blob: 7b1617d7789360c9091e17c6e58704c2be82f6ad [file] [log] [blame]
Chris Lattnere0b4b722010-01-04 07:17:19 +00001//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains logic for simplifying instructions based on information
11// about how they are used.
12//
13//===----------------------------------------------------------------------===//
14
15
16#include "InstCombine.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/IntrinsicInst.h"
19
20using namespace llvm;
21
22
23/// ShrinkDemandedConstant - Check to see if the specified operand of the
24/// specified instruction is a constant integer. If so, check to see if there
25/// are any bits set in the constant that are not demanded. If so, shrink the
26/// constant and return true.
27static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
28 APInt Demanded) {
29 assert(I && "No instruction?");
30 assert(OpNo < I->getNumOperands() && "Operand index too large");
31
32 // If the operand is not a constant integer, nothing to do.
33 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
34 if (!OpC) return false;
35
36 // If there are no bits set that aren't demanded, nothing to do.
Jay Foad40f8f622010-12-07 08:25:19 +000037 Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
Chris Lattnere0b4b722010-01-04 07:17:19 +000038 if ((~Demanded & OpC->getValue()) == 0)
39 return false;
40
41 // This instruction is producing bits that are not demanded. Shrink the RHS.
42 Demanded &= OpC->getValue();
43 I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
44 return true;
45}
46
47
48
49/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
50/// SimplifyDemandedBits knows about. See if the instruction has any
51/// properties that allow us to simplify its operands.
52bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
53 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
54 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
55 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
56
57 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
58 KnownZero, KnownOne, 0);
59 if (V == 0) return false;
60 if (V == &Inst) return true;
61 ReplaceInstUsesWith(Inst, V);
62 return true;
63}
64
65/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
66/// specified instruction operand if possible, updating it in place. It returns
67/// true if it made any change and false otherwise.
68bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
69 APInt &KnownZero, APInt &KnownOne,
70 unsigned Depth) {
71 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
72 KnownZero, KnownOne, Depth);
73 if (NewVal == 0) return false;
74 U = NewVal;
75 return true;
76}
77
78
79/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
80/// value based on the demanded bits. When this function is called, it is known
81/// that only the bits set in DemandedMask of the result of V are ever used
82/// downstream. Consequently, depending on the mask and V, it may be possible
83/// to replace V with a constant or one of its operands. In such cases, this
84/// function does the replacement and returns true. In all other cases, it
85/// returns false after analyzing the expression and setting KnownOne and known
86/// to be one in the expression. KnownZero contains all the bits that are known
87/// to be zero in the expression. These are provided to potentially allow the
88/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
89/// the expression. KnownOne and KnownZero always follow the invariant that
90/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
91/// the bits in KnownOne and KnownZero may only be accurate for those bits set
92/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
93/// and KnownOne must all be the same.
94///
95/// This returns null if it did not change anything and it permits no
96/// simplification. This returns V itself if it did some simplification of V's
97/// operands based on the information about what bits are demanded. This returns
98/// some other non-null value if it found out that V is equal to another value
99/// in the context where the specified bits are demanded, but not for all users.
100Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
101 APInt &KnownZero, APInt &KnownOne,
102 unsigned Depth) {
103 assert(V != 0 && "Null pointer of Value???");
104 assert(Depth <= 6 && "Limit Search Depth");
105 uint32_t BitWidth = DemandedMask.getBitWidth();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000106 Type *VTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000107 assert((TD || !VTy->isPointerTy()) &&
Chris Lattnere0b4b722010-01-04 07:17:19 +0000108 "SimplifyDemandedBits needs to know bit widths!");
109 assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000110 (!VTy->isIntOrIntVectorTy() ||
Chris Lattnere0b4b722010-01-04 07:17:19 +0000111 VTy->getScalarSizeInBits() == BitWidth) &&
112 KnownZero.getBitWidth() == BitWidth &&
113 KnownOne.getBitWidth() == BitWidth &&
114 "Value *V, DemandedMask, KnownZero and KnownOne "
115 "must have same BitWidth");
116 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
117 // We know all of the bits for a constant!
118 KnownOne = CI->getValue() & DemandedMask;
119 KnownZero = ~KnownOne & DemandedMask;
120 return 0;
121 }
122 if (isa<ConstantPointerNull>(V)) {
123 // We know all of the bits for a constant!
Jay Foad7a874dd2010-12-01 08:53:58 +0000124 KnownOne.clearAllBits();
Chris Lattnere0b4b722010-01-04 07:17:19 +0000125 KnownZero = DemandedMask;
126 return 0;
127 }
128
Jay Foad7a874dd2010-12-01 08:53:58 +0000129 KnownZero.clearAllBits();
130 KnownOne.clearAllBits();
Chris Lattnere0b4b722010-01-04 07:17:19 +0000131 if (DemandedMask == 0) { // Not demanding any bits from V.
132 if (isa<UndefValue>(V))
133 return 0;
134 return UndefValue::get(VTy);
135 }
136
137 if (Depth == 6) // Limit search depth.
138 return 0;
139
140 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Duncan Sandsac512172010-01-29 06:18:46 +0000141 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000142
143 Instruction *I = dyn_cast<Instruction>(V);
144 if (!I) {
Duncan Sandsac512172010-01-29 06:18:46 +0000145 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000146 return 0; // Only analyze instructions.
147 }
148
149 // If there are multiple uses of this value and we aren't at the root, then
150 // we can't do any simplifications of the operands, because DemandedMask
151 // only reflects the bits demanded by *one* of the users.
152 if (Depth != 0 && !I->hasOneUse()) {
153 // Despite the fact that we can't simplify this instruction in all User's
154 // context, we can at least compute the knownzero/knownone bits, and we can
155 // do simplifications that apply to *just* the one user if we know that
156 // this instruction has a simpler value in that context.
157 if (I->getOpcode() == Instruction::And) {
158 // If either the LHS or the RHS are Zero, the result is zero.
159 ComputeMaskedBits(I->getOperand(1), DemandedMask,
160 RHSKnownZero, RHSKnownOne, Depth+1);
161 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
162 LHSKnownZero, LHSKnownOne, Depth+1);
163
164 // If all of the demanded bits are known 1 on one side, return the other.
