blob: 06c1b9111187cf04addfab439021c095f623e82f [file] [log] [blame]
Chris Lattner12be9362011-01-02 21:47:05 +00001//===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs a simple dominator tree walk that eliminates trivially
11// redundant instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "early-cse"
16#include "llvm/Transforms/Scalar.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000017#include "llvm/Instructions.h"
Chris Lattner12be9362011-01-02 21:47:05 +000018#include "llvm/Pass.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000019#include "llvm/Analysis/Dominators.h"
20#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000021#include "llvm/Target/TargetData.h"
22#include "llvm/Transforms/Utils/Local.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000023#include "llvm/Support/Debug.h"
Chris Lattner82dcd5e2011-01-03 01:42:46 +000024#include "llvm/Support/RecyclingAllocator.h"
Chris Lattnercc9eab22011-01-02 23:04:14 +000025#include "llvm/ADT/ScopedHashTable.h"
Chris Lattner91139cc2011-01-02 23:19:45 +000026#include "llvm/ADT/Statistic.h"
Chris Lattner12be9362011-01-02 21:47:05 +000027using namespace llvm;
28
Chris Lattnera60a8b02011-01-03 03:28:23 +000029STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
30STATISTIC(NumCSE, "Number of instructions CSE'd");
Chris Lattner85db6102011-01-03 03:41:27 +000031STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
32STATISTIC(NumCSECall, "Number of call instructions CSE'd");
Chris Lattner8e7f0d72011-01-03 03:18:43 +000033
34static unsigned getHash(const void *V) {
35 return DenseMapInfo<const void*>::getHashValue(V);
36}
Chris Lattner91139cc2011-01-02 23:19:45 +000037
Chris Lattnerf1974592011-01-03 02:20:48 +000038//===----------------------------------------------------------------------===//
39// SimpleValue
40//===----------------------------------------------------------------------===//
41
Chris Lattner12be9362011-01-02 21:47:05 +000042namespace {
Chris Lattnerf1974592011-01-03 02:20:48 +000043 /// SimpleValue - Instances of this struct represent available values in the
Chris Lattnercc9eab22011-01-02 23:04:14 +000044 /// scoped hash table.
Chris Lattnerf1974592011-01-03 02:20:48 +000045 struct SimpleValue {
Chris Lattnercc9eab22011-01-02 23:04:14 +000046 Instruction *Inst;
47
Chris Lattnera60a8b02011-01-03 03:28:23 +000048 SimpleValue(Instruction *I) : Inst(I) {
49 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
50 }
51
Chris Lattnercc9eab22011-01-02 23:04:14 +000052 bool isSentinel() const {
53 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
54 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
55 }
56
57 static bool canHandle(Instruction *Inst) {
Chris Lattner91139cc2011-01-02 23:19:45 +000058 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
59 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
60 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
61 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
62 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
Chris Lattnercc9eab22011-01-02 23:04:14 +000063 }
Chris Lattnercc9eab22011-01-02 23:04:14 +000064 };
65}
66
67namespace llvm {
Chris Lattnerf1974592011-01-03 02:20:48 +000068// SimpleValue is POD.
69template<> struct isPodLike<SimpleValue> {
Chris Lattnercc9eab22011-01-02 23:04:14 +000070 static const bool value = true;
71};
72
Chris Lattnerf1974592011-01-03 02:20:48 +000073template<> struct DenseMapInfo<SimpleValue> {
74 static inline SimpleValue getEmptyKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +000075 return DenseMapInfo<Instruction*>::getEmptyKey();
Chris Lattnercc9eab22011-01-02 23:04:14 +000076 }
Chris Lattnerf1974592011-01-03 02:20:48 +000077 static inline SimpleValue getTombstoneKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +000078 return DenseMapInfo<Instruction*>::getTombstoneKey();
Chris Lattnercc9eab22011-01-02 23:04:14 +000079 }
Chris Lattnerf1974592011-01-03 02:20:48 +000080 static unsigned getHashValue(SimpleValue Val);
81 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
Chris Lattnercc9eab22011-01-02 23:04:14 +000082};
83}
84
Chris Lattnerf1974592011-01-03 02:20:48 +000085unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
Chris Lattnercc9eab22011-01-02 23:04:14 +000086 Instruction *Inst = Val.Inst;
Chris Lattnercc9eab22011-01-02 23:04:14 +000087
Chris Lattnerd957c712011-01-03 01:10:08 +000088 // Hash in all of the operands as pointers.
89 unsigned Res = 0;
90 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
91 Res ^= getHash(Inst->getOperand(i)) << i;
92
93 if (CastInst *CI = dyn_cast<CastInst>(Inst))
94 Res ^= getHash(CI->getType());
95 else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
96 Res ^= CI->getPredicate();
97 else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
98 for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
99 E = EVI->idx_end(); I != E; ++I)
100 Res ^= *I;
101 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
102 for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
103 E = IVI->idx_end(); I != E; ++I)
104 Res ^= *I;
105 } else {
106 // nothing extra to hash in.
