blob: 56786b8e7bf094e09537100fa0039eac84a477a4 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
13//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
Duncan Sandscf7ecaa2007-09-11 14:35:41 +000042#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/GetElementPtrTypeIterator.h"
50#include "llvm/Support/InstVisitor.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/ADT/DenseMap.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/STLExtras.h"
59#include <algorithm>
60#include <sstream>
61using namespace llvm;
62using namespace llvm::PatternMatch;
63
64STATISTIC(NumCombined , "Number of insts combined");
65STATISTIC(NumConstProp, "Number of constant folds");
66STATISTIC(NumDeadInst , "Number of dead inst eliminated");
67STATISTIC(NumDeadStore, "Number of dead stores eliminated");
68STATISTIC(NumSunkInst , "Number of instructions sunk");
69
70namespace {
71 class VISIBILITY_HIDDEN InstCombiner
72 : public FunctionPass,
73 public InstVisitor<InstCombiner, Instruction*> {
74 // Worklist of all of the instructions that need to be simplified.
75 std::vector<Instruction*> Worklist;
76 DenseMap<Instruction*, unsigned> WorklistMap;
77 TargetData *TD;
78 bool MustPreserveLCSSA;
79 public:
80 static char ID; // Pass identification, replacement for typeid
81 InstCombiner() : FunctionPass((intptr_t)&ID) {}
82
83 /// AddToWorkList - Add the specified instruction to the worklist if it
84 /// isn't already in it.
85 void AddToWorkList(Instruction *I) {
86 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
87 Worklist.push_back(I);
88 }
89
90 // RemoveFromWorkList - remove I from the worklist if it exists.
91 void RemoveFromWorkList(Instruction *I) {
92 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
93 if (It == WorklistMap.end()) return; // Not in worklist.
94
95 // Don't bother moving everything down, just null out the slot.
96 Worklist[It->second] = 0;
97
98 WorklistMap.erase(It);
99 }
100
101 Instruction *RemoveOneFromWorkList() {
102 Instruction *I = Worklist.back();
103 Worklist.pop_back();
104 WorklistMap.erase(I);
105 return I;
106 }
107
108
109 /// AddUsersToWorkList - When an instruction is simplified, add all users of
110 /// the instruction to the work lists because they might get more simplified
111 /// now.
112 ///
113 void AddUsersToWorkList(Value &I) {
114 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
115 UI != UE; ++UI)
116 AddToWorkList(cast<Instruction>(*UI));
117 }
118
119 /// AddUsesToWorkList - When an instruction is simplified, add operands to
120 /// the work lists because they might get more simplified now.
121 ///
122 void AddUsesToWorkList(Instruction &I) {
123 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
124 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
125 AddToWorkList(Op);
126 }
127
128 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
129 /// dead. Add all of its operands to the worklist, turning them into
130 /// undef's to reduce the number of uses of those instructions.
131 ///
132 /// Return the specified operand before it is turned into an undef.
133 ///
134 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
135 Value *R = I.getOperand(op);
136
137 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
138 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
139 AddToWorkList(Op);
140 // Set the operand to undef to drop the use.
141 I.setOperand(i, UndefValue::get(Op->getType()));
142 }
143
144 return R;
145 }
146
147 public:
148 virtual bool runOnFunction(Function &F);
149
150 bool DoOneIteration(Function &F, unsigned ItNum);
151
152 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
153 AU.addRequired<TargetData>();
154 AU.addPreservedID(LCSSAID);
155 AU.setPreservesCFG();
156 }
157
158 TargetData &getTargetData() const { return *TD; }
159
160 // Visitation implementation - Implement instruction combining for different
161 // instruction types. The semantics are as follows:
162 // Return Value:
163 // null - No change was made
164 // I - Change was made, I is still valid, I may be dead though
165 // otherwise - Change was made, replace I with returned instruction
166 //
167 Instruction *visitAdd(BinaryOperator &I);
168 Instruction *visitSub(BinaryOperator &I);
169 Instruction *visitMul(BinaryOperator &I);
170 Instruction *visitURem(BinaryOperator &I);
171 Instruction *visitSRem(BinaryOperator &I);
172 Instruction *visitFRem(BinaryOperator &I);
173 Instruction *commonRemTransforms(BinaryOperator &I);
174 Instruction *commonIRemTransforms(BinaryOperator &I);
175 Instruction *commonDivTransforms(BinaryOperator &I);
176 Instruction *commonIDivTransforms(BinaryOperator &I);
177 Instruction *visitUDiv(BinaryOperator &I);
178 Instruction *visitSDiv(BinaryOperator &I);
179 Instruction *visitFDiv(BinaryOperator &I);
180 Instruction *visitAnd(BinaryOperator &I);
181 Instruction *visitOr (BinaryOperator &I);
182 Instruction *visitXor(BinaryOperator &I);
183 Instruction *visitShl(BinaryOperator &I);
184 Instruction *visitAShr(BinaryOperator &I);
185 Instruction *visitLShr(BinaryOperator &I);
186 Instruction *commonShiftTransforms(BinaryOperator &I);
187 Instruction *visitFCmpInst(FCmpInst &I);
188 Instruction *visitICmpInst(ICmpInst &I);
189 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
190 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
191 Instruction *LHS,
192 ConstantInt *RHS);
193 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
194 ConstantInt *DivRHS);
195
196 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
197 ICmpInst::Predicate Cond, Instruction &I);
198 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
199 BinaryOperator &I);
200 Instruction *commonCastTransforms(CastInst &CI);
201 Instruction *commonIntCastTransforms(CastInst &CI);
202 Instruction *commonPointerCastTransforms(CastInst &CI);
203 Instruction *visitTrunc(TruncInst &CI);
204 Instruction *visitZExt(ZExtInst &CI);
205 Instruction *visitSExt(SExtInst &CI);
206 Instruction *visitFPTrunc(CastInst &CI);
207 Instruction *visitFPExt(CastInst &CI);
208 Instruction *visitFPToUI(CastInst &CI);
209 Instruction *visitFPToSI(CastInst &CI);
210 Instruction *visitUIToFP(CastInst &CI);
211 Instruction *visitSIToFP(CastInst &CI);
212 Instruction *visitPtrToInt(CastInst &CI);
213 Instruction *visitIntToPtr(CastInst &CI);
214 Instruction *visitBitCast(BitCastInst &CI);
215 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
216 Instruction *FI);
217 Instruction *visitSelectInst(SelectInst &CI);
218 Instruction *visitCallInst(CallInst &CI);
219 Instruction *visitInvokeInst(InvokeInst &II);
220 Instruction *visitPHINode(PHINode &PN);
221 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
222 Instruction *visitAllocationInst(AllocationInst &AI);
223 Instruction *visitFreeInst(FreeInst &FI);
224 Instruction *visitLoadInst(LoadInst &LI);
225 Instruction *visitStoreInst(StoreInst &SI);
226 Instruction *visitBranchInst(BranchInst &BI);
227 Instruction *visitSwitchInst(SwitchInst &SI);
228 Instruction *visitInsertElementInst(InsertElementInst &IE);
229 Instruction *visitExtractElementInst(ExtractElementInst &EI);
230 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
231
232 // visitInstruction - Specify what to return for unhandled instructions...
233 Instruction *visitInstruction(Instruction &I) { return 0; }
234
235 private:
236 Instruction *visitCallSite(CallSite CS);
237 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000238 Instruction *transformCallThroughTrampoline(CallSite CS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239
240 public:
241 // InsertNewInstBefore - insert an instruction New before instruction Old
242 // in the program. Add the new instruction to the worklist.
243 //
244 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
245 assert(New && New->getParent() == 0 &&
246 "New instruction already inserted into a basic block!");
247 BasicBlock *BB = Old.getParent();
248 BB->getInstList().insert(&Old, New); // Insert inst
249 AddToWorkList(New);
250 return New;
251 }
252
253 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
254 /// This also adds the cast to the worklist. Finally, this returns the
255 /// cast.
256 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
257 Instruction &Pos) {
258 if (V->getType() == Ty) return V;
259
260 if (Constant *CV = dyn_cast<Constant>(V))
261 return ConstantExpr::getCast(opc, CV, Ty);
262
263 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
264 AddToWorkList(C);
265 return C;
266 }
267
268 // ReplaceInstUsesWith - This method is to be used when an instruction is
269 // found to be dead, replacable with another preexisting expression. Here
270 // we add all uses of I to the worklist, replace all uses of I with the new
271 // value, then return I, so that the inst combiner will know that I was
272 // modified.
273 //
274 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
275 AddUsersToWorkList(I); // Add all modified instrs to worklist
276 if (&I != V) {
277 I.replaceAllUsesWith(V);
278 return &I;
279 } else {
280 // If we are replacing the instruction with itself, this must be in a
281 // segment of unreachable code, so just clobber the instruction.
282 I.replaceAllUsesWith(UndefValue::get(I.getType()));
283 return &I;
284 }
285 }
286
287 // UpdateValueUsesWith - This method is to be used when an value is
288 // found to be replacable with another preexisting expression or was
289 // updated. Here we add all uses of I to the worklist, replace all uses of
290 // I with the new value (unless the instruction was just updated), then
291 // return true, so that the inst combiner will know that I was modified.
292 //
293 bool UpdateValueUsesWith(Value *Old, Value *New) {
294 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
295 if (Old != New)
296 Old->replaceAllUsesWith(New);
297 if (Instruction *I = dyn_cast<Instruction>(Old))
298 AddToWorkList(I);
299 if (Instruction *I = dyn_cast<Instruction>(New))
300 AddToWorkList(I);
301 return true;
302 }
303
304 // EraseInstFromFunction - When dealing with an instruction that has side
305 // effects or produces a void value, we can't rely on DCE to delete the
306 // instruction. Instead, visit methods should return the value returned by
307 // this function.
308 Instruction *EraseInstFromFunction(Instruction &I) {
309 assert(I.use_empty() && "Cannot erase instruction that is used!");
310 AddUsesToWorkList(I);
311 RemoveFromWorkList(&I);
312 I.eraseFromParent();
313 return 0; // Don't do anything with FI
314 }
315
316 private:
317 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
318 /// InsertBefore instruction. This is specialized a bit to avoid inserting
319 /// casts that are known to not do anything...
320 ///
321 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
322 Value *V, const Type *DestTy,
323 Instruction *InsertBefore);
324
325 /// SimplifyCommutative - This performs a few simplifications for
326 /// commutative operators.
327 bool SimplifyCommutative(BinaryOperator &I);
328
329 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
330 /// most-complex to least-complex order.
331 bool SimplifyCompare(CmpInst &I);
332
333 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
334 /// on the demanded bits.
335 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
336 APInt& KnownZero, APInt& KnownOne,
337 unsigned Depth = 0);
338
339 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
340 uint64_t &UndefElts, unsigned Depth = 0);
341
342 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
343 // PHI node as operand #0, see if we can fold the instruction into the PHI
344 // (which is only possible if all operands to the PHI are constants).
345 Instruction *FoldOpIntoPhi(Instruction &I);
346
347 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
348 // operator and they all are only used by the PHI, PHI together their
349 // inputs, and do the operation once, to the result of the PHI.
350 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
351 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
352
353
354 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
355 ConstantInt *AndRHS, BinaryOperator &TheAnd);
356
357 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
358 bool isSub, Instruction &I);
359 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
360 bool isSigned, bool Inside, Instruction &IB);
361 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
362 Instruction *MatchBSwap(BinaryOperator &I);
363 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
364
365 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
366 };
367
368 char InstCombiner::ID = 0;
369 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
370}
371
372// getComplexity: Assign a complexity or rank value to LLVM Values...
373// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
374static unsigned getComplexity(Value *V) {
375 if (isa<Instruction>(V)) {
376 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
377 return 3;
378 return 4;
379 }
380 if (isa<Argument>(V)) return 3;
381 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
382}
383
384// isOnlyUse - Return true if this instruction will be deleted if we stop using
385// it.
386static bool isOnlyUse(Value *V) {
387 return V->hasOneUse() || isa<Constant>(V);
388}
389
390// getPromotedType - Return the specified type promoted as it would be to pass
391// though a va_arg area...
392static const Type *getPromotedType(const Type *Ty) {
393 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
394 if (ITy->getBitWidth() < 32)
395 return Type::Int32Ty;
396 }
397 return Ty;
398}
399
400/// getBitCastOperand - If the specified operand is a CastInst or a constant
401/// expression bitcast, return the operand value, otherwise return null.
402static Value *getBitCastOperand(Value *V) {
403 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
404 return I->getOperand(0);
405 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
406 if (CE->getOpcode() == Instruction::BitCast)
407 return CE->getOperand(0);
408 return 0;
409}
410
411/// This function is a wrapper around CastInst::isEliminableCastPair. It
412/// simply extracts arguments and returns what that function returns.
413static Instruction::CastOps
414isEliminableCastPair(
415 const CastInst *CI, ///< The first cast instruction
416 unsigned opcode, ///< The opcode of the second cast instruction
417 const Type *DstTy, ///< The target type for the second cast instruction
418 TargetData *TD ///< The target data for pointer size
419) {
420
421 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
422 const Type *MidTy = CI->getType(); // B from above
423
424 // Get the opcodes of the two Cast instructions
425 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
426 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
427
428 return Instruction::CastOps(
429 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
430 DstTy, TD->getIntPtrType()));
431}
432
433/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
434/// in any code being generated. It does not require codegen if V is simple
435/// enough or if the cast can be folded into other casts.
436static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
437 const Type *Ty, TargetData *TD) {
438 if (V->getType() == Ty || isa<Constant>(V)) return false;
439
440 // If this is another cast that can be eliminated, it isn't codegen either.
441 if (const CastInst *CI = dyn_cast<CastInst>(V))
442 if (isEliminableCastPair(CI, opcode, Ty, TD))
443 return false;
444 return true;
445}
446
447/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
448/// InsertBefore instruction. This is specialized a bit to avoid inserting
449/// casts that are known to not do anything...
450///
451Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
452 Value *V, const Type *DestTy,
453 Instruction *InsertBefore) {
454 if (V->getType() == DestTy) return V;
455 if (Constant *C = dyn_cast<Constant>(V))
456 return ConstantExpr::getCast(opcode, C, DestTy);
457
458 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
459}
460
461// SimplifyCommutative - This performs a few simplifications for commutative
462// operators:
463//
464// 1. Order operands such that they are listed from right (least complex) to
465// left (most complex). This puts constants before unary operators before
466// binary operators.
467//
468// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
469// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
470//
471bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
472 bool Changed = false;
473 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
474 Changed = !I.swapOperands();
475
476 if (!I.isAssociative()) return Changed;
477 Instruction::BinaryOps Opcode = I.getOpcode();
478 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
479 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
480 if (isa<Constant>(I.getOperand(1))) {
481 Constant *Folded = ConstantExpr::get(I.getOpcode(),
482 cast<Constant>(I.getOperand(1)),
483 cast<Constant>(Op->getOperand(1)));
484 I.setOperand(0, Op->getOperand(0));
485 I.setOperand(1, Folded);
486 return true;
487 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
488 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
489 isOnlyUse(Op) && isOnlyUse(Op1)) {
490 Constant *C1 = cast<Constant>(Op->getOperand(1));
491 Constant *C2 = cast<Constant>(Op1->getOperand(1));
492
493 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
494 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
495 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
496 Op1->getOperand(0),
497 Op1->getName(), &I);
498 AddToWorkList(New);
499 I.setOperand(0, New);
500 I.setOperand(1, Folded);
501 return true;
502 }
503 }
504 return Changed;
505}
506
507/// SimplifyCompare - For a CmpInst this function just orders the operands
508/// so that theyare listed from right (least complex) to left (most complex).
509/// This puts constants before unary operators before binary operators.
510bool InstCombiner::SimplifyCompare(CmpInst &I) {
511 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
512 return false;
513 I.swapOperands();
514 // Compare instructions are not associative so there's nothing else we can do.
515 return true;
516}
517
518// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
519// if the LHS is a constant zero (which is the 'negate' form).
520//
521static inline Value *dyn_castNegVal(Value *V) {
522 if (BinaryOperator::isNeg(V))
523 return BinaryOperator::getNegArgument(V);
524
525 // Constants can be considered to be negated values if they can be folded.
526 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
527 return ConstantExpr::getNeg(C);
528 return 0;
529}
530
531static inline Value *dyn_castNotVal(Value *V) {
532 if (BinaryOperator::isNot(V))
533 return BinaryOperator::getNotArgument(V);
534
535 // Constants can be considered to be not'ed values...
536 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
537 return ConstantInt::get(~C->getValue());
538 return 0;
539}
540
541// dyn_castFoldableMul - If this value is a multiply that can be folded into
542// other computations (because it has a constant operand), return the
543// non-constant operand of the multiply, and set CST to point to the multiplier.
544// Otherwise, return null.
545//
546static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
547 if (V->hasOneUse() && V->getType()->isInteger())
548 if (Instruction *I = dyn_cast<Instruction>(V)) {
549 if (I->getOpcode() == Instruction::Mul)
550 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
551 return I->getOperand(0);
552 if (I->getOpcode() == Instruction::Shl)
553 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
554 // The multiplier is really 1 << CST.
555 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
556 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
557 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
558 return I->getOperand(0);
559 }
560 }
561 return 0;
562}
563
564/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
565/// expression, return it.
566static User *dyn_castGetElementPtr(Value *V) {
567 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
568 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
569 if (CE->getOpcode() == Instruction::GetElementPtr)
570 return cast<User>(V);
571 return false;
572}
573
574/// AddOne - Add one to a ConstantInt
575static ConstantInt *AddOne(ConstantInt *C) {
576 APInt Val(C->getValue());
577 return ConstantInt::get(++Val);
578}
579/// SubOne - Subtract one from a ConstantInt
580static ConstantInt *SubOne(ConstantInt *C) {
581 APInt Val(C->getValue());
582 return ConstantInt::get(--Val);
583}
584/// Add - Add two ConstantInts together
585static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
586 return ConstantInt::get(C1->getValue() + C2->getValue());
587}
588/// And - Bitwise AND two ConstantInts together
589static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
590 return ConstantInt::get(C1->getValue() & C2->getValue());
591}
592/// Subtract - Subtract one ConstantInt from another
593static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
594 return ConstantInt::get(C1->getValue() - C2->getValue());
595}
596/// Multiply - Multiply two ConstantInts together
597static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
598 return ConstantInt::get(C1->getValue() * C2->getValue());
599}
600
601/// ComputeMaskedBits - Determine which of the bits specified in Mask are
602/// known to be either zero or one and return them in the KnownZero/KnownOne
603/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
604/// processing.
605/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
606/// we cannot optimize based on the assumption that it is zero without changing
607/// it to be an explicit zero. If we don't change it to zero, other code could
608/// optimized based on the contradictory assumption that it is non-zero.
609/// Because instcombine aggressively folds operations with undef args anyway,
610/// this won't lose us code quality.
611static void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
612 APInt& KnownOne, unsigned Depth = 0) {
613 assert(V && "No Value?");
614 assert(Depth <= 6 && "Limit Search Depth");
615 uint32_t BitWidth = Mask.getBitWidth();
616 assert(cast<IntegerType>(V->getType())->getBitWidth() == BitWidth &&
617 KnownZero.getBitWidth() == BitWidth &&
618 KnownOne.getBitWidth() == BitWidth &&
619 "V, Mask, KnownOne and KnownZero should have same BitWidth");
620 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
621 // We know all of the bits for a constant!
622 KnownOne = CI->getValue() & Mask;
623 KnownZero = ~KnownOne & Mask;
624 return;
625 }
626
627 if (Depth == 6 || Mask == 0)
628 return; // Limit search depth.
629
630 Instruction *I = dyn_cast<Instruction>(V);
631 if (!I) return;
632
633 KnownZero.clear(); KnownOne.clear(); // Don't know anything.
634 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
635
636 switch (I->getOpcode()) {
637 case Instruction::And: {
638 // If either the LHS or the RHS are Zero, the result is zero.
639 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
640 APInt Mask2(Mask & ~KnownZero);
641 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
642 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
643 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
644
645 // Output known-1 bits are only known if set in both the LHS & RHS.
646 KnownOne &= KnownOne2;
647 // Output known-0 are known to be clear if zero in either the LHS | RHS.
648 KnownZero |= KnownZero2;
649 return;
650 }
651 case Instruction::Or: {
652 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
653 APInt Mask2(Mask & ~KnownOne);
654 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
655 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
656 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
657
658 // Output known-0 bits are only known if clear in both the LHS & RHS.
659 KnownZero &= KnownZero2;
660 // Output known-1 are known to be set if set in either the LHS | RHS.
661 KnownOne |= KnownOne2;
662 return;
663 }
664 case Instruction::Xor: {
665 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
666 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
667 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
668 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
669
670 // Output known-0 bits are known if clear or set in both the LHS & RHS.
671 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
672 // Output known-1 are known to be set if set in only one of the LHS, RHS.
673 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
674 KnownZero = KnownZeroOut;
675 return;
676 }
677 case Instruction::Select:
678 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
679 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
680 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
681 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
682
683 // Only known if known in both the LHS and RHS.
684 KnownOne &= KnownOne2;
685 KnownZero &= KnownZero2;
686 return;
687 case Instruction::FPTrunc:
688 case Instruction::FPExt:
689 case Instruction::FPToUI:
690 case Instruction::FPToSI:
691 case Instruction::SIToFP:
692 case Instruction::PtrToInt:
693 case Instruction::UIToFP:
694 case Instruction::IntToPtr:
695 return; // Can't work with floating point or pointers
696 case Instruction::Trunc: {
697 // All these have integer operands
698 uint32_t SrcBitWidth =
699 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
700 APInt MaskIn(Mask);
701 MaskIn.zext(SrcBitWidth);
702 KnownZero.zext(SrcBitWidth);
703 KnownOne.zext(SrcBitWidth);
704 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
705 KnownZero.trunc(BitWidth);
706 KnownOne.trunc(BitWidth);
707 return;
708 }
709 case Instruction::BitCast: {
710 const Type *SrcTy = I->getOperand(0)->getType();
711 if (SrcTy->isInteger()) {
712 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
713 return;
714 }
715 break;
716 }
717 case Instruction::ZExt: {
718 // Compute the bits in the result that are not present in the input.
719 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
720 uint32_t SrcBitWidth = SrcTy->getBitWidth();
721
722 APInt MaskIn(Mask);
723 MaskIn.trunc(SrcBitWidth);
724 KnownZero.trunc(SrcBitWidth);
725 KnownOne.trunc(SrcBitWidth);
726 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
727 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
728 // The top bits are known to be zero.
729 KnownZero.zext(BitWidth);
730 KnownOne.zext(BitWidth);
731 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
732 return;
733 }
734 case Instruction::SExt: {
735 // Compute the bits in the result that are not present in the input.
736 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
737 uint32_t SrcBitWidth = SrcTy->getBitWidth();
738
739 APInt MaskIn(Mask);
740 MaskIn.trunc(SrcBitWidth);
741 KnownZero.trunc(SrcBitWidth);
742 KnownOne.trunc(SrcBitWidth);
743 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
744 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
745 KnownZero.zext(BitWidth);
746 KnownOne.zext(BitWidth);
747
748 // If the sign bit of the input is known set or clear, then we know the
749 // top bits of the result.
750 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
751 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
752 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
753 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
754 return;
755 }
756 case Instruction::Shl:
757 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
758 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
759 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
760 APInt Mask2(Mask.lshr(ShiftAmt));
761 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
762 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
763 KnownZero <<= ShiftAmt;
764 KnownOne <<= ShiftAmt;
765 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
766 return;
767 }
768 break;
769 case Instruction::LShr:
770 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
771 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
772 // Compute the new bits that are at the top now.
773 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
774
775 // Unsigned shift right.
776 APInt Mask2(Mask.shl(ShiftAmt));
777 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
778 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
779 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
780 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
781 // high bits known zero.
782 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
783 return;
784 }
785 break;
786 case Instruction::AShr:
787 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
788 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
789 // Compute the new bits that are at the top now.
790 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
791
792 // Signed shift right.
793 APInt Mask2(Mask.shl(ShiftAmt));
794 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
795 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
796 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
797 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
798
799 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
800 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
801 KnownZero |= HighBits;
802 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
803 KnownOne |= HighBits;
804 return;
805 }
806 break;
807 }
808}
809
810/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
811/// this predicate to simplify operations downstream. Mask is known to be zero
812/// for bits that V cannot have.
813static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) {
814 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
815 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
816 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
817 return (KnownZero & Mask) == Mask;
818}
819
820/// ShrinkDemandedConstant - Check to see if the specified operand of the
821/// specified instruction is a constant integer. If so, check to see if there
822/// are any bits set in the constant that are not demanded. If so, shrink the
823/// constant and return true.
824static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
825 APInt Demanded) {
826 assert(I && "No instruction?");
827 assert(OpNo < I->getNumOperands() && "Operand index too large");
828
829 // If the operand is not a constant integer, nothing to do.
830 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
831 if (!OpC) return false;
832
833 // If there are no bits set that aren't demanded, nothing to do.
834 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
835 if ((~Demanded & OpC->getValue()) == 0)
836 return false;
837
838 // This instruction is producing bits that are not demanded. Shrink the RHS.
839 Demanded &= OpC->getValue();
840 I->setOperand(OpNo, ConstantInt::get(Demanded));
841 return true;
842}
843
844// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
845// set of known zero and one bits, compute the maximum and minimum values that
846// could have the specified known zero and known one bits, returning them in
847// min/max.
848static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
849 const APInt& KnownZero,
850 const APInt& KnownOne,
851 APInt& Min, APInt& Max) {
852 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
853 assert(KnownZero.getBitWidth() == BitWidth &&
854 KnownOne.getBitWidth() == BitWidth &&
855 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
856 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
857 APInt UnknownBits = ~(KnownZero|KnownOne);
858
859 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
860 // bit if it is unknown.
861 Min = KnownOne;
862 Max = KnownOne|UnknownBits;
863
864 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
865 Min.set(BitWidth-1);
866 Max.clear(BitWidth-1);
867 }
868}
869
870// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
871// a set of known zero and one bits, compute the maximum and minimum values that
872// could have the specified known zero and known one bits, returning them in
873// min/max.
874static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000875 const APInt &KnownZero,
876 const APInt &KnownOne,
877 APInt &Min, APInt &Max) {
878 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879 assert(KnownZero.getBitWidth() == BitWidth &&
880 KnownOne.getBitWidth() == BitWidth &&
881 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
882 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
883 APInt UnknownBits = ~(KnownZero|KnownOne);
884
885 // The minimum value is when the unknown bits are all zeros.
886 Min = KnownOne;
887 // The maximum value is when the unknown bits are all ones.
888 Max = KnownOne|UnknownBits;
889}
890
891/// SimplifyDemandedBits - This function attempts to replace V with a simpler
892/// value based on the demanded bits. When this function is called, it is known
893/// that only the bits set in DemandedMask of the result of V are ever used
894/// downstream. Consequently, depending on the mask and V, it may be possible
895/// to replace V with a constant or one of its operands. In such cases, this
896/// function does the replacement and returns true. In all other cases, it
897/// returns false after analyzing the expression and setting KnownOne and known
898/// to be one in the expression. KnownZero contains all the bits that are known
899/// to be zero in the expression. These are provided to potentially allow the
900/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
901/// the expression. KnownOne and KnownZero always follow the invariant that
902/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
903/// the bits in KnownOne and KnownZero may only be accurate for those bits set
904/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
905/// and KnownOne must all be the same.
906bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
907 APInt& KnownZero, APInt& KnownOne,
908 unsigned Depth) {
909 assert(V != 0 && "Null pointer of Value???");
910 assert(Depth <= 6 && "Limit Search Depth");
911 uint32_t BitWidth = DemandedMask.getBitWidth();
912 const IntegerType *VTy = cast<IntegerType>(V->getType());
913 assert(VTy->getBitWidth() == BitWidth &&
914 KnownZero.getBitWidth() == BitWidth &&
915 KnownOne.getBitWidth() == BitWidth &&
916 "Value *V, DemandedMask, KnownZero and KnownOne \
917 must have same BitWidth");
918 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
919 // We know all of the bits for a constant!
920 KnownOne = CI->getValue() & DemandedMask;
921 KnownZero = ~KnownOne & DemandedMask;
922 return false;
923 }
924
925 KnownZero.clear();
926 KnownOne.clear();
927 if (!V->hasOneUse()) { // Other users may use these bits.
928 if (Depth != 0) { // Not at the root.
929 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
930 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
931 return false;
932 }
933 // If this is the root being simplified, allow it to have multiple uses,
934 // just set the DemandedMask to all bits.
935 DemandedMask = APInt::getAllOnesValue(BitWidth);
936 } else if (DemandedMask == 0) { // Not demanding any bits from V.
937 if (V != UndefValue::get(VTy))
938 return UpdateValueUsesWith(V, UndefValue::get(VTy));
939 return false;
940 } else if (Depth == 6) { // Limit search depth.
941 return false;
942 }
943
944 Instruction *I = dyn_cast<Instruction>(V);
945 if (!I) return false; // Only analyze instructions.
946
947 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
948 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
949 switch (I->getOpcode()) {
950 default: break;
951 case Instruction::And:
952 // If either the LHS or the RHS are Zero, the result is zero.
953 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
954 RHSKnownZero, RHSKnownOne, Depth+1))
955 return true;
956 assert((RHSKnownZero & RHSKnownOne) == 0 &&
957 "Bits known to be one AND zero?");
958
959 // If something is known zero on the RHS, the bits aren't demanded on the
960 // LHS.
961 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
962 LHSKnownZero, LHSKnownOne, Depth+1))
963 return true;
964 assert((LHSKnownZero & LHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966
967 // If all of the demanded bits are known 1 on one side, return the other.
968 // These bits cannot contribute to the result of the 'and'.
969 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
970 (DemandedMask & ~LHSKnownZero))
971 return UpdateValueUsesWith(I, I->getOperand(0));
972 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
973 (DemandedMask & ~RHSKnownZero))
974 return UpdateValueUsesWith(I, I->getOperand(1));
975
976 // If all of the demanded bits in the inputs are known zeros, return zero.
977 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
978 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
979
980 // If the RHS is a constant, see if we can simplify it.
981 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
982 return UpdateValueUsesWith(I, I);
983
984 // Output known-1 bits are only known if set in both the LHS & RHS.
985 RHSKnownOne &= LHSKnownOne;
986 // Output known-0 are known to be clear if zero in either the LHS | RHS.
987 RHSKnownZero |= LHSKnownZero;
988 break;
989 case Instruction::Or:
990 // If either the LHS or the RHS are One, the result is One.
991 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
992 RHSKnownZero, RHSKnownOne, Depth+1))
993 return true;
994 assert((RHSKnownZero & RHSKnownOne) == 0 &&
995 "Bits known to be one AND zero?");
996 // If something is known one on the RHS, the bits aren't demanded on the
997 // LHS.
998 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
999 LHSKnownZero, LHSKnownOne, Depth+1))
1000 return true;
1001 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1002 "Bits known to be one AND zero?");
1003
1004 // If all of the demanded bits are known zero on one side, return the other.
1005 // These bits cannot contribute to the result of the 'or'.
1006 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1007 (DemandedMask & ~LHSKnownOne))
1008 return UpdateValueUsesWith(I, I->getOperand(0));
1009 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1010 (DemandedMask & ~RHSKnownOne))
1011 return UpdateValueUsesWith(I, I->getOperand(1));
1012
1013 // If all of the potentially set bits on one side are known to be set on
1014 // the other side, just use the 'other' side.
1015 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1016 (DemandedMask & (~RHSKnownZero)))
1017 return UpdateValueUsesWith(I, I->getOperand(0));
1018 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1019 (DemandedMask & (~LHSKnownZero)))
1020 return UpdateValueUsesWith(I, I->getOperand(1));
1021
1022 // If the RHS is a constant, see if we can simplify it.
1023 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1024 return UpdateValueUsesWith(I, I);
1025
1026 // Output known-0 bits are only known if clear in both the LHS & RHS.
1027 RHSKnownZero &= LHSKnownZero;
1028 // Output known-1 are known to be set if set in either the LHS | RHS.
1029 RHSKnownOne |= LHSKnownOne;
1030 break;
1031 case Instruction::Xor: {
1032 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1033 RHSKnownZero, RHSKnownOne, Depth+1))
1034 return true;
1035 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1036 "Bits known to be one AND zero?");
1037 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1038 LHSKnownZero, LHSKnownOne, Depth+1))
1039 return true;
1040 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1041 "Bits known to be one AND zero?");
1042
1043 // If all of the demanded bits are known zero on one side, return the other.
1044 // These bits cannot contribute to the result of the 'xor'.
1045 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1046 return UpdateValueUsesWith(I, I->getOperand(0));
1047 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1048 return UpdateValueUsesWith(I, I->getOperand(1));
1049
1050 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1051 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1052 (RHSKnownOne & LHSKnownOne);
1053 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1054 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1055 (RHSKnownOne & LHSKnownZero);
1056
1057 // If all of the demanded bits are known to be zero on one side or the
1058 // other, turn this into an *inclusive* or.
1059 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1060 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1061 Instruction *Or =
1062 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1063 I->getName());
1064 InsertNewInstBefore(Or, *I);
1065 return UpdateValueUsesWith(I, Or);
1066 }
1067
1068 // If all of the demanded bits on one side are known, and all of the set
1069 // bits on that side are also known to be set on the other side, turn this
1070 // into an AND, as we know the bits will be cleared.
1071 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1072 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1073 // all known
1074 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1075 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1076 Instruction *And =
1077 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1078 InsertNewInstBefore(And, *I);
1079 return UpdateValueUsesWith(I, And);
1080 }
1081 }
1082
1083 // If the RHS is a constant, see if we can simplify it.
