blob: 56f021334b52a03ede5032aacbf56c433e14371c [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
14// This transformation make the following changes to each loop with an
15// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
20// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24// 1. The exit condition for the loop is canonicalized to compare the
25// induction value against the exit value. This turns loops like:
26// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27// 2. Any use outside of the loop of an expression derived from the indvar
28// is changed to compute the derived value outside of the loop, eliminating
29// the dependence on the exit value of the induction variable. If the only
30// purpose of the loop is to compute the exit value of some derived
31// expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed. Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
Chris Lattner6148c022001-12-03 17:28:42 +000037//
38//===----------------------------------------------------------------------===//
39
Chris Lattner022103b2002-05-07 20:03:00 +000040#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000041#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000042#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000043#include "llvm/Instructions.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000044#include "llvm/Type.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000045#include "llvm/Analysis/ScalarEvolutionExpressions.h"
John Criswell47df12d2003-12-18 17:19:19 +000046#include "llvm/Analysis/LoopInfo.h"
Chris Lattner455889a2002-02-12 22:39:50 +000047#include "llvm/Support/CFG.h"
John Criswell47df12d2003-12-18 17:19:19 +000048#include "llvm/Transforms/Utils/Local.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000049#include "Support/CommandLine.h"
Chris Lattnera92f6962002-10-01 22:38:41 +000050#include "Support/Statistic.h"
John Criswell47df12d2003-12-18 17:19:19 +000051using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000052
Chris Lattner5e761402002-09-10 05:24:05 +000053namespace {
Chris Lattner4a7553e2004-04-23 21:29:48 +000054 /// SCEVExpander - This class uses information about analyze scalars to
55 /// rewrite expressions in canonical form.
56 ///
57 /// Clients should create an instance of this class when rewriting is needed,
58 /// and destroying it when finished to allow the release of the associated
59 /// memory.
60 struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
61 ScalarEvolution &SE;
62 LoopInfo &LI;
63 std::map<SCEVHandle, Value*> InsertedExpressions;
64 std::set<Instruction*> InsertedInstructions;
65
66 Instruction *InsertPt;
67
68 friend class SCEVVisitor<SCEVExpander, Value*>;
69 public:
70 SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
71
72 /// isInsertedInstruction - Return true if the specified instruction was
73 /// inserted by the code rewriter. If so, the client should not modify the
74 /// instruction.
75 bool isInsertedInstruction(Instruction *I) const {
76 return InsertedInstructions.count(I);
77 }
78
79 /// getOrInsertCanonicalInductionVariable - This method returns the
80 /// canonical induction variable of the specified type for the specified
81 /// loop (inserting one if there is none). A canonical induction variable
82 /// starts at zero and steps by one on each iteration.
83 Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
84 assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
85 "Can only insert integer or floating point induction variables!");
86 SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
87 SCEVUnknown::getIntegerSCEV(1, Ty), L);
88 return expand(H);
89 }
90
91 /// addInsertedValue - Remember the specified instruction as being the
92 /// canonical form for the specified SCEV.
93 void addInsertedValue(Instruction *I, SCEV *S) {
94 InsertedExpressions[S] = (Value*)I;
95 InsertedInstructions.insert(I);
96 }
97
98 /// expandCodeFor - Insert code to directly compute the specified SCEV
99 /// expression into the program. The inserted code is inserted into the
100 /// specified block.
101 ///
102 /// If a particular value sign is required, a type may be specified for the
103 /// result.
104 Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
105 // Expand the code for this SCEV.
106 this->InsertPt = IP;
107 return expandInTy(SH, Ty);
108 }
109
110 protected:
111 Value *expand(SCEV *S) {
112 // Check to see if we already expanded this.