165 // These bits cannot contribute to the result of the 'and' in this
166 // context.
167 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
168 (DemandedMask & ~LHSKnownZero))
169 return I->getOperand(0);
170 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
171 (DemandedMask & ~RHSKnownZero))
172 return I->getOperand(1);
173
174 // If all of the demanded bits in the inputs are known zeros, return zero.
175 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
176 return Constant::getNullValue(VTy);
177
178 } else if (I->getOpcode() == Instruction::Or) {
179 // We can simplify (X|Y) -> X or Y in the user's context if we know that
180 // only bits from X or Y are demanded.
181
182 // If either the LHS or the RHS are One, the result is One.
183 ComputeMaskedBits(I->getOperand(1), DemandedMask,
184 RHSKnownZero, RHSKnownOne, Depth+1);
185 ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
186 LHSKnownZero, LHSKnownOne, Depth+1);
187
188 // If all of the demanded bits are known zero on one side, return the
189 // other. These bits cannot contribute to the result of the 'or' in this
190 // context.
191 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
192 (DemandedMask & ~LHSKnownOne))
193 return I->getOperand(0);
194 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
195 (DemandedMask & ~RHSKnownOne))
196 return I->getOperand(1);
197
198 // If all of the potentially set bits on one side are known to be set on
199 // the other side, just use the 'other' side.
200 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
201 (DemandedMask & (~RHSKnownZero)))
202 return I->getOperand(0);
203 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
204 (DemandedMask & (~LHSKnownZero)))
205 return I->getOperand(1);
206 }
207
208 // Compute the KnownZero/KnownOne bits to simplify things downstream.
209 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
210 return 0;
211 }
212
213 // If this is the root being simplified, allow it to have multiple uses,
214 // just set the DemandedMask to all bits so that we can try to simplify the
215 // operands. This allows visitTruncInst (for example) to simplify the
216 // operand of a trunc without duplicating all the logic below.
217 if (Depth == 0 && !V->hasOneUse())
218 DemandedMask = APInt::getAllOnesValue(BitWidth);
219
220 switch (I->getOpcode()) {
221 default:
Duncan Sandsac512172010-01-29 06:18:46 +0000222 ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000223 break;
224 case Instruction::And:
225 // If either the LHS or the RHS are Zero, the result is zero.
226 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
227 RHSKnownZero, RHSKnownOne, Depth+1) ||
228 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
229 LHSKnownZero, LHSKnownOne, Depth+1))
230 return I;
231 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
232 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
233
234 // If all of the demanded bits are known 1 on one side, return the other.
235 // These bits cannot contribute to the result of the 'and'.
236 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
237 (DemandedMask & ~LHSKnownZero))
238 return I->getOperand(0);
239 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
240 (DemandedMask & ~RHSKnownZero))
241 return I->getOperand(1);
242
243 // If all of the demanded bits in the inputs are known zeros, return zero.
244 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
245 return Constant::getNullValue(VTy);
246
247 // If the RHS is a constant, see if we can simplify it.
248 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
249 return I;
250
251 // Output known-1 bits are only known if set in both the LHS & RHS.
Duncan Sandsac512172010-01-29 06:18:46 +0000252 KnownOne = RHSKnownOne & LHSKnownOne;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000253 // Output known-0 are known to be clear if zero in either the LHS | RHS.
Duncan Sandsac512172010-01-29 06:18:46 +0000254 KnownZero = RHSKnownZero | LHSKnownZero;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000255 break;
256 case Instruction::Or:
257 // If either the LHS or the RHS are One, the result is One.
258 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
259 RHSKnownZero, RHSKnownOne, Depth+1) ||
260 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
261 LHSKnownZero, LHSKnownOne, Depth+1))
262 return I;
263 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
264 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
265
266 // If all of the demanded bits are known zero on one side, return the other.
267 // These bits cannot contribute to the result of the 'or'.
268 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
269 (DemandedMask & ~LHSKnownOne))
270 return I->getOperand(0);
271 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
272 (DemandedMask & ~RHSKnownOne))
273 return I->getOperand(1);
274
275 // If all of the potentially set bits on one side are known to be set on
276 // the other side, just use the 'other' side.
277 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
278 (DemandedMask & (~RHSKnownZero)))
279 return I->getOperand(0);
280 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
281 (DemandedMask & (~LHSKnownZero)))
282 return I->getOperand(1);
283
284 // If the RHS is a constant, see if we can simplify it.
285 if (ShrinkDemandedConstant(I, 1, DemandedMask))
286 return I;
287
288 // Output known-0 bits are only known if clear in both the LHS & RHS.
Duncan Sandsac512172010-01-29 06:18:46 +0000289 KnownZero = RHSKnownZero & LHSKnownZero;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000290 // Output known-1 are known to be set if set in either the LHS | RHS.
Duncan Sandsac512172010-01-29 06:18:46 +0000291 KnownOne = RHSKnownOne | LHSKnownOne;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000292 break;
293 case Instruction::Xor: {
294 if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
295 RHSKnownZero, RHSKnownOne, Depth+1) ||
296 SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
297 LHSKnownZero, LHSKnownOne, Depth+1))
298 return I;
299 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
300 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
301
302 // If all of the demanded bits are known zero on one side, return the other.
303 // These bits cannot contribute to the result of the 'xor'.
304 if ((DemandedMask & RHSKnownZero) == DemandedMask)
305 return I->getOperand(0);
306 if ((DemandedMask & LHSKnownZero) == DemandedMask)
307 return I->getOperand(1);
308
Chris Lattnere0b4b722010-01-04 07:17:19 +0000309 // If all of the demanded bits are known to be zero on one side or the
310 // other, turn this into an *inclusive* or.
311 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
312 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
313 Instruction *Or =
314 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
315 I->getName());
Eli Friedman6fd5a602011-05-19 01:20:42 +0000316 return InsertNewInstWith(Or, *I);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000317 }
318
319 // If all of the demanded bits on one side are known, and all of the set
320 // bits on that side are also known to be set on the other side, turn this
321 // into an AND, as we know the bits will be cleared.