1084 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1085 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1086 return UpdateValueUsesWith(I, I);
1087
1088 RHSKnownZero = KnownZeroOut;
1089 RHSKnownOne = KnownOneOut;
1090 break;
1091 }
1092 case Instruction::Select:
1093 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1094 RHSKnownZero, RHSKnownOne, Depth+1))
1095 return true;
1096 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1097 LHSKnownZero, LHSKnownOne, Depth+1))
1098 return true;
1099 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1100 "Bits known to be one AND zero?");
1101 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1102 "Bits known to be one AND zero?");
1103
1104 // If the operands are constants, see if we can simplify them.
1105 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1106 return UpdateValueUsesWith(I, I);
1107 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1108 return UpdateValueUsesWith(I, I);
1109
1110 // Only known if known in both the LHS and RHS.
1111 RHSKnownOne &= LHSKnownOne;
1112 RHSKnownZero &= LHSKnownZero;
1113 break;
1114 case Instruction::Trunc: {
1115 uint32_t truncBf =
1116 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1117 DemandedMask.zext(truncBf);
1118 RHSKnownZero.zext(truncBf);
1119 RHSKnownOne.zext(truncBf);
1120 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1121 RHSKnownZero, RHSKnownOne, Depth+1))
1122 return true;
1123 DemandedMask.trunc(BitWidth);
1124 RHSKnownZero.trunc(BitWidth);
1125 RHSKnownOne.trunc(BitWidth);
1126 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1127 "Bits known to be one AND zero?");
1128 break;
1129 }
1130 case Instruction::BitCast:
1131 if (!I->getOperand(0)->getType()->isInteger())
1132 return false;
1133
1134 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1135 RHSKnownZero, RHSKnownOne, Depth+1))
1136 return true;
1137 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1138 "Bits known to be one AND zero?");
1139 break;
1140 case Instruction::ZExt: {
1141 // Compute the bits in the result that are not present in the input.
1142 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1143 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1144
1145 DemandedMask.trunc(SrcBitWidth);
1146 RHSKnownZero.trunc(SrcBitWidth);
1147 RHSKnownOne.trunc(SrcBitWidth);
1148 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1149 RHSKnownZero, RHSKnownOne, Depth+1))
1150 return true;
1151 DemandedMask.zext(BitWidth);
1152 RHSKnownZero.zext(BitWidth);
1153 RHSKnownOne.zext(BitWidth);
1154 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1155 "Bits known to be one AND zero?");
1156 // The top bits are known to be zero.
1157 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1158 break;
1159 }
1160 case Instruction::SExt: {
1161 // Compute the bits in the result that are not present in the input.
1162 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1163 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1164
1165 APInt InputDemandedBits = DemandedMask &
1166 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1167
1168 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1169 // If any of the sign extended bits are demanded, we know that the sign
1170 // bit is demanded.
1171 if ((NewBits & DemandedMask) != 0)
1172 InputDemandedBits.set(SrcBitWidth-1);
1173
1174 InputDemandedBits.trunc(SrcBitWidth);
1175 RHSKnownZero.trunc(SrcBitWidth);
1176 RHSKnownOne.trunc(SrcBitWidth);
1177 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1178 RHSKnownZero, RHSKnownOne, Depth+1))
1179 return true;
1180 InputDemandedBits.zext(BitWidth);
1181 RHSKnownZero.zext(BitWidth);
1182 RHSKnownOne.zext(BitWidth);
1183 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1184 "Bits known to be one AND zero?");
1185
1186 // If the sign bit of the input is known set or clear, then we know the
1187 // top bits of the result.
1188
1189 // If the input sign bit is known zero, or if the NewBits are not demanded
1190 // convert this into a zero extension.
1191 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1192 {
1193 // Convert to ZExt cast
1194 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1195 return UpdateValueUsesWith(I, NewCast);
1196 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1197 RHSKnownOne |= NewBits;
1198 }
1199 break;
1200 }
1201 case Instruction::Add: {
1202 // Figure out what the input bits are. If the top bits of the and result
1203 // are not demanded, then the add doesn't demand them from its input
1204 // either.
1205 uint32_t NLZ = DemandedMask.countLeadingZeros();
1206
1207 // If there is a constant on the RHS, there are a variety of xformations
1208 // we can do.
1209 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1210 // If null, this should be simplified elsewhere. Some of the xforms here
1211 // won't work if the RHS is zero.
1212 if (RHS->isZero())
1213 break;
1214
1215 // If the top bit of the output is demanded, demand everything from the
1216 // input. Otherwise, we demand all the input bits except NLZ top bits.
1217 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1218
1219 // Find information about known zero/one bits in the input.
1220 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1221 LHSKnownZero, LHSKnownOne, Depth+1))
1222 return true;
1223
1224 // If the RHS of the add has bits set that can't affect the input, reduce
1225 // the constant.
1226 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1227 return UpdateValueUsesWith(I, I);
1228
1229 // Avoid excess work.
1230 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1231 break;
1232
1233 // Turn it into OR if input bits are zero.
1234 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1235 Instruction *Or =
1236 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1237 I->getName());
1238 InsertNewInstBefore(Or, *I);
1239 return UpdateValueUsesWith(I, Or);
1240 }
1241
1242 // We can say something about the output known-zero and known-one bits,
1243 // depending on potential carries from the input constant and the
1244 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1245 // bits set and the RHS constant is 0x01001, then we know we have a known
1246 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1247
1248 // To compute this, we first compute the potential carry bits. These are
1249 // the bits which may be modified. I'm not aware of a better way to do
1250 // this scan.
1251 const APInt& RHSVal = RHS->getValue();
1252 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1253
1254 // Now that we know which bits have carries, compute the known-1/0 sets.
1255
1256 // Bits are known one if they are known zero in one operand and one in the
1257 // other, and there is no input carry.
1258 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1259 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1260
1261 // Bits are known zero if they are known zero in both operands and there
1262 // is no input carry.
1263 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1264 } else {
1265 // If the high-bits of this ADD are not demanded, then it does not demand
1266 // the high bits of its LHS or RHS.
1267 if (DemandedMask[BitWidth-1] == 0) {
1268 // Right fill the mask of bits for this ADD to demand the most
1269 // significant bit and all those below it.
1270 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1271 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1272 LHSKnownZero, LHSKnownOne, Depth+1))
1273 return true;
1274 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1275 LHSKnownZero, LHSKnownOne, Depth+1))
1276 return true;
1277 }
1278 }
1279 break;
1280 }
1281 case Instruction::Sub:
1282 // If the high-bits of this SUB are not demanded, then it does not demand
1283 // the high bits of its LHS or RHS.
1284 if (DemandedMask[BitWidth-1] == 0) {
1285 // Right fill the mask of bits for this SUB to demand the most
1286 // significant bit and all those below it.
1287 uint32_t NLZ = DemandedMask.countLeadingZeros();
1288 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1289 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1290 LHSKnownZero, LHSKnownOne, Depth+1))
1291 return true;
1292 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1293 LHSKnownZero, LHSKnownOne, Depth+1))
1294 return true;
1295 }
1296 break;
1297 case Instruction::Shl:
1298 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1299 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1300 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1301 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1302 RHSKnownZero, RHSKnownOne, Depth+1))
1303 return true;
1304 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1305 "Bits known to be one AND zero?");
1306 RHSKnownZero <<= ShiftAmt;
1307 RHSKnownOne <<= ShiftAmt;
1308 // low bits known zero.
1309 if (ShiftAmt)
1310 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1311 }
1312 break;
1313 case Instruction::LShr:
1314 // For a logical shift right
1315 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1316 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1317
1318 // Unsigned shift right.
1319 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1320 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1321 RHSKnownZero, RHSKnownOne, Depth+1))
1322 return true;
1323 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1324 "Bits known to be one AND zero?");
1325 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1326 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1327 if (ShiftAmt) {
1328 // Compute the new bits that are at the top now.
1329 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1330 RHSKnownZero |= HighBits; // high bits known zero.
1331 }
1332 }
1333 break;
1334 case Instruction::AShr:
1335 // If this is an arithmetic shift right and only the low-bit is set, we can
1336 // always convert this into a logical shr, even if the shift amount is
1337 // variable. The low bit of the shift cannot be an input sign bit unless
1338 // the shift amount is >= the size of the datatype, which is undefined.
1339 if (DemandedMask == 1) {
1340 // Perform the logical shift right.
1341 Value *NewVal = BinaryOperator::createLShr(
1342 I->getOperand(0), I->getOperand(1), I->getName());
1343 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1344 return UpdateValueUsesWith(I, NewVal);
1345 }
1346
1347 // If the sign bit is the only bit demanded by this ashr, then there is no
1348 // need to do it, the shift doesn't change the high bit.
1349 if (DemandedMask.isSignBit())
1350 return UpdateValueUsesWith(I, I->getOperand(0));
1351
1352 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1353 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1354
1355 // Signed shift right.
1356 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1357 // If any of the "high bits" are demanded, we should set the sign bit as
1358 // demanded.
1359 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1360 DemandedMaskIn.set(BitWidth-1);
1361 if (SimplifyDemandedBits(I->getOperand(0),
1362 DemandedMaskIn,
1363 RHSKnownZero, RHSKnownOne, Depth+1))
1364 return true;
1365 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1366 "Bits known to be one AND zero?");
1367 // Compute the new bits that are at the top now.
1368 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1369 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1370 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1371
1372 // Handle the sign bits.
1373 APInt SignBit(APInt::getSignBit(BitWidth));
1374 // Adjust to where it is now in the mask.
1375 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1376
1377 // If the input sign bit is known to be zero, or if none of the top bits
1378 // are demanded, turn this into an unsigned shift right.
1379 if (RHSKnownZero[BitWidth-ShiftAmt-1] ||
1380 (HighBits & ~DemandedMask) == HighBits) {
1381 // Perform the logical shift right.
1382 Value *NewVal = BinaryOperator::createLShr(
1383 I->getOperand(0), SA, I->getName());
1384 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1385 return UpdateValueUsesWith(I, NewVal);
1386 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1387 RHSKnownOne |= HighBits;
1388 }
1389 }
1390 break;
1391 }
1392
1393 // If the client is only demanding bits that we know, return the known
1394 // constant.
1395 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1396 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1397 return false;
1398}
1399
1400
1401/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1402/// 64 or fewer elements. DemandedElts contains the set of elements that are
1403/// actually used by the caller. This method analyzes which elements of the
1404/// operand are undef and returns that information in UndefElts.
1405///
1406/// If the information about demanded elements can be used to simplify the
1407/// operation, the operation is simplified, then the resultant value is
1408/// returned. This returns null if no change was made.
1409Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1410 uint64_t &UndefElts,
1411 unsigned Depth) {
1412 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1413 assert(VWidth <= 64 && "Vector too wide to analyze!");
1414 uint64_t EltMask = ~0ULL >> (64-VWidth);
1415 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1416 "Invalid DemandedElts!");
1417
1418 if (isa<UndefValue>(V)) {
1419 // If the entire vector is undefined, just return this info.
1420 UndefElts = EltMask;
1421 return 0;
1422 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1423 UndefElts = EltMask;
1424 return UndefValue::get(V->getType());
1425 }
1426
1427 UndefElts = 0;
1428 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1429 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1430 Constant *Undef = UndefValue::get(EltTy);
1431
1432 std::vector<Constant*> Elts;
1433 for (unsigned i = 0; i != VWidth; ++i)
1434 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1435 Elts.push_back(Undef);
1436 UndefElts |= (1ULL << i);
1437 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1438 Elts.push_back(Undef);
1439 UndefElts |= (1ULL << i);
1440 } else { // Otherwise, defined.
1441 Elts.push_back(CP->getOperand(i));
1442 }
1443
1444 // If we changed the constant, return it.
1445 Constant *NewCP = ConstantVector::get(Elts);
1446 return NewCP != CP ? NewCP : 0;
1447 } else if (isa<ConstantAggregateZero>(V)) {
1448 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1449 // set to undef.
1450 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1451 Constant *Zero = Constant::getNullValue(EltTy);
1452 Constant *Undef = UndefValue::get(EltTy);
1453 std::vector<Constant*> Elts;
1454 for (unsigned i = 0; i != VWidth; ++i)
1455 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1456 UndefElts = DemandedElts ^ EltMask;
1457 return ConstantVector::get(Elts);
1458 }
1459
1460 if (!V->hasOneUse()) { // Other users may use these bits.
1461 if (Depth != 0) { // Not at the root.
1462 // TODO: Just compute the UndefElts information recursively.
1463 return false;
1464 }
1465 return false;
1466 } else if (Depth == 10) { // Limit search depth.
1467 return false;
1468 }
1469
1470 Instruction *I = dyn_cast<Instruction>(V);
1471 if (!I) return false; // Only analyze instructions.
1472
1473 bool MadeChange = false;
1474 uint64_t UndefElts2;
1475 Value *TmpV;
1476 switch (I->getOpcode()) {
1477 default: break;
1478
1479 case Instruction::InsertElement: {
1480 // If this is a variable index, we don't know which element it overwrites.
1481 // demand exactly the same input as we produce.
1482 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1483 if (Idx == 0) {
1484 // Note that we can't propagate undef elt info, because we don't know
1485 // which elt is getting updated.
1486 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1487 UndefElts2, Depth+1);
1488 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1489 break;
1490 }
1491
1492 // If this is inserting an element that isn't demanded, remove this
1493 // insertelement.
1494 unsigned IdxNo = Idx->getZExtValue();
1495 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1496 return AddSoonDeadInstToWorklist(*I, 0);
1497
1498 // Otherwise, the element inserted overwrites whatever was there, so the
1499 // input demanded set is simpler than the output set.
1500 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1501 DemandedElts & ~(1ULL << IdxNo),
1502 UndefElts, Depth+1);
1503 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1504
1505 // The inserted element is defined.
1506 UndefElts |= 1ULL << IdxNo;
1507 break;
1508 }
1509 case Instruction::BitCast: {
1510 // Vector->vector casts only.
1511 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1512 if (!VTy) break;
1513 unsigned InVWidth = VTy->getNumElements();
1514 uint64_t InputDemandedElts = 0;
1515 unsigned Ratio;
1516
1517 if (VWidth == InVWidth) {
1518 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1519 // elements as are demanded of us.
1520 Ratio = 1;
1521 InputDemandedElts = DemandedElts;
1522 } else if (VWidth > InVWidth) {
1523 // Untested so far.
1524 break;
1525
1526 // If there are more elements in the result than there are in the source,
1527 // then an input element is live if any of the corresponding output
1528 // elements are live.
1529 Ratio = VWidth/InVWidth;
1530 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1531 if (DemandedElts & (1ULL << OutIdx))
1532 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1533 }
1534 } else {
1535 // Untested so far.
1536 break;
1537
1538 // If there are more elements in the source than there are in the result,
1539 // then an input element is live if the corresponding output element is
1540 // live.
1541 Ratio = InVWidth/VWidth;
1542 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1543 if (DemandedElts & (1ULL << InIdx/Ratio))
1544 InputDemandedElts |= 1ULL << InIdx;
1545 }
1546
1547 // div/rem demand all inputs, because they don't want divide by zero.
1548 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1549 UndefElts2, Depth+1);
1550 if (TmpV) {
1551 I->setOperand(0, TmpV);
1552 MadeChange = true;
1553 }
1554
1555 UndefElts = UndefElts2;
1556 if (VWidth > InVWidth) {
1557 assert(0 && "Unimp");
1558 // If there are more elements in the result than there are in the source,
1559 // then an output element is undef if the corresponding input element is
1560 // undef.
1561 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1562 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1563 UndefElts |= 1ULL << OutIdx;
1564 } else if (VWidth < InVWidth) {
1565 assert(0 && "Unimp");
1566 // If there are more elements in the source than there are in the result,
1567 // then a result element is undef if all of the corresponding input
1568 // elements are undef.
1569 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1570 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1571 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1572 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1573 }
1574 break;
1575 }
1576 case Instruction::And:
1577 case Instruction::Or:
1578 case Instruction::Xor:
1579 case Instruction::Add:
1580 case Instruction::Sub:
1581 case Instruction::Mul:
1582 // div/rem demand all inputs, because they don't want divide by zero.
1583 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1584 UndefElts, Depth+1);
1585 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1586 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1587 UndefElts2, Depth+1);
1588 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1589
1590 // Output elements are undefined if both are undefined. Consider things
1591 // like undef&0. The result is known zero, not undef.
1592 UndefElts &= UndefElts2;
1593 break;
1594
1595 case Instruction::Call: {
1596 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1597 if (!II) break;
1598 switch (II->getIntrinsicID()) {
1599 default: break;
1600
1601 // Binary vector operations that work column-wise. A dest element is a
1602 // function of the corresponding input elements from the two inputs.
1603 case Intrinsic::x86_sse_sub_ss:
1604 case Intrinsic::x86_sse_mul_ss:
1605 case Intrinsic::x86_sse_min_ss:
1606 case Intrinsic::x86_sse_max_ss:
1607 case Intrinsic::x86_sse2_sub_sd:
1608 case Intrinsic::x86_sse2_mul_sd:
1609 case Intrinsic::x86_sse2_min_sd:
1610 case Intrinsic::x86_sse2_max_sd:
1611 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1612 UndefElts, Depth+1);
1613 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1614 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1615 UndefElts2, Depth+1);
1616 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1617
1618 // If only the low elt is demanded and this is a scalarizable intrinsic,
1619 // scalarize it now.
1620 if (DemandedElts == 1) {
1621 switch (II->getIntrinsicID()) {
1622 default: break;
1623 case Intrinsic::x86_sse_sub_ss:
1624 case Intrinsic::x86_sse_mul_ss:
1625 case Intrinsic::x86_sse2_sub_sd:
1626 case Intrinsic::x86_sse2_mul_sd:
1627 // TODO: Lower MIN/MAX/ABS/etc
1628 Value *LHS = II->getOperand(1);
1629 Value *RHS = II->getOperand(2);
1630 // Extract the element as scalars.
1631 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1632 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1633
1634 switch (II->getIntrinsicID()) {
1635 default: assert(0 && "Case stmts out of sync!");
1636 case Intrinsic::x86_sse_sub_ss:
1637 case Intrinsic::x86_sse2_sub_sd:
1638 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
1639 II->getName()), *II);
1640 break;
1641 case Intrinsic::x86_sse_mul_ss:
1642 case Intrinsic::x86_sse2_mul_sd:
1643 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
1644 II->getName()), *II);
1645 break;
1646 }
1647
1648 Instruction *New =
1649 new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U,
1650 II->getName());
1651 InsertNewInstBefore(New, *II);
1652 AddSoonDeadInstToWorklist(*II, 0);
1653 return New;
1654 }
1655 }
1656
1657 // Output elements are undefined if both are undefined. Consider things
1658 // like undef&0. The result is known zero, not undef.
1659 UndefElts &= UndefElts2;
1660 break;
1661 }
1662 break;
1663 }
1664 }
1665 return MadeChange ? I : 0;
1666}
1667
Nick Lewycky2de09a92007-09-06 02:40:25 +00001668/// @returns true if the specified compare predicate is
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669/// true when both operands are equal...
Nick Lewycky2de09a92007-09-06 02:40:25 +00001670/// @brief Determine if the icmp Predicate is true when both operands are equal
1671static bool isTrueWhenEqual(ICmpInst::Predicate pred) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001672 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
1673 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
1674 pred == ICmpInst::ICMP_SLE;
1675}
1676
Nick Lewycky2de09a92007-09-06 02:40:25 +00001677/// @returns true if the specified compare instruction is
1678/// true when both operands are equal...
1679/// @brief Determine if the ICmpInst returns true when both operands are equal
1680static bool isTrueWhenEqual(ICmpInst &ICI) {
1681 return isTrueWhenEqual(ICI.getPredicate());
1682}
1683
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684/// AssociativeOpt - Perform an optimization on an associative operator. This
1685/// function is designed to check a chain of associative operators for a
1686/// potential to apply a certain optimization. Since the optimization may be
1687/// applicable if the expression was reassociated, this checks the chain, then
1688/// reassociates the expression as necessary to expose the optimization
1689/// opportunity. This makes use of a special Functor, which must define
1690/// 'shouldApply' and 'apply' methods.
1691///
1692template<typename Functor>
1693Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1694 unsigned Opcode = Root.getOpcode();
1695 Value *LHS = Root.getOperand(0);
1696
1697 // Quick check, see if the immediate LHS matches...
1698 if (F.shouldApply(LHS))
1699 return F.apply(Root);
1700
1701 // Otherwise, if the LHS is not of the same opcode as the root, return.
1702 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1703 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1704 // Should we apply this transform to the RHS?
1705 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1706
1707 // If not to the RHS, check to see if we should apply to the LHS...
1708 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1709 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1710 ShouldApply = true;
1711 }
1712
1713 // If the functor wants to apply the optimization to the RHS of LHSI,
1714 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1715 if (ShouldApply) {
1716 BasicBlock *BB = Root.getParent();
1717
1718 // Now all of the instructions are in the current basic block, go ahead
1719 // and perform the reassociation.
1720 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1721
1722 // First move the selected RHS to the LHS of the root...
1723 Root.setOperand(0, LHSI->getOperand(1));
1724
1725 // Make what used to be the LHS of the root be the user of the root...
1726 Value *ExtraOperand = TmpLHSI->getOperand(1);
1727 if (&Root == TmpLHSI) {
1728 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1729 return 0;
1730 }
1731 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1732 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
1733 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
1734 BasicBlock::iterator ARI = &Root; ++ARI;
1735 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
1736 ARI = Root;
1737
1738 // Now propagate the ExtraOperand down the chain of instructions until we
1739 // get to LHSI.
1740 while (TmpLHSI != LHSI) {
1741 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1742 // Move the instruction to immediately before the chain we are
1743 // constructing to avoid breaking dominance properties.
1744 NextLHSI->getParent()->getInstList().remove(NextLHSI);
1745 BB->getInstList().insert(ARI, NextLHSI);
1746 ARI = NextLHSI;
1747
1748 Value *NextOp = NextLHSI->getOperand(1);
1749 NextLHSI->setOperand(1, ExtraOperand);
1750 TmpLHSI = NextLHSI;
1751 ExtraOperand = NextOp;
1752 }
1753
1754 // Now that the instructions are reassociated, have the functor perform
1755 // the transformation...
1756 return F.apply(Root);
1757 }
1758
1759 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1760 }
1761 return 0;
1762}
1763
1764
1765// AddRHS - Implements: X + X --> X << 1
1766struct AddRHS {
1767 Value *RHS;
1768 AddRHS(Value *rhs) : RHS(rhs) {}
1769 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1770 Instruction *apply(BinaryOperator &Add) const {
1771 return BinaryOperator::createShl(Add.getOperand(0),
1772 ConstantInt::get(Add.getType(), 1));
1773 }
1774};
1775
1776// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1777// iff C1&C2 == 0
1778struct AddMaskingAnd {
1779 Constant *C2;
1780 AddMaskingAnd(Constant *c) : C2(c) {}
1781 bool shouldApply(Value *LHS) const {
1782 ConstantInt *C1;
1783 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1784 ConstantExpr::getAnd(C1, C2)->isNullValue();
1785 }
1786 Instruction *apply(BinaryOperator &Add) const {
1787 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
1788 }
1789};
1790
1791static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1792 InstCombiner *IC) {
1793 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1794 if (Constant *SOC = dyn_cast<Constant>(SO))
1795 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1796
1797 return IC->InsertNewInstBefore(CastInst::create(
1798 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1799 }
1800
1801 // Figure out if the constant is the left or the right argument.
1802 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1803 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1804
1805 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1806 if (ConstIsRHS)
1807 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1808 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1809 }
1810
1811 Value *Op0 = SO, *Op1 = ConstOperand;
1812 if (!ConstIsRHS)
1813 std::swap(Op0, Op1);
1814 Instruction *New;
1815 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1816 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
1817 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1818 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
1819 SO->getName()+".cmp");
1820 else {
1821 assert(0 && "Unknown binary instruction type!");
1822 abort();
1823 }
1824 return IC->InsertNewInstBefore(New, I);
1825}
1826
1827// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1828// constant as the other operand, try to fold the binary operator into the
1829// select arguments. This also works for Cast instructions, which obviously do
1830// not have a second operand.
1831static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1832 InstCombiner *IC) {
1833 // Don't modify shared select instructions
1834 if (!SI->hasOneUse()) return 0;
1835 Value *TV = SI->getOperand(1);
1836 Value *FV = SI->getOperand(2);
1837
1838 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1839 // Bool selects with constant operands can be folded to logical ops.
1840 if (SI->getType() == Type::Int1Ty) return 0;
1841
1842 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1843 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1844
1845 return new SelectInst(SI->getCondition(), SelectTrueVal,
1846 SelectFalseVal);
1847 }
1848 return 0;
1849}
1850
1851
1852/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1853/// node as operand #0, see if we can fold the instruction into the PHI (which
1854/// is only possible if all operands to the PHI are constants).
1855Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1856 PHINode *PN = cast<PHINode>(I.getOperand(0));
1857 unsigned NumPHIValues = PN->getNumIncomingValues();
1858 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1859
1860 // Check to see if all of the operands of the PHI are constants. If there is
1861 // one non-constant value, remember the BB it is. If there is more than one
1862 // or if *it* is a PHI, bail out.
1863 BasicBlock *NonConstBB = 0;
1864 for (unsigned i = 0; i != NumPHIValues; ++i)
1865 if (!isa<Constant>(PN->getIncomingValue(i))) {
1866 if (NonConstBB) return 0; // More than one non-const value.
1867 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1868 NonConstBB = PN->getIncomingBlock(i);
1869
1870 // If the incoming non-constant value is in I's block, we have an infinite
1871 // loop.
1872 if (NonConstBB == I.getParent())
1873 return 0;
1874 }
1875
1876 // If there is exactly one non-constant value, we can insert a copy of the
1877 // operation in that block. However, if this is a critical edge, we would be
1878 // inserting the computation one some other paths (e.g. inside a loop). Only
1879 // do this if the pred block is unconditionally branching into the phi block.
1880 if (NonConstBB) {
1881 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1882 if (!BI || !BI->isUnconditional()) return 0;
1883 }
1884
1885 // Okay, we can do the transformation: create the new PHI node.
1886 PHINode *NewPN = new PHINode(I.getType(), "");
1887 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1888 InsertNewInstBefore(NewPN, *PN);
1889 NewPN->takeName(PN);
1890
1891 // Next, add all of the operands to the PHI.
1892 if (I.getNumOperands() == 2) {
1893 Constant *C = cast<Constant>(I.getOperand(1));
1894 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001895 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1897 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1898 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1899 else
1900 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1901 } else {
1902 assert(PN->getIncomingBlock(i) == NonConstBB);
1903 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1904 InV = BinaryOperator::create(BO->getOpcode(),
1905 PN->getIncomingValue(i), C, "phitmp",
1906 NonConstBB->getTerminator());
1907 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1908 InV = CmpInst::create(CI->getOpcode(),
1909 CI->getPredicate(),
1910 PN->getIncomingValue(i), C, "phitmp",
1911 NonConstBB->getTerminator());
1912 else
1913 assert(0 && "Unknown binop!");
1914
1915 AddToWorkList(cast<Instruction>(InV));
1916 }
1917 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1918 }
1919 } else {
1920 CastInst *CI = cast<CastInst>(&I);
1921 const Type *RetTy = CI->getType();
1922 for (unsigned i = 0; i != NumPHIValues; ++i) {
1923 Value *InV;
1924 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1925 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1926 } else {
1927 assert(PN->getIncomingBlock(i) == NonConstBB);
1928 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
1929 I.getType(), "phitmp",
1930 NonConstBB->getTerminator());
1931 AddToWorkList(cast<Instruction>(InV));
1932 }
1933 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1934 }
1935 }
1936 return ReplaceInstUsesWith(I, NewPN);
1937}
1938
1939Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1940 bool Changed = SimplifyCommutative(I);
1941 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1942
1943 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1944 // X + undef -> undef
1945 if (isa<UndefValue>(RHS))
1946 return ReplaceInstUsesWith(I, RHS);
1947
1948 // X + 0 --> X
1949 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1950 if (RHSC->isNullValue())
1951 return ReplaceInstUsesWith(I, LHS);
1952 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001953 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1954 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955 return ReplaceInstUsesWith(I, LHS);
1956 }
1957
1958 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1959 // X + (signbit) --> X ^ signbit
1960 const APInt& Val = CI->getValue();
1961 uint32_t BitWidth = Val.getBitWidth();
1962 if (Val == APInt::getSignBit(BitWidth))
1963 return BinaryOperator::createXor(LHS, RHS);
1964
1965 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1966 // (X & 254)+1 -> (X&254)|1
1967 if (!isa<VectorType>(I.getType())) {
1968 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1969 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
1970 KnownZero, KnownOne))
1971 return &I;
1972 }
1973 }
1974
1975 if (isa<PHINode>(LHS))
1976 if (Instruction *NV = FoldOpIntoPhi(I))
1977 return NV;
1978
1979 ConstantInt *XorRHS = 0;
1980 Value *XorLHS = 0;
1981 if (isa<ConstantInt>(RHSC) &&
1982 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1983 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
1984 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
1985
1986 uint32_t Size = TySizeBits / 2;
1987 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
1988 APInt CFF80Val(-C0080Val);
1989 do {
1990 if (TySizeBits > Size) {
1991 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1992 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1993 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
1994 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
1995 // This is a sign extend if the top bits are known zero.
1996 if (!MaskedValueIsZero(XorLHS,
1997 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
1998 Size = 0; // Not a sign ext, but can't be any others either.
1999 break;
2000 }
2001 }
2002 Size >>= 1;
2003 C0080Val = APIntOps::lshr(C0080Val, Size);
2004 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2005 } while (Size >= 1);
2006
2007 // FIXME: This shouldn't be necessary. When the backends can handle types
2008 // with funny bit widths then this whole cascade of if statements should
2009 // be removed. It is just here to get the size of the "middle" type back
2010 // up to something that the back ends can handle.
2011 const Type *MiddleType = 0;
2012 switch (Size) {
2013 default: break;
2014 case 32: MiddleType = Type::Int32Ty; break;
2015 case 16: MiddleType = Type::Int16Ty; break;
2016 case 8: MiddleType = Type::Int8Ty; break;
2017 }
2018 if (MiddleType) {
2019 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2020 InsertNewInstBefore(NewTrunc, I);
2021 return new SExtInst(NewTrunc, I.getType(), I.getName());
2022 }
2023 }
2024 }
2025
2026 // X + X --> X << 1
2027 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
2028 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2029
2030 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2031 if (RHSI->getOpcode() == Instruction::Sub)
2032 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2033 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2034 }
2035 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2036 if (LHSI->getOpcode() == Instruction::Sub)
2037 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2038 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2039 }
2040 }
2041
2042 // -A + B --> B - A
2043 if (Value *V = dyn_castNegVal(LHS))
2044 return BinaryOperator::createSub(RHS, V);
2045
2046 // A + -B --> A - B
2047 if (!isa<Constant>(RHS))
2048 if (Value *V = dyn_castNegVal(RHS))
2049 return BinaryOperator::createSub(LHS, V);
2050
2051
2052 ConstantInt *C2;
2053 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2054 if (X == RHS) // X*C + X --> X * (C+1)
2055 return BinaryOperator::createMul(RHS, AddOne(C2));
2056
2057 // X*C1 + X*C2 --> X * (C1+C2)
2058 ConstantInt *C1;
2059 if (X == dyn_castFoldableMul(RHS, C1))
2060 return BinaryOperator::createMul(X, Add(C1, C2));
2061 }
2062
2063 // X + X*C --> X * (C+1)
2064 if (dyn_castFoldableMul(RHS, C2) == LHS)
2065 return BinaryOperator::createMul(LHS, AddOne(C2));
2066
2067 // X + ~X --> -1 since ~X = -X-1
2068 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2069 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2070
2071
2072 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2073 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2074 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2075 return R;
2076
2077 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2078 Value *X = 0;
2079 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
2080 return BinaryOperator::createSub(SubOne(CRHS), X);
2081
2082 // (X & FF00) + xx00 -> (X+xx00) & FF00
2083 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2084 Constant *Anded = And(CRHS, C2);
2085 if (Anded == CRHS) {
2086 // See if all bits from the first bit set in the Add RHS up are included
2087 // in the mask. First, get the rightmost bit.
2088 const APInt& AddRHSV = CRHS->getValue();
2089
2090 // Form a mask of all bits from the lowest bit added through the top.
2091 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2092
2093 // See if the and mask includes all of these bits.
2094 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2095
2096 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2097 // Okay, the xform is safe. Insert the new add pronto.
2098 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2099 LHS->getName()), I);
2100 return BinaryOperator::createAnd(NewAdd, C2);
2101 }
2102 }
2103 }
2104
2105 // Try to fold constant add into select arguments.
2106 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2107 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2108 return R;
2109 }
2110
2111 // add (cast *A to intptrtype) B ->
2112 // cast (GEP (cast *A to sbyte*) B) ->
2113 // intptrtype
2114 {
2115 CastInst *CI = dyn_cast<CastInst>(LHS);
2116 Value *Other = RHS;
2117 if (!CI) {
2118 CI = dyn_cast<CastInst>(RHS);
2119 Other = LHS;
2120 }
2121 if (CI && CI->getType()->isSized() &&
2122 (CI->getType()->getPrimitiveSizeInBits() ==
2123 TD->getIntPtrType()->getPrimitiveSizeInBits())
2124 && isa<PointerType>(CI->getOperand(0)->getType())) {
2125 Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0),
2126 PointerType::get(Type::Int8Ty), I);
2127 I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
2128 return new PtrToIntInst(I2, CI->getType());
2129 }
2130 }
2131
2132 return Changed ? &I : 0;
2133}
2134
2135// isSignBit - Return true if the value represented by the constant only has the
2136// highest order bit set.