113 std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
114 if (I != InsertedExpressions.end())
115 return I->second;
116
117 Value *V = visit(S);
118 InsertedExpressions[S] = V;
119 return V;
120 }
121
122 Value *expandInTy(SCEV *S, const Type *Ty) {
123 Value *V = expand(S);
124 if (Ty && V->getType() != Ty) {
125 // FIXME: keep track of the cast instruction.
126 if (Constant *C = dyn_cast<Constant>(V))
127 return ConstantExpr::getCast(C, Ty);
128 else if (Instruction *I = dyn_cast<Instruction>(V)) {
129 // Check to see if there is already a cast. If there is, use it.
130 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
131 UI != E; ++UI) {
132 if ((*UI)->getType() == Ty)
133 if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
134 BasicBlock::iterator It = I; ++It;
135 while (isa<PHINode>(It)) ++It;
136 if (It != BasicBlock::iterator(CI)) {
137 // Splice the cast immediately after the operand in question.
138 I->getParent()->getInstList().splice(It,
139 CI->getParent()->getInstList(),
140 CI);
141 }
142 return CI;
143 }
144 }
145 BasicBlock::iterator IP = I; ++IP;
146 if (InvokeInst *II = dyn_cast<InvokeInst>(I))
147 IP = II->getNormalDest()->begin();
148 while (isa<PHINode>(IP)) ++IP;
149 return new CastInst(V, Ty, V->getName(), IP);
150 } else {
151 // FIXME: check to see if there is already a cast!
152 return new CastInst(V, Ty, V->getName(), InsertPt);
153 }
154 }
155 return V;
156 }
157
158 Value *visitConstant(SCEVConstant *S) {
159 return S->getValue();
160 }
161
162 Value *visitTruncateExpr(SCEVTruncateExpr *S) {
163 Value *V = expand(S->getOperand());
164 return new CastInst(V, S->getType(), "tmp.", InsertPt);
165 }
166
167 Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
Chris Lattner2b994c72004-06-19 18:15:50 +0000168 Value *V = expandInTy(S->getOperand(),S->getType()->getUnsignedVersion());
Chris Lattner4a7553e2004-04-23 21:29:48 +0000169 return new CastInst(V, S->getType(), "tmp.", InsertPt);
170 }
171
172 Value *visitAddExpr(SCEVAddExpr *S) {
173 const Type *Ty = S->getType();
174 Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
175
176 // Emit a bunch of add instructions
177 for (int i = S->getNumOperands()-2; i >= 0; --i)
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000178 V = BinaryOperator::createAdd(V, expandInTy(S->getOperand(i), Ty),
179 "tmp.", InsertPt);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000180 return V;
181 }
182
183 Value *visitMulExpr(SCEVMulExpr *S);
184
185 Value *visitUDivExpr(SCEVUDivExpr *S) {
186 const Type *Ty = S->getType();
187 Value *LHS = expandInTy(S->getLHS(), Ty);
188 Value *RHS = expandInTy(S->getRHS(), Ty);
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000189 return BinaryOperator::createDiv(LHS, RHS, "tmp.", InsertPt);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000190 }
191
192 Value *visitAddRecExpr(SCEVAddRecExpr *S);
193
194 Value *visitUnknown(SCEVUnknown *S) {
195 return S->getValue();
196 }
197 };
198}
199
200Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
201 const Type *Ty = S->getType();
202 int FirstOp = 0; // Set if we should emit a subtract.
203 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
204 if (SC->getValue()->isAllOnesValue())
205 FirstOp = 1;
206
207 int i = S->getNumOperands()-2;
208 Value *V = expandInTy(S->getOperand(i+1), Ty);
209
210 // Emit a bunch of multiply instructions
211 for (; i >= FirstOp; --i)
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000212 V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
213 "tmp.", InsertPt);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000214 // -1 * ... ---> 0 - ...