322 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
323 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
324 // all known
325 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
326 Constant *AndC = Constant::getIntegerValue(VTy,
327 ~RHSKnownOne & DemandedMask);
Benjamin Kramera9390a42011-09-27 20:39:19 +0000328 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6fd5a602011-05-19 01:20:42 +0000329 return InsertNewInstWith(And, *I);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000330 }
331 }
332
333 // If the RHS is a constant, see if we can simplify it.
334 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
335 if (ShrinkDemandedConstant(I, 1, DemandedMask))
336 return I;
337
338 // If our LHS is an 'and' and if it has one use, and if any of the bits we
339 // are flipping are known to be set, then the xor is just resetting those
340 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
341 // simplifying both of them.
342 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
343 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
344 isa<ConstantInt>(I->getOperand(1)) &&
345 isa<ConstantInt>(LHSInst->getOperand(1)) &&
346 (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
347 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
348 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
349 APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
350
351 Constant *AndC =
352 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
Benjamin Kramera9390a42011-09-27 20:39:19 +0000353 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
Eli Friedman6fd5a602011-05-19 01:20:42 +0000354 InsertNewInstWith(NewAnd, *I);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000355
356 Constant *XorC =
357 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
Benjamin Kramera9390a42011-09-27 20:39:19 +0000358 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
Eli Friedman6fd5a602011-05-19 01:20:42 +0000359 return InsertNewInstWith(NewXor, *I);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000360 }
Duncan Sandsac512172010-01-29 06:18:46 +0000361
362 // Output known-0 bits are known if clear or set in both the LHS & RHS.
363 KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
364 // Output known-1 are known to be set if set in only one of the LHS, RHS.
365 KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000366 break;
367 }
368 case Instruction::Select:
369 if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
370 RHSKnownZero, RHSKnownOne, Depth+1) ||
371 SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
372 LHSKnownZero, LHSKnownOne, Depth+1))
373 return I;
374 assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
375 assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
376
377 // If the operands are constants, see if we can simplify them.
378 if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
379 ShrinkDemandedConstant(I, 2, DemandedMask))
380 return I;
381
382 // Only known if known in both the LHS and RHS.
Duncan Sandsac512172010-01-29 06:18:46 +0000383 KnownOne = RHSKnownOne & LHSKnownOne;
384 KnownZero = RHSKnownZero & LHSKnownZero;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000385 break;
386 case Instruction::Trunc: {
387 unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
Jay Foad40f8f622010-12-07 08:25:19 +0000388 DemandedMask = DemandedMask.zext(truncBf);
389 KnownZero = KnownZero.zext(truncBf);
390 KnownOne = KnownOne.zext(truncBf);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000391 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
Duncan Sandsac512172010-01-29 06:18:46 +0000392 KnownZero, KnownOne, Depth+1))
Chris Lattnere0b4b722010-01-04 07:17:19 +0000393 return I;
Jay Foad40f8f622010-12-07 08:25:19 +0000394 DemandedMask = DemandedMask.trunc(BitWidth);
395 KnownZero = KnownZero.trunc(BitWidth);
396 KnownOne = KnownOne.trunc(BitWidth);
Duncan Sandsac512172010-01-29 06:18:46 +0000397 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattnere0b4b722010-01-04 07:17:19 +0000398 break;
399 }
400 case Instruction::BitCast:
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000401 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
Duncan Sandsac512172010-01-29 06:18:46 +0000402 return 0; // vector->int or fp->int?
Chris Lattnere0b4b722010-01-04 07:17:19 +0000403
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000404 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
405 if (VectorType *SrcVTy =
Chris Lattnere0b4b722010-01-04 07:17:19 +0000406 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
407 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
408 // Don't touch a bitcast between vectors of different element counts.
Duncan Sandsac512172010-01-29 06:18:46 +0000409 return 0;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000410 } else
411 // Don't touch a scalar-to-vector bitcast.
Duncan Sandsac512172010-01-29 06:18:46 +0000412 return 0;
Duncan Sands1df98592010-02-16 11:11:14 +0000413 } else if (I->getOperand(0)->getType()->isVectorTy())
Chris Lattnere0b4b722010-01-04 07:17:19 +0000414 // Don't touch a vector-to-scalar bitcast.
Duncan Sandsac512172010-01-29 06:18:46 +0000415 return 0;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000416
417 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
Duncan Sandsac512172010-01-29 06:18:46 +0000418 KnownZero, KnownOne, Depth+1))
Chris Lattnere0b4b722010-01-04 07:17:19 +0000419 return I;
Duncan Sandsac512172010-01-29 06:18:46 +0000420 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattnere0b4b722010-01-04 07:17:19 +0000421 break;
422 case Instruction::ZExt: {
423 // Compute the bits in the result that are not present in the input.
424 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
425
Jay Foad40f8f622010-12-07 08:25:19 +0000426 DemandedMask = DemandedMask.trunc(SrcBitWidth);
427 KnownZero = KnownZero.trunc(SrcBitWidth);
428 KnownOne = KnownOne.trunc(SrcBitWidth);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000429 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
Duncan Sandsac512172010-01-29 06:18:46 +0000430 KnownZero, KnownOne, Depth+1))
Chris Lattnere0b4b722010-01-04 07:17:19 +0000431 return I;
Jay Foad40f8f622010-12-07 08:25:19 +0000432 DemandedMask = DemandedMask.zext(BitWidth);
433 KnownZero = KnownZero.zext(BitWidth);
434 KnownOne = KnownOne.zext(BitWidth);
Duncan Sandsac512172010-01-29 06:18:46 +0000435 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattnere0b4b722010-01-04 07:17:19 +0000436 // The top bits are known to be zero.
Duncan Sandsac512172010-01-29 06:18:46 +0000437 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000438 break;
439 }
440 case Instruction::SExt: {
441 // Compute the bits in the result that are not present in the input.
442 unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
443
444 APInt InputDemandedBits = DemandedMask &
445 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
446
447 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
448 // If any of the sign extended bits are demanded, we know that the sign
449 // bit is demanded.