2137static bool isSignBit(ConstantInt *CI) {
2138 uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
2139 return CI->getValue() == APInt::getSignBit(NumBits);
2140}
2141
2142Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2143 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2144
2145 if (Op0 == Op1) // sub X, X -> 0
2146 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2147
2148 // If this is a 'B = x-(-A)', change to B = x+A...
2149 if (Value *V = dyn_castNegVal(Op1))
2150 return BinaryOperator::createAdd(Op0, V);
2151
2152 if (isa<UndefValue>(Op0))
2153 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2154 if (isa<UndefValue>(Op1))
2155 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2156
2157 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2158 // Replace (-1 - A) with (~A)...
2159 if (C->isAllOnesValue())
2160 return BinaryOperator::createNot(Op1);
2161
2162 // C - ~X == X + (1+C)
2163 Value *X = 0;
2164 if (match(Op1, m_Not(m_Value(X))))
2165 return BinaryOperator::createAdd(X, AddOne(C));
2166
2167 // -(X >>u 31) -> (X >>s 31)
2168 // -(X >>s 31) -> (X >>u 31)
2169 if (C->isZero()) {
2170 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1))
2171 if (SI->getOpcode() == Instruction::LShr) {
2172 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2173 // Check to see if we are shifting out everything but the sign bit.
2174 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2175 SI->getType()->getPrimitiveSizeInBits()-1) {
2176 // Ok, the transformation is safe. Insert AShr.
2177 return BinaryOperator::create(Instruction::AShr,
2178 SI->getOperand(0), CU, SI->getName());
2179 }
2180 }
2181 }
2182 else if (SI->getOpcode() == Instruction::AShr) {
2183 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2184 // Check to see if we are shifting out everything but the sign bit.
2185 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2186 SI->getType()->getPrimitiveSizeInBits()-1) {
2187 // Ok, the transformation is safe. Insert LShr.
2188 return BinaryOperator::createLShr(
2189 SI->getOperand(0), CU, SI->getName());
2190 }
2191 }
2192 }
2193 }
2194
2195 // Try to fold constant sub into select arguments.
2196 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2197 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2198 return R;
2199
2200 if (isa<PHINode>(Op0))
2201 if (Instruction *NV = FoldOpIntoPhi(I))
2202 return NV;
2203 }
2204
2205 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2206 if (Op1I->getOpcode() == Instruction::Add &&
2207 !Op0->getType()->isFPOrFPVector()) {
2208 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
2209 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
2210 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
2211 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
2212 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2213 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2214 // C1-(X+C2) --> (C1-C2)-X
2215 return BinaryOperator::createSub(Subtract(CI1, CI2),
2216 Op1I->getOperand(0));
2217 }
2218 }
2219
2220 if (Op1I->hasOneUse()) {
2221 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2222 // is not used by anyone else...
2223 //
2224 if (Op1I->getOpcode() == Instruction::Sub &&
2225 !Op1I->getType()->isFPOrFPVector()) {
2226 // Swap the two operands of the subexpr...
2227 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2228 Op1I->setOperand(0, IIOp1);
2229 Op1I->setOperand(1, IIOp0);
2230
2231 // Create the new top level add instruction...
2232 return BinaryOperator::createAdd(Op0, Op1);
2233 }
2234
2235 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2236 //
2237 if (Op1I->getOpcode() == Instruction::And &&
2238 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2239 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2240
2241 Value *NewNot =
2242 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
2243 return BinaryOperator::createAnd(Op0, NewNot);
2244 }
2245
2246 // 0 - (X sdiv C) -> (X sdiv -C)
2247 if (Op1I->getOpcode() == Instruction::SDiv)
2248 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2249 if (CSI->isZero())
2250 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
2251 return BinaryOperator::createSDiv(Op1I->getOperand(0),
2252 ConstantExpr::getNeg(DivRHS));
2253
2254 // X - X*C --> X * (1-C)
2255 ConstantInt *C2 = 0;
2256 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2257 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
2258 return BinaryOperator::createMul(Op0, CP1);
2259 }
Dan Gohmanda338742007-09-17 17:31:57 +00002260
2261 // X - ((X / Y) * Y) --> X % Y
2262 if (Op1I->getOpcode() == Instruction::Mul)
2263 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2264 if (Op0 == I->getOperand(0) &&
2265 Op1I->getOperand(1) == I->getOperand(1)) {
2266 if (I->getOpcode() == Instruction::SDiv)
2267 return BinaryOperator::createSRem(Op0, Op1I->getOperand(1));
2268 if (I->getOpcode() == Instruction::UDiv)
2269 return BinaryOperator::createURem(Op0, Op1I->getOperand(1));
2270 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002271 }
2272 }
2273
2274 if (!Op0->getType()->isFPOrFPVector())
2275 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2276 if (Op0I->getOpcode() == Instruction::Add) {
2277 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2278 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2279 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2280 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2281 } else if (Op0I->getOpcode() == Instruction::Sub) {
2282 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2283 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
2284 }
2285
2286 ConstantInt *C1;
2287 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2288 if (X == Op1) // X*C - X --> X * (C-1)
2289 return BinaryOperator::createMul(Op1, SubOne(C1));
2290
2291 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2292 if (X == dyn_castFoldableMul(Op1, C2))
2293 return BinaryOperator::createMul(Op1, Subtract(C1, C2));
2294 }
2295 return 0;
2296}
2297
2298/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2299/// comparison only checks the sign bit. If it only checks the sign bit, set
2300/// TrueIfSigned if the result of the comparison is true when the input value is
2301/// signed.
2302static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2303 bool &TrueIfSigned) {
2304 switch (pred) {
2305 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2306 TrueIfSigned = true;
2307 return RHS->isZero();
2308 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2309 TrueIfSigned = true;
2310 return RHS->isAllOnesValue();
2311 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2312 TrueIfSigned = false;
2313 return RHS->isAllOnesValue();
2314 case ICmpInst::ICMP_UGT:
2315 // True if LHS u> RHS and RHS == high-bit-mask - 1
2316 TrueIfSigned = true;
2317 return RHS->getValue() ==
2318 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2319 case ICmpInst::ICMP_UGE:
2320 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2321 TrueIfSigned = true;
2322 return RHS->getValue() ==
2323 APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
2324 default:
2325 return false;
2326 }
2327}
2328
2329Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2330 bool Changed = SimplifyCommutative(I);
2331 Value *Op0 = I.getOperand(0);
2332
2333 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2334 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2335
2336 // Simplify mul instructions with a constant RHS...
2337 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2338 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2339
2340 // ((X << C1)*C2) == (X * (C2 << C1))
2341 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2342 if (SI->getOpcode() == Instruction::Shl)
2343 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
2344 return BinaryOperator::createMul(SI->getOperand(0),
2345 ConstantExpr::getShl(CI, ShOp));
2346
2347 if (CI->isZero())
2348 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2349 if (CI->equalsInt(1)) // X * 1 == X
2350 return ReplaceInstUsesWith(I, Op0);
2351 if (CI->isAllOnesValue()) // X * -1 == 0 - X
2352 return BinaryOperator::createNeg(Op0, I.getName());
2353
2354 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2355 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
2356 return BinaryOperator::createShl(Op0,
2357 ConstantInt::get(Op0->getType(), Val.logBase2()));
2358 }
2359 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2360 if (Op1F->isNullValue())
2361 return ReplaceInstUsesWith(I, Op1);
2362
2363 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2364 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Dale Johannesen2fc20782007-09-14 22:26:36 +00002365 // We need a better interface for long double here.
2366 if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
2367 if (Op1F->isExactlyValue(1.0))
2368 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002369 }
2370
2371 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2372 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2373 isa<ConstantInt>(Op0I->getOperand(1))) {
2374 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2375 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2376 Op1, "tmp");
2377 InsertNewInstBefore(Add, I);
2378 Value *C1C2 = ConstantExpr::getMul(Op1,
2379 cast<Constant>(Op0I->getOperand(1)));
2380 return BinaryOperator::createAdd(Add, C1C2);
2381
2382 }
2383
2384 // Try to fold constant mul into select arguments.
2385 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2386 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2387 return R;
2388
2389 if (isa<PHINode>(Op0))
2390 if (Instruction *NV = FoldOpIntoPhi(I))
2391 return NV;
2392 }
2393
2394 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2395 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
2396 return BinaryOperator::createMul(Op0v, Op1v);
2397
2398 // If one of the operands of the multiply is a cast from a boolean value, then
2399 // we know the bool is either zero or one, so this is a 'masking' multiply.
2400 // See if we can simplify things based on how the boolean was originally
2401 // formed.
2402 CastInst *BoolCast = 0;
2403 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
2404 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2405 BoolCast = CI;
2406 if (!BoolCast)
2407 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2408 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2409 BoolCast = CI;
2410 if (BoolCast) {
2411 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2412 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2413 const Type *SCOpTy = SCIOp0->getType();
2414 bool TIS = false;
2415
2416 // If the icmp is true iff the sign bit of X is set, then convert this
2417 // multiply into a shift/and combination.
2418 if (isa<ConstantInt>(SCIOp1) &&
2419 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2420 TIS) {
2421 // Shift the X value right to turn it into "all signbits".
2422 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2423 SCOpTy->getPrimitiveSizeInBits()-1);
2424 Value *V =
2425 InsertNewInstBefore(
2426 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
2427 BoolCast->getOperand(0)->getName()+
2428 ".mask"), I);
2429
2430 // If the multiply type is not the same as the source type, sign extend
2431 // or truncate to the multiply type.
2432 if (I.getType() != V->getType()) {
2433 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2434 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2435 Instruction::CastOps opcode =
2436 (SrcBits == DstBits ? Instruction::BitCast :
2437 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2438 V = InsertCastBefore(opcode, V, I.getType(), I);
2439 }
2440
2441 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
2442 return BinaryOperator::createAnd(V, OtherOp);
2443 }
2444 }
2445 }
2446
2447 return Changed ? &I : 0;
2448}
2449
2450/// This function implements the transforms on div instructions that work
2451/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2452/// used by the visitors to those instructions.
2453/// @brief Transforms common to all three div instructions
2454Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2455 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2456
2457 // undef / X -> 0
2458 if (isa<UndefValue>(Op0))
2459 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2460
2461 // X / undef -> undef
2462 if (isa<UndefValue>(Op1))
2463 return ReplaceInstUsesWith(I, Op1);
2464
2465 // Handle cases involving: div X, (select Cond, Y, Z)
2466 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2467 // div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in the
2468 // same basic block, then we replace the select with Y, and the condition
2469 // of the select with false (if the cond value is in the same BB). If the
2470 // select has uses other than the div, this allows them to be simplified
2471 // also. Note that div X, Y is just as good as div X, 0 (undef)
2472 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2473 if (ST->isNullValue()) {
2474 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2475 if (CondI && CondI->getParent() == I.getParent())
2476 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2477 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2478 I.setOperand(1, SI->getOperand(2));
2479 else
2480 UpdateValueUsesWith(SI, SI->getOperand(2));
2481 return &I;
2482 }
2483
2484 // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
2485 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2486 if (ST->isNullValue()) {
2487 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2488 if (CondI && CondI->getParent() == I.getParent())
2489 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2490 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2491 I.setOperand(1, SI->getOperand(1));
2492 else
2493 UpdateValueUsesWith(SI, SI->getOperand(1));
2494 return &I;
2495 }
2496 }
2497
2498 return 0;
2499}
2500
2501/// This function implements the transforms common to both integer division
2502/// instructions (udiv and sdiv). It is called by the visitors to those integer
2503/// division instructions.
2504/// @brief Common integer divide transforms
2505Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2506 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2507
2508 if (Instruction *Common = commonDivTransforms(I))
2509 return Common;
2510
2511 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2512 // div X, 1 == X
2513 if (RHS->equalsInt(1))
2514 return ReplaceInstUsesWith(I, Op0);
2515
2516 // (X / C1) / C2 -> X / (C1*C2)
2517 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2518 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2519 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
2520 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
2521 Multiply(RHS, LHSRHS));
2522 }
2523
2524 if (!RHS->isZero()) { // avoid X udiv 0
2525 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2526 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2527 return R;
2528 if (isa<PHINode>(Op0))
2529 if (Instruction *NV = FoldOpIntoPhi(I))
2530 return NV;
2531 }
2532 }
2533
2534 // 0 / X == 0, we don't need to preserve faults!
2535 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2536 if (LHS->equalsInt(0))
2537 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2538
2539 return 0;
2540}
2541
2542Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2543 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2544
2545 // Handle the integer div common cases
2546 if (Instruction *Common = commonIDivTransforms(I))
2547 return Common;
2548
2549 // X udiv C^2 -> X >> C
2550 // Check to see if this is an unsigned division with an exact power of 2,
2551 // if so, convert to a right shift.
2552 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2553 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
2554 return BinaryOperator::createLShr(Op0,
2555 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2556 }
2557
2558 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2559 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2560 if (RHSI->getOpcode() == Instruction::Shl &&
2561 isa<ConstantInt>(RHSI->getOperand(0))) {
2562 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2563 if (C1.isPowerOf2()) {
2564 Value *N = RHSI->getOperand(1);
2565 const Type *NTy = N->getType();
2566 if (uint32_t C2 = C1.logBase2()) {
2567 Constant *C2V = ConstantInt::get(NTy, C2);
2568 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
2569 }
2570 return BinaryOperator::createLShr(Op0, N);
2571 }
2572 }
2573 }
2574
2575 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2576 // where C1&C2 are powers of two.
2577 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2578 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2579 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2580 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2581 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2582 // Compute the shift amounts
2583 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2584 // Construct the "on true" case of the select
2585 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
2586 Instruction *TSI = BinaryOperator::createLShr(
2587 Op0, TC, SI->getName()+".t");
2588 TSI = InsertNewInstBefore(TSI, I);
2589
2590 // Construct the "on false" case of the select
2591 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
2592 Instruction *FSI = BinaryOperator::createLShr(
2593 Op0, FC, SI->getName()+".f");
2594 FSI = InsertNewInstBefore(FSI, I);
2595
2596 // construct the select instruction and return it.
2597 return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName());
2598 }
2599 }
2600 return 0;
2601}
2602
2603Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2604 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2605
2606 // Handle the integer div common cases
2607 if (Instruction *Common = commonIDivTransforms(I))
2608 return Common;
2609
2610 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2611 // sdiv X, -1 == -X
2612 if (RHS->isAllOnesValue())
2613 return BinaryOperator::createNeg(Op0);
2614
2615 // -X/C -> X/-C
2616 if (Value *LHSNeg = dyn_castNegVal(Op0))
2617 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
2618 }
2619
2620 // If the sign bits of both operands are zero (i.e. we can prove they are
2621 // unsigned inputs), turn this into a udiv.
2622 if (I.getType()->isInteger()) {
2623 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2624 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
2625 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
2626 }
2627 }
2628
2629 return 0;
2630}
2631
2632Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2633 return commonDivTransforms(I);
2634}
2635
2636/// GetFactor - If we can prove that the specified value is at least a multiple
2637/// of some factor, return that factor.
2638static Constant *GetFactor(Value *V) {
2639 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2640 return CI;
2641
2642 // Unless we can be tricky, we know this is a multiple of 1.
2643 Constant *Result = ConstantInt::get(V->getType(), 1);
2644
2645 Instruction *I = dyn_cast<Instruction>(V);
2646 if (!I) return Result;
2647
2648 if (I->getOpcode() == Instruction::Mul) {
2649 // Handle multiplies by a constant, etc.
2650 return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
2651 GetFactor(I->getOperand(1)));
2652 } else if (I->getOpcode() == Instruction::Shl) {
2653 // (X<<C) -> X * (1 << C)
2654 if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
2655 ShRHS = ConstantExpr::getShl(Result, ShRHS);
2656 return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
2657 }
2658 } else if (I->getOpcode() == Instruction::And) {
2659 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2660 // X & 0xFFF0 is known to be a multiple of 16.
2661 uint32_t Zeros = RHS->getValue().countTrailingZeros();
2662 if (Zeros != V->getType()->getPrimitiveSizeInBits())
2663 return ConstantExpr::getShl(Result,
2664 ConstantInt::get(Result->getType(), Zeros));
2665 }
2666 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2667 // Only handle int->int casts.
2668 if (!CI->isIntegerCast())
2669 return Result;
2670 Value *Op = CI->getOperand(0);
2671 return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType());
2672 }
2673 return Result;
2674}
2675
2676/// This function implements the transforms on rem instructions that work
2677/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2678/// is used by the visitors to those instructions.
2679/// @brief Transforms common to all three rem instructions
2680Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2681 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2682
2683 // 0 % X == 0, we don't need to preserve faults!
2684 if (Constant *LHS = dyn_cast<Constant>(Op0))
2685 if (LHS->isNullValue())
2686 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2687
2688 if (isa<UndefValue>(Op0)) // undef % X -> 0
2689 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2690 if (isa<UndefValue>(Op1))
2691 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2692
2693 // Handle cases involving: rem X, (select Cond, Y, Z)
2694 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2695 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
2696 // the same basic block, then we replace the select with Y, and the
2697 // condition of the select with false (if the cond value is in the same
2698 // BB). If the select has uses other than the div, this allows them to be
2699 // simplified also.
2700 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2701 if (ST->isNullValue()) {
2702 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2703 if (CondI && CondI->getParent() == I.getParent())
2704 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2705 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2706 I.setOperand(1, SI->getOperand(2));
2707 else
2708 UpdateValueUsesWith(SI, SI->getOperand(2));
2709 return &I;
2710 }
2711 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
2712 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2713 if (ST->isNullValue()) {
2714 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2715 if (CondI && CondI->getParent() == I.getParent())
2716 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2717 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2718 I.setOperand(1, SI->getOperand(1));
2719 else
2720 UpdateValueUsesWith(SI, SI->getOperand(1));
2721 return &I;
2722 }
2723 }
2724
2725 return 0;
2726}
2727
2728/// This function implements the transforms common to both integer remainder
2729/// instructions (urem and srem). It is called by the visitors to those integer
2730/// remainder instructions.
2731/// @brief Common integer remainder transforms
2732Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2733 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2734
2735 if (Instruction *common = commonRemTransforms(I))
2736 return common;
2737
2738 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2739 // X % 0 == undef, we don't need to preserve faults!
2740 if (RHS->equalsInt(0))
2741 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2742
2743 if (RHS->equalsInt(1)) // X % 1 == 0
2744 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2745
2746 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2747 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2748 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2749 return R;
2750 } else if (isa<PHINode>(Op0I)) {
2751 if (Instruction *NV = FoldOpIntoPhi(I))
2752 return NV;
2753 }
2754 // (X * C1) % C2 --> 0 iff C1 % C2 == 0
2755 if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue())
2756 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2757 }
2758 }
2759
2760 return 0;
2761}
2762
2763Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2764 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2765
2766 if (Instruction *common = commonIRemTransforms(I))
2767 return common;
2768
2769 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2770 // X urem C^2 -> X and C
2771 // Check to see if this is an unsigned remainder with an exact power of 2,
2772 // if so, convert to a bitwise and.
2773 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
2774 if (C->getValue().isPowerOf2())
2775 return BinaryOperator::createAnd(Op0, SubOne(C));
2776 }
2777
2778 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
2779 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
2780 if (RHSI->getOpcode() == Instruction::Shl &&
2781 isa<ConstantInt>(RHSI->getOperand(0))) {
2782 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
2783 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
2784 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
2785 "tmp"), I);
2786 return BinaryOperator::createAnd(Op0, Add);
2787 }
2788 }
2789 }
2790
2791 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
2792 // where C1&C2 are powers of two.
2793 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2794 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2795 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2796 // STO == 0 and SFO == 0 handled above.
2797 if ((STO->getValue().isPowerOf2()) &&
2798 (SFO->getValue().isPowerOf2())) {
2799 Value *TrueAnd = InsertNewInstBefore(
2800 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
2801 Value *FalseAnd = InsertNewInstBefore(
2802 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
2803 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
2804 }
2805 }
2806 }
2807
2808 return 0;
2809}
2810
2811Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
2812 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2813
2814 if (Instruction *common = commonIRemTransforms(I))
2815 return common;
2816
2817 if (Value *RHSNeg = dyn_castNegVal(Op1))
2818 if (!isa<ConstantInt>(RHSNeg) ||
2819 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
2820 // X % -Y -> X % Y
2821 AddUsesToWorkList(I);
2822 I.setOperand(1, RHSNeg);
2823 return &I;
2824 }
2825
2826 // If the top bits of both operands are zero (i.e. we can prove they are
2827 // unsigned inputs), turn this into a urem.
2828 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2829 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
2830 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2831 return BinaryOperator::createURem(Op0, Op1, I.getName());
2832 }
2833
2834 return 0;
2835}
2836
2837Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
2838 return commonRemTransforms(I);
2839}
2840
2841// isMaxValueMinusOne - return true if this is Max-1
2842static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
2843 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2844 if (!isSigned)
2845 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
2846 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
2847}
2848
2849// isMinValuePlusOne - return true if this is Min+1
2850static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
2851 if (!isSigned)
2852 return C->getValue() == 1; // unsigned
2853
2854 // Calculate 1111111111000000000000
2855 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2856 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
2857}
2858
2859// isOneBitSet - Return true if there is exactly one bit set in the specified
2860// constant.
2861static bool isOneBitSet(const ConstantInt *CI) {
2862 return CI->getValue().isPowerOf2();
2863}
2864
2865// isHighOnes - Return true if the constant is of the form 1+0+.
2866// This is the same as lowones(~X).
2867static bool isHighOnes(const ConstantInt *CI) {
2868 return (~CI->getValue() + 1).isPowerOf2();
2869}
2870
2871/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
2872/// are carefully arranged to allow folding of expressions such as:
2873///
2874/// (A < B) | (A > B) --> (A != B)
2875///
2876/// Note that this is only valid if the first and second predicates have the
2877/// same sign. Is illegal to do: (A u< B) | (A s> B)
2878///
2879/// Three bits are used to represent the condition, as follows:
2880/// 0 A > B
2881/// 1 A == B
2882/// 2 A < B
2883///
2884/// <=> Value Definition
2885/// 000 0 Always false
2886/// 001 1 A > B
2887/// 010 2 A == B
2888/// 011 3 A >= B
2889/// 100 4 A < B
2890/// 101 5 A != B
2891/// 110 6 A <= B
2892/// 111 7 Always true
2893///
2894static unsigned getICmpCode(const ICmpInst *ICI) {
2895 switch (ICI->getPredicate()) {
2896 // False -> 0
2897 case ICmpInst::ICMP_UGT: return 1; // 001
2898 case ICmpInst::ICMP_SGT: return 1; // 001
2899 case ICmpInst::ICMP_EQ: return 2; // 010
2900 case ICmpInst::ICMP_UGE: return 3; // 011
2901 case ICmpInst::ICMP_SGE: return 3; // 011
2902 case ICmpInst::ICMP_ULT: return 4; // 100
2903 case ICmpInst::ICMP_SLT: return 4; // 100
2904 case ICmpInst::ICMP_NE: return 5; // 101
2905 case ICmpInst::ICMP_ULE: return 6; // 110
2906 case ICmpInst::ICMP_SLE: return 6; // 110
2907 // True -> 7
2908 default:
2909 assert(0 && "Invalid ICmp predicate!");
2910 return 0;
2911 }
2912}
2913
2914/// getICmpValue - This is the complement of getICmpCode, which turns an
2915/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00002916/// new ICmp instruction. The sign is passed in to determine which kind
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002917/// of predicate to use in new icmp instructions.
2918static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
2919 switch (code) {
2920 default: assert(0 && "Illegal ICmp code!");
2921 case 0: return ConstantInt::getFalse();
2922 case 1:
2923 if (sign)
2924 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
2925 else
2926 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
2927 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
2928 case 3:
2929 if (sign)
2930 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
2931 else
2932 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
2933 case 4:
2934 if (sign)
2935 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
2936 else
2937 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
2938 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
2939 case 6:
2940 if (sign)
2941 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
2942 else
2943 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
2944 case 7: return ConstantInt::getTrue();
2945 }
2946}
2947
2948static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
2949 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
2950 (ICmpInst::isSignedPredicate(p1) &&
2951 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
2952 (ICmpInst::isSignedPredicate(p2) &&
2953 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
2954}
2955
2956namespace {
2957// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
2958struct FoldICmpLogical {
2959 InstCombiner &IC;
2960 Value *LHS, *RHS;
2961 ICmpInst::Predicate pred;
2962 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
2963 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
2964 pred(ICI->getPredicate()) {}
2965 bool shouldApply(Value *V) const {
2966 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
2967 if (PredicatesFoldable(pred, ICI->getPredicate()))
2968 return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS ||
2969 ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS);
2970 return false;
2971 }
2972 Instruction *apply(Instruction &Log) const {
2973 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
2974 if (ICI->getOperand(0) != LHS) {
2975 assert(ICI->getOperand(1) == LHS);
2976 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
2977 }
2978
2979 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
2980 unsigned LHSCode = getICmpCode(ICI);
2981 unsigned RHSCode = getICmpCode(RHSICI);
2982 unsigned Code;
2983 switch (Log.getOpcode()) {
2984 case Instruction::And: Code = LHSCode & RHSCode; break;
2985 case Instruction::Or: Code = LHSCode | RHSCode; break;
2986 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
2987 default: assert(0 && "Illegal logical opcode!"); return 0;
2988 }
2989
2990 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
2991 ICmpInst::isSignedPredicate(ICI->getPredicate());
2992
2993 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
2994 if (Instruction *I = dyn_cast<Instruction>(RV))
2995 return I;
2996 // Otherwise, it's a constant boolean value...
2997 return IC.ReplaceInstUsesWith(Log, RV);
2998 }
2999};
3000} // end anonymous namespace
3001
3002// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3003// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3004// guaranteed to be a binary operator.
3005Instruction *InstCombiner::OptAndOp(Instruction *Op,
3006 ConstantInt *OpRHS,
3007 ConstantInt *AndRHS,
3008 BinaryOperator &TheAnd) {
3009 Value *X = Op->getOperand(0);
3010 Constant *Together = 0;
3011 if (!Op->isShift())
3012 Together = And(AndRHS, OpRHS);
3013
3014 switch (Op->getOpcode()) {
3015 case Instruction::Xor:
3016 if (Op->hasOneUse()) {
3017 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
3018 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
3019 InsertNewInstBefore(And, TheAnd);
3020 And->takeName(Op);
3021 return BinaryOperator::createXor(And, Together);
3022 }
3023 break;
3024 case Instruction::Or:
3025 if (Together == AndRHS) // (X | C) & C --> C
3026 return ReplaceInstUsesWith(TheAnd, AndRHS);
3027
3028 if (Op->hasOneUse() && Together != OpRHS) {
3029 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3030 Instruction *Or = BinaryOperator::createOr(X, Together);
3031 InsertNewInstBefore(Or, TheAnd);
3032 Or->takeName(Op);
3033 return BinaryOperator::createAnd(Or, AndRHS);
3034 }
3035 break;
3036 case Instruction::Add:
3037 if (Op->hasOneUse()) {
3038 // Adding a one to a single bit bit-field should be turned into an XOR
3039 // of the bit. First thing to check is to see if this AND is with a
3040 // single bit constant.
3041 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3042
3043 // If there is only one bit set...
3044 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3045 // Ok, at this point, we know that we are masking the result of the
3046 // ADD down to exactly one bit. If the constant we are adding has
3047 // no bits set below this bit, then we can eliminate the ADD.
3048 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3049
3050 // Check to see if any bits below the one bit set in AndRHSV are set.
3051 if ((AddRHS & (AndRHSV-1)) == 0) {
3052 // If not, the only thing that can effect the output of the AND is
3053 // the bit specified by AndRHSV. If that bit is set, the effect of
3054 // the XOR is to toggle the bit. If it is clear, then the ADD has
3055 // no effect.
3056 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3057 TheAnd.setOperand(0, X);
3058 return &TheAnd;
3059 } else {
3060 // Pull the XOR out of the AND.
3061 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
3062 InsertNewInstBefore(NewAnd, TheAnd);
3063 NewAnd->takeName(Op);
3064 return BinaryOperator::createXor(NewAnd, AndRHS);
3065 }
3066 }
3067 }
3068 }
3069 break;
3070
3071 case Instruction::Shl: {
3072 // We know that the AND will not produce any of the bits shifted in, so if
3073 // the anded constant includes them, clear them now!
3074 //
3075 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3076 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3077 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3078 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3079
3080 if (CI->getValue() == ShlMask) {
3081 // Masking out bits that the shift already masks
3082 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3083 } else if (CI != AndRHS) { // Reducing bits set in and.
3084 TheAnd.setOperand(1, CI);
3085 return &TheAnd;
3086 }
3087 break;
3088 }
3089 case Instruction::LShr:
3090 {
3091 // We know that the AND will not produce any of the bits shifted in, so if
3092 // the anded constant includes them, clear them now! This only applies to
3093 // unsigned shifts, because a signed shr may bring in set bits!
3094 //
3095 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3096 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3097 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3098 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3099
3100 if (CI->getValue() == ShrMask) {
3101 // Masking out bits that the shift already masks.
3102 return ReplaceInstUsesWith(TheAnd, Op);
3103 } else if (CI != AndRHS) {
3104 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3105 return &TheAnd;
3106 }
3107 break;
3108 }
3109 case Instruction::AShr:
3110 // Signed shr.
3111 // See if this is shifting in some sign extension, then masking it out
3112 // with an and.
3113 if (Op->hasOneUse()) {
3114 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3115 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3116 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3117 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3118 if (C == AndRHS) { // Masking out bits shifted in.
3119 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3120 // Make the argument unsigned.
3121 Value *ShVal = Op->getOperand(0);
3122 ShVal = InsertNewInstBefore(
3123 BinaryOperator::createLShr(ShVal, OpRHS,
3124 Op->getName()), TheAnd);
3125 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
3126 }
3127 }
3128 break;
3129 }
3130 return 0;
3131}
3132
3133
3134/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3135/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3136/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3137/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3138/// insert new instructions.
3139Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3140 bool isSigned, bool Inside,
3141 Instruction &IB) {
3142 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3143 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3144 "Lo is not <= Hi in range emission code!");
3145
3146 if (Inside) {
3147 if (Lo == Hi) // Trivially false.
3148 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3149
3150 // V >= Min && V < Hi --> V < Hi
3151 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3152 ICmpInst::Predicate pred = (isSigned ?
3153 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3154 return new ICmpInst(pred, V, Hi);
3155 }
3156
3157 // Emit V-Lo <u Hi-Lo
3158 Constant *NegLo = ConstantExpr::getNeg(Lo);
3159 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3160 InsertNewInstBefore(Add, IB);
3161 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3162 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3163 }
3164
3165 if (Lo == Hi) // Trivially true.
3166 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3167
3168 // V < Min || V >= Hi -> V > Hi-1
3169 Hi = SubOne(cast<ConstantInt>(Hi));
3170 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3171 ICmpInst::Predicate pred = (isSigned ?
3172 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3173 return new ICmpInst(pred, V, Hi);
3174 }
3175
3176 // Emit V-Lo >u Hi-1-Lo
3177 // Note that Hi has already had one subtracted from it, above.
3178 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
3179 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3180 InsertNewInstBefore(Add, IB);
3181 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3182 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3183}
3184
3185// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3186// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3187// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3188// not, since all 1s are not contiguous.
3189static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3190 const APInt& V = Val->getValue();
3191 uint32_t BitWidth = Val->getType()->getBitWidth();
3192 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3193
3194 // look for the first zero bit after the run of ones
3195 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3196 // look for the first non-zero bit
3197 ME = V.getActiveBits();
3198 return true;
3199}
3200
3201/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3202/// where isSub determines whether the operator is a sub. If we can fold one of
3203/// the following xforms:
3204///
3205/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3206/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3207/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3208///
3209/// return (A +/- B).
3210///
3211Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3212 ConstantInt *Mask, bool isSub,
3213 Instruction &I) {
3214 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3215 if (!LHSI || LHSI->getNumOperands() != 2 ||
3216 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3217
3218 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3219
3220 switch (LHSI->getOpcode()) {
3221 default: return 0;
3222 case Instruction::And:
3223 if (And(N, Mask) == Mask) {
3224 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3225 if ((Mask->getValue().countLeadingZeros() +
3226 Mask->getValue().countPopulation()) ==
3227 Mask->getValue().getBitWidth())
3228 break;
3229
3230 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3231 // part, we don't need any explicit masks to take them out of A. If that
3232 // is all N is, ignore it.
3233 uint32_t MB = 0, ME = 0;
3234 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3235 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3236 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3237 if (MaskedValueIsZero(RHS, Mask))
3238 break;
3239 }
3240 }
3241 return 0;
3242 case Instruction::Or:
3243 case Instruction::Xor:
3244 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3245 if ((Mask->getValue().countLeadingZeros() +
3246 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3247 && And(N, Mask)->isZero())
3248 break;
3249 return 0;
3250 }
3251
3252 Instruction *New;
3253 if (isSub)
3254 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3255 else
3256 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3257 return InsertNewInstBefore(New, I);
3258}
3259
3260Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3261 bool Changed = SimplifyCommutative(I);
3262 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3263
3264 if (isa<UndefValue>(Op1)) // X & undef -> 0
3265 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3266
3267 // and X, X = X
3268 if (Op0 == Op1)
3269 return ReplaceInstUsesWith(I, Op1);
3270
3271 // See if we can simplify any instructions used by the instruction whose sole
3272 // purpose is to compute bits we don't care about.