215 if (FirstOp == 1)
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000216 V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000217 return V;
218}
219
220Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
221 const Type *Ty = S->getType();
222 const Loop *L = S->getLoop();
223 // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
224 assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
225
226 // {X,+,F} --> X + {0,+,F}
227 if (!isa<SCEVConstant>(S->getStart()) ||
228 !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
229 Value *Start = expandInTy(S->getStart(), Ty);
230 std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
231 NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
232 Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
233
234 // FIXME: look for an existing add to use.
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000235 return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000236 }
237
238 // {0,+,1} --> Insert a canonical induction variable into the loop!
239 if (S->getNumOperands() == 2 &&
240 S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
241 // Create and insert the PHI node for the induction variable in the
242 // specified loop.
243 BasicBlock *Header = L->getHeader();
244 PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
245 PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
246
247 pred_iterator HPI = pred_begin(Header);
248 assert(HPI != pred_end(Header) && "Loop with zero preds???");
249 if (!L->contains(*HPI)) ++HPI;
250 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
251 "No backedge in loop?");
252
253 // Insert a unit add instruction right before the terminator corresponding
254 // to the back-edge.
255 Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
256 : ConstantInt::get(Ty, 1);
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000257 Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
258 (*HPI)->getTerminator());
Chris Lattner4a7553e2004-04-23 21:29:48 +0000259
260 pred_iterator PI = pred_begin(Header);
261 if (*PI == L->getLoopPreheader())
262 ++PI;
263 PN->addIncoming(Add, *PI);
264 return PN;
265 }
266
267 // Get the canonical induction variable I for this loop.
268 Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
269
270 if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
271 Value *F = expandInTy(S->getOperand(1), Ty);
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000272 return BinaryOperator::createMul(I, F, "tmp.", InsertPt);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000273 }
274
275 // If this is a chain of recurrences, turn it into a closed form, using the
276 // folders, then expandCodeFor the closed form. This allows the folders to
277 // simplify the expression without having to build a bunch of special code
278 // into this folder.
279 SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
280
281 SCEVHandle V = S->evaluateAtIteration(IH);
282 //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
283
284 return expandInTy(V, Ty);
285}
286
287
288namespace {
Chris Lattnera92f6962002-10-01 22:38:41 +0000289 Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
Chris Lattner40bf8b42004-04-02 20:24:31 +0000290 Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
Chris Lattner3adf51d2003-09-10 05:24:46 +0000291 Statistic<> NumInserted("indvars", "Number of canonical indvars added");
Chris Lattner40bf8b42004-04-02 20:24:31 +0000292 Statistic<> NumReplaced("indvars", "Number of exit values replaced");
293 Statistic<> NumLFTR ("indvars", "Number of loop exit tests replaced");
Chris Lattner3324e712003-12-22 03:58:44 +0000294
295 class IndVarSimplify : public FunctionPass {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000296 LoopInfo *LI;
297 ScalarEvolution *SE;
Chris Lattner15cad752003-12-23 07:47:09 +0000298 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +0000299 public:
300 virtual bool runOnFunction(Function &) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000301 LI = &getAnalysis<LoopInfo>();
302 SE = &getAnalysis<ScalarEvolution>();
Chris Lattner15cad752003-12-23 07:47:09 +0000303 Changed = false;
304
Chris Lattner3324e712003-12-22 03:58:44 +0000305 // Induction Variables live in the header nodes of loops
Chris Lattner40bf8b42004-04-02 20:24:31 +0000306 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Chris Lattner329c1c62004-01-08 00:09:44 +0000307 runOnLoop(*I);
Chris Lattner3324e712003-12-22 03:58:44 +0000308 return Changed;
309 }
310
Chris Lattner3324e712003-12-22 03:58:44 +0000311 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner3324e712003-12-22 03:58:44 +0000312 AU.addRequiredID(LoopSimplifyID);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000313 AU.addRequired<ScalarEvolution>();
314 AU.addRequired<LoopInfo>();
Chris Lattner3324e712003-12-22 03:58:44 +0000315 AU.addPreservedID(LoopSimplifyID);
316 AU.setPreservesCFG();
317 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000318 private:
319 void runOnLoop(Loop *L);
320 void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
321 std::set<Instruction*> &DeadInsts);
322 void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
Chris Lattner4a7553e2004-04-23 21:29:48 +0000323 SCEVExpander &RW);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000324 void RewriteLoopExitValues(Loop *L);
325
326 void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
Chris Lattner3324e712003-12-22 03:58:44 +0000327 };
328 RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
Chris Lattner5e761402002-09-10 05:24:05 +0000329}
Chris Lattner394437f2001-12-04 04:32:29 +0000330
Chris Lattner3324e712003-12-22 03:58:44 +0000331Pass *llvm::createIndVarSimplifyPass() {
332 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000333}
334
Chris Lattner40bf8b42004-04-02 20:24:31 +0000335/// DeleteTriviallyDeadInstructions - If any of the instructions is the
336/// specified set are trivially dead, delete them and see if this makes any of
337/// their operands subsequently dead.