450 if ((NewBits & DemandedMask) != 0)
Jay Foad7a874dd2010-12-01 08:53:58 +0000451 InputDemandedBits.setBit(SrcBitWidth-1);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000452
Jay Foad40f8f622010-12-07 08:25:19 +0000453 InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
454 KnownZero = KnownZero.trunc(SrcBitWidth);
455 KnownOne = KnownOne.trunc(SrcBitWidth);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000456 if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
Duncan Sandsac512172010-01-29 06:18:46 +0000457 KnownZero, KnownOne, Depth+1))
Chris Lattnere0b4b722010-01-04 07:17:19 +0000458 return I;
Jay Foad40f8f622010-12-07 08:25:19 +0000459 InputDemandedBits = InputDemandedBits.zext(BitWidth);
460 KnownZero = KnownZero.zext(BitWidth);
461 KnownOne = KnownOne.zext(BitWidth);
Duncan Sandsac512172010-01-29 06:18:46 +0000462 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattnere0b4b722010-01-04 07:17:19 +0000463
464 // If the sign bit of the input is known set or clear, then we know the
465 // top bits of the result.
466
467 // If the input sign bit is known zero, or if the NewBits are not demanded
468 // convert this into a zero extension.
Duncan Sandsac512172010-01-29 06:18:46 +0000469 if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
Chris Lattnere0b4b722010-01-04 07:17:19 +0000470 // Convert to ZExt cast
471 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
Eli Friedman6fd5a602011-05-19 01:20:42 +0000472 return InsertNewInstWith(NewCast, *I);
Duncan Sandsac512172010-01-29 06:18:46 +0000473 } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
474 KnownOne |= NewBits;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000475 }
476 break;
477 }
478 case Instruction::Add: {
479 // Figure out what the input bits are. If the top bits of the and result
480 // are not demanded, then the add doesn't demand them from its input
481 // either.
482 unsigned NLZ = DemandedMask.countLeadingZeros();
483
484 // If there is a constant on the RHS, there are a variety of xformations
485 // we can do.
486 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
487 // If null, this should be simplified elsewhere. Some of the xforms here
488 // won't work if the RHS is zero.
489 if (RHS->isZero())
490 break;
491
492 // If the top bit of the output is demanded, demand everything from the
493 // input. Otherwise, we demand all the input bits except NLZ top bits.
494 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
495
496 // Find information about known zero/one bits in the input.
497 if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
498 LHSKnownZero, LHSKnownOne, Depth+1))
499 return I;
500
501 // If the RHS of the add has bits set that can't affect the input, reduce
502 // the constant.
503 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
504 return I;
505
506 // Avoid excess work.
507 if (LHSKnownZero == 0 && LHSKnownOne == 0)
508 break;
509
510 // Turn it into OR if input bits are zero.
511 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
512 Instruction *Or =
513 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
514 I->getName());
Eli Friedman6fd5a602011-05-19 01:20:42 +0000515 return InsertNewInstWith(Or, *I);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000516 }
517
518 // We can say something about the output known-zero and known-one bits,
519 // depending on potential carries from the input constant and the
520 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
521 // bits set and the RHS constant is 0x01001, then we know we have a known
522 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
523
524 // To compute this, we first compute the potential carry bits. These are
525 // the bits which may be modified. I'm not aware of a better way to do
526 // this scan.
527 const APInt &RHSVal = RHS->getValue();
528 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
529
530 // Now that we know which bits have carries, compute the known-1/0 sets.
531
532 // Bits are known one if they are known zero in one operand and one in the
533 // other, and there is no input carry.
Duncan Sandsac512172010-01-29 06:18:46 +0000534 KnownOne = ((LHSKnownZero & RHSVal) |
535 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000536
537 // Bits are known zero if they are known zero in both operands and there
538 // is no input carry.
Duncan Sandsac512172010-01-29 06:18:46 +0000539 KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000540 } else {
541 // If the high-bits of this ADD are not demanded, then it does not demand
542 // the high bits of its LHS or RHS.
543 if (DemandedMask[BitWidth-1] == 0) {
544 // Right fill the mask of bits for this ADD to demand the most
545 // significant bit and all those below it.
546 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
547 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
548 LHSKnownZero, LHSKnownOne, Depth+1) ||
549 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
550 LHSKnownZero, LHSKnownOne, Depth+1))
551 return I;
552 }
553 }
554 break;
555 }
556 case Instruction::Sub:
557 // If the high-bits of this SUB are not demanded, then it does not demand
558 // the high bits of its LHS or RHS.
559 if (DemandedMask[BitWidth-1] == 0) {
560 // Right fill the mask of bits for this SUB to demand the most
561 // significant bit and all those below it.
562 uint32_t NLZ = DemandedMask.countLeadingZeros();
563 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
564 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
565 LHSKnownZero, LHSKnownOne, Depth+1) ||
566 SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
567 LHSKnownZero, LHSKnownOne, Depth+1))
568 return I;
569 }
Benjamin Kramer1fdfae02011-12-24 17:31:38 +0000570
Chris Lattnere0b4b722010-01-04 07:17:19 +0000571 // Otherwise just hand the sub off to ComputeMaskedBits to fill in
572 // the known zeros and ones.
Duncan Sandsac512172010-01-29 06:18:46 +0000573 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Benjamin Kramer1fdfae02011-12-24 17:31:38 +0000574
575 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
576 // zero.
577 if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
578 APInt I0 = C0->getValue();
579 if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
580 Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
581 return InsertNewInstWith(Xor, *I);
582 }
583 }
Chris Lattnere0b4b722010-01-04 07:17:19 +0000584 break;
585 case Instruction::Shl:
586 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattnera81556f2011-02-10 05:09:34 +0000587 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000588 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
Chris Lattnera81556f2011-02-10 05:09:34 +0000589
590 // If the shift is NUW/NSW, then it does demand the high bits.
591 ShlOperator *IOp = cast<ShlOperator>(I);
592 if (IOp->hasNoSignedWrap())
593 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
594 else if (IOp->hasNoUnsignedWrap())
595 DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
596
Chris Lattnere0b4b722010-01-04 07:17:19 +0000597 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
Duncan Sandsac512172010-01-29 06:18:46 +0000598 KnownZero, KnownOne, Depth+1))
Chris Lattnere0b4b722010-01-04 07:17:19 +0000599 return I;
Duncan Sandsac512172010-01-29 06:18:46 +0000600 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
601 KnownZero <<= ShiftAmt;
602 KnownOne <<= ShiftAmt;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000603 // low bits known zero.
604 if (ShiftAmt)
Duncan Sandsac512172010-01-29 06:18:46 +0000605 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000606 }
607 break;
608 case Instruction::LShr:
609 // For a logical shift right
610 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattnera81556f2011-02-10 05:09:34 +0000611 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000612
613 // Unsigned shift right.