3273 if (!isa<VectorType>(I.getType())) {
3274 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3275 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3276 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3277 KnownZero, KnownOne))
3278 return &I;
3279 } else {
3280 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3281 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3282 return ReplaceInstUsesWith(I, I.getOperand(0));
3283 } else if (isa<ConstantAggregateZero>(Op1)) {
3284 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3285 }
3286 }
3287
3288 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3289 const APInt& AndRHSMask = AndRHS->getValue();
3290 APInt NotAndRHS(~AndRHSMask);
3291
3292 // Optimize a variety of ((val OP C1) & C2) combinations...
3293 if (isa<BinaryOperator>(Op0)) {
3294 Instruction *Op0I = cast<Instruction>(Op0);
3295 Value *Op0LHS = Op0I->getOperand(0);
3296 Value *Op0RHS = Op0I->getOperand(1);
3297 switch (Op0I->getOpcode()) {
3298 case Instruction::Xor:
3299 case Instruction::Or:
3300 // If the mask is only needed on one incoming arm, push it up.
3301 if (Op0I->hasOneUse()) {
3302 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3303 // Not masking anything out for the LHS, move to RHS.
3304 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3305 Op0RHS->getName()+".masked");
3306 InsertNewInstBefore(NewRHS, I);
3307 return BinaryOperator::create(
3308 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3309 }
3310 if (!isa<Constant>(Op0RHS) &&
3311 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3312 // Not masking anything out for the RHS, move to LHS.
3313 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3314 Op0LHS->getName()+".masked");
3315 InsertNewInstBefore(NewLHS, I);
3316 return BinaryOperator::create(
3317 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3318 }
3319 }
3320
3321 break;
3322 case Instruction::Add:
3323 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3324 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3325 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3326 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3327 return BinaryOperator::createAnd(V, AndRHS);
3328 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3329 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
3330 break;
3331
3332 case Instruction::Sub:
3333 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3334 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3335 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3336 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3337 return BinaryOperator::createAnd(V, AndRHS);
3338 break;
3339 }
3340
3341 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3342 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3343 return Res;
3344 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3345 // If this is an integer truncation or change from signed-to-unsigned, and
3346 // if the source is an and/or with immediate, transform it. This
3347 // frequently occurs for bitfield accesses.
3348 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3349 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3350 CastOp->getNumOperands() == 2)
3351 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
3352 if (CastOp->getOpcode() == Instruction::And) {
3353 // Change: and (cast (and X, C1) to T), C2
3354 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3355 // This will fold the two constants together, which may allow
3356 // other simplifications.
3357 Instruction *NewCast = CastInst::createTruncOrBitCast(
3358 CastOp->getOperand(0), I.getType(),
3359 CastOp->getName()+".shrunk");
3360 NewCast = InsertNewInstBefore(NewCast, I);
3361 // trunc_or_bitcast(C1)&C2
3362 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3363 C3 = ConstantExpr::getAnd(C3, AndRHS);
3364 return BinaryOperator::createAnd(NewCast, C3);
3365 } else if (CastOp->getOpcode() == Instruction::Or) {
3366 // Change: and (cast (or X, C1) to T), C2
3367 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3368 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3369 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3370 return ReplaceInstUsesWith(I, AndRHS);
3371 }
3372 }
3373 }
3374
3375 // Try to fold constant and into select arguments.
3376 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3377 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3378 return R;
3379 if (isa<PHINode>(Op0))
3380 if (Instruction *NV = FoldOpIntoPhi(I))
3381 return NV;
3382 }
3383
3384 Value *Op0NotVal = dyn_castNotVal(Op0);
3385 Value *Op1NotVal = dyn_castNotVal(Op1);
3386
3387 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3388 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3389
3390 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3391 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3392 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
3393 I.getName()+".demorgan");
3394 InsertNewInstBefore(Or, I);
3395 return BinaryOperator::createNot(Or);
3396 }
3397
3398 {
3399 Value *A = 0, *B = 0, *C = 0, *D = 0;
3400 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3401 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3402 return ReplaceInstUsesWith(I, Op1);
3403
3404 // (A|B) & ~(A&B) -> A^B
3405 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3406 if ((A == C && B == D) || (A == D && B == C))
3407 return BinaryOperator::createXor(A, B);
3408 }
3409 }
3410
3411 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3412 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3413 return ReplaceInstUsesWith(I, Op0);
3414
3415 // ~(A&B) & (A|B) -> A^B
3416 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3417 if ((A == C && B == D) || (A == D && B == C))
3418 return BinaryOperator::createXor(A, B);
3419 }
3420 }
3421
3422 if (Op0->hasOneUse() &&
3423 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3424 if (A == Op1) { // (A^B)&A -> A&(A^B)
3425 I.swapOperands(); // Simplify below
3426 std::swap(Op0, Op1);
3427 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3428 cast<BinaryOperator>(Op0)->swapOperands();
3429 I.swapOperands(); // Simplify below
3430 std::swap(Op0, Op1);
3431 }
3432 }
3433 if (Op1->hasOneUse() &&
3434 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3435 if (B == Op0) { // B&(A^B) -> B&(B^A)
3436 cast<BinaryOperator>(Op1)->swapOperands();
3437 std::swap(A, B);
3438 }
3439 if (A == Op0) { // A&(A^B) -> A & ~B
3440 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
3441 InsertNewInstBefore(NotB, I);
3442 return BinaryOperator::createAnd(A, NotB);
3443 }
3444 }
3445 }
3446
3447 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3448 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3449 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3450 return R;
3451
3452 Value *LHSVal, *RHSVal;
3453 ConstantInt *LHSCst, *RHSCst;
3454 ICmpInst::Predicate LHSCC, RHSCC;
3455 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3456 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3457 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3458 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3459 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3460 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3461 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
3462 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE) {
3463 // Ensure that the larger constant is on the RHS.
3464 ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ?
3465 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
3466 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3467 ICmpInst *LHS = cast<ICmpInst>(Op0);
3468 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3469 std::swap(LHS, RHS);
3470 std::swap(LHSCst, RHSCst);
3471 std::swap(LHSCC, RHSCC);
3472 }
3473
3474 // At this point, we know we have have two icmp instructions
3475 // comparing a value against two constants and and'ing the result
3476 // together. Because of the above check, we know that we only have
3477 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3478 // (from the FoldICmpLogical check above), that the two constants
3479 // are not equal and that the larger constant is on the RHS
3480 assert(LHSCst != RHSCst && "Compares not folded above?");
3481
3482 switch (LHSCC) {
3483 default: assert(0 && "Unknown integer condition code!");
3484 case ICmpInst::ICMP_EQ:
3485 switch (RHSCC) {
3486 default: assert(0 && "Unknown integer condition code!");
3487 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3488 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3489 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3490 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3491 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3492 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3493 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3494 return ReplaceInstUsesWith(I, LHS);
3495 }
3496 case ICmpInst::ICMP_NE:
3497 switch (RHSCC) {
3498 default: assert(0 && "Unknown integer condition code!");
3499 case ICmpInst::ICMP_ULT:
3500 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3501 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3502 break; // (X != 13 & X u< 15) -> no change
3503 case ICmpInst::ICMP_SLT:
3504 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3505 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3506 break; // (X != 13 & X s< 15) -> no change
3507 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3508 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3509 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3510 return ReplaceInstUsesWith(I, RHS);
3511 case ICmpInst::ICMP_NE:
3512 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3513 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3514 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
3515 LHSVal->getName()+".off");
3516 InsertNewInstBefore(Add, I);
3517 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3518 ConstantInt::get(Add->getType(), 1));
3519 }
3520 break; // (X != 13 & X != 15) -> no change
3521 }
3522 break;
3523 case ICmpInst::ICMP_ULT:
3524 switch (RHSCC) {
3525 default: assert(0 && "Unknown integer condition code!");
3526 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3527 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3528 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3529 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3530 break;
3531 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3532 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3533 return ReplaceInstUsesWith(I, LHS);
3534 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3535 break;
3536 }
3537 break;
3538 case ICmpInst::ICMP_SLT:
3539 switch (RHSCC) {
3540 default: assert(0 && "Unknown integer condition code!");
3541 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3542 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3543 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3544 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3545 break;
3546 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3547 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3548 return ReplaceInstUsesWith(I, LHS);
3549 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3550 break;
3551 }
3552 break;
3553 case ICmpInst::ICMP_UGT:
3554 switch (RHSCC) {
3555 default: assert(0 && "Unknown integer condition code!");
3556 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
3557 return ReplaceInstUsesWith(I, LHS);
3558 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3559 return ReplaceInstUsesWith(I, RHS);
3560 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3561 break;
3562 case ICmpInst::ICMP_NE:
3563 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3564 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3565 break; // (X u> 13 & X != 15) -> no change
3566 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3567 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3568 true, I);
3569 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3570 break;
3571 }
3572 break;
3573 case ICmpInst::ICMP_SGT:
3574 switch (RHSCC) {
3575 default: assert(0 && "Unknown integer condition code!");
3576 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X s> 13
3577 return ReplaceInstUsesWith(I, LHS);
3578 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3579 return ReplaceInstUsesWith(I, RHS);
3580 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3581 break;
3582 case ICmpInst::ICMP_NE:
3583 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3584 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3585 break; // (X s> 13 & X != 15) -> no change
3586 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3587 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3588 true, I);
3589 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3590 break;
3591 }
3592 break;
3593 }
3594 }
3595 }
3596
3597 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3598 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3599 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3600 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3601 const Type *SrcTy = Op0C->getOperand(0)->getType();
3602 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3603 // Only do this if the casts both really cause code to be generated.
3604 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3605 I.getType(), TD) &&
3606 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3607 I.getType(), TD)) {
3608 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
3609 Op1C->getOperand(0),
3610 I.getName());
3611 InsertNewInstBefore(NewOp, I);
3612 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
3613 }
3614 }
3615
3616 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3617 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3618 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3619 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3620 SI0->getOperand(1) == SI1->getOperand(1) &&
3621 (SI0->hasOneUse() || SI1->hasOneUse())) {
3622 Instruction *NewOp =
3623 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
3624 SI1->getOperand(0),
3625 SI0->getName()), I);
3626 return BinaryOperator::create(SI1->getOpcode(), NewOp,
3627 SI1->getOperand(1));
3628 }
3629 }
3630
Chris Lattner91882432007-10-24 05:38:08 +00003631 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
3632 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3633 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3634 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
3635 RHS->getPredicate() == FCmpInst::FCMP_ORD)
3636 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3637 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3638 // If either of the constants are nans, then the whole thing returns
3639 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003640 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003641 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3642 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3643 RHS->getOperand(0));
3644 }
3645 }
3646 }
3647
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003648 return Changed ? &I : 0;
3649}
3650
3651/// CollectBSwapParts - Look to see if the specified value defines a single byte
3652/// in the result. If it does, and if the specified byte hasn't been filled in
3653/// yet, fill it in and return false.
3654static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
3655 Instruction *I = dyn_cast<Instruction>(V);
3656 if (I == 0) return true;
3657
3658 // If this is an or instruction, it is an inner node of the bswap.
3659 if (I->getOpcode() == Instruction::Or)
3660 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
3661 CollectBSwapParts(I->getOperand(1), ByteValues);
3662
3663 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
3664 // If this is a shift by a constant int, and it is "24", then its operand
3665 // defines a byte. We only handle unsigned types here.
3666 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
3667 // Not shifting the entire input by N-1 bytes?
3668 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
3669 8*(ByteValues.size()-1))
3670 return true;
3671
3672 unsigned DestNo;
3673 if (I->getOpcode() == Instruction::Shl) {
3674 // X << 24 defines the top byte with the lowest of the input bytes.
3675 DestNo = ByteValues.size()-1;
3676 } else {
3677 // X >>u 24 defines the low byte with the highest of the input bytes.
3678 DestNo = 0;
3679 }
3680
3681 // If the destination byte value is already defined, the values are or'd
3682 // together, which isn't a bswap (unless it's an or of the same bits).
3683 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
3684 return true;
3685 ByteValues[DestNo] = I->getOperand(0);
3686 return false;
3687 }
3688
3689 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
3690 // don't have this.
3691 Value *Shift = 0, *ShiftLHS = 0;
3692 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
3693 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
3694 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
3695 return true;
3696 Instruction *SI = cast<Instruction>(Shift);
3697
3698 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
3699 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
3700 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
3701 return true;
3702
3703 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
3704 unsigned DestByte;
3705 if (AndAmt->getValue().getActiveBits() > 64)
3706 return true;
3707 uint64_t AndAmtVal = AndAmt->getZExtValue();
3708 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
3709 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
3710 break;
3711 // Unknown mask for bswap.
3712 if (DestByte == ByteValues.size()) return true;
3713
3714 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
3715 unsigned SrcByte;
3716 if (SI->getOpcode() == Instruction::Shl)
3717 SrcByte = DestByte - ShiftBytes;
3718 else
3719 SrcByte = DestByte + ShiftBytes;
3720
3721 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
3722 if (SrcByte != ByteValues.size()-DestByte-1)
3723 return true;
3724
3725 // If the destination byte value is already defined, the values are or'd
3726 // together, which isn't a bswap (unless it's an or of the same bits).
3727 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
3728 return true;
3729 ByteValues[DestByte] = SI->getOperand(0);
3730 return false;
3731}
3732
3733/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
3734/// If so, insert the new bswap intrinsic and return it.
3735Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
3736 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
3737 if (!ITy || ITy->getBitWidth() % 16)
3738 return 0; // Can only bswap pairs of bytes. Can't do vectors.
3739
3740 /// ByteValues - For each byte of the result, we keep track of which value
3741 /// defines each byte.
3742 SmallVector<Value*, 8> ByteValues;
3743 ByteValues.resize(ITy->getBitWidth()/8);
3744
3745 // Try to find all the pieces corresponding to the bswap.
3746 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
3747 CollectBSwapParts(I.getOperand(1), ByteValues))
3748 return 0;
3749
3750 // Check to see if all of the bytes come from the same value.
3751 Value *V = ByteValues[0];
3752 if (V == 0) return 0; // Didn't find a byte? Must be zero.
3753
3754 // Check to make sure that all of the bytes come from the same value.
3755 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
3756 if (ByteValues[i] != V)
3757 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00003758 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003759 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00003760 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003761 return new CallInst(F, V);
3762}
3763
3764
3765Instruction *InstCombiner::visitOr(BinaryOperator &I) {
3766 bool Changed = SimplifyCommutative(I);
3767 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3768
3769 if (isa<UndefValue>(Op1)) // X | undef -> -1
3770 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3771
3772 // or X, X = X
3773 if (Op0 == Op1)
3774 return ReplaceInstUsesWith(I, Op0);
3775
3776 // See if we can simplify any instructions used by the instruction whose sole
3777 // purpose is to compute bits we don't care about.
3778 if (!isa<VectorType>(I.getType())) {
3779 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3780 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3781 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3782 KnownZero, KnownOne))
3783 return &I;
3784 } else if (isa<ConstantAggregateZero>(Op1)) {
3785 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
3786 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3787 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
3788 return ReplaceInstUsesWith(I, I.getOperand(1));
3789 }
3790
3791
3792
3793 // or X, -1 == -1
3794 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3795 ConstantInt *C1 = 0; Value *X = 0;
3796 // (X & C1) | C2 --> (X | C2) & (C1|C2)
3797 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
3798 Instruction *Or = BinaryOperator::createOr(X, RHS);
3799 InsertNewInstBefore(Or, I);
3800 Or->takeName(Op0);
3801 return BinaryOperator::createAnd(Or,
3802 ConstantInt::get(RHS->getValue() | C1->getValue()));
3803 }
3804
3805 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
3806 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
3807 Instruction *Or = BinaryOperator::createOr(X, RHS);
3808 InsertNewInstBefore(Or, I);
3809 Or->takeName(Op0);
3810 return BinaryOperator::createXor(Or,
3811 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
3812 }
3813
3814 // Try to fold constant and into select arguments.
3815 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3816 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3817 return R;
3818 if (isa<PHINode>(Op0))
3819 if (Instruction *NV = FoldOpIntoPhi(I))
3820 return NV;
3821 }
3822
3823 Value *A = 0, *B = 0;
3824 ConstantInt *C1 = 0, *C2 = 0;
3825
3826 if (match(Op0, m_And(m_Value(A), m_Value(B))))
3827 if (A == Op1 || B == Op1) // (A & ?) | A --> A
3828 return ReplaceInstUsesWith(I, Op1);
3829 if (match(Op1, m_And(m_Value(A), m_Value(B))))
3830 if (A == Op0 || B == Op0) // A | (A & ?) --> A
3831 return ReplaceInstUsesWith(I, Op0);
3832
3833 // (A | B) | C and A | (B | C) -> bswap if possible.
3834 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
3835 if (match(Op0, m_Or(m_Value(), m_Value())) ||
3836 match(Op1, m_Or(m_Value(), m_Value())) ||
3837 (match(Op0, m_Shift(m_Value(), m_Value())) &&
3838 match(Op1, m_Shift(m_Value(), m_Value())))) {
3839 if (Instruction *BSwap = MatchBSwap(I))
3840 return BSwap;
3841 }
3842
3843 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
3844 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
3845 MaskedValueIsZero(Op1, C1->getValue())) {
3846 Instruction *NOr = BinaryOperator::createOr(A, Op1);
3847 InsertNewInstBefore(NOr, I);
3848 NOr->takeName(Op0);
3849 return BinaryOperator::createXor(NOr, C1);
3850 }
3851
3852 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
3853 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
3854 MaskedValueIsZero(Op0, C1->getValue())) {
3855 Instruction *NOr = BinaryOperator::createOr(A, Op0);
3856 InsertNewInstBefore(NOr, I);
3857 NOr->takeName(Op0);
3858 return BinaryOperator::createXor(NOr, C1);
3859 }
3860
3861 // (A & C)|(B & D)
3862 Value *C = 0, *D = 0;
3863 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3864 match(Op1, m_And(m_Value(B), m_Value(D)))) {
3865 Value *V1 = 0, *V2 = 0, *V3 = 0;
3866 C1 = dyn_cast<ConstantInt>(C);
3867 C2 = dyn_cast<ConstantInt>(D);
3868 if (C1 && C2) { // (A & C1)|(B & C2)
3869 // If we have: ((V + N) & C1) | (V & C2)
3870 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
3871 // replace with V+N.
3872 if (C1->getValue() == ~C2->getValue()) {
3873 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
3874 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
3875 // Add commutes, try both ways.
3876 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
3877 return ReplaceInstUsesWith(I, A);
3878 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
3879 return ReplaceInstUsesWith(I, A);
3880 }
3881 // Or commutes, try both ways.
3882 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
3883 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
3884 // Add commutes, try both ways.
3885 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
3886 return ReplaceInstUsesWith(I, B);
3887 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
3888 return ReplaceInstUsesWith(I, B);
3889 }
3890 }
3891 V1 = 0; V2 = 0; V3 = 0;
3892 }
3893
3894 // Check to see if we have any common things being and'ed. If so, find the
3895 // terms for V1 & (V2|V3).
3896 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
3897 if (A == B) // (A & C)|(A & D) == A & (C|D)
3898 V1 = A, V2 = C, V3 = D;
3899 else if (A == D) // (A & C)|(B & A) == A & (B|C)
3900 V1 = A, V2 = B, V3 = C;
3901 else if (C == B) // (A & C)|(C & D) == C & (A|D)
3902 V1 = C, V2 = A, V3 = D;
3903 else if (C == D) // (A & C)|(B & C) == C & (A|B)
3904 V1 = C, V2 = A, V3 = B;
3905
3906 if (V1) {
3907 Value *Or =
3908 InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I);
3909 return BinaryOperator::createAnd(V1, Or);
3910 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003911 }
3912 }
3913
3914 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
3915 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3916 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3917 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3918 SI0->getOperand(1) == SI1->getOperand(1) &&
3919 (SI0->hasOneUse() || SI1->hasOneUse())) {
3920 Instruction *NewOp =
3921 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
3922 SI1->getOperand(0),
3923 SI0->getName()), I);
3924 return BinaryOperator::create(SI1->getOpcode(), NewOp,
3925 SI1->getOperand(1));
3926 }
3927 }
3928
3929 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
3930 if (A == Op1) // ~A | A == -1
3931 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3932 } else {
3933 A = 0;
3934 }
3935 // Note, A is still live here!
3936 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
3937 if (Op0 == B)
3938 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3939
3940 // (~A | ~B) == (~(A & B)) - De Morgan's Law
3941 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3942 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
3943 I.getName()+".demorgan"), I);
3944 return BinaryOperator::createNot(And);
3945 }
3946 }
3947
3948 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3949 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
3950 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3951 return R;
3952
3953 Value *LHSVal, *RHSVal;
3954 ConstantInt *LHSCst, *RHSCst;
3955 ICmpInst::Predicate LHSCC, RHSCC;
3956 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3957 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3958 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
3959 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
3960 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3961 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3962 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
3963 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3964 // We can't fold (ugt x, C) | (sgt x, C2).
3965 PredicatesFoldable(LHSCC, RHSCC)) {
3966 // Ensure that the larger constant is on the RHS.
3967 ICmpInst *LHS = cast<ICmpInst>(Op0);
3968 bool NeedsSwap;
3969 if (ICmpInst::isSignedPredicate(LHSCC))
3970 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
3971 else
3972 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
3973
3974 if (NeedsSwap) {
3975 std::swap(LHS, RHS);
3976 std::swap(LHSCst, RHSCst);
3977 std::swap(LHSCC, RHSCC);
3978 }
3979
3980 // At this point, we know we have have two icmp instructions
3981 // comparing a value against two constants and or'ing the result
3982 // together. Because of the above check, we know that we only have
3983 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
3984 // FoldICmpLogical check above), that the two constants are not
3985 // equal.
3986 assert(LHSCst != RHSCst && "Compares not folded above?");
3987
3988 switch (LHSCC) {
3989 default: assert(0 && "Unknown integer condition code!");
3990 case ICmpInst::ICMP_EQ:
3991 switch (RHSCC) {
3992 default: assert(0 && "Unknown integer condition code!");
3993 case ICmpInst::ICMP_EQ:
3994 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
3995 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3996 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
3997 LHSVal->getName()+".off");
3998 InsertNewInstBefore(Add, I);
3999 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4000 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4001 }
4002 break; // (X == 13 | X == 15) -> no change
4003 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4004 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4005 break;
4006 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4007 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4008 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4009 return ReplaceInstUsesWith(I, RHS);
4010 }
4011 break;
4012 case ICmpInst::ICMP_NE:
4013 switch (RHSCC) {
4014 default: assert(0 && "Unknown integer condition code!");
4015 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4016 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4017 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4018 return ReplaceInstUsesWith(I, LHS);
4019 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4020 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4021 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4022 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4023 }
4024 break;
4025 case ICmpInst::ICMP_ULT:
4026 switch (RHSCC) {
4027 default: assert(0 && "Unknown integer condition code!");
4028 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4029 break;
4030 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
4031 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4032 false, I);
4033 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4034 break;
4035 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4036 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4037 return ReplaceInstUsesWith(I, RHS);
4038 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4039 break;
4040 }
4041 break;
4042 case ICmpInst::ICMP_SLT:
4043 switch (RHSCC) {
4044 default: assert(0 && "Unknown integer condition code!");
4045 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4046 break;
4047 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
4048 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4049 false, I);
4050 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4051 break;
4052 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4053 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4054 return ReplaceInstUsesWith(I, RHS);
4055 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4056 break;
4057 }
4058 break;
4059 case ICmpInst::ICMP_UGT:
4060 switch (RHSCC) {
4061 default: assert(0 && "Unknown integer condition code!");
4062 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4063 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4064 return ReplaceInstUsesWith(I, LHS);
4065 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4066 break;
4067 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4068 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4069 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4070 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4071 break;
4072 }
4073 break;
4074 case ICmpInst::ICMP_SGT:
4075 switch (RHSCC) {
4076 default: assert(0 && "Unknown integer condition code!");
4077 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4078 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4079 return ReplaceInstUsesWith(I, LHS);
4080 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4081 break;
4082 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4083 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4084 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4085 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4086 break;
4087 }
4088 break;
4089 }
4090 }
4091 }
4092
4093 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004094 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004095 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4096 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
4097 const Type *SrcTy = Op0C->getOperand(0)->getType();
4098 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4099 // Only do this if the casts both really cause code to be generated.
4100 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4101 I.getType(), TD) &&
4102 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4103 I.getType(), TD)) {
4104 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4105 Op1C->getOperand(0),
4106 I.getName());
4107 InsertNewInstBefore(NewOp, I);
4108 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4109 }
4110 }
Chris Lattner91882432007-10-24 05:38:08 +00004111 }
4112
4113
4114 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4115 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4116 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4117 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
4118 RHS->getPredicate() == FCmpInst::FCMP_UNO)
4119 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4120 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4121 // If either of the constants are nans, then the whole thing returns
4122 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004123 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004124 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4125
4126 // Otherwise, no need to compare the two constants, compare the
4127 // rest.
4128 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4129 RHS->getOperand(0));
4130 }
4131 }
4132 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004133
4134 return Changed ? &I : 0;
4135}
4136
4137// XorSelf - Implements: X ^ X --> 0
4138struct XorSelf {
4139 Value *RHS;
4140 XorSelf(Value *rhs) : RHS(rhs) {}
4141 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4142 Instruction *apply(BinaryOperator &Xor) const {
4143 return &Xor;
4144 }
4145};
4146
4147
4148Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4149 bool Changed = SimplifyCommutative(I);
4150 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4151
4152 if (isa<UndefValue>(Op1))
4153 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
4154
4155 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4156 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004157 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004158 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4159 }
4160
4161 // See if we can simplify any instructions used by the instruction whose sole
4162 // purpose is to compute bits we don't care about.
4163 if (!isa<VectorType>(I.getType())) {
4164 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4165 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4166 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4167 KnownZero, KnownOne))
4168 return &I;
4169 } else if (isa<ConstantAggregateZero>(Op1)) {
4170 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4171 }
4172
4173 // Is this a ~ operation?
4174 if (Value *NotOp = dyn_castNotVal(&I)) {
4175 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4176 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4177 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4178 if (Op0I->getOpcode() == Instruction::And ||
4179 Op0I->getOpcode() == Instruction::Or) {
4180 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4181 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4182 Instruction *NotY =
4183 BinaryOperator::createNot(Op0I->getOperand(1),
4184 Op0I->getOperand(1)->getName()+".not");
4185 InsertNewInstBefore(NotY, I);
4186 if (Op0I->getOpcode() == Instruction::And)
4187 return BinaryOperator::createOr(Op0NotVal, NotY);
4188 else
4189 return BinaryOperator::createAnd(Op0NotVal, NotY);
4190 }
4191 }
4192 }
4193 }
4194
4195
4196 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004197 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4198 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4199 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004200 return new ICmpInst(ICI->getInversePredicate(),
4201 ICI->getOperand(0), ICI->getOperand(1));
4202
Nick Lewycky1405e922007-08-06 20:04:16 +00004203 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4204 return new FCmpInst(FCI->getInversePredicate(),
4205 FCI->getOperand(0), FCI->getOperand(1));
4206 }
4207
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004208 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4209 // ~(c-X) == X-c-1 == X+(-c-1)
4210 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4211 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4212 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4213 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4214 ConstantInt::get(I.getType(), 1));
4215 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
4216 }
4217
4218 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
4219 if (Op0I->getOpcode() == Instruction::Add) {
4220 // ~(X-c) --> (-c-1)-X
4221 if (RHS->isAllOnesValue()) {
4222 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4223 return BinaryOperator::createSub(
4224 ConstantExpr::getSub(NegOp0CI,
4225 ConstantInt::get(I.getType(), 1)),
4226 Op0I->getOperand(0));
4227 } else if (RHS->getValue().isSignBit()) {
4228 // (X + C) ^ signbit -> (X + C + signbit)
4229 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
4230 return BinaryOperator::createAdd(Op0I->getOperand(0), C);
4231
4232 }
4233 } else if (Op0I->getOpcode() == Instruction::Or) {
4234 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4235 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4236 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4237 // Anything in both C1 and C2 is known to be zero, remove it from
4238 // NewRHS.
4239 Constant *CommonBits = And(Op0CI, RHS);
4240 NewRHS = ConstantExpr::getAnd(NewRHS,
4241 ConstantExpr::getNot(CommonBits));
4242 AddToWorkList(Op0I);
4243 I.setOperand(0, Op0I->getOperand(0));
4244 I.setOperand(1, NewRHS);
4245 return &I;
4246 }
4247 }
4248 }
4249
4250 // Try to fold constant and into select arguments.
4251 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4252 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4253 return R;
4254 if (isa<PHINode>(Op0))
4255 if (Instruction *NV = FoldOpIntoPhi(I))
4256 return NV;
4257 }
4258
4259 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4260 if (X == Op1)
4261 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4262
4263 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4264 if (X == Op0)
4265 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4266
4267
4268 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4269 if (Op1I) {
4270 Value *A, *B;
4271 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4272 if (A == Op0) { // B^(B|A) == (A|B)^B
4273 Op1I->swapOperands();
4274 I.swapOperands();
4275 std::swap(Op0, Op1);
4276 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4277 I.swapOperands(); // Simplified below.
4278 std::swap(Op0, Op1);
4279 }
4280 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4281 if (Op0 == A) // A^(A^B) == B
4282 return ReplaceInstUsesWith(I, B);
4283 else if (Op0 == B) // A^(B^A) == B
4284 return ReplaceInstUsesWith(I, A);
4285 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4286 if (A == Op0) { // A^(A&B) -> A^(B&A)
4287 Op1I->swapOperands();
4288 std::swap(A, B);
4289 }
4290 if (B == Op0) { // A^(B&A) -> (B&A)^A
4291 I.swapOperands(); // Simplified below.
4292 std::swap(Op0, Op1);
4293 }
4294 }
4295 }
4296
4297 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4298 if (Op0I) {
4299 Value *A, *B;
4300 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4301 if (A == Op1) // (B|A)^B == (A|B)^B
4302 std::swap(A, B);
4303 if (B == Op1) { // (A|B)^B == A & ~B
4304 Instruction *NotB =
4305 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4306 return BinaryOperator::createAnd(A, NotB);
4307 }
4308 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4309 if (Op1 == A) // (A^B)^A == B
4310 return ReplaceInstUsesWith(I, B);
4311 else if (Op1 == B) // (B^A)^A == B
4312 return ReplaceInstUsesWith(I, A);
4313 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4314 if (A == Op1) // (A&B)^A -> (B&A)^A
4315 std::swap(A, B);
4316 if (B == Op1 && // (B&A)^A == ~B & A
4317 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4318 Instruction *N =
4319 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
4320 return BinaryOperator::createAnd(N, Op1);
4321 }
4322 }
4323 }
4324
4325 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4326 if (Op0I && Op1I && Op0I->isShift() &&
4327 Op0I->getOpcode() == Op1I->getOpcode() &&
4328 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4329 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4330 Instruction *NewOp =
4331 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4332 Op1I->getOperand(0),
4333 Op0I->getName()), I);
4334 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4335 Op1I->getOperand(1));
4336 }
4337
4338 if (Op0I && Op1I) {
4339 Value *A, *B, *C, *D;
4340 // (A & B)^(A | B) -> A ^ B
4341 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4342 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4343 if ((A == C && B == D) || (A == D && B == C))
4344 return BinaryOperator::createXor(A, B);
4345 }
4346 // (A | B)^(A & B) -> A ^ B
4347 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4348 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4349 if ((A == C && B == D) || (A == D && B == C))
4350 return BinaryOperator::createXor(A, B);
4351 }
4352
4353 // (A & B)^(C & D)
4354 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4355 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4356 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4357 // (X & Y)^(X & Y) -> (Y^Z) & X
4358 Value *X = 0, *Y = 0, *Z = 0;
4359 if (A == C)
4360 X = A, Y = B, Z = D;
4361 else if (A == D)
4362 X = A, Y = B, Z = C;
4363 else if (B == C)
4364 X = B, Y = A, Z = D;
4365 else if (B == D)
4366 X = B, Y = A, Z = C;
4367
4368 if (X) {
4369 Instruction *NewOp =
4370 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4371 return BinaryOperator::createAnd(NewOp, X);
4372 }
4373 }
4374 }
4375
4376 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4377 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4378 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4379 return R;
4380
4381 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004382 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004383 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4384 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4385 const Type *SrcTy = Op0C->getOperand(0)->getType();
4386 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4387 // Only do this if the casts both really cause code to be generated.
4388 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4389 I.getType(), TD) &&
4390 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4391 I.getType(), TD)) {
4392 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4393 Op1C->getOperand(0),
4394 I.getName());
4395 InsertNewInstBefore(NewOp, I);
4396 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4397 }
4398 }
Chris Lattner91882432007-10-24 05:38:08 +00004399 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004400 return Changed ? &I : 0;
4401}
4402
4403/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4404/// overflowed for this type.
4405static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4406 ConstantInt *In2, bool IsSigned = false) {
4407 Result = cast<ConstantInt>(Add(In1, In2));
4408
4409 if (IsSigned)
4410 if (In2->getValue().isNegative())
4411 return Result->getValue().sgt(In1->getValue());
4412 else
4413 return Result->getValue().slt(In1->getValue());
4414 else
4415 return Result->getValue().ult(In1->getValue());
4416}
4417
4418/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4419/// code necessary to compute the offset from the base pointer (without adding
4420/// in the base pointer). Return the result as a signed integer of intptr size.