338void IndVarSimplify::
339DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
340 while (!Insts.empty()) {
341 Instruction *I = *Insts.begin();
342 Insts.erase(Insts.begin());
343 if (isInstructionTriviallyDead(I)) {
344 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
345 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
346 Insts.insert(U);
347 SE->deleteInstructionFromRecords(I);
348 I->getParent()->getInstList().erase(I);
349 Changed = true;
350 }
351 }
352}
353
354
355/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
356/// recurrence. If so, change it into an integer recurrence, permitting
357/// analysis by the SCEV routines.
358void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
359 BasicBlock *Preheader,
360 std::set<Instruction*> &DeadInsts) {
361 assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
362 unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
363 unsigned BackedgeIdx = PreheaderIdx^1;
364 if (GetElementPtrInst *GEPI =
365 dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
366 if (GEPI->getOperand(0) == PN) {
367 assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
368
369 // Okay, we found a pointer recurrence. Transform this pointer
370 // recurrence into an integer recurrence. Compute the value that gets
371 // added to the pointer at every iteration.
372 Value *AddedVal = GEPI->getOperand(1);
373
374 // Insert a new integer PHI node into the top of the block.
375 PHINode *NewPhi = new PHINode(AddedVal->getType(),
376 PN->getName()+".rec", PN);
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000377 NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
378
Chris Lattner40bf8b42004-04-02 20:24:31 +0000379 // Create the new add instruction.
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000380 Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
381 GEPI->getName()+".rec", GEPI);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000382 NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
383
384 // Update the existing GEP to use the recurrence.
385 GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
386
387 // Update the GEP to use the new recurrence we just inserted.
388 GEPI->setOperand(1, NewAdd);
389
390 // Finally, if there are any other users of the PHI node, we must
391 // insert a new GEP instruction that uses the pre-incremented version
392 // of the induction amount.
393 if (!PN->use_empty()) {
394 BasicBlock::iterator InsertPos = PN; ++InsertPos;
395 while (isa<PHINode>(InsertPos)) ++InsertPos;
396 std::string Name = PN->getName(); PN->setName("");
397 Value *PreInc =
398 new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
399 std::vector<Value*>(1, NewPhi), Name,
400 InsertPos);
401 PN->replaceAllUsesWith(PreInc);
402 }
403
404 // Delete the old PHI for sure, and the GEP if its otherwise unused.
405 DeadInsts.insert(PN);
406
407 ++NumPointer;
408 Changed = true;
409 }
410}
411
412/// LinearFunctionTestReplace - This method rewrites the exit condition of the
Chris Lattner59fdaee2004-04-15 15:21:43 +0000413/// loop to be a canonical != comparison against the incremented loop induction
414/// variable. This pass is able to rewrite the exit tests of any loop where the
415/// SCEV analysis can determine a loop-invariant trip count of the loop, which
416/// is actually a much broader range than just linear tests.
