Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 1 | //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains logic for simplifying instructions based on information |
| 11 | // about how they are used. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | |
| 16 | #include "InstCombine.h" |
| 17 | #include "llvm/Target/TargetData.h" |
| 18 | #include "llvm/IntrinsicInst.h" |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | |
| 23 | /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| 24 | /// specified instruction is a constant integer. If so, check to see if there |
| 25 | /// are any bits set in the constant that are not demanded. If so, shrink the |
| 26 | /// constant and return true. |
| 27 | static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, |
| 28 | APInt Demanded) { |
| 29 | assert(I && "No instruction?"); |
| 30 | assert(OpNo < I->getNumOperands() && "Operand index too large"); |
| 31 | |
| 32 | // If the operand is not a constant integer, nothing to do. |
| 33 | ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); |
| 34 | if (!OpC) return false; |
| 35 | |
| 36 | // If there are no bits set that aren't demanded, nothing to do. |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 37 | Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 38 | if ((~Demanded & OpC->getValue()) == 0) |
| 39 | return false; |
| 40 | |
| 41 | // This instruction is producing bits that are not demanded. Shrink the RHS. |
| 42 | Demanded &= OpC->getValue(); |
| 43 | I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); |
| 44 | return true; |
| 45 | } |
| 46 | |
| 47 | |
| 48 | |
| 49 | /// SimplifyDemandedInstructionBits - Inst is an integer instruction that |
| 50 | /// SimplifyDemandedBits knows about. See if the instruction has any |
| 51 | /// properties that allow us to simplify its operands. |
| 52 | bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { |
| 53 | unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); |
| 54 | APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); |
| 55 | APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); |
| 56 | |
| 57 | Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, |
| 58 | KnownZero, KnownOne, 0); |
| 59 | if (V == 0) return false; |
| 60 | if (V == &Inst) return true; |
| 61 | ReplaceInstUsesWith(Inst, V); |
| 62 | return true; |
| 63 | } |
| 64 | |
| 65 | /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the |
| 66 | /// specified instruction operand if possible, updating it in place. It returns |
| 67 | /// true if it made any change and false otherwise. |
| 68 | bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, |
| 69 | APInt &KnownZero, APInt &KnownOne, |
| 70 | unsigned Depth) { |
| 71 | Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, |
| 72 | KnownZero, KnownOne, Depth); |
| 73 | if (NewVal == 0) return false; |
| 74 | U = NewVal; |
| 75 | return true; |
| 76 | } |
| 77 | |
| 78 | |
| 79 | /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler |
| 80 | /// value based on the demanded bits. When this function is called, it is known |
| 81 | /// that only the bits set in DemandedMask of the result of V are ever used |
| 82 | /// downstream. Consequently, depending on the mask and V, it may be possible |
| 83 | /// to replace V with a constant or one of its operands. In such cases, this |
| 84 | /// function does the replacement and returns true. In all other cases, it |
| 85 | /// returns false after analyzing the expression and setting KnownOne and known |
| 86 | /// to be one in the expression. KnownZero contains all the bits that are known |
| 87 | /// to be zero in the expression. These are provided to potentially allow the |
| 88 | /// caller (which might recursively be SimplifyDemandedBits itself) to simplify |
| 89 | /// the expression. KnownOne and KnownZero always follow the invariant that |
| 90 | /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that |
| 91 | /// the bits in KnownOne and KnownZero may only be accurate for those bits set |
| 92 | /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero |
| 93 | /// and KnownOne must all be the same. |
| 94 | /// |
| 95 | /// This returns null if it did not change anything and it permits no |
| 96 | /// simplification. This returns V itself if it did some simplification of V's |
| 97 | /// operands based on the information about what bits are demanded. This returns |
| 98 | /// some other non-null value if it found out that V is equal to another value |
| 99 | /// in the context where the specified bits are demanded, but not for all users. |
| 100 | Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, |
| 101 | APInt &KnownZero, APInt &KnownOne, |
| 102 | unsigned Depth) { |
| 103 | assert(V != 0 && "Null pointer of Value???"); |
| 104 | assert(Depth <= 6 && "Limit Search Depth"); |
| 105 | uint32_t BitWidth = DemandedMask.getBitWidth(); |
| 106 | const Type *VTy = V->getType(); |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 107 | assert((TD || !VTy->isPointerTy()) && |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 108 | "SimplifyDemandedBits needs to know bit widths!"); |
| 109 | assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 110 | (!VTy->isIntOrIntVectorTy() || |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 111 | VTy->getScalarSizeInBits() == BitWidth) && |
| 112 | KnownZero.getBitWidth() == BitWidth && |
| 113 | KnownOne.getBitWidth() == BitWidth && |
| 114 | "Value *V, DemandedMask, KnownZero and KnownOne " |
| 115 | "must have same BitWidth"); |
| 116 | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| 117 | // We know all of the bits for a constant! |
| 118 | KnownOne = CI->getValue() & DemandedMask; |
| 119 | KnownZero = ~KnownOne & DemandedMask; |
| 120 | return 0; |
| 121 | } |
| 122 | if (isa<ConstantPointerNull>(V)) { |
| 123 | // We know all of the bits for a constant! |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 124 | KnownOne.clearAllBits(); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 125 | KnownZero = DemandedMask; |
| 126 | return 0; |
| 127 | } |
| 128 | |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 129 | KnownZero.clearAllBits(); |
| 130 | KnownOne.clearAllBits(); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 131 | if (DemandedMask == 0) { // Not demanding any bits from V. |
| 132 | if (isa<UndefValue>(V)) |
| 133 | return 0; |
| 134 | return UndefValue::get(VTy); |
| 135 | } |
| 136 | |
| 137 | if (Depth == 6) // Limit search depth. |
| 138 | return 0; |
| 139 | |
| 140 | APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 141 | APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 142 | |
| 143 | Instruction *I = dyn_cast<Instruction>(V); |
| 144 | if (!I) { |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 145 | ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 146 | return 0; // Only analyze instructions. |
| 147 | } |
| 148 | |
| 149 | // If there are multiple uses of this value and we aren't at the root, then |
| 150 | // we can't do any simplifications of the operands, because DemandedMask |
| 151 | // only reflects the bits demanded by *one* of the users. |
| 152 | if (Depth != 0 && !I->hasOneUse()) { |