614 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
Chris Lattnera81556f2011-02-10 05:09:34 +0000615
616 // If the shift is exact, then it does demand the low bits (and knows that
617 // they are zero).
618 if (cast<LShrOperator>(I)->isExact())
619 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
620
Chris Lattnere0b4b722010-01-04 07:17:19 +0000621 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
Duncan Sandsac512172010-01-29 06:18:46 +0000622 KnownZero, KnownOne, Depth+1))
Chris Lattnere0b4b722010-01-04 07:17:19 +0000623 return I;
Duncan Sandsac512172010-01-29 06:18:46 +0000624 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
625 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
626 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000627 if (ShiftAmt) {
628 // Compute the new bits that are at the top now.
629 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Duncan Sandsac512172010-01-29 06:18:46 +0000630 KnownZero |= HighBits; // high bits known zero.
Chris Lattnere0b4b722010-01-04 07:17:19 +0000631 }
632 }
633 break;
634 case Instruction::AShr:
635 // If this is an arithmetic shift right and only the low-bit is set, we can
636 // always convert this into a logical shr, even if the shift amount is
637 // variable. The low bit of the shift cannot be an input sign bit unless
638 // the shift amount is >= the size of the datatype, which is undefined.
639 if (DemandedMask == 1) {
640 // Perform the logical shift right.
641 Instruction *NewVal = BinaryOperator::CreateLShr(
642 I->getOperand(0), I->getOperand(1), I->getName());
Eli Friedman6fd5a602011-05-19 01:20:42 +0000643 return InsertNewInstWith(NewVal, *I);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000644 }
645
646 // If the sign bit is the only bit demanded by this ashr, then there is no
647 // need to do it, the shift doesn't change the high bit.
648 if (DemandedMask.isSignBit())
649 return I->getOperand(0);
650
651 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
Chris Lattnera81556f2011-02-10 05:09:34 +0000652 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000653
654 // Signed shift right.
655 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
656 // If any of the "high bits" are demanded, we should set the sign bit as
657 // demanded.
658 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
Jay Foad7a874dd2010-12-01 08:53:58 +0000659 DemandedMaskIn.setBit(BitWidth-1);
Chris Lattnera81556f2011-02-10 05:09:34 +0000660
661 // If the shift is exact, then it does demand the low bits (and knows that
662 // they are zero).
663 if (cast<AShrOperator>(I)->isExact())
664 DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
665
Chris Lattnere0b4b722010-01-04 07:17:19 +0000666 if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
Duncan Sandsac512172010-01-29 06:18:46 +0000667 KnownZero, KnownOne, Depth+1))
Chris Lattnere0b4b722010-01-04 07:17:19 +0000668 return I;
Duncan Sandsac512172010-01-29 06:18:46 +0000669 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
Chris Lattnere0b4b722010-01-04 07:17:19 +0000670 // Compute the new bits that are at the top now.
671 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
Duncan Sandsac512172010-01-29 06:18:46 +0000672 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
673 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000674
675 // Handle the sign bits.
676 APInt SignBit(APInt::getSignBit(BitWidth));
677 // Adjust to where it is now in the mask.
678 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
679
680 // If the input sign bit is known to be zero, or if none of the top bits
681 // are demanded, turn this into an unsigned shift right.
Duncan Sandsac512172010-01-29 06:18:46 +0000682 if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
Chris Lattnere0b4b722010-01-04 07:17:19 +0000683 (HighBits & ~DemandedMask) == HighBits) {
684 // Perform the logical shift right.
Nick Lewycky148fd552012-01-04 09:28:29 +0000685 BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
686 SA, I->getName());
687 NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
Eli Friedman6fd5a602011-05-19 01:20:42 +0000688 return InsertNewInstWith(NewVal, *I);
Duncan Sandsac512172010-01-29 06:18:46 +0000689 } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
690 KnownOne |= HighBits;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000691 }
692 }
693 break;
694 case Instruction::SRem:
695 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Eli Friedmanc6b018b2011-03-09 01:28:35 +0000696 // X % -1 demands all the bits because we don't want to introduce
697 // INT_MIN % -1 (== undef) by accident.
698 if (Rem->isAllOnesValue())
699 break;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000700 APInt RA = Rem->getValue().abs();
701 if (RA.isPowerOf2()) {
702 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
703 return I->getOperand(0);
704
705 APInt LowBits = RA - 1;
706 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
707 if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
708 LHSKnownZero, LHSKnownOne, Depth+1))
709 return I;
710
Duncan Sands2c473682010-01-28 17:22:42 +0000711 // The low bits of LHS are unchanged by the srem.
Duncan Sandsac512172010-01-29 06:18:46 +0000712 KnownZero = LHSKnownZero & LowBits;
713 KnownOne = LHSKnownOne & LowBits;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000714
Duncan Sands2c473682010-01-28 17:22:42 +0000715 // If LHS is non-negative or has all low bits zero, then the upper bits
716 // are all zero.
717 if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
718 KnownZero |= ~LowBits;
719
720 // If LHS is negative and not all low bits are zero, then the upper bits
721 // are all one.
722 if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
723 KnownOne |= ~LowBits;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000724
725 assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
726 }
727 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000728
729 // The sign bit is the LHS's sign bit, except when the result of the
730 // remainder is zero.
731 if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
732 APInt Mask2 = APInt::getSignBit(BitWidth);
733 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
734 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne,
735 Depth+1);
736 // If it's known zero, our sign bit is also zero.
737 if (LHSKnownZero.isNegative())
738 KnownZero |= LHSKnownZero;
739 }
Chris Lattnere0b4b722010-01-04 07:17:19 +0000740 break;
741 case Instruction::URem: {
742 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
743 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
744 if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
745 KnownZero2, KnownOne2, Depth+1) ||
746 SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
747 KnownZero2, KnownOne2, Depth+1))
748 return I;
749
750 unsigned Leaders = KnownZero2.countLeadingOnes();
751 Leaders = std::max(Leaders,
752 KnownZero2.countLeadingOnes());
753 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
754 break;
755 }
756 case Instruction::Call:
757 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
758 switch (II->getIntrinsicID()) {
759 default: break;
760 case Intrinsic::bswap: {
761 // If the only bits demanded come from one byte of the bswap result,
762 // just shift the input byte into position to eliminate the bswap.