4421static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4422 TargetData &TD = IC.getTargetData();
4423 gep_type_iterator GTI = gep_type_begin(GEP);
4424 const Type *IntPtrTy = TD.getIntPtrType();
4425 Value *Result = Constant::getNullValue(IntPtrTy);
4426
4427 // Build a mask for high order bits.
4428 unsigned IntPtrWidth = TD.getPointerSize()*8;
4429 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4430
4431 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4432 Value *Op = GEP->getOperand(i);
4433 uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask;
4434 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4435 if (OpC->isZero()) continue;
4436
4437 // Handle a struct index, which adds its field offset to the pointer.
4438 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4439 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4440
4441 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4442 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4443 else
4444 Result = IC.InsertNewInstBefore(
4445 BinaryOperator::createAdd(Result,
4446 ConstantInt::get(IntPtrTy, Size),
4447 GEP->getName()+".offs"), I);
4448 continue;
4449 }
4450
4451 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4452 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4453 Scale = ConstantExpr::getMul(OC, Scale);
4454 if (Constant *RC = dyn_cast<Constant>(Result))
4455 Result = ConstantExpr::getAdd(RC, Scale);
4456 else {
4457 // Emit an add instruction.
4458 Result = IC.InsertNewInstBefore(
4459 BinaryOperator::createAdd(Result, Scale,
4460 GEP->getName()+".offs"), I);
4461 }
4462 continue;
4463 }
4464 // Convert to correct type.
4465 if (Op->getType() != IntPtrTy) {
4466 if (Constant *OpC = dyn_cast<Constant>(Op))
4467 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4468 else
4469 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4470 Op->getName()+".c"), I);
4471 }
4472 if (Size != 1) {
4473 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4474 if (Constant *OpC = dyn_cast<Constant>(Op))
4475 Op = ConstantExpr::getMul(OpC, Scale);
4476 else // We'll let instcombine(mul) convert this to a shl if possible.
4477 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4478 GEP->getName()+".idx"), I);
4479 }
4480
4481 // Emit an add instruction.
4482 if (isa<Constant>(Op) && isa<Constant>(Result))
4483 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4484 cast<Constant>(Result));
4485 else
4486 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
4487 GEP->getName()+".offs"), I);
4488 }
4489 return Result;
4490}
4491
4492/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
4493/// else. At this point we know that the GEP is on the LHS of the comparison.
4494Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
4495 ICmpInst::Predicate Cond,
4496 Instruction &I) {
4497 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
4498
4499 if (CastInst *CI = dyn_cast<CastInst>(RHS))
4500 if (isa<PointerType>(CI->getOperand(0)->getType()))
4501 RHS = CI->getOperand(0);
4502
4503 Value *PtrBase = GEPLHS->getOperand(0);
4504 if (PtrBase == RHS) {
4505 // As an optimization, we don't actually have to compute the actual value of
4506 // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether
4507 // each index is zero or not.
4508 if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) {
4509 Instruction *InVal = 0;
4510 gep_type_iterator GTI = gep_type_begin(GEPLHS);
4511 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
4512 bool EmitIt = true;
4513 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
4514 if (isa<UndefValue>(C)) // undef index -> undef.
4515 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
4516 if (C->isNullValue())
4517 EmitIt = false;
4518 else if (TD->getTypeSize(GTI.getIndexedType()) == 0) {
4519 EmitIt = false; // This is indexing into a zero sized array?
4520 } else if (isa<ConstantInt>(C))
4521 return ReplaceInstUsesWith(I, // No comparison is needed here.
4522 ConstantInt::get(Type::Int1Ty,
4523 Cond == ICmpInst::ICMP_NE));
4524 }
4525
4526 if (EmitIt) {
4527 Instruction *Comp =
4528 new ICmpInst(Cond, GEPLHS->getOperand(i),
4529 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
4530 if (InVal == 0)
4531 InVal = Comp;
4532 else {
4533 InVal = InsertNewInstBefore(InVal, I);
4534 InsertNewInstBefore(Comp, I);
4535 if (Cond == ICmpInst::ICMP_NE) // True if any are unequal
4536 InVal = BinaryOperator::createOr(InVal, Comp);
4537 else // True if all are equal
4538 InVal = BinaryOperator::createAnd(InVal, Comp);
4539 }
4540 }
4541 }
4542
4543 if (InVal)
4544 return InVal;
4545 else
4546 // No comparison is needed here, all indexes = 0
4547 ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4548 Cond == ICmpInst::ICMP_EQ));
4549 }
4550
4551 // Only lower this if the icmp is the only user of the GEP or if we expect
4552 // the result to fold to a constant!
4553 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
4554 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
4555 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
4556 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
4557 Constant::getNullValue(Offset->getType()));
4558 }
4559 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
4560 // If the base pointers are different, but the indices are the same, just
4561 // compare the base pointer.
4562 if (PtrBase != GEPRHS->getOperand(0)) {
4563 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
4564 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
4565 GEPRHS->getOperand(0)->getType();
4566 if (IndicesTheSame)
4567 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4568 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4569 IndicesTheSame = false;
4570 break;
4571 }
4572
4573 // If all indices are the same, just compare the base pointers.
4574 if (IndicesTheSame)
4575 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
4576 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
4577
4578 // Otherwise, the base pointers are different and the indices are
4579 // different, bail out.
4580 return 0;
4581 }
4582
4583 // If one of the GEPs has all zero indices, recurse.
4584 bool AllZeros = true;
4585 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4586 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
4587 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
4588 AllZeros = false;
4589 break;
4590 }
4591 if (AllZeros)
4592 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
4593 ICmpInst::getSwappedPredicate(Cond), I);
4594
4595 // If the other GEP has all zero indices, recurse.
4596 AllZeros = true;
4597 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4598 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
4599 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
4600 AllZeros = false;
4601 break;
4602 }
4603 if (AllZeros)
4604 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
4605
4606 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
4607 // If the GEPs only differ by one index, compare it.
4608 unsigned NumDifferences = 0; // Keep track of # differences.
4609 unsigned DiffOperand = 0; // The operand that differs.
4610 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4611 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4612 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
4613 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
4614 // Irreconcilable differences.
4615 NumDifferences = 2;
4616 break;
4617 } else {
4618 if (NumDifferences++) break;
4619 DiffOperand = i;
4620 }
4621 }
4622
4623 if (NumDifferences == 0) // SAME GEP?
4624 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00004625 ConstantInt::get(Type::Int1Ty,
4626 isTrueWhenEqual(Cond)));
4627
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004628 else if (NumDifferences == 1) {
4629 Value *LHSV = GEPLHS->getOperand(DiffOperand);
4630 Value *RHSV = GEPRHS->getOperand(DiffOperand);
4631 // Make sure we do a signed comparison here.
4632 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
4633 }
4634 }
4635
4636 // Only lower this if the icmp is the only user of the GEP or if we expect
4637 // the result to fold to a constant!
4638 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
4639 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
4640 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
4641 Value *L = EmitGEPOffset(GEPLHS, I, *this);
4642 Value *R = EmitGEPOffset(GEPRHS, I, *this);
4643 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
4644 }
4645 }
4646 return 0;
4647}
4648
4649Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4650 bool Changed = SimplifyCompare(I);
4651 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4652
4653 // Fold trivial predicates.
4654 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
4655 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
4656 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
4657 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
4658
4659 // Simplify 'fcmp pred X, X'
4660 if (Op0 == Op1) {
4661 switch (I.getPredicate()) {
4662 default: assert(0 && "Unknown predicate!");
4663 case FCmpInst::FCMP_UEQ: // True if unordered or equal
4664 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
4665 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
4666 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
4667 case FCmpInst::FCMP_OGT: // True if ordered and greater than
4668 case FCmpInst::FCMP_OLT: // True if ordered and less than
4669 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
4670 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
4671
4672 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
4673 case FCmpInst::FCMP_ULT: // True if unordered or less than
4674 case FCmpInst::FCMP_UGT: // True if unordered or greater than
4675 case FCmpInst::FCMP_UNE: // True if unordered or not equal
4676 // Canonicalize these to be 'fcmp uno %X, 0.0'.
4677 I.setPredicate(FCmpInst::FCMP_UNO);
4678 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4679 return &I;
4680
4681 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
4682 case FCmpInst::FCMP_OEQ: // True if ordered and equal
4683 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
4684 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
4685 // Canonicalize these to be 'fcmp ord %X, 0.0'.
4686 I.setPredicate(FCmpInst::FCMP_ORD);
4687 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4688 return &I;
4689 }
4690 }
4691
4692 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
4693 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
4694
4695 // Handle fcmp with constant RHS
4696 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4697 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4698 switch (LHSI->getOpcode()) {
4699 case Instruction::PHI:
4700 if (Instruction *NV = FoldOpIntoPhi(I))
4701 return NV;
4702 break;
4703 case Instruction::Select:
4704 // If either operand of the select is a constant, we can fold the
4705 // comparison into the select arms, which will cause one to be
4706 // constant folded and the select turned into a bitwise or.
4707 Value *Op1 = 0, *Op2 = 0;
4708 if (LHSI->hasOneUse()) {
4709 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
4710 // Fold the known value into the constant operand.
4711 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
4712 // Insert a new FCmp of the other select operand.
4713 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
4714 LHSI->getOperand(2), RHSC,
4715 I.getName()), I);
4716 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
4717 // Fold the known value into the constant operand.
4718 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
4719 // Insert a new FCmp of the other select operand.
4720 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
4721 LHSI->getOperand(1), RHSC,
4722 I.getName()), I);
4723 }
4724 }
4725
4726 if (Op1)
4727 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
4728 break;
4729 }
4730 }
4731
4732 return Changed ? &I : 0;
4733}
4734
4735Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4736 bool Changed = SimplifyCompare(I);
4737 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4738 const Type *Ty = Op0->getType();
4739
4740 // icmp X, X
4741 if (Op0 == Op1)
4742 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4743 isTrueWhenEqual(I)));
4744
4745 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
4746 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
4747
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004748 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
4749 // addresses never equal each other! We already know that Op0 != Op1.
4750 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
4751 isa<ConstantPointerNull>(Op0)) &&
4752 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
4753 isa<ConstantPointerNull>(Op1)))
4754 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4755 !isTrueWhenEqual(I)));
4756
4757 // icmp's with boolean values can always be turned into bitwise operations
4758 if (Ty == Type::Int1Ty) {
4759 switch (I.getPredicate()) {
4760 default: assert(0 && "Invalid icmp instruction!");
4761 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
4762 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
4763 InsertNewInstBefore(Xor, I);
4764 return BinaryOperator::createNot(Xor);
4765 }
4766 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
4767 return BinaryOperator::createXor(Op0, Op1);
4768
4769 case ICmpInst::ICMP_UGT:
4770 case ICmpInst::ICMP_SGT:
4771 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
4772 // FALL THROUGH
4773 case ICmpInst::ICMP_ULT:
4774 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
4775 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
4776 InsertNewInstBefore(Not, I);
4777 return BinaryOperator::createAnd(Not, Op1);
4778 }
4779 case ICmpInst::ICMP_UGE:
4780 case ICmpInst::ICMP_SGE:
4781 std::swap(Op0, Op1); // Change icmp ge -> icmp le
4782 // FALL THROUGH
4783 case ICmpInst::ICMP_ULE:
4784 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
4785 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
4786 InsertNewInstBefore(Not, I);
4787 return BinaryOperator::createOr(Not, Op1);
4788 }
4789 }
4790 }
4791
4792 // See if we are doing a comparison between a constant and an instruction that
4793 // can be folded into the comparison.
4794 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4795 switch (I.getPredicate()) {
4796 default: break;
4797 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
4798 if (CI->isMinValue(false))
4799 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4800 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
4801 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
4802 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
4803 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
4804 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
4805 if (CI->isMinValue(true))
4806 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
4807 ConstantInt::getAllOnesValue(Op0->getType()));
4808
4809 break;
4810
4811 case ICmpInst::ICMP_SLT:
4812 if (CI->isMinValue(true)) // A <s MIN -> FALSE
4813 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4814 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
4815 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4816 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
4817 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
4818 break;
4819
4820 case ICmpInst::ICMP_UGT:
4821 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
4822 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4823 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
4824 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4825 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
4826 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
4827
4828 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
4829 if (CI->isMaxValue(true))
4830 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
4831 ConstantInt::getNullValue(Op0->getType()));
4832 break;
4833
4834 case ICmpInst::ICMP_SGT:
4835 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
4836 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4837 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
4838 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4839 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
4840 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
4841 break;
4842
4843 case ICmpInst::ICMP_ULE:
4844 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
4845 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4846 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
4847 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4848 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
4849 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
4850 break;
4851
4852 case ICmpInst::ICMP_SLE:
4853 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
4854 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4855 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
4856 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4857 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
4858 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
4859 break;
4860
4861 case ICmpInst::ICMP_UGE:
4862 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
4863 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4864 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
4865 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4866 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
4867 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
4868 break;
4869
4870 case ICmpInst::ICMP_SGE:
4871 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
4872 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4873 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
4874 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4875 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
4876 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
4877 break;
4878 }
4879
4880 // If we still have a icmp le or icmp ge instruction, turn it into the
4881 // appropriate icmp lt or icmp gt instruction. Since the border cases have
4882 // already been handled above, this requires little checking.
4883 //
4884 switch (I.getPredicate()) {
4885 default: break;
4886 case ICmpInst::ICMP_ULE:
4887 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
4888 case ICmpInst::ICMP_SLE:
4889 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
4890 case ICmpInst::ICMP_UGE:
4891 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
4892 case ICmpInst::ICMP_SGE:
4893 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
4894 }
4895
4896 // See if we can fold the comparison based on bits known to be zero or one
4897 // in the input. If this comparison is a normal comparison, it demands all
4898 // bits, if it is a sign bit comparison, it only demands the sign bit.
4899
4900 bool UnusedBit;
4901 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
4902
4903 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
4904 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4905 if (SimplifyDemandedBits(Op0,
4906 isSignBit ? APInt::getSignBit(BitWidth)
4907 : APInt::getAllOnesValue(BitWidth),
4908 KnownZero, KnownOne, 0))
4909 return &I;
4910
4911 // Given the known and unknown bits, compute a range that the LHS could be
4912 // in.
4913 if ((KnownOne | KnownZero) != 0) {
4914 // Compute the Min, Max and RHS values based on the known bits. For the
4915 // EQ and NE we use unsigned values.
4916 APInt Min(BitWidth, 0), Max(BitWidth, 0);
4917 const APInt& RHSVal = CI->getValue();
4918 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
4919 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
4920 Max);
4921 } else {
4922 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
4923 Max);
4924 }
4925 switch (I.getPredicate()) { // LE/GE have been folded already.
4926 default: assert(0 && "Unknown icmp opcode!");
4927 case ICmpInst::ICMP_EQ:
4928 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
4929 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4930 break;
4931 case ICmpInst::ICMP_NE:
4932 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
4933 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4934 break;
4935 case ICmpInst::ICMP_ULT:
4936 if (Max.ult(RHSVal))
4937 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4938 if (Min.uge(RHSVal))
4939 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4940 break;
4941 case ICmpInst::ICMP_UGT:
4942 if (Min.ugt(RHSVal))
4943 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4944 if (Max.ule(RHSVal))
4945 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4946 break;
4947 case ICmpInst::ICMP_SLT:
4948 if (Max.slt(RHSVal))
4949 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4950 if (Min.sgt(RHSVal))
4951 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4952 break;
4953 case ICmpInst::ICMP_SGT:
4954 if (Min.sgt(RHSVal))
4955 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4956 if (Max.sle(RHSVal))
4957 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4958 break;
4959 }
4960 }
4961
4962 // Since the RHS is a ConstantInt (CI), if the left hand side is an
4963 // instruction, see if that instruction also has constants so that the
4964 // instruction can be folded into the icmp
4965 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4966 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
4967 return Res;
4968 }
4969
4970 // Handle icmp with constant (but not simple integer constant) RHS
4971 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4972 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4973 switch (LHSI->getOpcode()) {
4974 case Instruction::GetElementPtr:
4975 if (RHSC->isNullValue()) {
4976 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
4977 bool isAllZeros = true;
4978 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
4979 if (!isa<Constant>(LHSI->getOperand(i)) ||
4980 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
4981 isAllZeros = false;
4982 break;
4983 }
4984 if (isAllZeros)
4985 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
4986 Constant::getNullValue(LHSI->getOperand(0)->getType()));
4987 }
4988 break;
4989
4990 case Instruction::PHI:
4991 if (Instruction *NV = FoldOpIntoPhi(I))
4992 return NV;
4993 break;
4994 case Instruction::Select: {
4995 // If either operand of the select is a constant, we can fold the
4996 // comparison into the select arms, which will cause one to be
4997 // constant folded and the select turned into a bitwise or.
4998 Value *Op1 = 0, *Op2 = 0;
4999 if (LHSI->hasOneUse()) {
5000 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5001 // Fold the known value into the constant operand.
5002 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5003 // Insert a new ICmp of the other select operand.
5004 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5005 LHSI->getOperand(2), RHSC,
5006 I.getName()), I);
5007 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5008 // Fold the known value into the constant operand.
5009 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5010 // Insert a new ICmp of the other select operand.
5011 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5012 LHSI->getOperand(1), RHSC,
5013 I.getName()), I);
5014 }
5015 }
5016
5017 if (Op1)
5018 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
5019 break;
5020 }
5021 case Instruction::Malloc:
5022 // If we have (malloc != null), and if the malloc has a single use, we
5023 // can assume it is successful and remove the malloc.
5024 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5025 AddToWorkList(LHSI);
5026 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5027 !isTrueWhenEqual(I)));
5028 }
5029 break;
5030 }
5031 }
5032
5033 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5034 if (User *GEP = dyn_castGetElementPtr(Op0))
5035 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5036 return NI;
5037 if (User *GEP = dyn_castGetElementPtr(Op1))
5038 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5039 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5040 return NI;
5041
5042 // Test to see if the operands of the icmp are casted versions of other
5043 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5044 // now.
5045 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5046 if (isa<PointerType>(Op0->getType()) &&
5047 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5048 // We keep moving the cast from the left operand over to the right
5049 // operand, where it can often be eliminated completely.
5050 Op0 = CI->getOperand(0);
5051
5052 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5053 // so eliminate it as well.
5054 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5055 Op1 = CI2->getOperand(0);
5056
5057 // If Op1 is a constant, we can fold the cast into the constant.
5058 if (Op0->getType() != Op1->getType())
5059 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5060 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5061 } else {
5062 // Otherwise, cast the RHS right before the icmp
5063 Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I);
5064 }
5065 return new ICmpInst(I.getPredicate(), Op0, Op1);
5066 }
5067 }
5068
5069 if (isa<CastInst>(Op0)) {
5070 // Handle the special case of: icmp (cast bool to X), <cst>
5071 // This comes up when you have code like
5072 // int X = A < B;
5073 // if (X) ...
5074 // For generality, we handle any zero-extension of any operand comparison
5075 // with a constant or another cast from the same type.
5076 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5077 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5078 return R;
5079 }
5080
5081 if (I.isEquality()) {
5082 Value *A, *B, *C, *D;
5083 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5084 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5085 Value *OtherVal = A == Op1 ? B : A;
5086 return new ICmpInst(I.getPredicate(), OtherVal,
5087 Constant::getNullValue(A->getType()));
5088 }
5089
5090 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5091 // A^c1 == C^c2 --> A == C^(c1^c2)
5092 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5093 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5094 if (Op1->hasOneUse()) {
5095 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
5096 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
5097 return new ICmpInst(I.getPredicate(), A,
5098 InsertNewInstBefore(Xor, I));
5099 }
5100
5101 // A^B == A^D -> B == D
5102 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5103 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5104 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5105 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5106 }
5107 }
5108
5109 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5110 (A == Op0 || B == Op0)) {
5111 // A == (A^B) -> B == 0
5112 Value *OtherVal = A == Op0 ? B : A;
5113 return new ICmpInst(I.getPredicate(), OtherVal,
5114 Constant::getNullValue(A->getType()));
5115 }
5116 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5117 // (A-B) == A -> B == 0
5118 return new ICmpInst(I.getPredicate(), B,
5119 Constant::getNullValue(B->getType()));
5120 }
5121 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5122 // A == (A-B) -> B == 0
5123 return new ICmpInst(I.getPredicate(), B,
5124 Constant::getNullValue(B->getType()));
5125 }
5126
5127 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5128 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5129 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5130 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5131 Value *X = 0, *Y = 0, *Z = 0;
5132
5133 if (A == C) {
5134 X = B; Y = D; Z = A;
5135 } else if (A == D) {
5136 X = B; Y = C; Z = A;
5137 } else if (B == C) {
5138 X = A; Y = D; Z = B;
5139 } else if (B == D) {
5140 X = A; Y = C; Z = B;
5141 }
5142
5143 if (X) { // Build (X^Y) & Z
5144 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
5145 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
5146 I.setOperand(0, Op1);
5147 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5148 return &I;
5149 }
5150 }
5151 }
5152 return Changed ? &I : 0;
5153}
5154
5155
5156/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5157/// and CmpRHS are both known to be integer constants.
5158Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5159 ConstantInt *DivRHS) {
5160 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5161 const APInt &CmpRHSV = CmpRHS->getValue();
5162
5163 // FIXME: If the operand types don't match the type of the divide
5164 // then don't attempt this transform. The code below doesn't have the
5165 // logic to deal with a signed divide and an unsigned compare (and
5166 // vice versa). This is because (x /s C1) <s C2 produces different
5167 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5168 // (x /u C1) <u C2. Simply casting the operands and result won't
5169 // work. :( The if statement below tests that condition and bails
5170 // if it finds it.
5171 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5172 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5173 return 0;
5174 if (DivRHS->isZero())
5175 return 0; // The ProdOV computation fails on divide by zero.
5176
5177 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5178 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5179 // C2 (CI). By solving for X we can turn this into a range check
5180 // instead of computing a divide.
5181 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5182
5183 // Determine if the product overflows by seeing if the product is
5184 // not equal to the divide. Make sure we do the same kind of divide
5185 // as in the LHS instruction that we're folding.
5186 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5187 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5188
5189 // Get the ICmp opcode
5190 ICmpInst::Predicate Pred = ICI.getPredicate();
5191
5192 // Figure out the interval that is being checked. For example, a comparison
5193 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5194 // Compute this interval based on the constants involved and the signedness of
5195 // the compare/divide. This computes a half-open interval, keeping track of
5196 // whether either value in the interval overflows. After analysis each
5197 // overflow variable is set to 0 if it's corresponding bound variable is valid
5198 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5199 int LoOverflow = 0, HiOverflow = 0;
5200 ConstantInt *LoBound = 0, *HiBound = 0;
5201
5202
5203 if (!DivIsSigned) { // udiv
5204 // e.g. X/5 op 3 --> [15, 20)
5205 LoBound = Prod;
5206 HiOverflow = LoOverflow = ProdOV;
5207 if (!HiOverflow)
5208 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
5209 } else if (DivRHS->getValue().isPositive()) { // Divisor is > 0.
5210 if (CmpRHSV == 0) { // (X / pos) op 0
5211 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5212 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5213 HiBound = DivRHS;
5214 } else if (CmpRHSV.isPositive()) { // (X / pos) op pos
5215 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5216 HiOverflow = LoOverflow = ProdOV;
5217 if (!HiOverflow)
5218 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5219 } else { // (X / pos) op neg
5220 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5221 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5222 LoOverflow = AddWithOverflow(LoBound, Prod,
5223 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5224 HiBound = AddOne(Prod);
5225 HiOverflow = ProdOV ? -1 : 0;
5226 }
5227 } else { // Divisor is < 0.
5228 if (CmpRHSV == 0) { // (X / neg) op 0
5229 // e.g. X/-5 op 0 --> [-4, 5)
5230 LoBound = AddOne(DivRHS);
5231 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5232 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5233 HiOverflow = 1; // [INTMIN+1, overflow)
5234 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5235 }
5236 } else if (CmpRHSV.isPositive()) { // (X / neg) op pos
5237 // e.g. X/-5 op 3 --> [-19, -14)
5238 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5239 if (!LoOverflow)
5240 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5241 HiBound = AddOne(Prod);
5242 } else { // (X / neg) op neg
5243 // e.g. X/-5 op -3 --> [15, 20)
5244 LoBound = Prod;
5245 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
5246 HiBound = Subtract(Prod, DivRHS);
5247 }
5248
5249 // Dividing by a negative swaps the condition. LT <-> GT
5250 Pred = ICmpInst::getSwappedPredicate(Pred);
5251 }
5252
5253 Value *X = DivI->getOperand(0);
5254 switch (Pred) {
5255 default: assert(0 && "Unhandled icmp opcode!");
5256 case ICmpInst::ICMP_EQ:
5257 if (LoOverflow && HiOverflow)
5258 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5259 else if (HiOverflow)
5260 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5261 ICmpInst::ICMP_UGE, X, LoBound);
5262 else if (LoOverflow)
5263 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5264 ICmpInst::ICMP_ULT, X, HiBound);
5265 else
5266 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5267 case ICmpInst::ICMP_NE:
5268 if (LoOverflow && HiOverflow)
5269 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5270 else if (HiOverflow)
5271 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5272 ICmpInst::ICMP_ULT, X, LoBound);
5273 else if (LoOverflow)
5274 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5275 ICmpInst::ICMP_UGE, X, HiBound);
5276 else
5277 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5278 case ICmpInst::ICMP_ULT:
5279 case ICmpInst::ICMP_SLT:
5280 if (LoOverflow == +1) // Low bound is greater than input range.
5281 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5282 if (LoOverflow == -1) // Low bound is less than input range.
5283 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5284 return new ICmpInst(Pred, X, LoBound);
5285 case ICmpInst::ICMP_UGT:
5286 case ICmpInst::ICMP_SGT:
5287 if (HiOverflow == +1) // High bound greater than input range.
5288 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5289 else if (HiOverflow == -1) // High bound less than input range.
5290 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5291 if (Pred == ICmpInst::ICMP_UGT)
5292 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5293 else
5294 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5295 }
5296}
5297
5298
5299/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5300///
5301Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5302 Instruction *LHSI,
5303 ConstantInt *RHS) {
5304 const APInt &RHSV = RHS->getValue();
5305
5306 switch (LHSI->getOpcode()) {
5307 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5308 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5309 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5310 // fold the xor.
5311 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0 ||
5312 ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue()) {
5313 Value *CompareVal = LHSI->getOperand(0);
5314
5315 // If the sign bit of the XorCST is not set, there is no change to
5316 // the operation, just stop using the Xor.
5317 if (!XorCST->getValue().isNegative()) {
5318 ICI.setOperand(0, CompareVal);
5319 AddToWorkList(LHSI);
5320 return &ICI;
5321 }
5322
5323 // Was the old condition true if the operand is positive?
5324 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5325
5326 // If so, the new one isn't.
5327 isTrueIfPositive ^= true;
5328
5329 if (isTrueIfPositive)
5330 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5331 else
5332 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5333 }
5334 }
5335 break;
5336 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5337 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5338 LHSI->getOperand(0)->hasOneUse()) {
5339 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5340
5341 // If the LHS is an AND of a truncating cast, we can widen the
5342 // and/compare to be the input width without changing the value
5343 // produced, eliminating a cast.
5344 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5345 // We can do this transformation if either the AND constant does not
5346 // have its sign bit set or if it is an equality comparison.
5347 // Extending a relational comparison when we're checking the sign
5348 // bit would not work.
5349 if (Cast->hasOneUse() &&
5350 (ICI.isEquality() || AndCST->getValue().isPositive() &&
5351 RHSV.isPositive())) {
5352 uint32_t BitWidth =
5353 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5354 APInt NewCST = AndCST->getValue();
5355 NewCST.zext(BitWidth);
5356 APInt NewCI = RHSV;
5357 NewCI.zext(BitWidth);
5358 Instruction *NewAnd =
5359 BinaryOperator::createAnd(Cast->getOperand(0),
5360 ConstantInt::get(NewCST),LHSI->getName());
5361 InsertNewInstBefore(NewAnd, ICI);
5362 return new ICmpInst(ICI.getPredicate(), NewAnd,
5363 ConstantInt::get(NewCI));
5364 }
5365 }
5366
5367 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5368 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5369 // happens a LOT in code produced by the C front-end, for bitfield
5370 // access.
5371 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5372 if (Shift && !Shift->isShift())
5373 Shift = 0;
5374
5375 ConstantInt *ShAmt;
5376 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5377 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5378 const Type *AndTy = AndCST->getType(); // Type of the and.
5379
5380 // We can fold this as long as we can't shift unknown bits
5381 // into the mask. This can only happen with signed shift
5382 // rights, as they sign-extend.
5383 if (ShAmt) {
5384 bool CanFold = Shift->isLogicalShift();
5385 if (!CanFold) {
5386 // To test for the bad case of the signed shr, see if any
5387 // of the bits shifted in could be tested after the mask.
5388 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5389 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5390
5391 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5392 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5393 AndCST->getValue()) == 0)
5394 CanFold = true;
5395 }
5396
5397 if (CanFold) {
5398 Constant *NewCst;
5399 if (Shift->getOpcode() == Instruction::Shl)
5400 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5401 else
5402 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5403
5404 // Check to see if we are shifting out any of the bits being
5405 // compared.
5406 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5407 // If we shifted bits out, the fold is not going to work out.
5408 // As a special case, check to see if this means that the
5409 // result is always true or false now.
5410 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5411 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5412 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5413 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5414 } else {
5415 ICI.setOperand(1, NewCst);
5416 Constant *NewAndCST;
5417 if (Shift->getOpcode() == Instruction::Shl)
5418 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
5419 else
5420 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5421 LHSI->setOperand(1, NewAndCST);
5422 LHSI->setOperand(0, Shift->getOperand(0));
5423 AddToWorkList(Shift); // Shift is dead.
5424 AddUsesToWorkList(ICI);
5425 return &ICI;
5426 }
5427 }
5428 }
5429
5430 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5431 // preferable because it allows the C<<Y expression to be hoisted out
5432 // of a loop if Y is invariant and X is not.
5433 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
5434 ICI.isEquality() && !Shift->isArithmeticShift() &&
5435 isa<Instruction>(Shift->getOperand(0))) {
5436 // Compute C << Y.
5437 Value *NS;
5438 if (Shift->getOpcode() == Instruction::LShr) {
5439 NS = BinaryOperator::createShl(AndCST,
5440 Shift->getOperand(1), "tmp");
5441 } else {
5442 // Insert a logical shift.
5443 NS = BinaryOperator::createLShr(AndCST,
5444 Shift->getOperand(1), "tmp");
5445 }
5446 InsertNewInstBefore(cast<Instruction>(NS), ICI);
5447
5448 // Compute X & (C << Y).
5449 Instruction *NewAnd =
5450 BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName());
5451 InsertNewInstBefore(NewAnd, ICI);
5452
5453 ICI.setOperand(0, NewAnd);
5454 return &ICI;
5455 }
5456 }
5457 break;
5458
5459 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
5460 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5461 if (!ShAmt) break;
5462
5463 uint32_t TypeBits = RHSV.getBitWidth();
5464
5465 // Check that the shift amount is in range. If not, don't perform
5466 // undefined shifts. When the shift is visited it will be
5467 // simplified.
5468 if (ShAmt->uge(TypeBits))
5469 break;
5470
5471 if (ICI.isEquality()) {
5472 // If we are comparing against bits always shifted out, the
5473 // comparison cannot succeed.
5474 Constant *Comp =
5475 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
5476 if (Comp != RHS) {// Comparing against a bit that we know is zero.
5477 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5478 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
5479 return ReplaceInstUsesWith(ICI, Cst);
5480 }
5481
5482 if (LHSI->hasOneUse()) {
5483 // Otherwise strength reduce the shift into an and.
5484 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
5485 Constant *Mask =
5486 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
5487
5488 Instruction *AndI =
5489 BinaryOperator::createAnd(LHSI->getOperand(0),
5490 Mask, LHSI->getName()+".mask");
5491 Value *And = InsertNewInstBefore(AndI, ICI);
5492 return new ICmpInst(ICI.getPredicate(), And,
5493 ConstantInt::get(RHSV.lshr(ShAmtVal)));
5494 }
5495 }
5496
5497 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
5498 bool TrueIfSigned = false;
5499 if (LHSI->hasOneUse() &&
5500 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
5501 // (X << 31) <s 0 --> (X&1) != 0
5502 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
5503 (TypeBits-ShAmt->getZExtValue()-1));
5504 Instruction *AndI =
5505 BinaryOperator::createAnd(LHSI->getOperand(0),
5506 Mask, LHSI->getName()+".mask");
5507 Value *And = InsertNewInstBefore(AndI, ICI);
5508
5509 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
5510 And, Constant::getNullValue(And->getType()));
5511 }
5512 break;
5513 }
5514
5515 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
5516 case Instruction::AShr: {
5517 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5518 if (!ShAmt) break;
5519
5520 if (ICI.isEquality()) {
5521 // Check that the shift amount is in range. If not, don't perform
5522 // undefined shifts. When the shift is visited it will be
5523 // simplified.
5524 uint32_t TypeBits = RHSV.getBitWidth();
5525 if (ShAmt->uge(TypeBits))
5526 break;
5527 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
5528
5529 // If we are comparing against bits always shifted out, the
5530 // comparison cannot succeed.
5531 APInt Comp = RHSV << ShAmtVal;
5532 if (LHSI->getOpcode() == Instruction::LShr)
5533 Comp = Comp.lshr(ShAmtVal);
5534 else
5535 Comp = Comp.ashr(ShAmtVal);
5536
5537 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
5538 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5539 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
5540 return ReplaceInstUsesWith(ICI, Cst);
5541 }
5542
5543 if (LHSI->hasOneUse() || RHSV == 0) {
5544 // Otherwise strength reduce the shift into an and.