Chris Lattner40bf8b42004-04-02 20:24:31 +0000417void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
Chris Lattner4a7553e2004-04-23 21:29:48 +0000418 SCEVExpander &RW) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000419 // Find the exit block for the loop. We can currently only handle loops with
420 // a single exit.
Chris Lattnerf1ab4b42004-04-18 22:14:10 +0000421 std::vector<BasicBlock*> ExitBlocks;
422 L->getExitBlocks(ExitBlocks);
423 if (ExitBlocks.size() != 1) return;
424 BasicBlock *ExitBlock = ExitBlocks[0];
Chris Lattner40bf8b42004-04-02 20:24:31 +0000425
426 // Make sure there is only one predecessor block in the loop.
427 BasicBlock *ExitingBlock = 0;
428 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
429 PI != PE; ++PI)
430 if (L->contains(*PI)) {
431 if (ExitingBlock == 0)
432 ExitingBlock = *PI;
433 else
434 return; // Multiple exits from loop to this block.
435 }
436 assert(ExitingBlock && "Loop info is broken");
437
438 if (!isa<BranchInst>(ExitingBlock->getTerminator()))
439 return; // Can't rewrite non-branch yet
440 BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
441 assert(BI->isConditional() && "Must be conditional to be part of loop!");
442
443 std::set<Instruction*> InstructionsToDelete;
444 if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
445 InstructionsToDelete.insert(Cond);
446
Chris Lattnerd2440572004-04-15 20:26:22 +0000447 // If the exiting block is not the same as the backedge block, we must compare
448 // against the preincremented value, otherwise we prefer to compare against
449 // the post-incremented value.
450 BasicBlock *Header = L->getHeader();
451 pred_iterator HPI = pred_begin(Header);
452 assert(HPI != pred_end(Header) && "Loop with zero preds???");
453 if (!L->contains(*HPI)) ++HPI;
454 assert(HPI != pred_end(Header) && L->contains(*HPI) &&
455 "No backedge in loop?");
Chris Lattner59fdaee2004-04-15 15:21:43 +0000456
Chris Lattnerd2440572004-04-15 20:26:22 +0000457 SCEVHandle TripCount = IterationCount;
458 Value *IndVar;
459 if (*HPI == ExitingBlock) {
460 // The IterationCount expression contains the number of times that the
461 // backedge actually branches to the loop header. This is one less than the
462 // number of times the loop executes, so add one to it.
463 Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
464 TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
465 IndVar = L->getCanonicalInductionVariableIncrement();
466 } else {
467 // We have to use the preincremented value...
468 IndVar = L->getCanonicalInductionVariable();
469 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000470
Chris Lattner40bf8b42004-04-02 20:24:31 +0000471 // Expand the code for the iteration count into the preheader of the loop.
472 BasicBlock *Preheader = L->getLoopPreheader();
Chris Lattner4a7553e2004-04-23 21:29:48 +0000473 Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
Chris Lattner40bf8b42004-04-02 20:24:31 +0000474 IndVar->getType());
475
476 // Insert a new setne or seteq instruction before the branch.
477 Instruction::BinaryOps Opcode;
478 if (L->contains(BI->getSuccessor(0)))
479 Opcode = Instruction::SetNE;
480 else
481 Opcode = Instruction::SetEQ;
482
483 Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
484 BI->setCondition(Cond);
485 ++NumLFTR;
486 Changed = true;
487
488 DeleteTriviallyDeadInstructions(InstructionsToDelete);
489}
490
491
492/// RewriteLoopExitValues - Check to see if this loop has a computable
493/// loop-invariant execution count. If so, this means that we can compute the
494/// final value of any expressions that are recurrent in the loop, and
495/// substitute the exit values from the loop into any instructions outside of
496/// the loop that use the final values of the current expressions.
497void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
498 BasicBlock *Preheader = L->getLoopPreheader();
499
500 // Scan all of the instructions in the loop, looking at those that have
501 // extra-loop users and which are recurrences.
