-02 23:04:14 +0000341 continue;
342 }
343
Chris Lattner85db6102011-01-03 03:41:27 +0000344 // If this is a non-volatile load, process it.
345 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
346 // Ignore volatile loads.
Chris Lattner75637152011-01-03 04:17:24 +0000347 if (LI->isVolatile()) {
348 LastStore = 0;
349 continue;
350 }
Chris Lattner85db6102011-01-03 03:41:27 +0000351
352 // If we have an available version of this load, and if it is the right
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000353 // generation, replace this instruction.
Chris Lattner85db6102011-01-03 03:41:27 +0000354 std::pair<Value*, unsigned> InVal =
355 AvailableLoads->lookup(Inst->getOperand(0));
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000356 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
Chris Lattner85db6102011-01-03 03:41:27 +0000357 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
358 << *InVal.first << '\n');
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000359 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
360 Inst->eraseFromParent();
361 Changed = true;
Chris Lattner85db6102011-01-03 03:41:27 +0000362 ++NumCSELoad;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000363 continue;
364 }
365
366 // Otherwise, remember that we have this instruction.
Chris Lattner85db6102011-01-03 03:41:27 +0000367 AvailableLoads->insert(Inst->getOperand(0),
368 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
Chris Lattner75637152011-01-03 04:17:24 +0000369 LastStore = 0;
Chris Lattner85db6102011-01-03 03:41:27 +0000370 continue;
371 }
372
Chris Lattner75637152011-01-03 04:17:24 +0000373 // If this instruction may read from memory, forget LastStore.
374 if (Inst->mayReadFromMemory())
375 LastStore = 0;
376
Chris Lattner85db6102011-01-03 03:41:27 +0000377 // If this is a read-only call, process it.
378 if (CallValue::canHandle(Inst)) {
379 // If we have an available version of this call, and if it is the right
380 // generation, replace this instruction.
381 std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
382 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
383 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
384 << *InVal.first << '\n');
385 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
386 Inst->eraseFromParent();
387 Changed = true;
388 ++NumCSECall;
389 continue;
390 }
391
392 // Otherwise, remember that we have this instruction.
393 AvailableCalls->insert(Inst,
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000394 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
395 continue;
396 }
397
398 // Okay, this isn't something we can CSE at all. Check to see if it is
399 // something that could modify memory. If so, our available memory values
400 // cannot be used so bump the generation count.
Chris Lattneref87fc22011-01-03 03:46:34 +0000401 if (Inst->mayWriteToMemory()) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000402 ++CurrentGeneration;
Chris Lattneref87fc22011-01-03 03:46:34 +0000403
Chris Lattneref87fc22011-01-03 03:46:34 +0000404 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
Chris Lattner75637152011-01-03 04:17:24 +0000405 // We do a trivial form of DSE if there are two stores to the same
406 // location with no intervening loads. Delete the earlier store.
407 if (LastStore &&
408 LastStore->getPointerOperand() == SI->getPointerOperand()) {
409 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: "
410 << *Inst << '\n');
411 LastStore->eraseFromParent();
412 Changed = true;
413 ++NumDSE;
414 LastStore = 0;
415 continue;
416 }
417
418 // Okay, we just invalidated anything we knew about loaded values. Try
419 // to salvage *something* by remembering that the stored value is a live
420 // version of the pointer. It is safe to forward from volatile stores
421 // to non-volatile loads, so we don't have to check for volatility of
422 // the store.
Chris Lattneref87fc22011-01-03 03:46:34 +0000423 AvailableLoads->insert(SI->getPointerOperand(),
424 std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
Chris Lattner75637152011-01-03 04:17:24 +0000425
426 // Remember that this was the last store we saw for DSE.
427 if (!SI->isVolatile())
428 LastStore = SI;
Chris Lattneref87fc22011-01-03 03:46:34 +0000429 }
430 }
Chris Lattnercc9eab22011-01-02 23:04:14 +0000431 }
432
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000433 unsigned LiveOutGeneration = CurrentGeneration;
434 for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
Chris Lattnercc9eab22011-01-02 23:04:14 +0000435 Changed |= processNode(*I);
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000436 // Pop any generation changes off the stack from the recursive walk.
437 CurrentGeneration = LiveOutGeneration;
438 }
Chris Lattnercc9eab22011-01-02 23:04:14 +0000439 return Changed;
Chris Lattner12be9362011-01-02 21:47:05 +0000440}
Chris Lattnercc9eab22011-01-02 23:04:14 +0000441
442
443bool EarlyCSE::runOnFunction(Function &F) {
444 TD = getAnalysisIfAvailable<TargetData>();
445 DT = &getAnalysis<DominatorTree>();
Chris Lattner85db6102011-01-03 03:41:27 +0000446
447 // Tables that the pass uses when walking the domtree.
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000448 ScopedHTType AVTable;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000449 AvailableValues = &AVTable;
Chris Lattner85db6102011-01-03 03:41:27 +0000450 LoadHTType LoadTable;
451 AvailableLoads = &LoadTable;
452 CallHTType CallTable;
453 AvailableCalls = &CallTable;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000454
455 CurrentGeneration = 0;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000456 return processNode(DT->getRootNode());
457}