| 153 | // Despite the fact that we can't simplify this instruction in all User's |
| 154 | // context, we can at least compute the knownzero/knownone bits, and we can |
| 155 | // do simplifications that apply to *just* the one user if we know that |
| 156 | // this instruction has a simpler value in that context. |
| 157 | if (I->getOpcode() == Instruction::And) { |
| 158 | // If either the LHS or the RHS are Zero, the result is zero. |
| 159 | ComputeMaskedBits(I->getOperand(1), DemandedMask, |
| 160 | RHSKnownZero, RHSKnownOne, Depth+1); |
| 161 | ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, |
| 162 | LHSKnownZero, LHSKnownOne, Depth+1); |
| 163 | |
| 164 | // If all of the demanded bits are known 1 on one side, return the other. |
| 165 | // These bits cannot contribute to the result of the 'and' in this |
| 166 | // context. |
| 167 | if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == |
| 168 | (DemandedMask & ~LHSKnownZero)) |
| 169 | return I->getOperand(0); |
| 170 | if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == |
| 171 | (DemandedMask & ~RHSKnownZero)) |
| 172 | return I->getOperand(1); |
| 173 | |
| 174 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 175 | if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) |
| 176 | return Constant::getNullValue(VTy); |
| 177 | |
| 178 | } else if (I->getOpcode() == Instruction::Or) { |
| 179 | // We can simplify (X|Y) -> X or Y in the user's context if we know that |
| 180 | // only bits from X or Y are demanded. |
| 181 | |
| 182 | // If either the LHS or the RHS are One, the result is One. |
| 183 | ComputeMaskedBits(I->getOperand(1), DemandedMask, |
| 184 | RHSKnownZero, RHSKnownOne, Depth+1); |
| 185 | ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, |
| 186 | LHSKnownZero, LHSKnownOne, Depth+1); |
| 187 | |
| 188 | // If all of the demanded bits are known zero on one side, return the |
| 189 | // other. These bits cannot contribute to the result of the 'or' in this |
| 190 | // context. |
| 191 | if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == |
| 192 | (DemandedMask & ~LHSKnownOne)) |
| 193 | return I->getOperand(0); |
| 194 | if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == |
| 195 | (DemandedMask & ~RHSKnownOne)) |
| 196 | return I->getOperand(1); |
| 197 | |
| 198 | // If all of the potentially set bits on one side are known to be set on |
| 199 | // the other side, just use the 'other' side. |
| 200 | if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == |
| 201 | (DemandedMask & (~RHSKnownZero))) |
| 202 | return I->getOperand(0); |
| 203 | if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == |
| 204 | (DemandedMask & (~LHSKnownZero))) |
| 205 | return I->getOperand(1); |
| 206 | } |
| 207 | |
| 208 | // Compute the KnownZero/KnownOne bits to simplify things downstream. |
| 209 | ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); |
| 210 | return 0; |
| 211 | } |
| 212 | |
| 213 | // If this is the root being simplified, allow it to have multiple uses, |
| 214 | // just set the DemandedMask to all bits so that we can try to simplify the |
| 215 | // operands. This allows visitTruncInst (for example) to simplify the |
| 216 | // operand of a trunc without duplicating all the logic below. |
| 217 | if (Depth == 0 && !V->hasOneUse()) |
| 218 | DemandedMask = APInt::getAllOnesValue(BitWidth); |
| 219 | |
| 220 | switch (I->getOpcode()) { |
| 221 | default: |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 222 | ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 223 | break; |
| 224 | case Instruction::And: |
| 225 | // If either the LHS or the RHS are Zero, the result is zero. |
| 226 | if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, |
| 227 | RHSKnownZero, RHSKnownOne, Depth+1) || |
| 228 | SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, |
| 229 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 230 | return I; |
| 231 | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); |
| 232 | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); |
| 233 | |
| 234 | // If all of the demanded bits are known 1 on one side, return the other. |
| 235 | // These bits cannot contribute to the result of the 'and'. |
| 236 | if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == |
| 237 | (DemandedMask & ~LHSKnownZero)) |
| 238 | return I->getOperand(0); |
| 239 | if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == |
| 240 | (DemandedMask & ~RHSKnownZero)) |
| 241 | return I->getOperand(1); |
| 242 | |
| 243 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 244 | if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) |
| 245 | return Constant::getNullValue(VTy); |
| 246 | |
| 247 | // If the RHS is a constant, see if we can simplify it. |
| 248 | if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) |
| 249 | return I; |
| 250 | |
| 251 | // Output known-1 bits are only known if set in both the LHS & RHS. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 252 | KnownOne = RHSKnownOne & LHSKnownOne; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 253 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 254 | KnownZero = RHSKnownZero | LHSKnownZero; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 255 | break; |
| 256 | case Instruction::Or: |
| 257 | // If either the LHS or the RHS are One, the result is One. |
| 258 | if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, |
| 259 | RHSKnownZero, RHSKnownOne, Depth+1) || |
| 260 | SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, |
| 261 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 262 | return I; |
| 263 | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); |
| 264 | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); |
| 265 | |
| 266 | // If all of the demanded bits are known zero on one side, return the other. |
| 267 | // These bits cannot contribute to the result of the 'or'. |
| 268 | if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == |
| 269 | (DemandedMask & ~LHSKnownOne)) |
| 270 | return I->getOperand(0); |
| 271 | if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == |
| 272 | (DemandedMask & ~RHSKnownOne)) |
| 273 | return I->getOperand(1); |
| 274 | |
| 275 | // If all of the potentially set bits on one side are known to be set on |
| 276 | // the other side, just use the 'other' side. |
| 277 | if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == |
| 278 | (DemandedMask & (~RHSKnownZero))) |
| 279 | return I->getOperand(0); |
| 280 | if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == |
| 281 | (DemandedMask & (~LHSKnownZero))) |
| 282 | return I->getOperand(1); |
| 283 | |
| 284 | // If the RHS is a constant, see if we can simplify it. |
| 285 | if (ShrinkDemandedConstant(I, 1, DemandedMask)) |
| 286 | return I; |
| 287 | |
| 288 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 289 | KnownZero = RHSKnownZero & LHSKnownZero; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 290 | // Output known-1 are known to be set if set in either the LHS | RHS. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 291 | KnownOne = RHSKnownOne | LHSKnownOne; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 292 | break; |