5545 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
5546 Constant *Mask = ConstantInt::get(Val);
5547
5548 Instruction *AndI =
5549 BinaryOperator::createAnd(LHSI->getOperand(0),
5550 Mask, LHSI->getName()+".mask");
5551 Value *And = InsertNewInstBefore(AndI, ICI);
5552 return new ICmpInst(ICI.getPredicate(), And,
5553 ConstantExpr::getShl(RHS, ShAmt));
5554 }
5555 }
5556 break;
5557 }
5558
5559 case Instruction::SDiv:
5560 case Instruction::UDiv:
5561 // Fold: icmp pred ([us]div X, C1), C2 -> range test
5562 // Fold this div into the comparison, producing a range check.
5563 // Determine, based on the divide type, what the range is being
5564 // checked. If there is an overflow on the low or high side, remember
5565 // it, otherwise compute the range [low, hi) bounding the new value.
5566 // See: InsertRangeTest above for the kinds of replacements possible.
5567 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
5568 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
5569 DivRHS))
5570 return R;
5571 break;
5572 }
5573
5574 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
5575 if (ICI.isEquality()) {
5576 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5577
5578 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
5579 // the second operand is a constant, simplify a bit.
5580 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
5581 switch (BO->getOpcode()) {
5582 case Instruction::SRem:
5583 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
5584 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
5585 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
5586 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
5587 Instruction *NewRem =
5588 BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1),
5589 BO->getName());
5590 InsertNewInstBefore(NewRem, ICI);
5591 return new ICmpInst(ICI.getPredicate(), NewRem,
5592 Constant::getNullValue(BO->getType()));
5593 }
5594 }
5595 break;
5596 case Instruction::Add:
5597 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
5598 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5599 if (BO->hasOneUse())
5600 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5601 Subtract(RHS, BOp1C));
5602 } else if (RHSV == 0) {
5603 // Replace ((add A, B) != 0) with (A != -B) if A or B is
5604 // efficiently invertible, or if the add has just this one use.
5605 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
5606
5607 if (Value *NegVal = dyn_castNegVal(BOp1))
5608 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
5609 else if (Value *NegVal = dyn_castNegVal(BOp0))
5610 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
5611 else if (BO->hasOneUse()) {
5612 Instruction *Neg = BinaryOperator::createNeg(BOp1);
5613 InsertNewInstBefore(Neg, ICI);
5614 Neg->takeName(BO);
5615 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
5616 }
5617 }
5618 break;
5619 case Instruction::Xor:
5620 // For the xor case, we can xor two constants together, eliminating
5621 // the explicit xor.
5622 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
5623 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5624 ConstantExpr::getXor(RHS, BOC));
5625
5626 // FALLTHROUGH
5627 case Instruction::Sub:
5628 // Replace (([sub|xor] A, B) != 0) with (A != B)
5629 if (RHSV == 0)
5630 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5631 BO->getOperand(1));
5632 break;
5633
5634 case Instruction::Or:
5635 // If bits are being or'd in that are not present in the constant we
5636 // are comparing against, then the comparison could never succeed!
5637 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
5638 Constant *NotCI = ConstantExpr::getNot(RHS);
5639 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
5640 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
5641 isICMP_NE));
5642 }
5643 break;
5644
5645 case Instruction::And:
5646 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5647 // If bits are being compared against that are and'd out, then the
5648 // comparison can never succeed!
5649 if ((RHSV & ~BOC->getValue()) != 0)
5650 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
5651 isICMP_NE));
5652
5653 // If we have ((X & C) == C), turn it into ((X & C) != 0).
5654 if (RHS == BOC && RHSV.isPowerOf2())
5655 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
5656 ICmpInst::ICMP_NE, LHSI,
5657 Constant::getNullValue(RHS->getType()));
5658
5659 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
5660 if (isSignBit(BOC)) {
5661 Value *X = BO->getOperand(0);
5662 Constant *Zero = Constant::getNullValue(X->getType());
5663 ICmpInst::Predicate pred = isICMP_NE ?
5664 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
5665 return new ICmpInst(pred, X, Zero);
5666 }
5667
5668 // ((X & ~7) == 0) --> X < 8
5669 if (RHSV == 0 && isHighOnes(BOC)) {
5670 Value *X = BO->getOperand(0);
5671 Constant *NegX = ConstantExpr::getNeg(BOC);
5672 ICmpInst::Predicate pred = isICMP_NE ?
5673 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5674 return new ICmpInst(pred, X, NegX);
5675 }
5676 }
5677 default: break;
5678 }
5679 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
5680 // Handle icmp {eq|ne} <intrinsic>, intcst.
5681 if (II->getIntrinsicID() == Intrinsic::bswap) {
5682 AddToWorkList(II);
5683 ICI.setOperand(0, II->getOperand(1));
5684 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
5685 return &ICI;
5686 }
5687 }
5688 } else { // Not a ICMP_EQ/ICMP_NE
5689 // If the LHS is a cast from an integral value of the same size,
5690 // then since we know the RHS is a constant, try to simlify.
5691 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
5692 Value *CastOp = Cast->getOperand(0);
5693 const Type *SrcTy = CastOp->getType();
5694 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
5695 if (SrcTy->isInteger() &&
5696 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
5697 // If this is an unsigned comparison, try to make the comparison use
5698 // smaller constant values.
5699 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
5700 // X u< 128 => X s> -1
5701 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
5702 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
5703 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
5704 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
5705 // X u> 127 => X s< 0
5706 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
5707 Constant::getNullValue(SrcTy));
5708 }
5709 }
5710 }
5711 }
5712 return 0;
5713}
5714
5715/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
5716/// We only handle extending casts so far.
5717///
5718Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
5719 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
5720 Value *LHSCIOp = LHSCI->getOperand(0);
5721 const Type *SrcTy = LHSCIOp->getType();
5722 const Type *DestTy = LHSCI->getType();
5723 Value *RHSCIOp;
5724
5725 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
5726 // integer type is the same size as the pointer type.
5727 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
5728 getTargetData().getPointerSizeInBits() ==
5729 cast<IntegerType>(DestTy)->getBitWidth()) {
5730 Value *RHSOp = 0;
5731 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
5732 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
5733 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
5734 RHSOp = RHSC->getOperand(0);
5735 // If the pointer types don't match, insert a bitcast.
5736 if (LHSCIOp->getType() != RHSOp->getType())
5737 RHSOp = InsertCastBefore(Instruction::BitCast, RHSOp,
5738 LHSCIOp->getType(), ICI);
5739 }
5740
5741 if (RHSOp)
5742 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
5743 }
5744
5745 // The code below only handles extension cast instructions, so far.
5746 // Enforce this.
5747 if (LHSCI->getOpcode() != Instruction::ZExt &&
5748 LHSCI->getOpcode() != Instruction::SExt)
5749 return 0;
5750
5751 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
5752 bool isSignedCmp = ICI.isSignedPredicate();
5753
5754 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
5755 // Not an extension from the same type?
5756 RHSCIOp = CI->getOperand(0);
5757 if (RHSCIOp->getType() != LHSCIOp->getType())
5758 return 0;
5759
5760 // If the signedness of the two compares doesn't agree (i.e. one is a sext
5761 // and the other is a zext), then we can't handle this.
5762 if (CI->getOpcode() != LHSCI->getOpcode())
5763 return 0;
5764
5765 // Likewise, if the signedness of the [sz]exts and the compare don't match,
5766 // then we can't handle this.
5767 if (isSignedExt != isSignedCmp && !ICI.isEquality())
5768 return 0;
5769
5770 // Okay, just insert a compare of the reduced operands now!
5771 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
5772 }
5773
5774 // If we aren't dealing with a constant on the RHS, exit early
5775 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
5776 if (!CI)
5777 return 0;
5778
5779 // Compute the constant that would happen if we truncated to SrcTy then
5780 // reextended to DestTy.
5781 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
5782 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
5783
5784 // If the re-extended constant didn't change...
5785 if (Res2 == CI) {
5786 // Make sure that sign of the Cmp and the sign of the Cast are the same.
5787 // For example, we might have:
5788 // %A = sext short %X to uint
5789 // %B = icmp ugt uint %A, 1330
5790 // It is incorrect to transform this into
5791 // %B = icmp ugt short %X, 1330
5792 // because %A may have negative value.
5793 //
5794 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
5795 // OR operation is EQ/NE.
5796 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
5797 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
5798 else
5799 return 0;
5800 }
5801
5802 // The re-extended constant changed so the constant cannot be represented
5803 // in the shorter type. Consequently, we cannot emit a simple comparison.
5804
5805 // First, handle some easy cases. We know the result cannot be equal at this
5806 // point so handle the ICI.isEquality() cases
5807 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5808 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5809 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5810 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5811
5812 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
5813 // should have been folded away previously and not enter in here.
5814 Value *Result;
5815 if (isSignedCmp) {
5816 // We're performing a signed comparison.
5817 if (cast<ConstantInt>(CI)->getValue().isNegative())
5818 Result = ConstantInt::getFalse(); // X < (small) --> false
5819 else
5820 Result = ConstantInt::getTrue(); // X < (large) --> true
5821 } else {
5822 // We're performing an unsigned comparison.
5823 if (isSignedExt) {
5824 // We're performing an unsigned comp with a sign extended value.
5825 // This is true if the input is >= 0. [aka >s -1]
5826 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
5827 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
5828 NegOne, ICI.getName()), ICI);
5829 } else {
5830 // Unsigned extend & unsigned compare -> always true.
5831 Result = ConstantInt::getTrue();
5832 }
5833 }
5834
5835 // Finally, return the value computed.
5836 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
5837 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
5838 return ReplaceInstUsesWith(ICI, Result);
5839 } else {
5840 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
5841 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
5842 "ICmp should be folded!");
5843 if (Constant *CI = dyn_cast<Constant>(Result))
5844 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
5845 else
5846 return BinaryOperator::createNot(Result);
5847 }
5848}
5849
5850Instruction *InstCombiner::visitShl(BinaryOperator &I) {
5851 return commonShiftTransforms(I);
5852}
5853
5854Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
5855 return commonShiftTransforms(I);
5856}
5857
5858Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
5859 return commonShiftTransforms(I);
5860}
5861
5862Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
5863 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
5864 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5865
5866 // shl X, 0 == X and shr X, 0 == X
5867 // shl 0, X == 0 and shr 0, X == 0
5868 if (Op1 == Constant::getNullValue(Op1->getType()) ||
5869 Op0 == Constant::getNullValue(Op0->getType()))
5870 return ReplaceInstUsesWith(I, Op0);
5871
5872 if (isa<UndefValue>(Op0)) {
5873 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
5874 return ReplaceInstUsesWith(I, Op0);
5875 else // undef << X -> 0, undef >>u X -> 0
5876 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5877 }
5878 if (isa<UndefValue>(Op1)) {
5879 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
5880 return ReplaceInstUsesWith(I, Op0);
5881 else // X << undef, X >>u undef -> 0
5882 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5883 }
5884
5885 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
5886 if (I.getOpcode() == Instruction::AShr)
5887 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
5888 if (CSI->isAllOnesValue())
5889 return ReplaceInstUsesWith(I, CSI);
5890
5891 // Try to fold constant and into select arguments.
5892 if (isa<Constant>(Op0))
5893 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
5894 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
5895 return R;
5896
5897 // See if we can turn a signed shr into an unsigned shr.
5898 if (I.isArithmeticShift()) {
5899 if (MaskedValueIsZero(Op0,
5900 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()))) {
5901 return BinaryOperator::createLShr(Op0, Op1, I.getName());
5902 }
5903 }
5904
5905 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
5906 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
5907 return Res;
5908 return 0;
5909}
5910
5911Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
5912 BinaryOperator &I) {
5913 bool isLeftShift = I.getOpcode() == Instruction::Shl;
5914
5915 // See if we can simplify any instructions used by the instruction whose sole
5916 // purpose is to compute bits we don't care about.
5917 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
5918 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
5919 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
5920 KnownZero, KnownOne))
5921 return &I;
5922
5923 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
5924 // of a signed value.
5925 //
5926 if (Op1->uge(TypeBits)) {
5927 if (I.getOpcode() != Instruction::AShr)
5928 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
5929 else {
5930 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
5931 return &I;
5932 }
5933 }
5934
5935 // ((X*C1) << C2) == (X * (C1 << C2))
5936 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
5937 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
5938 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
5939 return BinaryOperator::createMul(BO->getOperand(0),
5940 ConstantExpr::getShl(BOOp, Op1));
5941
5942 // Try to fold constant and into select arguments.
5943 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
5944 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
5945 return R;
5946 if (isa<PHINode>(Op0))
5947 if (Instruction *NV = FoldOpIntoPhi(I))
5948 return NV;
5949
5950 if (Op0->hasOneUse()) {
5951 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
5952 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
5953 Value *V1, *V2;
5954 ConstantInt *CC;
5955 switch (Op0BO->getOpcode()) {
5956 default: break;
5957 case Instruction::Add:
5958 case Instruction::And:
5959 case Instruction::Or:
5960 case Instruction::Xor: {
5961 // These operators commute.
5962 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
5963 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
5964 match(Op0BO->getOperand(1),
5965 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
5966 Instruction *YS = BinaryOperator::createShl(
5967 Op0BO->getOperand(0), Op1,
5968 Op0BO->getName());
5969 InsertNewInstBefore(YS, I); // (Y << C)
5970 Instruction *X =
5971 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
5972 Op0BO->getOperand(1)->getName());
5973 InsertNewInstBefore(X, I); // (X + (Y << C))
5974 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
5975 return BinaryOperator::createAnd(X, ConstantInt::get(
5976 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
5977 }
5978
5979 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
5980 Value *Op0BOOp1 = Op0BO->getOperand(1);
5981 if (isLeftShift && Op0BOOp1->hasOneUse() &&
5982 match(Op0BOOp1,
5983 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
5984 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
5985 V2 == Op1) {
5986 Instruction *YS = BinaryOperator::createShl(
5987 Op0BO->getOperand(0), Op1,
5988 Op0BO->getName());
5989 InsertNewInstBefore(YS, I); // (Y << C)
5990 Instruction *XM =
5991 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
5992 V1->getName()+".mask");
5993 InsertNewInstBefore(XM, I); // X & (CC << C)
5994
5995 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
5996 }
5997 }
5998
5999 // FALL THROUGH.
6000 case Instruction::Sub: {
6001 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6002 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6003 match(Op0BO->getOperand(0),
6004 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
6005 Instruction *YS = BinaryOperator::createShl(
6006 Op0BO->getOperand(1), Op1,
6007 Op0BO->getName());
6008 InsertNewInstBefore(YS, I); // (Y << C)
6009 Instruction *X =
6010 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
6011 Op0BO->getOperand(0)->getName());
6012 InsertNewInstBefore(X, I); // (X + (Y << C))
6013 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
6014 return BinaryOperator::createAnd(X, ConstantInt::get(
6015 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6016 }
6017
6018 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6019 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6020 match(Op0BO->getOperand(0),
6021 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6022 m_ConstantInt(CC))) && V2 == Op1 &&
6023 cast<BinaryOperator>(Op0BO->getOperand(0))
6024 ->getOperand(0)->hasOneUse()) {
6025 Instruction *YS = BinaryOperator::createShl(
6026 Op0BO->getOperand(1), Op1,
6027 Op0BO->getName());
6028 InsertNewInstBefore(YS, I); // (Y << C)
6029 Instruction *XM =
6030 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
6031 V1->getName()+".mask");
6032 InsertNewInstBefore(XM, I); // X & (CC << C)
6033
6034 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
6035 }
6036
6037 break;
6038 }
6039 }
6040
6041
6042 // If the operand is an bitwise operator with a constant RHS, and the
6043 // shift is the only use, we can pull it out of the shift.
6044 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6045 bool isValid = true; // Valid only for And, Or, Xor
6046 bool highBitSet = false; // Transform if high bit of constant set?
6047
6048 switch (Op0BO->getOpcode()) {
6049 default: isValid = false; break; // Do not perform transform!
6050 case Instruction::Add:
6051 isValid = isLeftShift;
6052 break;
6053 case Instruction::Or:
6054 case Instruction::Xor:
6055 highBitSet = false;
6056 break;
6057 case Instruction::And:
6058 highBitSet = true;
6059 break;
6060 }
6061
6062 // If this is a signed shift right, and the high bit is modified
6063 // by the logical operation, do not perform the transformation.
6064 // The highBitSet boolean indicates the value of the high bit of
6065 // the constant which would cause it to be modified for this
6066 // operation.
6067 //
6068 if (isValid && !isLeftShift && I.getOpcode() == Instruction::AShr) {
6069 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
6070 }
6071
6072 if (isValid) {
6073 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6074
6075 Instruction *NewShift =
6076 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
6077 InsertNewInstBefore(NewShift, I);
6078 NewShift->takeName(Op0BO);
6079
6080 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6081 NewRHS);
6082 }
6083 }
6084 }
6085 }
6086
6087 // Find out if this is a shift of a shift by a constant.
6088 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6089 if (ShiftOp && !ShiftOp->isShift())
6090 ShiftOp = 0;
6091
6092 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6093 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6094 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6095 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6096 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6097 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6098 Value *X = ShiftOp->getOperand(0);
6099
6100 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6101 if (AmtSum > TypeBits)
6102 AmtSum = TypeBits;
6103
6104 const IntegerType *Ty = cast<IntegerType>(I.getType());
6105
6106 // Check for (X << c1) << c2 and (X >> c1) >> c2
6107 if (I.getOpcode() == ShiftOp->getOpcode()) {
6108 return BinaryOperator::create(I.getOpcode(), X,
6109 ConstantInt::get(Ty, AmtSum));
6110 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6111 I.getOpcode() == Instruction::AShr) {
6112 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6113 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6114 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6115 I.getOpcode() == Instruction::LShr) {
6116 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6117 Instruction *Shift =
6118 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6119 InsertNewInstBefore(Shift, I);
6120
6121 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6122 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6123 }
6124
6125 // Okay, if we get here, one shift must be left, and the other shift must be
6126 // right. See if the amounts are equal.
6127 if (ShiftAmt1 == ShiftAmt2) {
6128 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6129 if (I.getOpcode() == Instruction::Shl) {
6130 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
6131 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6132 }
6133 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6134 if (I.getOpcode() == Instruction::LShr) {
6135 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
6136 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6137 }
6138 // We can simplify ((X << C) >>s C) into a trunc + sext.
6139 // NOTE: we could do this for any C, but that would make 'unusual' integer
6140 // types. For now, just stick to ones well-supported by the code
6141 // generators.
6142 const Type *SExtType = 0;
6143 switch (Ty->getBitWidth() - ShiftAmt1) {
6144 case 1 :
6145 case 8 :
6146 case 16 :
6147 case 32 :
6148 case 64 :
6149 case 128:
6150 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6151 break;
6152 default: break;
6153 }
6154 if (SExtType) {
6155 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6156 InsertNewInstBefore(NewTrunc, I);
6157 return new SExtInst(NewTrunc, Ty);
6158 }
6159 // Otherwise, we can't handle it yet.
6160 } else if (ShiftAmt1 < ShiftAmt2) {
6161 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6162
6163 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6164 if (I.getOpcode() == Instruction::Shl) {
6165 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6166 ShiftOp->getOpcode() == Instruction::AShr);
6167 Instruction *Shift =
6168 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6169 InsertNewInstBefore(Shift, I);
6170
6171 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6172 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6173 }
6174
6175 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6176 if (I.getOpcode() == Instruction::LShr) {
6177 assert(ShiftOp->getOpcode() == Instruction::Shl);
6178 Instruction *Shift =
6179 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6180 InsertNewInstBefore(Shift, I);
6181
6182 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6183 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6184 }
6185
6186 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6187 } else {
6188 assert(ShiftAmt2 < ShiftAmt1);
6189 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6190
6191 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6192 if (I.getOpcode() == Instruction::Shl) {
6193 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6194 ShiftOp->getOpcode() == Instruction::AShr);
6195 Instruction *Shift =
6196 BinaryOperator::create(ShiftOp->getOpcode(), X,
6197 ConstantInt::get(Ty, ShiftDiff));
6198 InsertNewInstBefore(Shift, I);
6199
6200 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6201 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6202 }
6203
6204 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6205 if (I.getOpcode() == Instruction::LShr) {
6206 assert(ShiftOp->getOpcode() == Instruction::Shl);
6207 Instruction *Shift =
6208 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6209 InsertNewInstBefore(Shift, I);
6210
6211 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6212 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6213 }
6214
6215 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6216 }
6217 }
6218 return 0;
6219}
6220
6221
6222/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6223/// expression. If so, decompose it, returning some value X, such that Val is
6224/// X*Scale+Offset.
6225///
6226static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6227 int &Offset) {
6228 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6229 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6230 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00006231 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006232 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00006233 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6234 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6235 if (I->getOpcode() == Instruction::Shl) {
6236 // This is a value scaled by '1 << the shift amt'.
6237 Scale = 1U << RHS->getZExtValue();
6238 Offset = 0;
6239 return I->getOperand(0);
6240 } else if (I->getOpcode() == Instruction::Mul) {
6241 // This value is scaled by 'RHS'.
6242 Scale = RHS->getZExtValue();
6243 Offset = 0;
6244 return I->getOperand(0);
6245 } else if (I->getOpcode() == Instruction::Add) {
6246 // We have X+C. Check to see if we really have (X*C2)+C1,
6247 // where C1 is divisible by C2.
6248 unsigned SubScale;
6249 Value *SubVal =
6250 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6251 Offset += RHS->getZExtValue();
6252 Scale = SubScale;
6253 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006254 }
6255 }
6256 }
6257
6258 // Otherwise, we can't look past this.
6259 Scale = 1;
6260 Offset = 0;
6261 return Val;
6262}
6263
6264
6265/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6266/// try to eliminate the cast by moving the type information into the alloc.
6267Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6268 AllocationInst &AI) {
6269 const PointerType *PTy = cast<PointerType>(CI.getType());
6270
6271 // Remove any uses of AI that are dead.
6272 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6273
6274 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6275 Instruction *User = cast<Instruction>(*UI++);
6276 if (isInstructionTriviallyDead(User)) {
6277 while (UI != E && *UI == User)
6278 ++UI; // If this instruction uses AI more than once, don't break UI.
6279
6280 ++NumDeadInst;
6281 DOUT << "IC: DCE: " << *User;
6282 EraseInstFromFunction(*User);
6283 }
6284 }
6285
6286 // Get the type really allocated and the type casted to.
6287 const Type *AllocElTy = AI.getAllocatedType();
6288 const Type *CastElTy = PTy->getElementType();
6289 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6290
6291 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6292 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6293 if (CastElTyAlign < AllocElTyAlign) return 0;
6294
6295 // If the allocation has multiple uses, only promote it if we are strictly
6296 // increasing the alignment of the resultant allocation. If we keep it the
6297 // same, we open the door to infinite loops of various kinds.
6298 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6299
6300 uint64_t AllocElTySize = TD->getTypeSize(AllocElTy);
6301 uint64_t CastElTySize = TD->getTypeSize(CastElTy);
6302 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6303
6304 // See if we can satisfy the modulus by pulling a scale out of the array
6305 // size argument.
6306 unsigned ArraySizeScale;
6307 int ArrayOffset;
6308 Value *NumElements = // See if the array size is a decomposable linear expr.
6309 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6310
6311 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6312 // do the xform.
6313 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6314 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6315
6316 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6317 Value *Amt = 0;
6318 if (Scale == 1) {
6319 Amt = NumElements;
6320 } else {
6321 // If the allocation size is constant, form a constant mul expression
6322 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6323 if (isa<ConstantInt>(NumElements))
6324 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6325 // otherwise multiply the amount and the number of elements
6326 else if (Scale != 1) {
6327 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6328 Amt = InsertNewInstBefore(Tmp, AI);
6329 }
6330 }
6331
6332 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
6333 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
6334 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
6335 Amt = InsertNewInstBefore(Tmp, AI);
6336 }
6337
6338 AllocationInst *New;
6339 if (isa<MallocInst>(AI))
6340 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
6341 else
6342 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
6343 InsertNewInstBefore(New, AI);
6344 New->takeName(&AI);
6345
6346 // If the allocation has multiple uses, insert a cast and change all things
6347 // that used it to use the new cast. This will also hack on CI, but it will
6348 // die soon.
6349 if (!AI.hasOneUse()) {
6350 AddUsesToWorkList(AI);
6351 // New is the allocation instruction, pointer typed. AI is the original
6352 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6353 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
6354 InsertNewInstBefore(NewCast, AI);
6355 AI.replaceAllUsesWith(NewCast);
6356 }
6357 return ReplaceInstUsesWith(CI, New);
6358}
6359
6360/// CanEvaluateInDifferentType - Return true if we can take the specified value
6361/// and return it as type Ty without inserting any new casts and without
6362/// changing the computed value. This is used by code that tries to decide
6363/// whether promoting or shrinking integer operations to wider or smaller types
6364/// will allow us to eliminate a truncate or extend.
6365///
6366/// This is a truncation operation if Ty is smaller than V->getType(), or an
6367/// extension operation if Ty is larger.
6368static bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
Chris Lattneref70bb82007-08-02 06:11:14 +00006369 unsigned CastOpc, int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006370 // We can always evaluate constants in another type.
6371 if (isa<ConstantInt>(V))
6372 return true;
6373
6374 Instruction *I = dyn_cast<Instruction>(V);
6375 if (!I) return false;
6376
6377 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
6378
Chris Lattneref70bb82007-08-02 06:11:14 +00006379 // If this is an extension or truncate, we can often eliminate it.
6380 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6381 // If this is a cast from the destination type, we can trivially eliminate
6382 // it, and this will remove a cast overall.
6383 if (I->getOperand(0)->getType() == Ty) {
6384 // If the first operand is itself a cast, and is eliminable, do not count
6385 // this as an eliminable cast. We would prefer to eliminate those two
6386 // casts first.
6387 if (!isa<CastInst>(I->getOperand(0)))
6388 ++NumCastsRemoved;
6389 return true;
6390 }
6391 }
6392
6393 // We can't extend or shrink something that has multiple uses: doing so would
6394 // require duplicating the instruction in general, which isn't profitable.
6395 if (!I->hasOneUse()) return false;
6396
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006397 switch (I->getOpcode()) {
6398 case Instruction::Add:
6399 case Instruction::Sub:
6400 case Instruction::And:
6401 case Instruction::Or:
6402 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006403 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00006404 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6405 NumCastsRemoved) &&
6406 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
6407 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006408
6409 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006410 // If we are truncating the result of this SHL, and if it's a shift of a
6411 // constant amount, we can always perform a SHL in a smaller type.
6412 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6413 uint32_t BitWidth = Ty->getBitWidth();
6414 if (BitWidth < OrigTy->getBitWidth() &&
6415 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00006416 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6417 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006418 }
6419 break;
6420 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006421 // If this is a truncate of a logical shr, we can truncate it to a smaller
6422 // lshr iff we know that the bits we would otherwise be shifting in are
6423 // already zeros.
6424 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6425 uint32_t OrigBitWidth = OrigTy->getBitWidth();
6426 uint32_t BitWidth = Ty->getBitWidth();
6427 if (BitWidth < OrigBitWidth &&
6428 MaskedValueIsZero(I->getOperand(0),
6429 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
6430 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00006431 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6432 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006433 }
6434 }
6435 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006436 case Instruction::ZExt:
6437 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00006438 case Instruction::Trunc:
6439 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00006440 // can safely replace it. Note that replacing it does not reduce the number
6441 // of casts in the input.
6442 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006443 return true;
Chris Lattner2799b2f2007-09-10 23:46:29 +00006444
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006445 break;
6446 default:
6447 // TODO: Can handle more cases here.
6448 break;
6449 }
6450
6451 return false;
6452}
6453
6454/// EvaluateInDifferentType - Given an expression that
6455/// CanEvaluateInDifferentType returns true for, actually insert the code to
6456/// evaluate the expression.
6457Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
6458 bool isSigned) {
6459 if (Constant *C = dyn_cast<Constant>(V))
6460 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
6461
6462 // Otherwise, it must be an instruction.
6463 Instruction *I = cast<Instruction>(V);
6464 Instruction *Res = 0;
6465 switch (I->getOpcode()) {
6466 case Instruction::Add:
6467 case Instruction::Sub:
6468 case Instruction::And:
6469 case Instruction::Or:
6470 case Instruction::Xor:
6471 case Instruction::AShr:
6472 case Instruction::LShr:
6473 case Instruction::Shl: {
6474 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
6475 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
6476 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
6477 LHS, RHS, I->getName());
6478 break;
6479 }
6480 case Instruction::Trunc:
6481 case Instruction::ZExt:
6482 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006483 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00006484 // just return the source. There's no need to insert it because it is not
6485 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006486 if (I->getOperand(0)->getType() == Ty)
6487 return I->getOperand(0);
6488
Chris Lattneref70bb82007-08-02 06:11:14 +00006489 // Otherwise, must be the same type of case, so just reinsert a new one.
6490 Res = CastInst::create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
6491 Ty, I->getName());
6492 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006493 default:
6494 // TODO: Can handle more cases here.
6495 assert(0 && "Unreachable!");
6496 break;
6497 }
6498
6499 return InsertNewInstBefore(Res, *I);
6500}
6501
6502/// @brief Implement the transforms common to all CastInst visitors.
6503Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
6504 Value *Src = CI.getOperand(0);
6505
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006506 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
6507 // eliminate it now.
6508 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
6509 if (Instruction::CastOps opc =
6510 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
6511 // The first cast (CSrc) is eliminable so we need to fix up or replace
6512 // the second cast (CI). CSrc will then have a good chance of being dead.
6513 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
6514 }
6515 }
6516
6517 // If we are casting a select then fold the cast into the select
6518 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
6519 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
6520 return NV;
6521
6522 // If we are casting a PHI then fold the cast into the PHI
6523 if (isa<PHINode>(Src))
6524 if (Instruction *NV = FoldOpIntoPhi(CI))
6525 return NV;
6526
6527 return 0;
6528}
6529
6530/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
6531Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
6532 Value *Src = CI.getOperand(0);
6533
6534 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
6535 // If casting the result of a getelementptr instruction with no offset, turn
6536 // this into a cast of the original pointer!
6537 if (GEP->hasAllZeroIndices()) {
6538 // Changing the cast operand is usually not a good idea but it is safe
6539 // here because the pointer operand is being replaced with another
6540 // pointer operand so the opcode doesn't need to change.
6541 AddToWorkList(GEP);
6542 CI.setOperand(0, GEP->getOperand(0));
6543 return &CI;
6544 }
6545
6546 // If the GEP has a single use, and the base pointer is a bitcast, and the
6547 // GEP computes a constant offset, see if we can convert these three
6548 // instructions into fewer. This typically happens with unions and other
6549 // non-type-safe code.
6550 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
6551 if (GEP->hasAllConstantIndices()) {
6552 // We are guaranteed to get a constant from EmitGEPOffset.
6553 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
6554 int64_t Offset = OffsetV->getSExtValue();
6555
6556 // Get the base pointer input of the bitcast, and the type it points to.
6557 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
6558 const Type *GEPIdxTy =
6559 cast<PointerType>(OrigBase->getType())->getElementType();
6560 if (GEPIdxTy->isSized()) {
6561 SmallVector<Value*, 8> NewIndices;
6562
6563 // Start with the index over the outer type. Note that the type size
6564 // might be zero (even if the offset isn't zero) if the indexed type
6565 // is something like [0 x {int, int}]
6566 const Type *IntPtrTy = TD->getIntPtrType();
6567 int64_t FirstIdx = 0;
6568 if (int64_t TySize = TD->getTypeSize(GEPIdxTy)) {
6569 FirstIdx = Offset/TySize;
6570 Offset %= TySize;
6571
6572 // Handle silly modulus not returning values values [0..TySize).
6573 if (Offset < 0) {
6574 --FirstIdx;
6575 Offset += TySize;
6576 assert(Offset >= 0);
6577 }
6578 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
6579 }
6580
6581 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
6582
6583 // Index into the types. If we fail, set OrigBase to null.
6584 while (Offset) {
6585 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
6586 const StructLayout *SL = TD->getStructLayout(STy);
6587 if (Offset < (int64_t)SL->getSizeInBytes()) {
6588 unsigned Elt = SL->getElementContainingOffset(Offset);
6589 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
6590
6591 Offset -= SL->getElementOffset(Elt);
6592 GEPIdxTy = STy->getElementType(Elt);
6593 } else {
6594 // Otherwise, we can't index into this, bail out.
6595 Offset = 0;
6596 OrigBase = 0;
6597 }
6598 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
6599 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
6600 if (uint64_t EltSize = TD->getTypeSize(STy->getElementType())) {
6601 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
6602 Offset %= EltSize;
6603 } else {
6604 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
6605 }
6606 GEPIdxTy = STy->getElementType();
6607 } else {
6608 // Otherwise, we can't index into this, bail out.
6609 Offset = 0;
6610 OrigBase = 0;
6611 }
6612 }
6613 if (OrigBase) {
6614 // If we were able to index down into an element, create the GEP
6615 // and bitcast the result. This eliminates one bitcast, potentially
6616 // two.
David Greene393be882007-09-04 15:46:09 +00006617 Instruction *NGEP = new GetElementPtrInst(OrigBase,
6618 NewIndices.begin(),
6619 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006620 InsertNewInstBefore(NGEP, CI);
6621 NGEP->takeName(GEP);
6622
6623 if (isa<BitCastInst>(CI))
6624 return new BitCastInst(NGEP, CI.getType());
6625 assert(isa<PtrToIntInst>(CI));
6626 return new PtrToIntInst(NGEP, CI.getType());
6627 }
6628 }
6629 }
6630 }
6631 }
6632
6633 return commonCastTransforms(CI);
6634}
6635
6636
6637
6638/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
6639/// integer types. This function implements the common transforms for all those
6640/// cases.