Chris Lattner4a7553e2004-04-23 21:29:48 +0000502 SCEVExpander Rewriter(*SE, *LI);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000503
504 // We insert the code into the preheader of the loop if the loop contains
505 // multiple exit blocks, or in the exit block if there is exactly one.
506 BasicBlock *BlockToInsertInto;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +0000507 std::vector<BasicBlock*> ExitBlocks;
508 L->getExitBlocks(ExitBlocks);
509 if (ExitBlocks.size() == 1)
510 BlockToInsertInto = ExitBlocks[0];
Chris Lattner40bf8b42004-04-02 20:24:31 +0000511 else
512 BlockToInsertInto = Preheader;
513 BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
514 while (isa<PHINode>(InsertPt)) ++InsertPt;
515
Chris Lattner20aa0982004-04-17 18:44:09 +0000516 bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
517
Chris Lattner40bf8b42004-04-02 20:24:31 +0000518 std::set<Instruction*> InstructionsToDelete;
519
520 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
521 if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
522 BasicBlock *BB = L->getBlocks()[i];
523 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
524 if (I->getType()->isInteger()) { // Is an integer instruction
525 SCEVHandle SH = SE->getSCEV(I);
Chris Lattner20aa0982004-04-17 18:44:09 +0000526 if (SH->hasComputableLoopEvolution(L) || // Varies predictably
527 HasConstantItCount) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000528 // Find out if this predictably varying value is actually used
529 // outside of the loop. "extra" as opposed to "intra".
530 std::vector<User*> ExtraLoopUsers;
531 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
532 UI != E; ++UI)
533 if (!L->contains(cast<Instruction>(*UI)->getParent()))
534 ExtraLoopUsers.push_back(*UI);
535 if (!ExtraLoopUsers.empty()) {
536 // Okay, this instruction has a user outside of the current loop
537 // and varies predictably in this loop. Evaluate the value it
538 // contains when the loop exits, and insert code for it.
Chris Lattner20aa0982004-04-17 18:44:09 +0000539 SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000540 if (!isa<SCEVCouldNotCompute>(ExitValue)) {
541 Changed = true;
542 ++NumReplaced;
Chris Lattner4a7553e2004-04-23 21:29:48 +0000543 Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
Chris Lattner40bf8b42004-04-02 20:24:31 +0000544 I->getType());
545
546 // Rewrite any users of the computed value outside of the loop
547 // with the newly computed value.
548 for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
549 ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
550
551 // If this instruction is dead now, schedule it to be removed.
552 if (I->use_empty())
553 InstructionsToDelete.insert(I);
554 }
555 }
556 }
557 }
558 }
559
560 DeleteTriviallyDeadInstructions(InstructionsToDelete);
561}
562
563
564void IndVarSimplify::runOnLoop(Loop *L) {
565 // First step. Check to see if there are any trivial GEP pointer recurrences.
566 // If there are, change them into integer recurrences, permitting analysis by
567 // the SCEV routines.
568 //
569 BasicBlock *Header = L->getHeader();
570 BasicBlock *Preheader = L->getLoopPreheader();
571
572 std::set<Instruction*> DeadInsts;
573 for (BasicBlock::iterator I = Header->begin();
574 PHINode *PN = dyn_cast<PHINode>(I); ++I)
575 if (isa<PointerType>(PN->getType()))
576 EliminatePointerRecurrence(PN, Preheader, DeadInsts);
577
578 if (!DeadInsts.empty())
579 DeleteTriviallyDeadInstructions(DeadInsts);
580
581
582 // Next, transform all loops nesting inside of this loop.
583 for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
Chris Lattner329c1c62004-01-08 00:09:44 +0000584 runOnLoop(*I);
Chris Lattner3324e712003-12-22 03:58:44 +0000585
Chris Lattner40bf8b42004-04-02 20:24:31 +0000586 // Check to see if this loop has a computable loop-invariant execution count.