| 293 | case Instruction::Xor: { |
| 294 | if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, |
| 295 | RHSKnownZero, RHSKnownOne, Depth+1) || |
| 296 | SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, |
| 297 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 298 | return I; |
| 299 | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); |
| 300 | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); |
| 301 | |
| 302 | // If all of the demanded bits are known zero on one side, return the other. |
| 303 | // These bits cannot contribute to the result of the 'xor'. |
| 304 | if ((DemandedMask & RHSKnownZero) == DemandedMask) |
| 305 | return I->getOperand(0); |
| 306 | if ((DemandedMask & LHSKnownZero) == DemandedMask) |
| 307 | return I->getOperand(1); |
| 308 | |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 309 | // If all of the demanded bits are known to be zero on one side or the |
| 310 | // other, turn this into an *inclusive* or. |
| 311 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 312 | if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { |
| 313 | Instruction *Or = |
| 314 | BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), |
| 315 | I->getName()); |
| 316 | return InsertNewInstBefore(Or, *I); |
| 317 | } |
| 318 | |
| 319 | // If all of the demanded bits on one side are known, and all of the set |
| 320 | // bits on that side are also known to be set on the other side, turn this |
| 321 | // into an AND, as we know the bits will be cleared. |
| 322 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 323 | if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { |
| 324 | // all known |
| 325 | if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { |
| 326 | Constant *AndC = Constant::getIntegerValue(VTy, |
| 327 | ~RHSKnownOne & DemandedMask); |
| 328 | Instruction *And = |
| 329 | BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); |
| 330 | return InsertNewInstBefore(And, *I); |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | // If the RHS is a constant, see if we can simplify it. |
| 335 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| 336 | if (ShrinkDemandedConstant(I, 1, DemandedMask)) |
| 337 | return I; |
| 338 | |
| 339 | // If our LHS is an 'and' and if it has one use, and if any of the bits we |
| 340 | // are flipping are known to be set, then the xor is just resetting those |
| 341 | // bits to zero. We can just knock out bits from the 'and' and the 'xor', |
| 342 | // simplifying both of them. |
| 343 | if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) |
| 344 | if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && |
| 345 | isa<ConstantInt>(I->getOperand(1)) && |
| 346 | isa<ConstantInt>(LHSInst->getOperand(1)) && |
| 347 | (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { |
| 348 | ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); |
| 349 | ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); |
| 350 | APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); |
| 351 | |
| 352 | Constant *AndC = |
| 353 | ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); |
| 354 | Instruction *NewAnd = |
| 355 | BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); |
| 356 | InsertNewInstBefore(NewAnd, *I); |
| 357 | |
| 358 | Constant *XorC = |
| 359 | ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); |
| 360 | Instruction *NewXor = |
| 361 | BinaryOperator::CreateXor(NewAnd, XorC, "tmp"); |
| 362 | return InsertNewInstBefore(NewXor, *I); |
| 363 | } |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 364 | |
| 365 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 366 | KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); |
| 367 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 368 | KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 369 | break; |
| 370 | } |
| 371 | case Instruction::Select: |
| 372 | if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, |
| 373 | RHSKnownZero, RHSKnownOne, Depth+1) || |
| 374 | SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, |
| 375 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 376 | return I; |
| 377 | assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); |
| 378 | assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); |
| 379 | |
| 380 | // If the operands are constants, see if we can simplify them. |
| 381 | if (ShrinkDemandedConstant(I, 1, DemandedMask) || |
| 382 | ShrinkDemandedConstant(I, 2, DemandedMask)) |
| 383 | return I; |
| 384 | |
| 385 | // Only known if known in both the LHS and RHS. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 386 | KnownOne = RHSKnownOne & LHSKnownOne; |
| 387 | KnownZero = RHSKnownZero & LHSKnownZero; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 388 | break; |
| 389 | case Instruction::Trunc: { |
| 390 | unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 391 | DemandedMask = DemandedMask.zext(truncBf); |
| 392 | KnownZero = KnownZero.zext(truncBf); |
| 393 | KnownOne = KnownOne.zext(truncBf); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 394 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 395 | KnownZero, KnownOne, Depth+1)) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 396 | return I; |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 397 | DemandedMask = DemandedMask.trunc(BitWidth); |
| 398 | KnownZero = KnownZero.trunc(BitWidth); |
| 399 | KnownOne = KnownOne.trunc(BitWidth); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 400 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 401 | break; |
| 402 | } |
| 403 | case Instruction::BitCast: |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 404 | if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 405 | return 0; // vector->int or fp->int? |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 406 | |
| 407 | if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { |
| 408 | if (const VectorType *SrcVTy = |
| 409 | dyn_cast<VectorType>(I->getOperand(0)->getType())) { |
| 410 | if (DstVTy->getNumElements() != SrcVTy->getNumElements()) |
| 411 | // Don't touch a bitcast between vectors of different element counts. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 412 | return 0; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 413 | } else |
| 414 | // Don't touch a scalar-to-vector bitcast. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 415 | return 0; |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 416 | } else if (I->getOperand(0)->getType()->isVectorTy()) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 417 | // Don't touch a vector-to-scalar bitcast. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 418 | return 0; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 419 | |
| 420 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 421 | KnownZero, KnownOne, Depth+1)) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 422 | return I; |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 423 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 424 | break; |
| 425 | case Instruction::ZExt: { |
| 426 | // Compute the bits in the result that are not present in the input. |
| 427 | unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); |