107 assert((isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
108 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
109 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
110 "Invalid/unknown instruction");
111 }
112
113 // Mix in the opcode.
Chris Lattnercc9eab22011-01-02 23:04:14 +0000114 return (Res << 1) ^ Inst->getOpcode();
115}
116
Chris Lattnerf1974592011-01-03 02:20:48 +0000117bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
Chris Lattnercc9eab22011-01-02 23:04:14 +0000118 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
119
120 if (LHS.isSentinel() || RHS.isSentinel())
121 return LHSI == RHSI;
122
123 if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
124 return LHSI->isIdenticalTo(RHSI);
125}
126
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000127//===----------------------------------------------------------------------===//
Chris Lattner85db6102011-01-03 03:41:27 +0000128// CallValue
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000129//===----------------------------------------------------------------------===//
130
131namespace {
Chris Lattner85db6102011-01-03 03:41:27 +0000132 /// CallValue - Instances of this struct represent available call values in
133 /// the scoped hash table.
134 struct CallValue {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000135 Instruction *Inst;
136
Chris Lattner85db6102011-01-03 03:41:27 +0000137 CallValue(Instruction *I) : Inst(I) {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000138 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
139 }
140
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000141 bool isSentinel() const {
142 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
143 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
144 }
145
146 static bool canHandle(Instruction *Inst) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000147 if (CallInst *CI = dyn_cast<CallInst>(Inst))
148 return CI->onlyReadsMemory();
149 return false;
150 }
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000151 };
152}
153
154namespace llvm {
Chris Lattner85db6102011-01-03 03:41:27 +0000155 // CallValue is POD.
156 template<> struct isPodLike<CallValue> {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000157 static const bool value = true;
158 };
159
Chris Lattner85db6102011-01-03 03:41:27 +0000160 template<> struct DenseMapInfo<CallValue> {
161 static inline CallValue getEmptyKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000162 return DenseMapInfo<Instruction*>::getEmptyKey();
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000163 }
Chris Lattner85db6102011-01-03 03:41:27 +0000164 static inline CallValue getTombstoneKey() {
Chris Lattnera60a8b02011-01-03 03:28:23 +0000165 return DenseMapInfo<Instruction*>::getTombstoneKey();
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000166 }
Chris Lattner85db6102011-01-03 03:41:27 +0000167 static unsigned getHashValue(CallValue Val);
168 static bool isEqual(CallValue LHS, CallValue RHS);
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000169 };
170}
Chris Lattner85db6102011-01-03 03:41:27 +0000171unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000172 Instruction *Inst = Val.Inst;
173 // Hash in all of the operands as pointers.
174 unsigned Res = 0;
175 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
176 Res ^= getHash(Inst->getOperand(i)) << i;
177 // Mix in the opcode.
178 return (Res << 1) ^ Inst->getOpcode();
179}
180
Chris Lattner85db6102011-01-03 03:41:27 +0000181bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000182 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000183 if (LHS.isSentinel() || RHS.isSentinel())
184 return LHSI == RHSI;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000185 return LHSI->isIdenticalTo(RHSI);
186}
187
Chris Lattnercc9eab22011-01-02 23:04:14 +0000188
Chris Lattnerf1974592011-01-03 02:20:48 +0000189//===----------------------------------------------------------------------===//
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000190// EarlyCSE pass.
Chris Lattnerf1974592011-01-03 02:20:48 +0000191//===----------------------------------------------------------------------===//
192
Chris Lattnercc9eab22011-01-02 23:04:14 +0000193namespace {
194
Chris Lattner12be9362011-01-02 21:47:05 +0000195/// EarlyCSE - This pass does a simple depth-first walk over the dominator
196/// tree, eliminating trivially redundant instructions and using instsimplify
197/// to canonicalize things as it goes. It is intended to be fast and catch
198/// obvious cases so that instcombine and other passes are more effective. It
199/// is expected that a later pass of GVN will catch the interesting/hard
200/// cases.
201class EarlyCSE : public FunctionPass {
202public:
Chris Lattnercc9eab22011-01-02 23:04:14 +0000203 const TargetData *TD;
204 DominatorTree *DT;
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000205 typedef RecyclingAllocator<BumpPtrAllocator,
Chris Lattnerf1974592011-01-03 02:20:48 +0000206 ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
207 typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000208 AllocatorTy> ScopedHTType;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000209
Chris Lattnerf1974592011-01-03 02:20:48 +0000210 /// AvailableValues - This scoped hash table contains the current values of
211 /// all of our simple scalar expressions. As we walk down the domtree, we
212 /// look to see if instructions are in this: if so, we replace them with what
213 /// we find, otherwise we insert them so that dominated values can succeed in
214 /// their lookup.