763 unsigned NLZ = DemandedMask.countLeadingZeros();
764 unsigned NTZ = DemandedMask.countTrailingZeros();
765
766 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
767 // we need all the bits down to bit 8. Likewise, round NLZ. If we
768 // have 14 leading zeros, round to 8.
769 NLZ &= ~7;
770 NTZ &= ~7;
771 // If we need exactly one byte, we can do this transformation.
772 if (BitWidth-NLZ-NTZ == 8) {
773 unsigned ResultBit = NTZ;
774 unsigned InputBit = BitWidth-NTZ-8;
775
776 // Replace this with either a left or right shift to get the byte into
777 // the right place.
778 Instruction *NewVal;
779 if (InputBit > ResultBit)
Gabor Greif3e84e2e2010-06-24 12:35:13 +0000780 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
Chris Lattnere0b4b722010-01-04 07:17:19 +0000781 ConstantInt::get(I->getType(), InputBit-ResultBit));
782 else
Gabor Greif3e84e2e2010-06-24 12:35:13 +0000783 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
Chris Lattnere0b4b722010-01-04 07:17:19 +0000784 ConstantInt::get(I->getType(), ResultBit-InputBit));
785 NewVal->takeName(I);
Eli Friedman6fd5a602011-05-19 01:20:42 +0000786 return InsertNewInstWith(NewVal, *I);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000787 }
788
789 // TODO: Could compute known zero/one bits based on the input.
790 break;
791 }
Chad Rosier62660312011-05-26 23:13:19 +0000792 case Intrinsic::x86_sse42_crc32_64_8:
793 case Intrinsic::x86_sse42_crc32_64_64:
Evan Cheng2e649602011-05-20 00:54:37 +0000794 KnownZero = APInt::getHighBitsSet(64, 32);
795 return 0;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000796 }
797 }
Duncan Sandsac512172010-01-29 06:18:46 +0000798 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000799 break;
800 }
801
802 // If the client is only demanding bits that we know, return the known
803 // constant.
Duncan Sandsac512172010-01-29 06:18:46 +0000804 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
805 return Constant::getIntegerValue(VTy, KnownOne);
806 return 0;
Chris Lattnere0b4b722010-01-04 07:17:19 +0000807}
808
809
810/// SimplifyDemandedVectorElts - The specified value produces a vector with
811/// any number of elements. DemandedElts contains the set of elements that are
812/// actually used by the caller. This method analyzes which elements of the
813/// operand are undef and returns that information in UndefElts.
814///
815/// If the information about demanded elements can be used to simplify the
816/// operation, the operation is simplified, then the resultant value is
817/// returned. This returns null if no change was made.
818Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Chris Lattner8609fda2010-02-08 23:56:03 +0000819 APInt &UndefElts,
Chris Lattnere0b4b722010-01-04 07:17:19 +0000820 unsigned Depth) {
821 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
822 APInt EltMask(APInt::getAllOnesValue(VWidth));
823 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
824
825 if (isa<UndefValue>(V)) {
826 // If the entire vector is undefined, just return this info.
827 UndefElts = EltMask;
828 return 0;
Chris Lattner8609fda2010-02-08 23:56:03 +0000829 }
830
831 if (DemandedElts == 0) { // If nothing is demanded, provide undef.
Chris Lattnere0b4b722010-01-04 07:17:19 +0000832 UndefElts = EltMask;
833 return UndefValue::get(V->getType());
834 }
835
836 UndefElts = 0;
Chris Lattner8609fda2010-02-08 23:56:03 +0000837 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000838 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
Chris Lattnere0b4b722010-01-04 07:17:19 +0000839 Constant *Undef = UndefValue::get(EltTy);
840
841 std::vector<Constant*> Elts;
842 for (unsigned i = 0; i != VWidth; ++i)
843 if (!DemandedElts[i]) { // If not demanded, set to undef.
844 Elts.push_back(Undef);
Jay Foad7a874dd2010-12-01 08:53:58 +0000845 UndefElts.setBit(i);
Chris Lattner8609fda2010-02-08 23:56:03 +0000846 } else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef.
Chris Lattnere0b4b722010-01-04 07:17:19 +0000847 Elts.push_back(Undef);
Jay Foad7a874dd2010-12-01 08:53:58 +0000848 UndefElts.setBit(i);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000849 } else { // Otherwise, defined.
Chris Lattner8609fda2010-02-08 23:56:03 +0000850 Elts.push_back(CV->getOperand(i));
Chris Lattnere0b4b722010-01-04 07:17:19 +0000851 }
852
853 // If we changed the constant, return it.
Chris Lattner4ca829e2012-01-25 06:02:56 +0000854 Constant *NewCV = ConstantVector::get(Elts);
855 return NewCV != CV ? NewCV : 0;
Chris Lattner8609fda2010-02-08 23:56:03 +0000856 }
857
Chris Lattnerbec2d032012-01-24 14:31:22 +0000858 if (ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
859 // Check if this is identity. If so, return 0 since we are not simplifying
860 // anything.
861 if (DemandedElts.isAllOnesValue())
862 return 0;
863
864 // Simplify to a ConstantVector where the non-demanded elements are undef.
865 Constant *Undef = UndefValue::get(CDV->getElementType());
Chris Lattnere0b4b722010-01-04 07:17:19 +0000866
Chris Lattnerbec2d032012-01-24 14:31:22 +0000867 SmallVector<Constant*, 16> Elts;
868 for (unsigned i = 0; i != VWidth; ++i)
869 Elts.push_back(DemandedElts[i] ? CDV->getElementAsConstant(i) : Undef);
870 UndefElts = DemandedElts ^ EltMask;
871 return ConstantVector::get(Elts);
872
873 }
874
875 if (ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(V)) {
Chris Lattnere0b4b722010-01-04 07:17:19 +0000876 // Check if this is identity. If so, return 0 since we are not simplifying
877 // anything.