| 428 | |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 429 | DemandedMask = DemandedMask.trunc(SrcBitWidth); |
| 430 | KnownZero = KnownZero.trunc(SrcBitWidth); |
| 431 | KnownOne = KnownOne.trunc(SrcBitWidth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 432 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 433 | KnownZero, KnownOne, Depth+1)) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 434 | return I; |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 435 | DemandedMask = DemandedMask.zext(BitWidth); |
| 436 | KnownZero = KnownZero.zext(BitWidth); |
| 437 | KnownOne = KnownOne.zext(BitWidth); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 438 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 439 | // The top bits are known to be zero. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 440 | KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 441 | break; |
| 442 | } |
| 443 | case Instruction::SExt: { |
| 444 | // Compute the bits in the result that are not present in the input. |
| 445 | unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); |
| 446 | |
| 447 | APInt InputDemandedBits = DemandedMask & |
| 448 | APInt::getLowBitsSet(BitWidth, SrcBitWidth); |
| 449 | |
| 450 | APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); |
| 451 | // If any of the sign extended bits are demanded, we know that the sign |
| 452 | // bit is demanded. |
| 453 | if ((NewBits & DemandedMask) != 0) |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 454 | InputDemandedBits.setBit(SrcBitWidth-1); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 455 | |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 456 | InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth); |
| 457 | KnownZero = KnownZero.trunc(SrcBitWidth); |
| 458 | KnownOne = KnownOne.trunc(SrcBitWidth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 459 | if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 460 | KnownZero, KnownOne, Depth+1)) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 461 | return I; |
Jay Foad | 40f8f62 | 2010-12-07 08:25:19 +0000 | [diff] [blame] | 462 | InputDemandedBits = InputDemandedBits.zext(BitWidth); |
| 463 | KnownZero = KnownZero.zext(BitWidth); |
| 464 | KnownOne = KnownOne.zext(BitWidth); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 465 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 466 | |
| 467 | // If the sign bit of the input is known set or clear, then we know the |
| 468 | // top bits of the result. |
| 469 | |
| 470 | // If the input sign bit is known zero, or if the NewBits are not demanded |
| 471 | // convert this into a zero extension. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 472 | if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 473 | // Convert to ZExt cast |
| 474 | CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); |
| 475 | return InsertNewInstBefore(NewCast, *I); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 476 | } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set |
| 477 | KnownOne |= NewBits; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 478 | } |
| 479 | break; |
| 480 | } |
| 481 | case Instruction::Add: { |
| 482 | // Figure out what the input bits are. If the top bits of the and result |
| 483 | // are not demanded, then the add doesn't demand them from its input |
| 484 | // either. |
| 485 | unsigned NLZ = DemandedMask.countLeadingZeros(); |
| 486 | |
| 487 | // If there is a constant on the RHS, there are a variety of xformations |
| 488 | // we can do. |
| 489 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 490 | // If null, this should be simplified elsewhere. Some of the xforms here |
| 491 | // won't work if the RHS is zero. |
| 492 | if (RHS->isZero()) |
| 493 | break; |
| 494 | |
| 495 | // If the top bit of the output is demanded, demand everything from the |
| 496 | // input. Otherwise, we demand all the input bits except NLZ top bits. |
| 497 | APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); |
| 498 | |
| 499 | // Find information about known zero/one bits in the input. |
| 500 | if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, |
| 501 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 502 | return I; |
| 503 | |
| 504 | // If the RHS of the add has bits set that can't affect the input, reduce |
| 505 | // the constant. |
| 506 | if (ShrinkDemandedConstant(I, 1, InDemandedBits)) |
| 507 | return I; |
| 508 | |
| 509 | // Avoid excess work. |
| 510 | if (LHSKnownZero == 0 && LHSKnownOne == 0) |
| 511 | break; |
| 512 | |
| 513 | // Turn it into OR if input bits are zero. |
| 514 | if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { |
| 515 | Instruction *Or = |
| 516 | BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), |
| 517 | I->getName()); |
| 518 | return InsertNewInstBefore(Or, *I); |
| 519 | } |
| 520 | |
| 521 | // We can say something about the output known-zero and known-one bits, |
| 522 | // depending on potential carries from the input constant and the |
| 523 | // unknowns. For example if the LHS is known to have at most the 0x0F0F0 |
| 524 | // bits set and the RHS constant is 0x01001, then we know we have a known |
| 525 | // one mask of 0x00001 and a known zero mask of 0xE0F0E. |
| 526 | |
| 527 | // To compute this, we first compute the potential carry bits. These are |
| 528 | // the bits which may be modified. I'm not aware of a better way to do |
| 529 | // this scan. |
| 530 | const APInt &RHSVal = RHS->getValue(); |
| 531 | APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); |
| 532 | |
| 533 | // Now that we know which bits have carries, compute the known-1/0 sets. |
| 534 | |
| 535 | // Bits are known one if they are known zero in one operand and one in the |
| 536 | // other, and there is no input carry. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 537 | KnownOne = ((LHSKnownZero & RHSVal) | |
| 538 | (LHSKnownOne & ~RHSVal)) & ~CarryBits; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 539 | |
| 540 | // Bits are known zero if they are known zero in both operands and there |
| 541 | // is no input carry. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 542 | KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 543 | } else { |
| 544 | // If the high-bits of this ADD are not demanded, then it does not demand |
| 545 | // the high bits of its LHS or RHS. |
| 546 | if (DemandedMask[BitWidth-1] == 0) { |
| 547 | // Right fill the mask of bits for this ADD to demand the most |
| 548 | // significant bit and all those below it. |
| 549 | APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); |
| 550 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, |
| 551 | LHSKnownZero, LHSKnownOne, Depth+1) || |
| 552 | SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, |
| 553 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 554 | return I; |
| 555 | } |
| 556 | } |
| 557 | break; |
| 558 | } |
| 559 | case Instruction::Sub: |
| 560 | // If the high-bits of this SUB are not demanded, then it does not demand |
| 561 | // the high bits of its LHS or RHS. |
| 562 | if (DemandedMask[BitWidth-1] == 0) { |
| 563 | // Right fill the mask of bits for this SUB to demand the most |