6641/// @brief Implement the transforms common to CastInst with integer operands
6642Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
6643 if (Instruction *Result = commonCastTransforms(CI))
6644 return Result;
6645
6646 Value *Src = CI.getOperand(0);
6647 const Type *SrcTy = Src->getType();
6648 const Type *DestTy = CI.getType();
6649 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
6650 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
6651
6652 // See if we can simplify any instructions used by the LHS whose sole
6653 // purpose is to compute bits we don't care about.
6654 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
6655 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
6656 KnownZero, KnownOne))
6657 return &CI;
6658
6659 // If the source isn't an instruction or has more than one use then we
6660 // can't do anything more.
6661 Instruction *SrcI = dyn_cast<Instruction>(Src);
6662 if (!SrcI || !Src->hasOneUse())
6663 return 0;
6664
6665 // Attempt to propagate the cast into the instruction for int->int casts.
6666 int NumCastsRemoved = 0;
6667 if (!isa<BitCastInst>(CI) &&
6668 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00006669 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006670 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00006671 // eliminates the cast, so it is always a win. If this is a zero-extension,
6672 // we need to do an AND to maintain the clear top-part of the computation,
6673 // so we require that the input have eliminated at least one cast. If this
6674 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006675 // require that two casts have been eliminated.
6676 bool DoXForm;
6677 switch (CI.getOpcode()) {
6678 default:
6679 // All the others use floating point so we shouldn't actually
6680 // get here because of the check above.
6681 assert(0 && "Unknown cast type");
6682 case Instruction::Trunc:
6683 DoXForm = true;
6684 break;
6685 case Instruction::ZExt:
6686 DoXForm = NumCastsRemoved >= 1;
6687 break;
6688 case Instruction::SExt:
6689 DoXForm = NumCastsRemoved >= 2;
6690 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006691 }
6692
6693 if (DoXForm) {
6694 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
6695 CI.getOpcode() == Instruction::SExt);
6696 assert(Res->getType() == DestTy);
6697 switch (CI.getOpcode()) {
6698 default: assert(0 && "Unknown cast type!");
6699 case Instruction::Trunc:
6700 case Instruction::BitCast:
6701 // Just replace this cast with the result.
6702 return ReplaceInstUsesWith(CI, Res);
6703 case Instruction::ZExt: {
6704 // We need to emit an AND to clear the high bits.
6705 assert(SrcBitSize < DestBitSize && "Not a zext?");
6706 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
6707 SrcBitSize));
6708 return BinaryOperator::createAnd(Res, C);
6709 }
6710 case Instruction::SExt:
6711 // We need to emit a cast to truncate, then a cast to sext.
6712 return CastInst::create(Instruction::SExt,
6713 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
6714 CI), DestTy);
6715 }
6716 }
6717 }
6718
6719 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
6720 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
6721
6722 switch (SrcI->getOpcode()) {
6723 case Instruction::Add:
6724 case Instruction::Mul:
6725 case Instruction::And:
6726 case Instruction::Or:
6727 case Instruction::Xor:
6728 // If we are discarding information, rewrite.
6729 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
6730 // Don't insert two casts if they cannot be eliminated. We allow
6731 // two casts to be inserted if the sizes are the same. This could
6732 // only be converting signedness, which is a noop.
6733 if (DestBitSize == SrcBitSize ||
6734 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
6735 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
6736 Instruction::CastOps opcode = CI.getOpcode();
6737 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
6738 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
6739 return BinaryOperator::create(
6740 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
6741 }
6742 }
6743
6744 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
6745 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
6746 SrcI->getOpcode() == Instruction::Xor &&
6747 Op1 == ConstantInt::getTrue() &&
6748 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
6749 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
6750 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
6751 }
6752 break;
6753 case Instruction::SDiv:
6754 case Instruction::UDiv:
6755 case Instruction::SRem:
6756 case Instruction::URem:
6757 // If we are just changing the sign, rewrite.
6758 if (DestBitSize == SrcBitSize) {
6759 // Don't insert two casts if they cannot be eliminated. We allow
6760 // two casts to be inserted if the sizes are the same. This could
6761 // only be converting signedness, which is a noop.
6762 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
6763 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
6764 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
6765 Op0, DestTy, SrcI);
6766 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
6767 Op1, DestTy, SrcI);
6768 return BinaryOperator::create(
6769 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
6770 }
6771 }
6772 break;
6773
6774 case Instruction::Shl:
6775 // Allow changing the sign of the source operand. Do not allow
6776 // changing the size of the shift, UNLESS the shift amount is a
6777 // constant. We must not change variable sized shifts to a smaller
6778 // size, because it is undefined to shift more bits out than exist
6779 // in the value.
6780 if (DestBitSize == SrcBitSize ||
6781 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
6782 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
6783 Instruction::BitCast : Instruction::Trunc);
6784 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
6785 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
6786 return BinaryOperator::createShl(Op0c, Op1c);
6787 }
6788 break;
6789 case Instruction::AShr:
6790 // If this is a signed shr, and if all bits shifted in are about to be
6791 // truncated off, turn it into an unsigned shr to allow greater
6792 // simplifications.
6793 if (DestBitSize < SrcBitSize &&
6794 isa<ConstantInt>(Op1)) {
6795 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
6796 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
6797 // Insert the new logical shift right.
6798 return BinaryOperator::createLShr(Op0, Op1);
6799 }
6800 }
6801 break;
6802 }
6803 return 0;
6804}
6805
6806Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
6807 if (Instruction *Result = commonIntCastTransforms(CI))
6808 return Result;
6809
6810 Value *Src = CI.getOperand(0);
6811 const Type *Ty = CI.getType();
6812 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
6813 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
6814
6815 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
6816 switch (SrcI->getOpcode()) {
6817 default: break;
6818 case Instruction::LShr:
6819 // We can shrink lshr to something smaller if we know the bits shifted in
6820 // are already zeros.
6821 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
6822 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
6823
6824 // Get a mask for the bits shifting in.
6825 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
6826 Value* SrcIOp0 = SrcI->getOperand(0);
6827 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
6828 if (ShAmt >= DestBitWidth) // All zeros.
6829 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
6830
6831 // Okay, we can shrink this. Truncate the input, then return a new
6832 // shift.
6833 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
6834 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
6835 Ty, CI);
6836 return BinaryOperator::createLShr(V1, V2);
6837 }
6838 } else { // This is a variable shr.
6839
6840 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
6841 // more LLVM instructions, but allows '1 << Y' to be hoisted if
6842 // loop-invariant and CSE'd.
6843 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
6844 Value *One = ConstantInt::get(SrcI->getType(), 1);
6845
6846 Value *V = InsertNewInstBefore(
6847 BinaryOperator::createShl(One, SrcI->getOperand(1),
6848 "tmp"), CI);
6849 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
6850 SrcI->getOperand(0),
6851 "tmp"), CI);
6852 Value *Zero = Constant::getNullValue(V->getType());
6853 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
6854 }
6855 }
6856 break;
6857 }
6858 }
6859
6860 return 0;
6861}
6862
6863Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
6864 // If one of the common conversion will work ..
6865 if (Instruction *Result = commonIntCastTransforms(CI))
6866 return Result;
6867
6868 Value *Src = CI.getOperand(0);
6869
6870 // If this is a cast of a cast
6871 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
6872 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
6873 // types and if the sizes are just right we can convert this into a logical
6874 // 'and' which will be much cheaper than the pair of casts.
6875 if (isa<TruncInst>(CSrc)) {
6876 // Get the sizes of the types involved
6877 Value *A = CSrc->getOperand(0);
6878 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
6879 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
6880 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
6881 // If we're actually extending zero bits and the trunc is a no-op
6882 if (MidSize < DstSize && SrcSize == DstSize) {
6883 // Replace both of the casts with an And of the type mask.
6884 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
6885 Constant *AndConst = ConstantInt::get(AndValue);
6886 Instruction *And =
6887 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
6888 // Unfortunately, if the type changed, we need to cast it back.
6889 if (And->getType() != CI.getType()) {
6890 And->setName(CSrc->getName()+".mask");
6891 InsertNewInstBefore(And, CI);
6892 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
6893 }
6894 return And;
6895 }
6896 }
6897 }
6898
6899 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
6900 // If we are just checking for a icmp eq of a single bit and zext'ing it
6901 // to an integer, then shift the bit to the appropriate place and then
6902 // cast to integer to avoid the comparison.
6903 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
6904 const APInt &Op1CV = Op1C->getValue();
6905
6906 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
6907 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
6908 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
6909 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
6910 Value *In = ICI->getOperand(0);
6911 Value *Sh = ConstantInt::get(In->getType(),
6912 In->getType()->getPrimitiveSizeInBits()-1);
6913 In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh,
6914 In->getName()+".lobit"),
6915 CI);
6916 if (In->getType() != CI.getType())
6917 In = CastInst::createIntegerCast(In, CI.getType(),
6918 false/*ZExt*/, "tmp", &CI);
6919
6920 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
6921 Constant *One = ConstantInt::get(In->getType(), 1);
6922 In = InsertNewInstBefore(BinaryOperator::createXor(In, One,
6923 In->getName()+".not"),
6924 CI);
6925 }
6926
6927 return ReplaceInstUsesWith(CI, In);
6928 }
6929
6930
6931
6932 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
6933 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6934 // zext (X == 1) to i32 --> X iff X has only the low bit set.
6935 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
6936 // zext (X != 0) to i32 --> X iff X has only the low bit set.
6937 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
6938 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
6939 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6940 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
6941 // This only works for EQ and NE
6942 ICI->isEquality()) {
6943 // If Op1C some other power of two, convert:
6944 uint32_t BitWidth = Op1C->getType()->getBitWidth();
6945 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
6946 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
6947 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
6948
6949 APInt KnownZeroMask(~KnownZero);
6950 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
6951 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
6952 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
6953 // (X&4) == 2 --> false
6954 // (X&4) != 2 --> true
6955 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
6956 Res = ConstantExpr::getZExt(Res, CI.getType());
6957 return ReplaceInstUsesWith(CI, Res);
6958 }
6959
6960 uint32_t ShiftAmt = KnownZeroMask.logBase2();
6961 Value *In = ICI->getOperand(0);
6962 if (ShiftAmt) {
6963 // Perform a logical shr by shiftamt.
6964 // Insert the shift to put the result in the low bit.
6965 In = InsertNewInstBefore(
6966 BinaryOperator::createLShr(In,
6967 ConstantInt::get(In->getType(), ShiftAmt),
6968 In->getName()+".lobit"), CI);
6969 }
6970
6971 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
6972 Constant *One = ConstantInt::get(In->getType(), 1);
6973 In = BinaryOperator::createXor(In, One, "tmp");
6974 InsertNewInstBefore(cast<Instruction>(In), CI);
6975 }
6976
6977 if (CI.getType() == In->getType())
6978 return ReplaceInstUsesWith(CI, In);
6979 else
6980 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
6981 }
6982 }
6983 }
6984 }
6985 return 0;
6986}
6987
6988Instruction *InstCombiner::visitSExt(SExtInst &CI) {
6989 if (Instruction *I = commonIntCastTransforms(CI))
6990 return I;
6991
6992 Value *Src = CI.getOperand(0);
6993
6994 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
6995 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
6996 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
6997 // If we are just checking for a icmp eq of a single bit and zext'ing it
6998 // to an integer, then shift the bit to the appropriate place and then
6999 // cast to integer to avoid the comparison.
7000 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7001 const APInt &Op1CV = Op1C->getValue();
7002
7003 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7004 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7005 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7006 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7007 Value *In = ICI->getOperand(0);
7008 Value *Sh = ConstantInt::get(In->getType(),
7009 In->getType()->getPrimitiveSizeInBits()-1);
7010 In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh,
7011 In->getName()+".lobit"),
7012 CI);
7013 if (In->getType() != CI.getType())
7014 In = CastInst::createIntegerCast(In, CI.getType(),
7015 true/*SExt*/, "tmp", &CI);
7016
7017 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
7018 In = InsertNewInstBefore(BinaryOperator::createNot(In,
7019 In->getName()+".not"), CI);
7020
7021 return ReplaceInstUsesWith(CI, In);
7022 }
7023 }
7024 }
7025
7026 return 0;
7027}
7028
7029Instruction *InstCombiner::visitFPTrunc(CastInst &CI) {
7030 return commonCastTransforms(CI);
7031}
7032
7033Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7034 return commonCastTransforms(CI);
7035}
7036
7037Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
7038 return commonCastTransforms(CI);
7039}
7040
7041Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
7042 return commonCastTransforms(CI);
7043}
7044
7045Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7046 return commonCastTransforms(CI);
7047}
7048
7049Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7050 return commonCastTransforms(CI);
7051}
7052
7053Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7054 return commonPointerCastTransforms(CI);
7055}
7056
7057Instruction *InstCombiner::visitIntToPtr(CastInst &CI) {
7058 return commonCastTransforms(CI);
7059}
7060
7061Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7062 // If the operands are integer typed then apply the integer transforms,
7063 // otherwise just apply the common ones.
7064 Value *Src = CI.getOperand(0);
7065 const Type *SrcTy = Src->getType();
7066 const Type *DestTy = CI.getType();
7067
7068 if (SrcTy->isInteger() && DestTy->isInteger()) {
7069 if (Instruction *Result = commonIntCastTransforms(CI))
7070 return Result;
7071 } else if (isa<PointerType>(SrcTy)) {
7072 if (Instruction *I = commonPointerCastTransforms(CI))
7073 return I;
7074 } else {
7075 if (Instruction *Result = commonCastTransforms(CI))
7076 return Result;
7077 }
7078
7079
7080 // Get rid of casts from one type to the same type. These are useless and can
7081 // be replaced by the operand.
7082 if (DestTy == Src->getType())
7083 return ReplaceInstUsesWith(CI, Src);
7084
7085 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7086 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7087 const Type *DstElTy = DstPTy->getElementType();
7088 const Type *SrcElTy = SrcPTy->getElementType();
7089
7090 // If we are casting a malloc or alloca to a pointer to a type of the same
7091 // size, rewrite the allocation instruction to allocate the "right" type.
7092 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7093 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7094 return V;
7095
7096 // If the source and destination are pointers, and this cast is equivalent
7097 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7098 // This can enhance SROA and other transforms that want type-safe pointers.
7099 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7100 unsigned NumZeros = 0;
7101 while (SrcElTy != DstElTy &&
7102 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7103 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7104 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7105 ++NumZeros;
7106 }
7107
7108 // If we found a path from the src to dest, create the getelementptr now.
7109 if (SrcElTy == DstElTy) {
7110 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Chuck Rose III27d49792007-09-05 20:36:41 +00007111 return new GetElementPtrInst(Src, Idxs.begin(), Idxs.end(), "",
7112 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007113 }
7114 }
7115
7116 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7117 if (SVI->hasOneUse()) {
7118 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7119 // a bitconvert to a vector with the same # elts.
7120 if (isa<VectorType>(DestTy) &&
7121 cast<VectorType>(DestTy)->getNumElements() ==
7122 SVI->getType()->getNumElements()) {
7123 CastInst *Tmp;
7124 // If either of the operands is a cast from CI.getType(), then
7125 // evaluating the shuffle in the casted destination's type will allow
7126 // us to eliminate at least one cast.
7127 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7128 Tmp->getOperand(0)->getType() == DestTy) ||
7129 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7130 Tmp->getOperand(0)->getType() == DestTy)) {
7131 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7132 SVI->getOperand(0), DestTy, &CI);
7133 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7134 SVI->getOperand(1), DestTy, &CI);
7135 // Return a new shuffle vector. Use the same element ID's, as we
7136 // know the vector types match #elts.
7137 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
7138 }
7139 }
7140 }
7141 }
7142 return 0;
7143}
7144
7145/// GetSelectFoldableOperands - We want to turn code that looks like this:
7146/// %C = or %A, %B
7147/// %D = select %cond, %C, %A
7148/// into:
7149/// %C = select %cond, %B, 0
7150/// %D = or %A, %C
7151///
7152/// Assuming that the specified instruction is an operand to the select, return
7153/// a bitmask indicating which operands of this instruction are foldable if they
7154/// equal the other incoming value of the select.
7155///
7156static unsigned GetSelectFoldableOperands(Instruction *I) {
7157 switch (I->getOpcode()) {
7158 case Instruction::Add:
7159 case Instruction::Mul:
7160 case Instruction::And:
7161 case Instruction::Or:
7162 case Instruction::Xor:
7163 return 3; // Can fold through either operand.
7164 case Instruction::Sub: // Can only fold on the amount subtracted.
7165 case Instruction::Shl: // Can only fold on the shift amount.
7166 case Instruction::LShr:
7167 case Instruction::AShr:
7168 return 1;
7169 default:
7170 return 0; // Cannot fold
7171 }
7172}
7173
7174/// GetSelectFoldableConstant - For the same transformation as the previous
7175/// function, return the identity constant that goes into the select.
7176static Constant *GetSelectFoldableConstant(Instruction *I) {
7177 switch (I->getOpcode()) {
7178 default: assert(0 && "This cannot happen!"); abort();
7179 case Instruction::Add:
7180 case Instruction::Sub:
7181 case Instruction::Or:
7182 case Instruction::Xor:
7183 case Instruction::Shl:
7184 case Instruction::LShr:
7185 case Instruction::AShr:
7186 return Constant::getNullValue(I->getType());
7187 case Instruction::And:
7188 return Constant::getAllOnesValue(I->getType());
7189 case Instruction::Mul:
7190 return ConstantInt::get(I->getType(), 1);
7191 }
7192}
7193
7194/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7195/// have the same opcode and only one use each. Try to simplify this.
7196Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
7197 Instruction *FI) {
7198 if (TI->getNumOperands() == 1) {
7199 // If this is a non-volatile load or a cast from the same type,
7200 // merge.
7201 if (TI->isCast()) {
7202 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
7203 return 0;
7204 } else {
7205 return 0; // unknown unary op.
7206 }
7207
7208 // Fold this by inserting a select from the input values.
7209 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
7210 FI->getOperand(0), SI.getName()+".v");
7211 InsertNewInstBefore(NewSI, SI);
7212 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
7213 TI->getType());
7214 }
7215
7216 // Only handle binary operators here.
7217 if (!isa<BinaryOperator>(TI))
7218 return 0;
7219
7220 // Figure out if the operations have any operands in common.
7221 Value *MatchOp, *OtherOpT, *OtherOpF;
7222 bool MatchIsOpZero;
7223 if (TI->getOperand(0) == FI->getOperand(0)) {
7224 MatchOp = TI->getOperand(0);
7225 OtherOpT = TI->getOperand(1);
7226 OtherOpF = FI->getOperand(1);
7227 MatchIsOpZero = true;
7228 } else if (TI->getOperand(1) == FI->getOperand(1)) {
7229 MatchOp = TI->getOperand(1);
7230 OtherOpT = TI->getOperand(0);
7231 OtherOpF = FI->getOperand(0);
7232 MatchIsOpZero = false;
7233 } else if (!TI->isCommutative()) {
7234 return 0;
7235 } else if (TI->getOperand(0) == FI->getOperand(1)) {
7236 MatchOp = TI->getOperand(0);
7237 OtherOpT = TI->getOperand(1);
7238 OtherOpF = FI->getOperand(0);
7239 MatchIsOpZero = true;
7240 } else if (TI->getOperand(1) == FI->getOperand(0)) {
7241 MatchOp = TI->getOperand(1);
7242 OtherOpT = TI->getOperand(0);
7243 OtherOpF = FI->getOperand(1);
7244 MatchIsOpZero = true;
7245 } else {
7246 return 0;
7247 }
7248
7249 // If we reach here, they do have operations in common.
7250 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
7251 OtherOpF, SI.getName()+".v");
7252 InsertNewInstBefore(NewSI, SI);
7253
7254 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
7255 if (MatchIsOpZero)
7256 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
7257 else
7258 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
7259 }
7260 assert(0 && "Shouldn't get here");
7261 return 0;
7262}
7263
7264Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
7265 Value *CondVal = SI.getCondition();
7266 Value *TrueVal = SI.getTrueValue();
7267 Value *FalseVal = SI.getFalseValue();
7268
7269 // select true, X, Y -> X
7270 // select false, X, Y -> Y
7271 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
7272 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
7273
7274 // select C, X, X -> X
7275 if (TrueVal == FalseVal)
7276 return ReplaceInstUsesWith(SI, TrueVal);
7277
7278 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
7279 return ReplaceInstUsesWith(SI, FalseVal);
7280 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
7281 return ReplaceInstUsesWith(SI, TrueVal);
7282 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
7283 if (isa<Constant>(TrueVal))
7284 return ReplaceInstUsesWith(SI, TrueVal);
7285 else
7286 return ReplaceInstUsesWith(SI, FalseVal);
7287 }
7288
7289 if (SI.getType() == Type::Int1Ty) {
7290 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
7291 if (C->getZExtValue()) {
7292 // Change: A = select B, true, C --> A = or B, C
7293 return BinaryOperator::createOr(CondVal, FalseVal);
7294 } else {
7295 // Change: A = select B, false, C --> A = and !B, C
7296 Value *NotCond =
7297 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7298 "not."+CondVal->getName()), SI);
7299 return BinaryOperator::createAnd(NotCond, FalseVal);
7300 }
7301 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
7302 if (C->getZExtValue() == false) {
7303 // Change: A = select B, C, false --> A = and B, C
7304 return BinaryOperator::createAnd(CondVal, TrueVal);
7305 } else {
7306 // Change: A = select B, C, true --> A = or !B, C
7307 Value *NotCond =
7308 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7309 "not."+CondVal->getName()), SI);
7310 return BinaryOperator::createOr(NotCond, TrueVal);
7311 }
7312 }
7313 }
7314
7315 // Selecting between two integer constants?
7316 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
7317 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
7318 // select C, 1, 0 -> zext C to int
7319 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
7320 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
7321 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
7322 // select C, 0, 1 -> zext !C to int
7323 Value *NotCond =
7324 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7325 "not."+CondVal->getName()), SI);
7326 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
7327 }
7328
7329 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
7330
7331 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
7332
7333 // (x <s 0) ? -1 : 0 -> ashr x, 31
7334 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
7335 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
7336 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
7337 // The comparison constant and the result are not neccessarily the
7338 // same width. Make an all-ones value by inserting a AShr.
7339 Value *X = IC->getOperand(0);
7340 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
7341 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
7342 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
7343 ShAmt, "ones");
7344 InsertNewInstBefore(SRA, SI);
7345
7346 // Finally, convert to the type of the select RHS. We figure out
7347 // if this requires a SExt, Trunc or BitCast based on the sizes.
7348 Instruction::CastOps opc = Instruction::BitCast;
7349 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
7350 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
7351 if (SRASize < SISize)
7352 opc = Instruction::SExt;
7353 else if (SRASize > SISize)
7354 opc = Instruction::Trunc;
7355 return CastInst::create(opc, SRA, SI.getType());
7356 }
7357 }
7358
7359
7360 // If one of the constants is zero (we know they can't both be) and we
7361 // have an icmp instruction with zero, and we have an 'and' with the
7362 // non-constant value, eliminate this whole mess. This corresponds to
7363 // cases like this: ((X & 27) ? 27 : 0)
7364 if (TrueValC->isZero() || FalseValC->isZero())
7365 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
7366 cast<Constant>(IC->getOperand(1))->isNullValue())
7367 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
7368 if (ICA->getOpcode() == Instruction::And &&
7369 isa<ConstantInt>(ICA->getOperand(1)) &&
7370 (ICA->getOperand(1) == TrueValC ||
7371 ICA->getOperand(1) == FalseValC) &&
7372 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
7373 // Okay, now we know that everything is set up, we just don't
7374 // know whether we have a icmp_ne or icmp_eq and whether the
7375 // true or false val is the zero.
7376 bool ShouldNotVal = !TrueValC->isZero();
7377 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
7378 Value *V = ICA;
7379 if (ShouldNotVal)
7380 V = InsertNewInstBefore(BinaryOperator::create(
7381 Instruction::Xor, V, ICA->getOperand(1)), SI);
7382 return ReplaceInstUsesWith(SI, V);
7383 }
7384 }
7385 }
7386
7387 // See if we are selecting two values based on a comparison of the two values.
7388 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
7389 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
7390 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00007391 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
7392 // This is not safe in general for floating point:
7393 // consider X== -0, Y== +0.
7394 // It becomes safe if either operand is a nonzero constant.
7395 ConstantFP *CFPt, *CFPf;
7396 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
7397 !CFPt->getValueAPF().isZero()) ||
7398 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
7399 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007400 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00007401 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007402 // Transform (X != Y) ? X : Y -> X
7403 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7404 return ReplaceInstUsesWith(SI, TrueVal);
7405 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7406
7407 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
7408 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00007409 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
7410 // This is not safe in general for floating point:
7411 // consider X== -0, Y== +0.
7412 // It becomes safe if either operand is a nonzero constant.
7413 ConstantFP *CFPt, *CFPf;
7414 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
7415 !CFPt->getValueAPF().isZero()) ||
7416 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
7417 !CFPf->getValueAPF().isZero()))
7418 return ReplaceInstUsesWith(SI, FalseVal);
7419 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007420 // Transform (X != Y) ? Y : X -> Y
7421 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7422 return ReplaceInstUsesWith(SI, TrueVal);
7423 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7424 }
7425 }
7426
7427 // See if we are selecting two values based on a comparison of the two values.
7428 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
7429 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
7430 // Transform (X == Y) ? X : Y -> Y
7431 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7432 return ReplaceInstUsesWith(SI, FalseVal);
7433 // Transform (X != Y) ? X : Y -> X
7434 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7435 return ReplaceInstUsesWith(SI, TrueVal);
7436 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7437
7438 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
7439 // Transform (X == Y) ? Y : X -> X
7440 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7441 return ReplaceInstUsesWith(SI, FalseVal);
7442 // Transform (X != Y) ? Y : X -> Y
7443 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7444 return ReplaceInstUsesWith(SI, TrueVal);
7445 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7446 }
7447 }
7448
7449 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
7450 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
7451 if (TI->hasOneUse() && FI->hasOneUse()) {
7452 Instruction *AddOp = 0, *SubOp = 0;
7453
7454 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
7455 if (TI->getOpcode() == FI->getOpcode())
7456 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
7457 return IV;
7458
7459 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
7460 // even legal for FP.
7461 if (TI->getOpcode() == Instruction::Sub &&
7462 FI->getOpcode() == Instruction::Add) {
7463 AddOp = FI; SubOp = TI;
7464 } else if (FI->getOpcode() == Instruction::Sub &&
7465 TI->getOpcode() == Instruction::Add) {
7466 AddOp = TI; SubOp = FI;
7467 }
7468
7469 if (AddOp) {
7470 Value *OtherAddOp = 0;
7471 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
7472 OtherAddOp = AddOp->getOperand(1);
7473 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
7474 OtherAddOp = AddOp->getOperand(0);
7475 }
7476
7477 if (OtherAddOp) {
7478 // So at this point we know we have (Y -> OtherAddOp):
7479 // select C, (add X, Y), (sub X, Z)
7480 Value *NegVal; // Compute -Z
7481 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
7482 NegVal = ConstantExpr::getNeg(C);
7483 } else {
7484 NegVal = InsertNewInstBefore(
7485 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
7486 }
7487
7488 Value *NewTrueOp = OtherAddOp;
7489 Value *NewFalseOp = NegVal;
7490 if (AddOp != TI)
7491 std::swap(NewTrueOp, NewFalseOp);
7492 Instruction *NewSel =
7493 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
7494
7495 NewSel = InsertNewInstBefore(NewSel, SI);
7496 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
7497 }
7498 }
7499 }
7500
7501 // See if we can fold the select into one of our operands.
7502 if (SI.getType()->isInteger()) {
7503 // See the comment above GetSelectFoldableOperands for a description of the
7504 // transformation we are doing here.
7505 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
7506 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
7507 !isa<Constant>(FalseVal))
7508 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
7509 unsigned OpToFold = 0;
7510 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
7511 OpToFold = 1;
7512 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
7513 OpToFold = 2;
7514 }
7515
7516 if (OpToFold) {
7517 Constant *C = GetSelectFoldableConstant(TVI);
7518 Instruction *NewSel =
7519 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
7520 InsertNewInstBefore(NewSel, SI);
7521 NewSel->takeName(TVI);
7522 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
7523 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
7524 else {
7525 assert(0 && "Unknown instruction!!");
7526 }
7527 }
7528 }
7529
7530 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
7531 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
7532 !isa<Constant>(TrueVal))
7533 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
7534 unsigned OpToFold = 0;
7535 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
7536 OpToFold = 1;
7537 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
7538 OpToFold = 2;
7539 }
7540
7541 if (OpToFold) {
7542 Constant *C = GetSelectFoldableConstant(FVI);
7543 Instruction *NewSel =
7544 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
7545 InsertNewInstBefore(NewSel, SI);
7546 NewSel->takeName(FVI);
7547 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
7548 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
7549 else
7550 assert(0 && "Unknown instruction!!");
7551 }
7552 }
7553 }
7554
7555 if (BinaryOperator::isNot(CondVal)) {
7556 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
7557 SI.setOperand(1, FalseVal);
7558 SI.setOperand(2, TrueVal);
7559 return &SI;
7560 }
7561
7562 return 0;
7563}
7564
Chris Lattner47cf3452007-08-09 19:05:49 +00007565/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
7566/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
7567/// and it is more than the alignment of the ultimate object, see if we can
7568/// increase the alignment of the ultimate object, making this check succeed.
7569static unsigned GetOrEnforceKnownAlignment(Value *V, TargetData *TD,
7570 unsigned PrefAlign = 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007571 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
7572 unsigned Align = GV->getAlignment();
7573 if (Align == 0 && TD)
7574 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
Chris Lattner47cf3452007-08-09 19:05:49 +00007575
7576 // If there is a large requested alignment and we can, bump up the alignment
7577 // of the global.
7578 if (PrefAlign > Align && GV->hasInitializer()) {
7579 GV->setAlignment(PrefAlign);
7580 Align = PrefAlign;
7581 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007582 return Align;
7583 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
7584 unsigned Align = AI->getAlignment();
7585 if (Align == 0 && TD) {
7586 if (isa<AllocaInst>(AI))
7587 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
7588 else if (isa<MallocInst>(AI)) {
7589 // Malloc returns maximally aligned memory.
7590 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
7591 Align =
7592 std::max(Align,
7593 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
7594 Align =
7595 std::max(Align,
7596 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
7597 }
7598 }
Chris Lattner47cf3452007-08-09 19:05:49 +00007599
7600 // If there is a requested alignment and if this is an alloca, round up. We
7601 // don't do this for malloc, because some systems can't respect the request.
7602 if (PrefAlign > Align && isa<AllocaInst>(AI)) {
7603 AI->setAlignment(PrefAlign);
7604 Align = PrefAlign;
7605 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007606 return Align;
7607 } else if (isa<BitCastInst>(V) ||
7608 (isa<ConstantExpr>(V) &&
7609 cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007610 return GetOrEnforceKnownAlignment(cast<User>(V)->getOperand(0),
7611 TD, PrefAlign);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007612 } else if (User *GEPI = dyn_castGetElementPtr(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007613 // If all indexes are zero, it is just the alignment of the base pointer.
7614 bool AllZeroOperands = true;
7615 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
7616 if (!isa<Constant>(GEPI->getOperand(i)) ||
7617 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
7618 AllZeroOperands = false;
7619 break;
7620 }
Chris Lattner47cf3452007-08-09 19:05:49 +00007621
7622 if (AllZeroOperands) {
7623 // Treat this like a bitcast.
7624 return GetOrEnforceKnownAlignment(GEPI->getOperand(0), TD, PrefAlign);
7625 }
7626
7627 unsigned BaseAlignment = GetOrEnforceKnownAlignment(GEPI->getOperand(0),TD);
7628 if (BaseAlignment == 0) return 0;
7629
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007630 // Otherwise, if the base alignment is >= the alignment we expect for the
7631 // base pointer type, then we know that the resultant pointer is aligned at
7632 // least as much as its type requires.
7633 if (!TD) return 0;
7634
7635 const Type *BasePtrTy = GEPI->getOperand(0)->getType();
7636 const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
Lauro Ramos Venancio55da3352007-07-31 20:13:21 +00007637 unsigned Align = TD->getABITypeAlignment(PtrTy->getElementType());
7638 if (Align <= BaseAlignment) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007639 const Type *GEPTy = GEPI->getType();
7640 const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
Lauro Ramos Venancio55da3352007-07-31 20:13:21 +00007641 Align = std::min(Align, (unsigned)
7642 TD->getABITypeAlignment(GEPPtrTy->getElementType()));
7643 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007644 }
7645 return 0;
7646 }
7647 return 0;
7648}
7649
7650
7651/// visitCallInst - CallInst simplification. This mostly only handles folding
7652/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
7653/// the heavy lifting.
7654///
7655Instruction *InstCombiner::visitCallInst(CallInst &CI) {
7656 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
7657 if (!II) return visitCallSite(&CI);
7658
7659 // Intrinsics cannot occur in an invoke, so handle them here instead of in
7660 // visitCallSite.
7661 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
7662 bool Changed = false;
7663
7664 // memmove/cpy/set of zero bytes is a noop.
7665 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
7666 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
7667
7668 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
7669 if (CI->getZExtValue() == 1) {
7670 // Replace the instruction with just byte operations. We would
7671 // transform other cases to loads/stores, but we don't know if
7672 // alignment is sufficient.