Chris Lattner8609fda2010-02-08 23:56:03 +0000878 if (DemandedElts.isAllOnesValue())
Chris Lattnere0b4b722010-01-04 07:17:19 +0000879 return 0;
880
Chris Lattnerbec2d032012-01-24 14:31:22 +0000881 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
882 // set to undef.
883 Constant *Zero = CAZ->getSequentialElement();
884 Constant *Undef = UndefValue::get(Zero->getType());
885 SmallVector<Constant*, 16> Elts;
886 for (unsigned i = 0; i != VWidth; ++i)
887 Elts.push_back(DemandedElts[i] ? Zero : Undef);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000888 UndefElts = DemandedElts ^ EltMask;
889 return ConstantVector::get(Elts);
890 }
891
892 // Limit search depth.
893 if (Depth == 10)
894 return 0;
895
Stuart Hastingsca1ef482011-05-17 22:13:31 +0000896 // If multiple users are using the root value, proceed with
Chris Lattnere0b4b722010-01-04 07:17:19 +0000897 // simplification conservatively assuming that all elements
898 // are needed.
899 if (!V->hasOneUse()) {
900 // Quit if we find multiple users of a non-root value though.
901 // They'll be handled when it's their turn to be visited by
902 // the main instcombine process.
903 if (Depth != 0)
904 // TODO: Just compute the UndefElts information recursively.
905 return 0;
906
907 // Conservatively assume that all elements are needed.
908 DemandedElts = EltMask;
909 }
910
911 Instruction *I = dyn_cast<Instruction>(V);
912 if (!I) return 0; // Only analyze instructions.
913
914 bool MadeChange = false;
915 APInt UndefElts2(VWidth, 0);
916 Value *TmpV;
917 switch (I->getOpcode()) {
918 default: break;
919
920 case Instruction::InsertElement: {
921 // If this is a variable index, we don't know which element it overwrites.
922 // demand exactly the same input as we produce.
923 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
924 if (Idx == 0) {
925 // Note that we can't propagate undef elt info, because we don't know
926 // which elt is getting updated.
927 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
928 UndefElts2, Depth+1);
929 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
930 break;
931 }
932
933 // If this is inserting an element that isn't demanded, remove this
934 // insertelement.
935 unsigned IdxNo = Idx->getZExtValue();
936 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
937 Worklist.Add(I);
938 return I->getOperand(0);
939 }
940
941 // Otherwise, the element inserted overwrites whatever was there, so the
942 // input demanded set is simpler than the output set.
943 APInt DemandedElts2 = DemandedElts;
Jay Foad7a874dd2010-12-01 08:53:58 +0000944 DemandedElts2.clearBit(IdxNo);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000945 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
946 UndefElts, Depth+1);
947 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
948
949 // The inserted element is defined.
Jay Foad7a874dd2010-12-01 08:53:58 +0000950 UndefElts.clearBit(IdxNo);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000951 break;
952 }
953 case Instruction::ShuffleVector: {
954 ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
955 uint64_t LHSVWidth =
956 cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
957 APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
958 for (unsigned i = 0; i < VWidth; i++) {
959 if (DemandedElts[i]) {
960 unsigned MaskVal = Shuffle->getMaskValue(i);
961 if (MaskVal != -1u) {
962 assert(MaskVal < LHSVWidth * 2 &&
963 "shufflevector mask index out of range!");
964 if (MaskVal < LHSVWidth)
Jay Foad7a874dd2010-12-01 08:53:58 +0000965 LeftDemanded.setBit(MaskVal);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000966 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000967 RightDemanded.setBit(MaskVal - LHSVWidth);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000968 }
969 }
970 }
971
972 APInt UndefElts4(LHSVWidth, 0);
973 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
974 UndefElts4, Depth+1);
975 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
976
977 APInt UndefElts3(LHSVWidth, 0);
978 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
979 UndefElts3, Depth+1);
980 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
981
982 bool NewUndefElts = false;
983 for (unsigned i = 0; i < VWidth; i++) {
984 unsigned MaskVal = Shuffle->getMaskValue(i);
985 if (MaskVal == -1u) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000986 UndefElts.setBit(i);
Eli Friedmanc82751d2011-09-15 01:14:29 +0000987 } else if (!DemandedElts[i]) {
988 NewUndefElts = true;
989 UndefElts.setBit(i);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000990 } else if (MaskVal < LHSVWidth) {
991 if (UndefElts4[MaskVal]) {
992 NewUndefElts = true;
Jay Foad7a874dd2010-12-01 08:53:58 +0000993 UndefElts.setBit(i);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000994 }
995 } else {
996 if (UndefElts3[MaskVal - LHSVWidth]) {
997 NewUndefElts = true;
Jay Foad7a874dd2010-12-01 08:53:58 +0000998 UndefElts.setBit(i);
Chris Lattnere0b4b722010-01-04 07:17:19 +0000999 }
1000 }
1001 }
1002
1003 if (NewUndefElts) {
1004 // Add additional discovered undefs.
1005 std::vector<Constant*> Elts;
1006 for (unsigned i = 0; i < VWidth; ++i) {
1007 if (UndefElts[i])
1008 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1009 else
1010 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1011 Shuffle->getMaskValue(i)));
1012 }
1013 I->setOperand(2, ConstantVector::get(Elts));
1014 MadeChange = true;
1015 }
1016 break;
1017 }
1018 case Instruction::BitCast: {
1019 // Vector->vector casts only.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001020 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
Chris Lattnere0b4b722010-01-04 07:17:19 +00001021 if (!VTy) break;
1022 unsigned InVWidth = VTy->getNumElements();
1023 APInt InputDemandedElts(InVWidth, 0);
1024 unsigned Ratio;
1025
1026 if (VWidth == InVWidth) {
1027 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1028 // elements as are demanded of us.
1029 Ratio = 1;
1030 InputDemandedElts = DemandedElts;
1031 } else if (VWidth > InVWidth) {
1032 // Untested so far.
1033 break;
1034
1035 // If there are more elements in the result than there are in the source,
1036 // then an input element is live if any of the corresponding output
1037 // elements are live.
1038 Ratio = VWidth/InVWidth;
1039 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1040 if (DemandedElts[OutIdx])
Jay Foad7a874dd2010-12-01 08:53:58 +00001041 InputDemandedElts.setBit(OutIdx/Ratio);
Chris Lattnere0b4b722010-01-04 07:17:19 +00001042 }
1043 } else {
1044 // Untested so far.