| 564 | // significant bit and all those below it. |
| 565 | uint32_t NLZ = DemandedMask.countLeadingZeros(); |
| 566 | APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); |
| 567 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, |
| 568 | LHSKnownZero, LHSKnownOne, Depth+1) || |
| 569 | SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, |
| 570 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 571 | return I; |
| 572 | } |
| 573 | // Otherwise just hand the sub off to ComputeMaskedBits to fill in |
| 574 | // the known zeros and ones. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 575 | ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 576 | break; |
| 577 | case Instruction::Shl: |
| 578 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
Chris Lattner | a81556f | 2011-02-10 05:09:34 +0000 | [diff] [blame] | 579 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 580 | APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); |
Chris Lattner | a81556f | 2011-02-10 05:09:34 +0000 | [diff] [blame] | 581 | |
| 582 | // If the shift is NUW/NSW, then it does demand the high bits. |
| 583 | ShlOperator *IOp = cast<ShlOperator>(I); |
| 584 | if (IOp->hasNoSignedWrap()) |
| 585 | DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); |
| 586 | else if (IOp->hasNoUnsignedWrap()) |
| 587 | DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt); |
| 588 | |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 589 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 590 | KnownZero, KnownOne, Depth+1)) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 591 | return I; |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 592 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
| 593 | KnownZero <<= ShiftAmt; |
| 594 | KnownOne <<= ShiftAmt; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 595 | // low bits known zero. |
| 596 | if (ShiftAmt) |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 597 | KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 598 | } |
| 599 | break; |
| 600 | case Instruction::LShr: |
| 601 | // For a logical shift right |
| 602 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
Chris Lattner | a81556f | 2011-02-10 05:09:34 +0000 | [diff] [blame] | 603 | uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 604 | |
| 605 | // Unsigned shift right. |
| 606 | APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); |
Chris Lattner | a81556f | 2011-02-10 05:09:34 +0000 | [diff] [blame] | 607 | |
| 608 | // If the shift is exact, then it does demand the low bits (and knows that |
| 609 | // they are zero). |
| 610 | if (cast<LShrOperator>(I)->isExact()) |
| 611 | DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); |
| 612 | |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 613 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 614 | KnownZero, KnownOne, Depth+1)) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 615 | return I; |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 616 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
| 617 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 618 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 619 | if (ShiftAmt) { |
| 620 | // Compute the new bits that are at the top now. |
| 621 | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 622 | KnownZero |= HighBits; // high bits known zero. |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 623 | } |
| 624 | } |
| 625 | break; |
| 626 | case Instruction::AShr: |
| 627 | // If this is an arithmetic shift right and only the low-bit is set, we can |
| 628 | // always convert this into a logical shr, even if the shift amount is |
| 629 | // variable. The low bit of the shift cannot be an input sign bit unless |
| 630 | // the shift amount is >= the size of the datatype, which is undefined. |
| 631 | if (DemandedMask == 1) { |
| 632 | // Perform the logical shift right. |
| 633 | Instruction *NewVal = BinaryOperator::CreateLShr( |
| 634 | I->getOperand(0), I->getOperand(1), I->getName()); |
| 635 | return InsertNewInstBefore(NewVal, *I); |
| 636 | } |
| 637 | |
| 638 | // If the sign bit is the only bit demanded by this ashr, then there is no |
| 639 | // need to do it, the shift doesn't change the high bit. |
| 640 | if (DemandedMask.isSignBit()) |
| 641 | return I->getOperand(0); |
| 642 | |
| 643 | if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { |
Chris Lattner | a81556f | 2011-02-10 05:09:34 +0000 | [diff] [blame] | 644 | uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 645 | |
| 646 | // Signed shift right. |
| 647 | APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); |
| 648 | // If any of the "high bits" are demanded, we should set the sign bit as |
| 649 | // demanded. |
| 650 | if (DemandedMask.countLeadingZeros() <= ShiftAmt) |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 651 | DemandedMaskIn.setBit(BitWidth-1); |
Chris Lattner | a81556f | 2011-02-10 05:09:34 +0000 | [diff] [blame] | 652 | |
| 653 | // If the shift is exact, then it does demand the low bits (and knows that |
| 654 | // they are zero). |
| 655 | if (cast<AShrOperator>(I)->isExact()) |
| 656 | DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt); |
| 657 | |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 658 | if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 659 | KnownZero, KnownOne, Depth+1)) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 660 | return I; |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 661 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 662 | // Compute the new bits that are at the top now. |
| 663 | APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 664 | KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); |
| 665 | KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 666 | |
| 667 | // Handle the sign bits. |
| 668 | APInt SignBit(APInt::getSignBit(BitWidth)); |
| 669 | // Adjust to where it is now in the mask. |
| 670 | SignBit = APIntOps::lshr(SignBit, ShiftAmt); |
| 671 | |
| 672 | // If the input sign bit is known to be zero, or if none of the top bits |
| 673 | // are demanded, turn this into an unsigned shift right. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 674 | if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 675 | (HighBits & ~DemandedMask) == HighBits) { |
| 676 | // Perform the logical shift right. |
| 677 | Instruction *NewVal = BinaryOperator::CreateLShr( |
| 678 | I->getOperand(0), SA, I->getName()); |
| 679 | return InsertNewInstBefore(NewVal, *I); |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 680 | } else if ((KnownOne & SignBit) != 0) { // New bits are known one. |
| 681 | KnownOne |= HighBits; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 682 | } |
| 683 | } |
| 684 | break; |
| 685 | case Instruction::SRem: |
| 686 | if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| 687 | APInt RA = Rem->getValue().abs(); |
| 688 | if (RA.isPowerOf2()) { |
| 689 | if (DemandedMask.ult(RA)) // srem won't affect demanded bits |
| 690 | return I->getOperand(0); |
| 691 | |
| 692 | APInt LowBits = RA - 1; |
| 693 | APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); |