215 ScopedHTType *AvailableValues;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000216
Chris Lattner85db6102011-01-03 03:41:27 +0000217 /// AvailableLoads - This scoped hash table contains the current values
218 /// of loads. This allows us to get efficient access to dominating loads when
219 /// we have a fully redundant load. In addition to the most recent load, we
220 /// keep track of a generation count of the read, which is compared against
221 /// the current generation count. The current generation count is
222 /// incremented after every possibly writing memory operation, which ensures
223 /// that we only CSE loads with other loads that have no intervening store.
224 typedef ScopedHashTable<Value*, std::pair<Value*, unsigned> > LoadHTType;
225 LoadHTType *AvailableLoads;
226
227 /// AvailableCalls - This scoped hash table contains the current values
228 /// of read-only call values. It uses the same generation count as loads.
229 typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
230 CallHTType *AvailableCalls;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000231
232 /// CurrentGeneration - This is the current generation of the memory value.
233 unsigned CurrentGeneration;
234
Chris Lattner12be9362011-01-02 21:47:05 +0000235 static char ID;
Chris Lattnerf1974592011-01-03 02:20:48 +0000236 explicit EarlyCSE() : FunctionPass(ID) {
Chris Lattner12be9362011-01-02 21:47:05 +0000237 initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
238 }
239
240 bool runOnFunction(Function &F);
241
242private:
Chris Lattnercc9eab22011-01-02 23:04:14 +0000243
244 bool processNode(DomTreeNode *Node);
245
Chris Lattner12be9362011-01-02 21:47:05 +0000246 // This transformation requires dominator postdominator info
247 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
248 AU.addRequired<DominatorTree>();
249 AU.setPreservesCFG();
250 }
251};
252}
253
254char EarlyCSE::ID = 0;
255
256// createEarlyCSEPass - The public interface to this file.
257FunctionPass *llvm::createEarlyCSEPass() {
258 return new EarlyCSE();
259}
260
261INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
262INITIALIZE_PASS_DEPENDENCY(DominatorTree)
263INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
264
Chris Lattnercc9eab22011-01-02 23:04:14 +0000265bool EarlyCSE::processNode(DomTreeNode *Node) {
Chris Lattnerf1974592011-01-03 02:20:48 +0000266 // Define a scope in the scoped hash table. When we are done processing this
267 // domtree node and recurse back up to our parent domtree node, this will pop
268 // off all the values we install.
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000269 ScopedHTType::ScopeTy Scope(*AvailableValues);
270
Chris Lattner85db6102011-01-03 03:41:27 +0000271 // Define a scope for the load values so that anything we add will get
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000272 // popped when we recurse back up to our parent domtree node.
Chris Lattner85db6102011-01-03 03:41:27 +0000273 LoadHTType::ScopeTy LoadScope(*AvailableLoads);
274
275 // Define a scope for the call values so that anything we add will get
276 // popped when we recurse back up to our parent domtree node.
277 CallHTType::ScopeTy CallScope(*AvailableCalls);
Chris Lattnercc9eab22011-01-02 23:04:14 +0000278
279 BasicBlock *BB = Node->getBlock();
280
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000281 // If this block has a single predecessor, then the predecessor is the parent
282 // of the domtree node and all of the live out memory values are still current
283 // in this block. If this block has multiple predecessors, then they could
284 // have invalidated the live-out memory values of our parent value. For now,
285 // just be conservative and invalidate memory if this block has multiple
286 // predecessors.
287 if (BB->getSinglePredecessor() == 0)
288 ++CurrentGeneration;
289
Chris Lattnercc9eab22011-01-02 23:04:14 +0000290 bool Changed = false;
291
292 // See if any instructions in the block can be eliminated. If so, do it. If
293 // not, add them to AvailableValues.
294 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
295 Instruction *Inst = I++;
296
297 // Dead instructions should just be removed.
298 if (isInstructionTriviallyDead(Inst)) {
Chris Lattner91139cc2011-01-02 23:19:45 +0000299 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
Chris Lattnercc9eab22011-01-02 23:04:14 +0000300 Inst->eraseFromParent();
301 Changed = true;
Chris Lattner91139cc2011-01-02 23:19:45 +0000302 ++NumSimplify;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000303 continue;
304 }
305
306 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
307 // its simpler value.
308 if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
Chris Lattner91139cc2011-01-02 23:19:45 +0000309 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
Chris Lattnercc9eab22011-01-02 23:04:14 +0000310 Inst->replaceAllUsesWith(V);
311 Inst->eraseFromParent();
312 Changed = true;
Chris Lattner91139cc2011-01-02 23:19:45 +0000313 ++NumSimplify;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000314 continue;
315 }
316
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000317 // If this is a simple instruction that we can value number, process it.