1045 break;
1046
1047 // If there are more elements in the source than there are in the result,
1048 // then an input element is live if the corresponding output element is
1049 // live.
1050 Ratio = InVWidth/VWidth;
1051 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1052 if (DemandedElts[InIdx/Ratio])
Jay Foad7a874dd2010-12-01 08:53:58 +00001053 InputDemandedElts.setBit(InIdx);
Chris Lattnere0b4b722010-01-04 07:17:19 +00001054 }
1055
1056 // div/rem demand all inputs, because they don't want divide by zero.
1057 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1058 UndefElts2, Depth+1);
1059 if (TmpV) {
1060 I->setOperand(0, TmpV);
1061 MadeChange = true;
1062 }
1063
1064 UndefElts = UndefElts2;
1065 if (VWidth > InVWidth) {
1066 llvm_unreachable("Unimp");
1067 // If there are more elements in the result than there are in the source,
1068 // then an output element is undef if the corresponding input element is
1069 // undef.
1070 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1071 if (UndefElts2[OutIdx/Ratio])
Jay Foad7a874dd2010-12-01 08:53:58 +00001072 UndefElts.setBit(OutIdx);
Chris Lattnere0b4b722010-01-04 07:17:19 +00001073 } else if (VWidth < InVWidth) {
1074 llvm_unreachable("Unimp");
1075 // If there are more elements in the source than there are in the result,
1076 // then a result element is undef if all of the corresponding input
1077 // elements are undef.
1078 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1079 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1080 if (!UndefElts2[InIdx]) // Not undef?
Jay Foad7a874dd2010-12-01 08:53:58 +00001081 UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
Chris Lattnere0b4b722010-01-04 07:17:19 +00001082 }
1083 break;
1084 }
1085 case Instruction::And:
1086 case Instruction::Or:
1087 case Instruction::Xor:
1088 case Instruction::Add:
1089 case Instruction::Sub:
1090 case Instruction::Mul:
1091 // div/rem demand all inputs, because they don't want divide by zero.
1092 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1093 UndefElts, Depth+1);
1094 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1095 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1096 UndefElts2, Depth+1);
1097 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1098
1099 // Output elements are undefined if both are undefined. Consider things
1100 // like undef&0. The result is known zero, not undef.
1101 UndefElts &= UndefElts2;
1102 break;
1103
1104 case Instruction::Call: {
1105 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1106 if (!II) break;
1107 switch (II->getIntrinsicID()) {
1108 default: break;
1109
1110 // Binary vector operations that work column-wise. A dest element is a
1111 // function of the corresponding input elements from the two inputs.
1112 case Intrinsic::x86_sse_sub_ss:
1113 case Intrinsic::x86_sse_mul_ss:
1114 case Intrinsic::x86_sse_min_ss:
1115 case Intrinsic::x86_sse_max_ss:
1116 case Intrinsic::x86_sse2_sub_sd:
1117 case Intrinsic::x86_sse2_mul_sd:
1118 case Intrinsic::x86_sse2_min_sd:
1119 case Intrinsic::x86_sse2_max_sd:
Gabor Greif30d25772010-06-28 16:45:00 +00001120 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
Eric Christopher551754c2010-04-16 23:37:20 +00001121 UndefElts, Depth+1);
Gabor Greif30d25772010-06-28 16:45:00 +00001122 if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1123 TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
Eric Christopher551754c2010-04-16 23:37:20 +00001124 UndefElts2, Depth+1);
Gabor Greif30d25772010-06-28 16:45:00 +00001125 if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
Chris Lattnere0b4b722010-01-04 07:17:19 +00001126
1127 // If only the low elt is demanded and this is a scalarizable intrinsic,
1128 // scalarize it now.
1129 if (DemandedElts == 1) {
1130 switch (II->getIntrinsicID()) {
1131 default: break;
1132 case Intrinsic::x86_sse_sub_ss:
1133 case Intrinsic::x86_sse_mul_ss:
1134 case Intrinsic::x86_sse2_sub_sd:
1135 case Intrinsic::x86_sse2_mul_sd:
1136 // TODO: Lower MIN/MAX/ABS/etc
Gabor Greif3e84e2e2010-06-24 12:35:13 +00001137 Value *LHS = II->getArgOperand(0);
1138 Value *RHS = II->getArgOperand(1);
Chris Lattnere0b4b722010-01-04 07:17:19 +00001139 // Extract the element as scalars.
Eli Friedman6fd5a602011-05-19 01:20:42 +00001140 LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
Chris Lattnere0b4b722010-01-04 07:17:19 +00001141 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
Eli Friedman6fd5a602011-05-19 01:20:42 +00001142 RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
Chris Lattnere0b4b722010-01-04 07:17:19 +00001143 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1144
1145 switch (II->getIntrinsicID()) {
1146 default: llvm_unreachable("Case stmts out of sync!");
1147 case Intrinsic::x86_sse_sub_ss:
1148 case Intrinsic::x86_sse2_sub_sd:
Eli Friedman6fd5a602011-05-19 01:20:42 +00001149 TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
Chris Lattnere0b4b722010-01-04 07:17:19 +00001150 II->getName()), *II);
1151 break;
1152 case Intrinsic::x86_sse_mul_ss:
1153 case Intrinsic::x86_sse2_mul_sd:
Eli Friedman6fd5a602011-05-19 01:20:42 +00001154 TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
Chris Lattnere0b4b722010-01-04 07:17:19 +00001155 II->getName()), *II);
1156 break;
1157 }
1158
1159 Instruction *New =
1160 InsertElementInst::Create(
1161 UndefValue::get(II->getType()), TmpV,
1162 ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1163 II->getName());
Eli Friedman6fd5a602011-05-19 01:20:42 +00001164 InsertNewInstWith(New, *II);
Chris Lattnere0b4b722010-01-04 07:17:19 +00001165 return New;
1166 }
1167 }
1168
1169 // Output elements are undefined if both are undefined. Consider things
1170 // like undef&0. The result is known zero, not undef.
1171 UndefElts &= UndefElts2;
1172 break;
1173 }
1174 break;
1175 }
1176 }
1177 return MadeChange ? I : 0;
1178}