| 694 | if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, |
| 695 | LHSKnownZero, LHSKnownOne, Depth+1)) |
| 696 | return I; |
| 697 | |
Duncan Sands | 2c47368 | 2010-01-28 17:22:42 +0000 | [diff] [blame] | 698 | // The low bits of LHS are unchanged by the srem. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 699 | KnownZero = LHSKnownZero & LowBits; |
| 700 | KnownOne = LHSKnownOne & LowBits; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 701 | |
Duncan Sands | 2c47368 | 2010-01-28 17:22:42 +0000 | [diff] [blame] | 702 | // If LHS is non-negative or has all low bits zero, then the upper bits |
| 703 | // are all zero. |
| 704 | if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) |
| 705 | KnownZero |= ~LowBits; |
| 706 | |
| 707 | // If LHS is negative and not all low bits are zero, then the upper bits |
| 708 | // are all one. |
| 709 | if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) |
| 710 | KnownOne |= ~LowBits; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 711 | |
| 712 | assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); |
| 713 | } |
| 714 | } |
Nick Lewycky | c14bc77 | 2011-03-07 01:50:10 +0000 | [diff] [blame^] | 715 | |
| 716 | // The sign bit is the LHS's sign bit, except when the result of the |
| 717 | // remainder is zero. |
| 718 | if (DemandedMask.isNegative() && KnownZero.isNonNegative()) { |
| 719 | APInt Mask2 = APInt::getSignBit(BitWidth); |
| 720 | APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); |
| 721 | ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, |
| 722 | Depth+1); |
| 723 | // If it's known zero, our sign bit is also zero. |
| 724 | if (LHSKnownZero.isNegative()) |
| 725 | KnownZero |= LHSKnownZero; |
| 726 | } |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 727 | break; |
| 728 | case Instruction::URem: { |
| 729 | APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); |
| 730 | APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| 731 | if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, |
| 732 | KnownZero2, KnownOne2, Depth+1) || |
| 733 | SimplifyDemandedBits(I->getOperandUse(1), AllOnes, |
| 734 | KnownZero2, KnownOne2, Depth+1)) |
| 735 | return I; |
| 736 | |
| 737 | unsigned Leaders = KnownZero2.countLeadingOnes(); |
| 738 | Leaders = std::max(Leaders, |
| 739 | KnownZero2.countLeadingOnes()); |
| 740 | KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; |
| 741 | break; |
| 742 | } |
| 743 | case Instruction::Call: |
| 744 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 745 | switch (II->getIntrinsicID()) { |
| 746 | default: break; |
| 747 | case Intrinsic::bswap: { |
| 748 | // If the only bits demanded come from one byte of the bswap result, |
| 749 | // just shift the input byte into position to eliminate the bswap. |
| 750 | unsigned NLZ = DemandedMask.countLeadingZeros(); |
| 751 | unsigned NTZ = DemandedMask.countTrailingZeros(); |
| 752 | |
| 753 | // Round NTZ down to the next byte. If we have 11 trailing zeros, then |
| 754 | // we need all the bits down to bit 8. Likewise, round NLZ. If we |
| 755 | // have 14 leading zeros, round to 8. |
| 756 | NLZ &= ~7; |
| 757 | NTZ &= ~7; |
| 758 | // If we need exactly one byte, we can do this transformation. |
| 759 | if (BitWidth-NLZ-NTZ == 8) { |
| 760 | unsigned ResultBit = NTZ; |
| 761 | unsigned InputBit = BitWidth-NTZ-8; |
| 762 | |
| 763 | // Replace this with either a left or right shift to get the byte into |
| 764 | // the right place. |
| 765 | Instruction *NewVal; |
| 766 | if (InputBit > ResultBit) |
Gabor Greif | 3e84e2e | 2010-06-24 12:35:13 +0000 | [diff] [blame] | 767 | NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 768 | ConstantInt::get(I->getType(), InputBit-ResultBit)); |
| 769 | else |
Gabor Greif | 3e84e2e | 2010-06-24 12:35:13 +0000 | [diff] [blame] | 770 | NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 771 | ConstantInt::get(I->getType(), ResultBit-InputBit)); |
| 772 | NewVal->takeName(I); |
| 773 | return InsertNewInstBefore(NewVal, *I); |
| 774 | } |
| 775 | |
| 776 | // TODO: Could compute known zero/one bits based on the input. |
| 777 | break; |
| 778 | } |
| 779 | } |
| 780 | } |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 781 | ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 782 | break; |
| 783 | } |
| 784 | |
| 785 | // If the client is only demanding bits that we know, return the known |
| 786 | // constant. |
Duncan Sands | ac51217 | 2010-01-29 06:18:46 +0000 | [diff] [blame] | 787 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) |
| 788 | return Constant::getIntegerValue(VTy, KnownOne); |
| 789 | return 0; |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 790 | } |
| 791 | |
| 792 | |
| 793 | /// SimplifyDemandedVectorElts - The specified value produces a vector with |
| 794 | /// any number of elements. DemandedElts contains the set of elements that are |
| 795 | /// actually used by the caller. This method analyzes which elements of the |
| 796 | /// operand are undef and returns that information in UndefElts. |
| 797 | /// |
| 798 | /// If the information about demanded elements can be used to simplify the |
| 799 | /// operation, the operation is simplified, then the resultant value is |
| 800 | /// returned. This returns null if no change was made. |
| 801 | Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, |
Chris Lattner | 8609fda | 2010-02-08 23:56:03 +0000 | [diff] [blame] | 802 | APInt &UndefElts, |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 803 | unsigned Depth) { |
| 804 | unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); |
| 805 | APInt EltMask(APInt::getAllOnesValue(VWidth)); |
| 806 | assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); |
| 807 | |
| 808 | if (isa<UndefValue>(V)) { |
| 809 | // If the entire vector is undefined, just return this info. |
| 810 | UndefElts = EltMask; |
| 811 | return 0; |
Chris Lattner | 8609fda | 2010-02-08 23:56:03 +0000 | [diff] [blame] | 812 | } |
| 813 | |
| 814 | if (DemandedElts == 0) { // If nothing is demanded, provide undef. |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 815 | UndefElts = EltMask; |
| 816 | return UndefValue::get(V->getType()); |
| 817 | } |
| 818 | |
| 819 | UndefElts = 0; |
Chris Lattner | 8609fda | 2010-02-08 23:56:03 +0000 | [diff] [blame] | 820 | if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 821 | const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); |
| 822 | Constant *Undef = UndefValue::get(EltTy); |
| 823 | |
| 824 | std::vector<Constant*> Elts; |
| 825 | for (unsigned i = 0; i != VWidth; ++i) |
| 826 | if (!DemandedElts[i]) { // If not demanded, set to undef. |
| 827 | Elts.push_back(Undef); |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 828 | UndefElts.setBit(i); |
Chris Lattner | 8609fda | 2010-02-08 23:56:03 +0000 | [diff] [blame] | 829 | } else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef. |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 830 | Elts.push_back(Undef); |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 831 | UndefElts.setBit(i); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 832 | } else { // Otherwise, defined. |