587 // If so, this means that we can compute the final value of any expressions
588 // that are recurrent in the loop, and substitute the exit values from the
589 // loop into any instructions outside of the loop that use the final values of
590 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +0000591 //
Chris Lattner40bf8b42004-04-02 20:24:31 +0000592 SCEVHandle IterationCount = SE->getIterationCount(L);
593 if (!isa<SCEVCouldNotCompute>(IterationCount))
594 RewriteLoopExitValues(L);
Chris Lattner6148c022001-12-03 17:28:42 +0000595
Chris Lattner40bf8b42004-04-02 20:24:31 +0000596 // Next, analyze all of the induction variables in the loop, canonicalizing
597 // auxillary induction variables.
598 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
599
600 for (BasicBlock::iterator I = Header->begin();
601 PHINode *PN = dyn_cast<PHINode>(I); ++I)
602 if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
603 SCEVHandle SCEV = SE->getSCEV(PN);
604 if (SCEV->hasComputableLoopEvolution(L))
605 if (SE->shouldSubstituteIndVar(SCEV)) // HACK!
606 IndVars.push_back(std::make_pair(PN, SCEV));
607 }
608
609 // If there are no induction variables in the loop, there is nothing more to
610 // do.
Chris Lattnerf50af082004-04-17 18:08:33 +0000611 if (IndVars.empty()) {
612 // Actually, if we know how many times the loop iterates, lets insert a
613 // canonical induction variable to help subsequent passes.
614 if (!isa<SCEVCouldNotCompute>(IterationCount)) {
Chris Lattner4a7553e2004-04-23 21:29:48 +0000615 SCEVExpander Rewriter(*SE, *LI);
616 Rewriter.getOrInsertCanonicalInductionVariable(L,
Chris Lattnerf50af082004-04-17 18:08:33 +0000617 IterationCount->getType());
618 LinearFunctionTestReplace(L, IterationCount, Rewriter);
619 }
620 return;
621 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000622
623 // Compute the type of the largest recurrence expression.
Chris Lattner6148c022001-12-03 17:28:42 +0000624 //
Chris Lattner40bf8b42004-04-02 20:24:31 +0000625 const Type *LargestType = IndVars[0].first->getType();
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000626 bool DifferingSizes = false;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000627 for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
628 const Type *Ty = IndVars[i].first->getType();
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000629 DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000630 if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
631 LargestType = Ty;
Chris Lattner6148c022001-12-03 17:28:42 +0000632 }
633
Chris Lattner40bf8b42004-04-02 20:24:31 +0000634 // Create a rewriter object which we'll use to transform the code with.
Chris Lattner4a7553e2004-04-23 21:29:48 +0000635 SCEVExpander Rewriter(*SE, *LI);
Chris Lattner15cad752003-12-23 07:47:09 +0000636
Chris Lattner40bf8b42004-04-02 20:24:31 +0000637 // Now that we know the largest of of the induction variables in this loop,
638 // insert a canonical induction variable of the largest size.
Chris Lattner006118f2004-04-16 06:03:17 +0000639 LargestType = LargestType->getUnsignedVersion();
Chris Lattner4a7553e2004-04-23 21:29:48 +0000640 Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000641 ++NumInserted;
642 Changed = true;
Chris Lattner15cad752003-12-23 07:47:09 +0000643
Chris Lattner40bf8b42004-04-02 20:24:31 +0000644 if (!isa<SCEVCouldNotCompute>(IterationCount))
Chris Lattner59fdaee2004-04-15 15:21:43 +0000645 LinearFunctionTestReplace(L, IterationCount, Rewriter);
Chris Lattner15cad752003-12-23 07:47:09 +0000646
Chris Lattner40bf8b42004-04-02 20:24:31 +0000647 // Now that we have a canonical induction variable, we can rewrite any
648 // recurrences in terms of the induction variable. Start with the auxillary
649 // induction variables, and recursively rewrite any of their uses.