318 if (SimpleValue::canHandle(Inst)) {
319 // See if the instruction has an available value. If so, use it.
Chris Lattnera60a8b02011-01-03 03:28:23 +0000320 if (Value *V = AvailableValues->lookup(Inst)) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000321 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
322 Inst->replaceAllUsesWith(V);
323 Inst->eraseFromParent();
324 Changed = true;
325 ++NumCSE;
326 continue;
327 }
328
329 // Otherwise, just remember that this value is available.
Chris Lattnera60a8b02011-01-03 03:28:23 +0000330 AvailableValues->insert(Inst, Inst);
Chris Lattnercc9eab22011-01-02 23:04:14 +0000331 continue;
332 }
333
Chris Lattner85db6102011-01-03 03:41:27 +0000334 // If this is a non-volatile load, process it.
335 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
336 // Ignore volatile loads.
337 if (LI->isVolatile()) continue;
338
339 // If we have an available version of this load, and if it is the right
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000340 // generation, replace this instruction.
Chris Lattner85db6102011-01-03 03:41:27 +0000341 std::pair<Value*, unsigned> InVal =
342 AvailableLoads->lookup(Inst->getOperand(0));
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000343 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
Chris Lattner85db6102011-01-03 03:41:27 +0000344 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
345 << *InVal.first << '\n');
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000346 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
347 Inst->eraseFromParent();
348 Changed = true;
Chris Lattner85db6102011-01-03 03:41:27 +0000349 ++NumCSELoad;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000350 continue;
351 }
352
353 // Otherwise, remember that we have this instruction.
Chris Lattner85db6102011-01-03 03:41:27 +0000354 AvailableLoads->insert(Inst->getOperand(0),
355 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
356 continue;
357 }
358
359 // If this is a read-only call, process it.
360 if (CallValue::canHandle(Inst)) {
361 // If we have an available version of this call, and if it is the right
362 // generation, replace this instruction.
363 std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
364 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
365 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
366 << *InVal.first << '\n');
367 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
368 Inst->eraseFromParent();
369 Changed = true;
370 ++NumCSECall;
371 continue;
372 }
373
374 // Otherwise, remember that we have this instruction.
375 AvailableCalls->insert(Inst,
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000376 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
377 continue;
378 }
379
380 // Okay, this isn't something we can CSE at all. Check to see if it is
381 // something that could modify memory. If so, our available memory values
382 // cannot be used so bump the generation count.
Chris Lattneref87fc22011-01-03 03:46:34 +0000383 if (Inst->mayWriteToMemory()) {
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000384 ++CurrentGeneration;
Chris Lattneref87fc22011-01-03 03:46:34 +0000385
386 // Okay, we just invalidated anything we knew about loaded values. Try to
387 // salvage *something* by remembering that the stored value is a live
388 // version of the pointer. It is safe to forward from volatile stores to
389 // non-volatile loads, so we don't have to check for volatility of the
390 // store.
391 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
392 AvailableLoads->insert(SI->getPointerOperand(),
393 std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
394 }
395 }
Chris Lattnercc9eab22011-01-02 23:04:14 +0000396 }
397
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000398 unsigned LiveOutGeneration = CurrentGeneration;
399 for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
Chris Lattnercc9eab22011-01-02 23:04:14 +0000400 Changed |= processNode(*I);
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000401 // Pop any generation changes off the stack from the recursive walk.
402 CurrentGeneration = LiveOutGeneration;
403 }
Chris Lattnercc9eab22011-01-02 23:04:14 +0000404 return Changed;
Chris Lattner12be9362011-01-02 21:47:05 +0000405}
Chris Lattnercc9eab22011-01-02 23:04:14 +0000406
407
408bool EarlyCSE::runOnFunction(Function &F) {
409 TD = getAnalysisIfAvailable<TargetData>();
410 DT = &getAnalysis<DominatorTree>();
Chris Lattner85db6102011-01-03 03:41:27 +0000411
412 // Tables that the pass uses when walking the domtree.
Chris Lattner82dcd5e2011-01-03 01:42:46 +0000413 ScopedHTType AVTable;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000414 AvailableValues = &AVTable;
Chris Lattner85db6102011-01-03 03:41:27 +0000415 LoadHTType LoadTable;
416 AvailableLoads = &LoadTable;
417 CallHTType CallTable;
418 AvailableCalls = &CallTable;
Chris Lattner8e7f0d72011-01-03 03:18:43 +0000419
420 CurrentGeneration = 0;
Chris Lattnercc9eab22011-01-02 23:04:14 +0000421 return processNode(DT->getRootNode());
422}