Chris Lattner | 8609fda | 2010-02-08 23:56:03 +0000 | [diff] [blame] | 833 | Elts.push_back(CV->getOperand(i)); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 834 | } |
| 835 | |
| 836 | // If we changed the constant, return it. |
| 837 | Constant *NewCP = ConstantVector::get(Elts); |
Chris Lattner | 8609fda | 2010-02-08 23:56:03 +0000 | [diff] [blame] | 838 | return NewCP != CV ? NewCP : 0; |
| 839 | } |
| 840 | |
| 841 | if (isa<ConstantAggregateZero>(V)) { |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 842 | // Simplify the CAZ to a ConstantVector where the non-demanded elements are |
| 843 | // set to undef. |
| 844 | |
| 845 | // Check if this is identity. If so, return 0 since we are not simplifying |
| 846 | // anything. |
Chris Lattner | 8609fda | 2010-02-08 23:56:03 +0000 | [diff] [blame] | 847 | if (DemandedElts.isAllOnesValue()) |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 848 | return 0; |
| 849 | |
| 850 | const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); |
| 851 | Constant *Zero = Constant::getNullValue(EltTy); |
| 852 | Constant *Undef = UndefValue::get(EltTy); |
| 853 | std::vector<Constant*> Elts; |
| 854 | for (unsigned i = 0; i != VWidth; ++i) { |
| 855 | Constant *Elt = DemandedElts[i] ? Zero : Undef; |
| 856 | Elts.push_back(Elt); |
| 857 | } |
| 858 | UndefElts = DemandedElts ^ EltMask; |
| 859 | return ConstantVector::get(Elts); |
| 860 | } |
| 861 | |
| 862 | // Limit search depth. |
| 863 | if (Depth == 10) |
| 864 | return 0; |
| 865 | |
| 866 | // If multiple users are using the root value, procede with |
| 867 | // simplification conservatively assuming that all elements |
| 868 | // are needed. |
| 869 | if (!V->hasOneUse()) { |
| 870 | // Quit if we find multiple users of a non-root value though. |
| 871 | // They'll be handled when it's their turn to be visited by |
| 872 | // the main instcombine process. |
| 873 | if (Depth != 0) |
| 874 | // TODO: Just compute the UndefElts information recursively. |
| 875 | return 0; |
| 876 | |
| 877 | // Conservatively assume that all elements are needed. |
| 878 | DemandedElts = EltMask; |
| 879 | } |
| 880 | |
| 881 | Instruction *I = dyn_cast<Instruction>(V); |
| 882 | if (!I) return 0; // Only analyze instructions. |
| 883 | |
| 884 | bool MadeChange = false; |
| 885 | APInt UndefElts2(VWidth, 0); |
| 886 | Value *TmpV; |
| 887 | switch (I->getOpcode()) { |
| 888 | default: break; |
| 889 | |
| 890 | case Instruction::InsertElement: { |
| 891 | // If this is a variable index, we don't know which element it overwrites. |
| 892 | // demand exactly the same input as we produce. |
| 893 | ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); |
| 894 | if (Idx == 0) { |
| 895 | // Note that we can't propagate undef elt info, because we don't know |
| 896 | // which elt is getting updated. |
| 897 | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, |
| 898 | UndefElts2, Depth+1); |
| 899 | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } |
| 900 | break; |
| 901 | } |
| 902 | |
| 903 | // If this is inserting an element that isn't demanded, remove this |
| 904 | // insertelement. |
| 905 | unsigned IdxNo = Idx->getZExtValue(); |
| 906 | if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { |
| 907 | Worklist.Add(I); |
| 908 | return I->getOperand(0); |
| 909 | } |
| 910 | |
| 911 | // Otherwise, the element inserted overwrites whatever was there, so the |
| 912 | // input demanded set is simpler than the output set. |
| 913 | APInt DemandedElts2 = DemandedElts; |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 914 | DemandedElts2.clearBit(IdxNo); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 915 | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, |
| 916 | UndefElts, Depth+1); |
| 917 | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } |
| 918 | |
| 919 | // The inserted element is defined. |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 920 | UndefElts.clearBit(IdxNo); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 921 | break; |
| 922 | } |
| 923 | case Instruction::ShuffleVector: { |
| 924 | ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); |
| 925 | uint64_t LHSVWidth = |
| 926 | cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); |
| 927 | APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); |
| 928 | for (unsigned i = 0; i < VWidth; i++) { |
| 929 | if (DemandedElts[i]) { |
| 930 | unsigned MaskVal = Shuffle->getMaskValue(i); |
| 931 | if (MaskVal != -1u) { |
| 932 | assert(MaskVal < LHSVWidth * 2 && |
| 933 | "shufflevector mask index out of range!"); |
| 934 | if (MaskVal < LHSVWidth) |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 935 | LeftDemanded.setBit(MaskVal); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 936 | else |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 937 | RightDemanded.setBit(MaskVal - LHSVWidth); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 938 | } |
| 939 | } |
| 940 | } |
| 941 | |
| 942 | APInt UndefElts4(LHSVWidth, 0); |
| 943 | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, |
| 944 | UndefElts4, Depth+1); |
| 945 | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } |
| 946 | |
| 947 | APInt UndefElts3(LHSVWidth, 0); |
| 948 | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, |
| 949 | UndefElts3, Depth+1); |
| 950 | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } |
| 951 | |
| 952 | bool NewUndefElts = false; |
| 953 | for (unsigned i = 0; i < VWidth; i++) { |
| 954 | unsigned MaskVal = Shuffle->getMaskValue(i); |
| 955 | if (MaskVal == -1u) { |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 956 | UndefElts.setBit(i); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 957 | } else if (MaskVal < LHSVWidth) { |
| 958 | if (UndefElts4[MaskVal]) { |
| 959 | NewUndefElts = true; |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 960 | UndefElts.setBit(i); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 961 | } |
| 962 | } else { |
| 963 | if (UndefElts3[MaskVal - LHSVWidth]) { |
| 964 | NewUndefElts = true; |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 965 | UndefElts.setBit(i); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 966 | } |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | if (NewUndefElts) { |
| 971 | // Add additional discovered undefs. |
| 972 | std::vector<Constant*> Elts; |
| 973 | for (unsigned i = 0; i < VWidth; ++i) { |
| 974 | if (UndefElts[i]) |
| 975 | Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); |
| 976 | else |
| 977 | Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), |
| 978 | Shuffle->getMaskValue(i))); |
| 979 | } |
| 980 | I->setOperand(2, ConstantVector::get(Elts)); |
| 981 | MadeChange = true; |
| 982 | } |
| 983 | break; |
| 984 | } |
| 985 | case Instruction::BitCast: { |
| 986 | // Vector->vector casts only. |
| 987 | const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); |
| 988 | if (!VTy) break; |
| 989 | unsigned InVWidth = VTy->getNumElements(); |
| 990 | APInt InputDemandedElts(InVWidth, 0); |
| 991 | unsigned Ratio; |
| 992 | |
| 993 | if (VWidth == InVWidth) { |
| 994 | // If we are converting from <4 x i32> -> <4 x f32>, we demand the same |
| 995 | // elements as are demanded of us. |
| 996 | Ratio = 1; |