650 BasicBlock::iterator InsertPt = Header->begin();
651 while (isa<PHINode>(InsertPt)) ++InsertPt;
Chris Lattner6148c022001-12-03 17:28:42 +0000652
Chris Lattner5d461d22004-04-21 22:22:01 +0000653 // If there were induction variables of other sizes, cast the primary
654 // induction variable to the right size for them, avoiding the need for the
655 // code evaluation methods to insert induction variables of different sizes.
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000656 if (DifferingSizes) {
657 bool InsertedSizes[17] = { false };
658 InsertedSizes[LargestType->getPrimitiveSize()] = true;
659 for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
660 if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
661 PHINode *PN = IndVars[i].first;
662 InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
663 Instruction *New = new CastInst(IndVar,
664 PN->getType()->getUnsignedVersion(),
665 "indvar", InsertPt);
666 Rewriter.addInsertedValue(New, SE->getSCEV(New));
667 }
668 }
669
670 // If there were induction variables of other sizes, cast the primary
671 // induction variable to the right size for them, avoiding the need for the
672 // code evaluation methods to insert induction variables of different sizes.
Chris Lattner5d461d22004-04-21 22:22:01 +0000673 std::map<unsigned, Value*> InsertedSizes;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000674 while (!IndVars.empty()) {
675 PHINode *PN = IndVars.back().first;
Chris Lattner4a7553e2004-04-23 21:29:48 +0000676 Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000677 PN->getType());
678 std::string Name = PN->getName();
679 PN->setName("");
680 NewVal->setName(Name);
Chris Lattner5d461d22004-04-21 22:22:01 +0000681
Chris Lattner40bf8b42004-04-02 20:24:31 +0000682 // Replace the old PHI Node with the inserted computation.
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000683 PN->replaceAllUsesWith(NewVal);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000684 DeadInsts.insert(PN);
685 IndVars.pop_back();
686 ++NumRemoved;
Chris Lattner4753bf22001-12-05 19:41:33 +0000687 Changed = true;
Chris Lattner394437f2001-12-04 04:32:29 +0000688 }
689
Chris Lattnerb4782d12004-04-22 15:12:36 +0000690#if 0
Chris Lattner1363e852004-04-21 23:36:08 +0000691 // Now replace all derived expressions in the loop body with simpler
692 // expressions.
Chris Lattner40bf8b42004-04-02 20:24:31 +0000693 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
694 if (LI->getLoopFor(L->getBlocks()[i]) == L) { // Not in a subloop...
695 BasicBlock *BB = L->getBlocks()[i];
696 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
697 if (I->getType()->isInteger() && // Is an integer instruction
Chris Lattner1363e852004-04-21 23:36:08 +0000698 !I->use_empty() &&
Chris Lattner40bf8b42004-04-02 20:24:31 +0000699 !Rewriter.isInsertedInstruction(I)) {
700 SCEVHandle SH = SE->getSCEV(I);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000701 Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
Chris Lattner1363e852004-04-21 23:36:08 +0000702 if (V != I) {
703 if (isa<Instruction>(V)) {
704 std::string Name = I->getName();
705 I->setName("");
706 V->setName(Name);
707 }
708 I->replaceAllUsesWith(V);
709 DeadInsts.insert(I);
710 ++NumRemoved;
711 Changed = true;
712 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000713 }
Chris Lattner394437f2001-12-04 04:32:29 +0000714 }
Chris Lattnerb4782d12004-04-22 15:12:36 +0000715#endif
Chris Lattner1363e852004-04-21 23:36:08 +0000716
Chris Lattner1363e852004-04-21 23:36:08 +0000717 DeleteTriviallyDeadInstructions(DeadInsts);
Chris Lattner6148c022001-12-03 17:28:42 +0000718}