| 997 | InputDemandedElts = DemandedElts; |
| 998 | } else if (VWidth > InVWidth) { |
| 999 | // Untested so far. |
| 1000 | break; |
| 1001 | |
| 1002 | // If there are more elements in the result than there are in the source, |
| 1003 | // then an input element is live if any of the corresponding output |
| 1004 | // elements are live. |
| 1005 | Ratio = VWidth/InVWidth; |
| 1006 | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { |
| 1007 | if (DemandedElts[OutIdx]) |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 1008 | InputDemandedElts.setBit(OutIdx/Ratio); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 1009 | } |
| 1010 | } else { |
| 1011 | // Untested so far. |
| 1012 | break; |
| 1013 | |
| 1014 | // If there are more elements in the source than there are in the result, |
| 1015 | // then an input element is live if the corresponding output element is |
| 1016 | // live. |
| 1017 | Ratio = InVWidth/VWidth; |
| 1018 | for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) |
| 1019 | if (DemandedElts[InIdx/Ratio]) |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 1020 | InputDemandedElts.setBit(InIdx); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 1021 | } |
| 1022 | |
| 1023 | // div/rem demand all inputs, because they don't want divide by zero. |
| 1024 | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, |
| 1025 | UndefElts2, Depth+1); |
| 1026 | if (TmpV) { |
| 1027 | I->setOperand(0, TmpV); |
| 1028 | MadeChange = true; |
| 1029 | } |
| 1030 | |
| 1031 | UndefElts = UndefElts2; |
| 1032 | if (VWidth > InVWidth) { |
| 1033 | llvm_unreachable("Unimp"); |
| 1034 | // If there are more elements in the result than there are in the source, |
| 1035 | // then an output element is undef if the corresponding input element is |
| 1036 | // undef. |
| 1037 | for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) |
| 1038 | if (UndefElts2[OutIdx/Ratio]) |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 1039 | UndefElts.setBit(OutIdx); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 1040 | } else if (VWidth < InVWidth) { |
| 1041 | llvm_unreachable("Unimp"); |
| 1042 | // If there are more elements in the source than there are in the result, |
| 1043 | // then a result element is undef if all of the corresponding input |
| 1044 | // elements are undef. |
| 1045 | UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. |
| 1046 | for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) |
| 1047 | if (!UndefElts2[InIdx]) // Not undef? |
Jay Foad | 7a874dd | 2010-12-01 08:53:58 +0000 | [diff] [blame] | 1048 | UndefElts.clearBit(InIdx/Ratio); // Clear undef bit. |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 1049 | } |
| 1050 | break; |
| 1051 | } |
| 1052 | case Instruction::And: |
| 1053 | case Instruction::Or: |
| 1054 | case Instruction::Xor: |
| 1055 | case Instruction::Add: |
| 1056 | case Instruction::Sub: |
| 1057 | case Instruction::Mul: |
| 1058 | // div/rem demand all inputs, because they don't want divide by zero. |
| 1059 | TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, |
| 1060 | UndefElts, Depth+1); |
| 1061 | if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } |
| 1062 | TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, |
| 1063 | UndefElts2, Depth+1); |
| 1064 | if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } |
| 1065 | |
| 1066 | // Output elements are undefined if both are undefined. Consider things |
| 1067 | // like undef&0. The result is known zero, not undef. |
| 1068 | UndefElts &= UndefElts2; |
| 1069 | break; |
| 1070 | |
| 1071 | case Instruction::Call: { |
| 1072 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); |
| 1073 | if (!II) break; |
| 1074 | switch (II->getIntrinsicID()) { |
| 1075 | default: break; |
| 1076 | |
| 1077 | // Binary vector operations that work column-wise. A dest element is a |
| 1078 | // function of the corresponding input elements from the two inputs. |
| 1079 | case Intrinsic::x86_sse_sub_ss: |
| 1080 | case Intrinsic::x86_sse_mul_ss: |
| 1081 | case Intrinsic::x86_sse_min_ss: |
| 1082 | case Intrinsic::x86_sse_max_ss: |
| 1083 | case Intrinsic::x86_sse2_sub_sd: |
| 1084 | case Intrinsic::x86_sse2_mul_sd: |
| 1085 | case Intrinsic::x86_sse2_min_sd: |
| 1086 | case Intrinsic::x86_sse2_max_sd: |
Gabor Greif | 30d2577 | 2010-06-28 16:45:00 +0000 | [diff] [blame] | 1087 | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts, |
Eric Christopher | 551754c | 2010-04-16 23:37:20 +0000 | [diff] [blame] | 1088 | UndefElts, Depth+1); |
Gabor Greif | 30d2577 | 2010-06-28 16:45:00 +0000 | [diff] [blame] | 1089 | if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; } |
| 1090 | TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts, |
Eric Christopher | 551754c | 2010-04-16 23:37:20 +0000 | [diff] [blame] | 1091 | UndefElts2, Depth+1); |
Gabor Greif | 30d2577 | 2010-06-28 16:45:00 +0000 | [diff] [blame] | 1092 | if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; } |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 1093 | |
| 1094 | // If only the low elt is demanded and this is a scalarizable intrinsic, |
| 1095 | // scalarize it now. |
| 1096 | if (DemandedElts == 1) { |
| 1097 | switch (II->getIntrinsicID()) { |
| 1098 | default: break; |
| 1099 | case Intrinsic::x86_sse_sub_ss: |
| 1100 | case Intrinsic::x86_sse_mul_ss: |
| 1101 | case Intrinsic::x86_sse2_sub_sd: |
| 1102 | case Intrinsic::x86_sse2_mul_sd: |
| 1103 | // TODO: Lower MIN/MAX/ABS/etc |
Gabor Greif | 3e84e2e | 2010-06-24 12:35:13 +0000 | [diff] [blame] | 1104 | Value *LHS = II->getArgOperand(0); |
| 1105 | Value *RHS = II->getArgOperand(1); |
Chris Lattner | e0b4b72 | 2010-01-04 07:17:19 +0000 | [diff] [blame] | 1106 | // Extract the element as scalars. |
| 1107 | LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS, |
| 1108 | ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); |
| 1109 | RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS, |
| 1110 | ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); |
| 1111 | |
| 1112 | switch (II->getIntrinsicID()) { |
| 1113 | default: llvm_unreachable("Case stmts out of sync!"); |
| 1114 | case Intrinsic::x86_sse_sub_ss: |
| 1115 | case Intrinsic::x86_sse2_sub_sd: |
| 1116 | TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS, |
| 1117 | II->getName()), *II); |
| 1118 | break; |
| 1119 | case Intrinsic::x86_sse_mul_ss: |
| 1120 | case Intrinsic::x86_sse2_mul_sd: |
| 1121 | TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS, |
| 1122 | II->getName()), *II); |
| 1123 | break; |
| 1124 | } |
| 1125 | |
| 1126 | Instruction *New = |
| 1127 | InsertElementInst::Create( |
| 1128 | UndefValue::get(II->getType()), TmpV, |
| 1129 | ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), |
| 1130 | II->getName()); |
| 1131 | InsertNewInstBefore(New, *II); |
| 1132 | return New; |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | // Output elements are undefined if both are undefined. Consider things |
| 1137 | // like undef&0. The result is known zero, not undef. |
| 1138 | UndefElts &= UndefElts2; |
| 1139 | break; |
| 1140 | } |
| 1141 | break; |
| 1142 | } |
| 1143 | } |
| 1144 | return MadeChange ? I : 0; |
| 1145 | } |