7673 }
7674 }
7675
7676 // If we have a memmove and the source operation is a constant global,
7677 // then the source and dest pointers can't alias, so we can change this
7678 // into a call to memcpy.
7679 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
7680 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
7681 if (GVSrc->isConstant()) {
7682 Module *M = CI.getParent()->getParent()->getParent();
7683 const char *Name;
7684 if (CI.getCalledFunction()->getFunctionType()->getParamType(2) ==
7685 Type::Int32Ty)
7686 Name = "llvm.memcpy.i32";
7687 else
7688 Name = "llvm.memcpy.i64";
7689 Constant *MemCpy = M->getOrInsertFunction(Name,
7690 CI.getCalledFunction()->getFunctionType());
7691 CI.setOperand(0, MemCpy);
7692 Changed = true;
7693 }
7694 }
7695
7696 // If we can determine a pointer alignment that is bigger than currently
7697 // set, update the alignment.
7698 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007699 unsigned Alignment1 = GetOrEnforceKnownAlignment(MI->getOperand(1), TD);
7700 unsigned Alignment2 = GetOrEnforceKnownAlignment(MI->getOperand(2), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007701 unsigned Align = std::min(Alignment1, Alignment2);
7702 if (MI->getAlignment()->getZExtValue() < Align) {
7703 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align));
7704 Changed = true;
7705 }
Devang Patel6ad3bd12007-10-11 17:21:57 +00007706
Chris Lattnerc59171a2007-10-12 05:30:59 +00007707 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
7708 // load/store.
Devang Patel6ad3bd12007-10-11 17:21:57 +00007709 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(CI.getOperand(3));
Devang Patel136fb902007-10-12 20:10:21 +00007710 if (MemOpLength) {
Devang Patel6ad3bd12007-10-11 17:21:57 +00007711 unsigned Size = MemOpLength->getZExtValue();
7712 unsigned Align = cast<ConstantInt>(CI.getOperand(4))->getZExtValue();
Devang Patel6ad3bd12007-10-11 17:21:57 +00007713 PointerType *NewPtrTy = NULL;
Devang Patel136fb902007-10-12 20:10:21 +00007714 // Destination pointer type is always i8 *
Devang Patelc1dc7012007-10-15 15:31:35 +00007715 // If Size is 8 then use Int64Ty
7716 // If Size is 4 then use Int32Ty
7717 // If Size is 2 then use Int16Ty
7718 // If Size is 1 then use Int8Ty
7719 if (Size && Size <=8 && !(Size&(Size-1)))
Devang Patel40bafac2007-10-17 07:24:40 +00007720 NewPtrTy = PointerType::get(IntegerType::get(Size<<3));
Devang Patelc1dc7012007-10-15 15:31:35 +00007721
Chris Lattnerc59171a2007-10-12 05:30:59 +00007722 if (NewPtrTy) {
Devang Patel40bafac2007-10-17 07:24:40 +00007723 Value *Src = InsertCastBefore(Instruction::BitCast, CI.getOperand(2), NewPtrTy, CI);
Devang Patel136fb902007-10-12 20:10:21 +00007724 Value *Dest = InsertCastBefore(Instruction::BitCast, CI.getOperand(1), NewPtrTy, CI);
Devang Patel40bafac2007-10-17 07:24:40 +00007725 Value *L = new LoadInst(Src, "tmp", false, Align, &CI);
Devang Patel6ad3bd12007-10-11 17:21:57 +00007726 Value *NS = new StoreInst(L, Dest, false, Align, &CI);
7727 CI.replaceAllUsesWith(NS);
7728 Changed = true;
7729 return EraseInstFromFunction(CI);
7730 }
7731 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007732 } else if (isa<MemSetInst>(MI)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007733 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest(), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007734 if (MI->getAlignment()->getZExtValue() < Alignment) {
7735 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
7736 Changed = true;
7737 }
7738 }
7739
7740 if (Changed) return II;
7741 } else {
7742 switch (II->getIntrinsicID()) {
7743 default: break;
7744 case Intrinsic::ppc_altivec_lvx:
7745 case Intrinsic::ppc_altivec_lvxl:
7746 case Intrinsic::x86_sse_loadu_ps:
7747 case Intrinsic::x86_sse2_loadu_pd:
7748 case Intrinsic::x86_sse2_loadu_dq:
7749 // Turn PPC lvx -> load if the pointer is known aligned.
7750 // Turn X86 loadups -> load if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007751 if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007752 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7753 PointerType::get(II->getType()), CI);
7754 return new LoadInst(Ptr);
7755 }
7756 break;
7757 case Intrinsic::ppc_altivec_stvx:
7758 case Intrinsic::ppc_altivec_stvxl:
7759 // Turn stvx -> store if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007760 if (GetOrEnforceKnownAlignment(II->getOperand(2), TD, 16) >= 16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007761 const Type *OpPtrTy = PointerType::get(II->getOperand(1)->getType());
7762 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2),
7763 OpPtrTy, CI);
7764 return new StoreInst(II->getOperand(1), Ptr);
7765 }
7766 break;
7767 case Intrinsic::x86_sse_storeu_ps:
7768 case Intrinsic::x86_sse2_storeu_pd:
7769 case Intrinsic::x86_sse2_storeu_dq:
7770 case Intrinsic::x86_sse2_storel_dq:
7771 // Turn X86 storeu -> store if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007772 if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007773 const Type *OpPtrTy = PointerType::get(II->getOperand(2)->getType());
7774 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7775 OpPtrTy, CI);
7776 return new StoreInst(II->getOperand(2), Ptr);
7777 }
7778 break;
7779
7780 case Intrinsic::x86_sse_cvttss2si: {
7781 // These intrinsics only demands the 0th element of its input vector. If
7782 // we can simplify the input based on that, do so now.
7783 uint64_t UndefElts;
7784 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
7785 UndefElts)) {
7786 II->setOperand(1, V);
7787 return II;
7788 }
7789 break;
7790 }
7791
7792 case Intrinsic::ppc_altivec_vperm:
7793 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
7794 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
7795 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
7796
7797 // Check that all of the elements are integer constants or undefs.
7798 bool AllEltsOk = true;
7799 for (unsigned i = 0; i != 16; ++i) {
7800 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
7801 !isa<UndefValue>(Mask->getOperand(i))) {
7802 AllEltsOk = false;
7803 break;
7804 }
7805 }
7806
7807 if (AllEltsOk) {
7808 // Cast the input vectors to byte vectors.
7809 Value *Op0 = InsertCastBefore(Instruction::BitCast,
7810 II->getOperand(1), Mask->getType(), CI);
7811 Value *Op1 = InsertCastBefore(Instruction::BitCast,
7812 II->getOperand(2), Mask->getType(), CI);
7813 Value *Result = UndefValue::get(Op0->getType());
7814
7815 // Only extract each element once.
7816 Value *ExtractedElts[32];
7817 memset(ExtractedElts, 0, sizeof(ExtractedElts));
7818
7819 for (unsigned i = 0; i != 16; ++i) {
7820 if (isa<UndefValue>(Mask->getOperand(i)))
7821 continue;
7822 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
7823 Idx &= 31; // Match the hardware behavior.
7824
7825 if (ExtractedElts[Idx] == 0) {
7826 Instruction *Elt =
7827 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
7828 InsertNewInstBefore(Elt, CI);
7829 ExtractedElts[Idx] = Elt;
7830 }
7831
7832 // Insert this value into the result vector.
7833 Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp");
7834 InsertNewInstBefore(cast<Instruction>(Result), CI);
7835 }
7836 return CastInst::create(Instruction::BitCast, Result, CI.getType());
7837 }
7838 }
7839 break;
7840
7841 case Intrinsic::stackrestore: {
7842 // If the save is right next to the restore, remove the restore. This can
7843 // happen when variable allocas are DCE'd.
7844 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
7845 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
7846 BasicBlock::iterator BI = SS;
7847 if (&*++BI == II)
7848 return EraseInstFromFunction(CI);
7849 }
7850 }
7851
7852 // If the stack restore is in a return/unwind block and if there are no
7853 // allocas or calls between the restore and the return, nuke the restore.
7854 TerminatorInst *TI = II->getParent()->getTerminator();
7855 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
7856 BasicBlock::iterator BI = II;
7857 bool CannotRemove = false;
7858 for (++BI; &*BI != TI; ++BI) {
7859 if (isa<AllocaInst>(BI) ||
7860 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
7861 CannotRemove = true;
7862 break;
7863 }
7864 }
7865 if (!CannotRemove)
7866 return EraseInstFromFunction(CI);
7867 }
7868 break;
7869 }
7870 }
7871 }
7872
7873 return visitCallSite(II);
7874}
7875
7876// InvokeInst simplification
7877//
7878Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
7879 return visitCallSite(&II);
7880}
7881
7882// visitCallSite - Improvements for call and invoke instructions.
7883//
7884Instruction *InstCombiner::visitCallSite(CallSite CS) {
7885 bool Changed = false;
7886
7887 // If the callee is a constexpr cast of a function, attempt to move the cast
7888 // to the arguments of the call/invoke.
7889 if (transformConstExprCastCall(CS)) return 0;
7890
7891 Value *Callee = CS.getCalledValue();
7892
7893 if (Function *CalleeF = dyn_cast<Function>(Callee))
7894 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
7895 Instruction *OldCall = CS.getInstruction();
7896 // If the call and callee calling conventions don't match, this call must
7897 // be unreachable, as the call is undefined.
7898 new StoreInst(ConstantInt::getTrue(),
7899 UndefValue::get(PointerType::get(Type::Int1Ty)), OldCall);
7900 if (!OldCall->use_empty())
7901 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
7902 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
7903 return EraseInstFromFunction(*OldCall);
7904 return 0;
7905 }
7906
7907 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
7908 // This instruction is not reachable, just remove it. We insert a store to
7909 // undef so that we know that this code is not reachable, despite the fact
7910 // that we can't modify the CFG here.
7911 new StoreInst(ConstantInt::getTrue(),
7912 UndefValue::get(PointerType::get(Type::Int1Ty)),
7913 CS.getInstruction());
7914
7915 if (!CS.getInstruction()->use_empty())
7916 CS.getInstruction()->
7917 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
7918
7919 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
7920 // Don't break the CFG, insert a dummy cond branch.
7921 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
7922 ConstantInt::getTrue(), II);
7923 }
7924 return EraseInstFromFunction(*CS.getInstruction());
7925 }
7926
Duncan Sands74833f22007-09-17 10:26:40 +00007927 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
7928 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
7929 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
7930 return transformCallThroughTrampoline(CS);
7931
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007932 const PointerType *PTy = cast<PointerType>(Callee->getType());
7933 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
7934 if (FTy->isVarArg()) {
7935 // See if we can optimize any arguments passed through the varargs area of
7936 // the call.
7937 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
7938 E = CS.arg_end(); I != E; ++I)
7939 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
7940 // If this cast does not effect the value passed through the varargs
7941 // area, we can eliminate the use of the cast.
7942 Value *Op = CI->getOperand(0);
7943 if (CI->isLosslessCast()) {
7944 *I = Op;
7945 Changed = true;
7946 }
7947 }
7948 }
7949
7950 return Changed ? CS.getInstruction() : 0;
7951}
7952
7953// transformConstExprCastCall - If the callee is a constexpr cast of a function,
7954// attempt to move the cast to the arguments of the call/invoke.
7955//
7956bool InstCombiner::transformConstExprCastCall(CallSite CS) {
7957 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
7958 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
7959 if (CE->getOpcode() != Instruction::BitCast ||
7960 !isa<Function>(CE->getOperand(0)))
7961 return false;
7962 Function *Callee = cast<Function>(CE->getOperand(0));
7963 Instruction *Caller = CS.getInstruction();
7964
7965 // Okay, this is a cast from a function to a different type. Unless doing so
7966 // would cause a type conversion of one of our arguments, change this call to
7967 // be a direct call with arguments casted to the appropriate types.
7968 //
7969 const FunctionType *FT = Callee->getFunctionType();
7970 const Type *OldRetTy = Caller->getType();
7971
7972 const FunctionType *ActualFT =
7973 cast<FunctionType>(cast<PointerType>(CE->getType())->getElementType());
7974
7975 // If the parameter attributes don't match up, don't do the xform. We don't
7976 // want to lose an sret attribute or something.
7977 if (FT->getParamAttrs() != ActualFT->getParamAttrs())
7978 return false;
7979
7980 // Check to see if we are changing the return type...
7981 if (OldRetTy != FT->getReturnType()) {
7982 if (Callee->isDeclaration() && !Caller->use_empty() &&
7983 // Conversion is ok if changing from pointer to int of same size.
7984 !(isa<PointerType>(FT->getReturnType()) &&
7985 TD->getIntPtrType() == OldRetTy))
7986 return false; // Cannot transform this return value.
7987
7988 // If the callsite is an invoke instruction, and the return value is used by
7989 // a PHI node in a successor, we cannot change the return type of the call
7990 // because there is no place to put the cast instruction (without breaking
7991 // the critical edge). Bail out in this case.
7992 if (!Caller->use_empty())
7993 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
7994 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
7995 UI != E; ++UI)
7996 if (PHINode *PN = dyn_cast<PHINode>(*UI))
7997 if (PN->getParent() == II->getNormalDest() ||
7998 PN->getParent() == II->getUnwindDest())
7999 return false;
8000 }
8001
8002 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8003 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
8004
8005 CallSite::arg_iterator AI = CS.arg_begin();
8006 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8007 const Type *ParamTy = FT->getParamType(i);
8008 const Type *ActTy = (*AI)->getType();
8009 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
8010 //Some conversions are safe even if we do not have a body.
8011 //Either we can cast directly, or we can upconvert the argument
8012 bool isConvertible = ActTy == ParamTy ||
8013 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
8014 (ParamTy->isInteger() && ActTy->isInteger() &&
8015 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8016 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
8017 && c->getValue().isStrictlyPositive());
8018 if (Callee->isDeclaration() && !isConvertible) return false;
8019
8020 // Most other conversions can be done if we have a body, even if these
8021 // lose information, e.g. int->short.
8022 // Some conversions cannot be done at all, e.g. float to pointer.
8023 // Logic here parallels CastInst::getCastOpcode (the design there
8024 // requires legality checks like this be done before calling it).
8025 if (ParamTy->isInteger()) {
8026 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
8027 if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
8028 return false;
8029 }
8030 if (!ActTy->isInteger() && !ActTy->isFloatingPoint() &&
8031 !isa<PointerType>(ActTy))
8032 return false;
8033 } else if (ParamTy->isFloatingPoint()) {
8034 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
8035 if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
8036 return false;
8037 }
8038 if (!ActTy->isInteger() && !ActTy->isFloatingPoint())
8039 return false;
8040 } else if (const VectorType *VParamTy = dyn_cast<VectorType>(ParamTy)) {
8041 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
8042 if (VActTy->getBitWidth() != VParamTy->getBitWidth())
8043 return false;
8044 }
8045 if (VParamTy->getBitWidth() != ActTy->getPrimitiveSizeInBits())
8046 return false;
8047 } else if (isa<PointerType>(ParamTy)) {
8048 if (!ActTy->isInteger() && !isa<PointerType>(ActTy))
8049 return false;
8050 } else {
8051 return false;
8052 }
8053 }
8054
8055 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
8056 Callee->isDeclaration())
8057 return false; // Do not delete arguments unless we have a function body...
8058
8059 // Okay, we decided that this is a safe thing to do: go ahead and start
8060 // inserting cast instructions as necessary...
8061 std::vector<Value*> Args;
8062 Args.reserve(NumActualArgs);
8063
8064 AI = CS.arg_begin();
8065 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
8066 const Type *ParamTy = FT->getParamType(i);
8067 if ((*AI)->getType() == ParamTy) {
8068 Args.push_back(*AI);
8069 } else {
8070 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
8071 false, ParamTy, false);
8072 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
8073 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
8074 }
8075 }
8076
8077 // If the function takes more arguments than the call was taking, add them
8078 // now...
8079 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
8080 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
8081
8082 // If we are removing arguments to the function, emit an obnoxious warning...
8083 if (FT->getNumParams() < NumActualArgs)
8084 if (!FT->isVarArg()) {
8085 cerr << "WARNING: While resolving call to function '"
8086 << Callee->getName() << "' arguments were dropped!\n";
8087 } else {
8088 // Add all of the arguments in their promoted form to the arg list...
8089 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
8090 const Type *PTy = getPromotedType((*AI)->getType());
8091 if (PTy != (*AI)->getType()) {
8092 // Must promote to pass through va_arg area!
8093 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
8094 PTy, false);
8095 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
8096 InsertNewInstBefore(Cast, *Caller);
8097 Args.push_back(Cast);
8098 } else {
8099 Args.push_back(*AI);
8100 }
8101 }
8102 }
8103
8104 if (FT->getReturnType() == Type::VoidTy)
8105 Caller->setName(""); // Void type should not have a name.
8106
8107 Instruction *NC;
8108 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8109 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
David Greene8278ef52007-08-27 19:04:21 +00008110 Args.begin(), Args.end(), Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00008111 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008112 } else {
Chris Lattner03dc7d72007-08-02 16:53:43 +00008113 NC = new CallInst(Callee, Args.begin(), Args.end(),
8114 Caller->getName(), Caller);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008115 if (cast<CallInst>(Caller)->isTailCall())
8116 cast<CallInst>(NC)->setTailCall();
8117 cast<CallInst>(NC)->setCallingConv(cast<CallInst>(Caller)->getCallingConv());
8118 }
8119
8120 // Insert a cast of the return type as necessary.
8121 Value *NV = NC;
8122 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
8123 if (NV->getType() != Type::VoidTy) {
8124 const Type *CallerTy = Caller->getType();
8125 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
8126 CallerTy, false);
8127 NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp");
8128
8129 // If this is an invoke instruction, we should insert it after the first
8130 // non-phi, instruction in the normal successor block.
8131 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8132 BasicBlock::iterator I = II->getNormalDest()->begin();
8133 while (isa<PHINode>(I)) ++I;
8134 InsertNewInstBefore(NC, *I);
8135 } else {
8136 // Otherwise, it's a call, just insert cast right after the call instr
8137 InsertNewInstBefore(NC, *Caller);
8138 }
8139 AddUsersToWorkList(*Caller);
8140 } else {
8141 NV = UndefValue::get(Caller->getType());
8142 }
8143 }
8144
8145 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8146 Caller->replaceAllUsesWith(NV);
8147 Caller->eraseFromParent();
8148 RemoveFromWorkList(Caller);
8149 return true;
8150}
8151
Duncan Sands74833f22007-09-17 10:26:40 +00008152// transformCallThroughTrampoline - Turn a call to a function created by the
8153// init_trampoline intrinsic into a direct call to the underlying function.
8154//
8155Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
8156 Value *Callee = CS.getCalledValue();
8157 const PointerType *PTy = cast<PointerType>(Callee->getType());
8158 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8159
8160 IntrinsicInst *Tramp =
8161 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
8162
8163 Function *NestF =
8164 cast<Function>(IntrinsicInst::StripPointerCasts(Tramp->getOperand(2)));
8165 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
8166 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
8167
8168 if (const ParamAttrsList *NestAttrs = NestFTy->getParamAttrs()) {
8169 unsigned NestIdx = 1;
8170 const Type *NestTy = 0;
8171 uint16_t NestAttr = 0;
8172
8173 // Look for a parameter marked with the 'nest' attribute.
8174 for (FunctionType::param_iterator I = NestFTy->param_begin(),
8175 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
8176 if (NestAttrs->paramHasAttr(NestIdx, ParamAttr::Nest)) {
8177 // Record the parameter type and any other attributes.
8178 NestTy = *I;
8179 NestAttr = NestAttrs->getParamAttrs(NestIdx);
8180 break;
8181 }
8182
8183 if (NestTy) {
8184 Instruction *Caller = CS.getInstruction();
8185 std::vector<Value*> NewArgs;
8186 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
8187
8188 // Insert the nest argument into the call argument list, which may
8189 // mean appending it.
8190 {
8191 unsigned Idx = 1;
8192 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
8193 do {
8194 if (Idx == NestIdx) {
8195 // Add the chain argument.
8196 Value *NestVal = Tramp->getOperand(3);
8197 if (NestVal->getType() != NestTy)
8198 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
8199 NewArgs.push_back(NestVal);
8200 }
8201
8202 if (I == E)
8203 break;
8204
8205 // Add the original argument.
8206 NewArgs.push_back(*I);
8207
8208 ++Idx, ++I;
8209 } while (1);
8210 }
8211
8212 // The trampoline may have been bitcast to a bogus type (FTy).
8213 // Handle this by synthesizing a new function type, equal to FTy
8214 // with the chain parameter inserted. Likewise for attributes.
8215
8216 const ParamAttrsList *Attrs = FTy->getParamAttrs();
8217 std::vector<const Type*> NewTypes;
8218 ParamAttrsVector NewAttrs;
8219 NewTypes.reserve(FTy->getNumParams()+1);
8220
8221 // Add any function result attributes.
8222 uint16_t Attr = Attrs ? Attrs->getParamAttrs(0) : 0;
8223 if (Attr)
8224 NewAttrs.push_back (ParamAttrsWithIndex::get(0, Attr));
8225
8226 // Insert the chain's type into the list of parameter types, which may
8227 // mean appending it. Likewise for the chain's attributes.
8228 {
8229 unsigned Idx = 1;
8230 FunctionType::param_iterator I = FTy->param_begin(),
8231 E = FTy->param_end();
8232
8233 do {
8234 if (Idx == NestIdx) {
8235 // Add the chain's type and attributes.
8236 NewTypes.push_back(NestTy);
8237 NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
8238 }
8239
8240 if (I == E)
8241 break;
8242
8243 // Add the original type and attributes.
8244 NewTypes.push_back(*I);
8245 Attr = Attrs ? Attrs->getParamAttrs(Idx) : 0;
8246 if (Attr)
8247 NewAttrs.push_back
8248 (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));
8249
8250 ++Idx, ++I;
8251 } while (1);
8252 }
8253
8254 // Replace the trampoline call with a direct call. Let the generic
8255 // code sort out any function type mismatches.
8256 FunctionType *NewFTy =
8257 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg(),
8258 ParamAttrsList::get(NewAttrs));
8259 Constant *NewCallee = NestF->getType() == PointerType::get(NewFTy) ?
8260 NestF : ConstantExpr::getBitCast(NestF, PointerType::get(NewFTy));
8261
8262 Instruction *NewCaller;
8263 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8264 NewCaller = new InvokeInst(NewCallee,
8265 II->getNormalDest(), II->getUnwindDest(),
8266 NewArgs.begin(), NewArgs.end(),
8267 Caller->getName(), Caller);
8268 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
8269 } else {
8270 NewCaller = new CallInst(NewCallee, NewArgs.begin(), NewArgs.end(),
8271 Caller->getName(), Caller);
8272 if (cast<CallInst>(Caller)->isTailCall())
8273 cast<CallInst>(NewCaller)->setTailCall();
8274 cast<CallInst>(NewCaller)->
8275 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
8276 }
8277 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8278 Caller->replaceAllUsesWith(NewCaller);
8279 Caller->eraseFromParent();
8280 RemoveFromWorkList(Caller);
8281 return 0;
8282 }
8283 }
8284
8285 // Replace the trampoline call with a direct call. Since there is no 'nest'
8286 // parameter, there is no need to adjust the argument list. Let the generic
8287 // code sort out any function type mismatches.
8288 Constant *NewCallee =
8289 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
8290 CS.setCalledFunction(NewCallee);
8291 return CS.getInstruction();
8292}
8293
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008294/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
8295/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
8296/// and a single binop.
8297Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
8298 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8299 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
8300 isa<CmpInst>(FirstInst));
8301 unsigned Opc = FirstInst->getOpcode();
8302 Value *LHSVal = FirstInst->getOperand(0);
8303 Value *RHSVal = FirstInst->getOperand(1);
8304
8305 const Type *LHSType = LHSVal->getType();
8306 const Type *RHSType = RHSVal->getType();
8307
8308 // Scan to see if all operands are the same opcode, all have one use, and all
8309 // kill their operands (i.e. the operands have one use).
8310 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
8311 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
8312 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
8313 // Verify type of the LHS matches so we don't fold cmp's of different
8314 // types or GEP's with different index types.
8315 I->getOperand(0)->getType() != LHSType ||
8316 I->getOperand(1)->getType() != RHSType)
8317 return 0;
8318
8319 // If they are CmpInst instructions, check their predicates
8320 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
8321 if (cast<CmpInst>(I)->getPredicate() !=
8322 cast<CmpInst>(FirstInst)->getPredicate())
8323 return 0;
8324
8325 // Keep track of which operand needs a phi node.
8326 if (I->getOperand(0) != LHSVal) LHSVal = 0;
8327 if (I->getOperand(1) != RHSVal) RHSVal = 0;
8328 }
8329
8330 // Otherwise, this is safe to transform, determine if it is profitable.
8331
8332 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
8333 // Indexes are often folded into load/store instructions, so we don't want to
8334 // hide them behind a phi.
8335 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
8336 return 0;
8337
8338 Value *InLHS = FirstInst->getOperand(0);
8339 Value *InRHS = FirstInst->getOperand(1);
8340 PHINode *NewLHS = 0, *NewRHS = 0;
8341 if (LHSVal == 0) {
8342 NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn");
8343 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
8344 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
8345 InsertNewInstBefore(NewLHS, PN);
8346 LHSVal = NewLHS;
8347 }
8348
8349 if (RHSVal == 0) {
8350 NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn");
8351 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
8352 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
8353 InsertNewInstBefore(NewRHS, PN);
8354 RHSVal = NewRHS;
8355 }
8356
8357 // Add all operands to the new PHIs.
8358 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8359 if (NewLHS) {
8360 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8361 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
8362 }
8363 if (NewRHS) {
8364 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
8365 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
8366 }
8367 }
8368
8369 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
8370 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
8371 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8372 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
8373 RHSVal);
8374 else {
8375 assert(isa<GetElementPtrInst>(FirstInst));
8376 return new GetElementPtrInst(LHSVal, RHSVal);
8377 }
8378}
8379
8380/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
8381/// of the block that defines it. This means that it must be obvious the value
8382/// of the load is not changed from the point of the load to the end of the
8383/// block it is in.
8384///
8385/// Finally, it is safe, but not profitable, to sink a load targetting a
8386/// non-address-taken alloca. Doing so will cause us to not promote the alloca
8387/// to a register.
8388static bool isSafeToSinkLoad(LoadInst *L) {
8389 BasicBlock::iterator BBI = L, E = L->getParent()->end();
8390
8391 for (++BBI; BBI != E; ++BBI)
8392 if (BBI->mayWriteToMemory())
8393 return false;
8394
8395 // Check for non-address taken alloca. If not address-taken already, it isn't
8396 // profitable to do this xform.
8397 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
8398 bool isAddressTaken = false;
8399 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
8400 UI != E; ++UI) {
8401 if (isa<LoadInst>(UI)) continue;
8402 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
8403 // If storing TO the alloca, then the address isn't taken.
8404 if (SI->getOperand(1) == AI) continue;
8405 }
8406 isAddressTaken = true;
8407 break;
8408 }
8409
8410 if (!isAddressTaken)
8411 return false;
8412 }
8413
8414 return true;
8415}
8416
8417
8418// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
8419// operator and they all are only used by the PHI, PHI together their
8420// inputs, and do the operation once, to the result of the PHI.
8421Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
8422 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8423
8424 // Scan the instruction, looking for input operations that can be folded away.
8425 // If all input operands to the phi are the same instruction (e.g. a cast from
8426 // the same type or "+42") we can pull the operation through the PHI, reducing
8427 // code size and simplifying code.
8428 Constant *ConstantOp = 0;
8429 const Type *CastSrcTy = 0;
8430 bool isVolatile = false;
8431 if (isa<CastInst>(FirstInst)) {
8432 CastSrcTy = FirstInst->getOperand(0)->getType();
8433 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
8434 // Can fold binop, compare or shift here if the RHS is a constant,
8435 // otherwise call FoldPHIArgBinOpIntoPHI.
8436 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
8437 if (ConstantOp == 0)
8438 return FoldPHIArgBinOpIntoPHI(PN);
8439 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
8440 isVolatile = LI->isVolatile();
8441 // We can't sink the load if the loaded value could be modified between the
8442 // load and the PHI.
8443 if (LI->getParent() != PN.getIncomingBlock(0) ||
8444 !isSafeToSinkLoad(LI))
8445 return 0;
8446 } else if (isa<GetElementPtrInst>(FirstInst)) {
8447 if (FirstInst->getNumOperands() == 2)
8448 return FoldPHIArgBinOpIntoPHI(PN);
8449 // Can't handle general GEPs yet.
8450 return 0;
8451 } else {
8452 return 0; // Cannot fold this operation.
8453 }
8454
8455 // Check to see if all arguments are the same operation.
8456 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8457 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
8458 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
8459 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
8460 return 0;
8461 if (CastSrcTy) {
8462 if (I->getOperand(0)->getType() != CastSrcTy)
8463 return 0; // Cast operation must match.
8464 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8465 // We can't sink the load if the loaded value could be modified between
8466 // the load and the PHI.
8467 if (LI->isVolatile() != isVolatile ||
8468 LI->getParent() != PN.getIncomingBlock(i) ||
8469 !isSafeToSinkLoad(LI))
8470 return 0;
8471 } else if (I->getOperand(1) != ConstantOp) {
8472 return 0;
8473 }
8474 }
8475
8476 // Okay, they are all the same operation. Create a new PHI node of the
8477 // correct type, and PHI together all of the LHS's of the instructions.
8478 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
8479 PN.getName()+".in");
8480 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
8481
8482 Value *InVal = FirstInst->getOperand(0);
8483 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
8484
8485 // Add all operands to the new PHI.
8486 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8487 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8488 if (NewInVal != InVal)
8489 InVal = 0;
8490 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
8491 }
8492
8493 Value *PhiVal;
8494 if (InVal) {
8495 // The new PHI unions all of the same values together. This is really
8496 // common, so we handle it intelligently here for compile-time speed.
8497 PhiVal = InVal;
8498 delete NewPN;
8499 } else {
8500 InsertNewInstBefore(NewPN, PN);
8501 PhiVal = NewPN;
8502 }
8503
8504 // Insert and return the new operation.
8505 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
8506 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
8507 else if (isa<LoadInst>(FirstInst))
8508 return new LoadInst(PhiVal, "", isVolatile);
8509 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
8510 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
8511 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8512 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
8513 PhiVal, ConstantOp);
8514 else
8515 assert(0 && "Unknown operation");
8516 return 0;
8517}
8518
8519/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
8520/// that is dead.
8521static bool DeadPHICycle(PHINode *PN,
8522 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
8523 if (PN->use_empty()) return true;
8524 if (!PN->hasOneUse()) return false;
8525
8526 // Remember this node, and if we find the cycle, return.
8527 if (!PotentiallyDeadPHIs.insert(PN))
8528 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00008529
8530 // Don't scan crazily complex things.
8531 if (PotentiallyDeadPHIs.size() == 16)
8532 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008533
8534 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
8535 return DeadPHICycle(PU, PotentiallyDeadPHIs);
8536
8537 return false;
8538}
8539
8540// PHINode simplification
8541//
8542Instruction *InstCombiner::visitPHINode(PHINode &PN) {
8543 // If LCSSA is around, don't mess with Phi nodes
8544 if (MustPreserveLCSSA) return 0;
8545
8546 if (Value *V = PN.hasConstantValue())
8547 return ReplaceInstUsesWith(PN, V);
8548
8549 // If all PHI operands are the same operation, pull them through the PHI,
8550 // reducing code size.
8551 if (isa<Instruction>(PN.getIncomingValue(0)) &&
8552 PN.getIncomingValue(0)->hasOneUse())
8553 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
8554 return Result;
8555
8556 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
8557 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
8558 // PHI)... break the cycle.
8559 if (PN.hasOneUse()) {
8560 Instruction *PHIUser = cast<Instruction>(PN.use_back());
8561 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
8562 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
8563 PotentiallyDeadPHIs.insert(&PN);
8564 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
8565 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8566 }
8567
8568 // If this phi has a single use, and if that use just computes a value for
8569 // the next iteration of a loop, delete the phi. This occurs with unused
8570 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
8571 // common case here is good because the only other things that catch this
8572 // are induction variable analysis (sometimes) and ADCE, which is only run
8573 // late.
8574 if (PHIUser->hasOneUse() &&
8575 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
8576 PHIUser->use_back() == &PN) {
8577 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8578 }
8579 }
8580
8581 return 0;
8582}
8583
8584static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
8585 Instruction *InsertPoint,
8586 InstCombiner *IC) {
8587 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
8588 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
8589 // We must cast correctly to the pointer type. Ensure that we
8590 // sign extend the integer value if it is smaller as this is
8591 // used for address computation.
8592 Instruction::CastOps opcode =
8593 (VTySize < PtrSize ? Instruction::SExt :
8594 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
8595 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
8596}
8597
8598
8599Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
8600 Value *PtrOp = GEP.getOperand(0);
8601 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
8602 // If so, eliminate the noop.
8603 if (GEP.getNumOperands() == 1)
8604 return ReplaceInstUsesWith(GEP, PtrOp);
8605
8606 if (isa<UndefValue>(GEP.getOperand(0)))
8607 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
8608
8609 bool HasZeroPointerIndex = false;
8610 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
8611 HasZeroPointerIndex = C->isNullValue();
8612
8613 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
8614 return ReplaceInstUsesWith(GEP, PtrOp);
8615
8616 // Eliminate unneeded casts for indices.
8617 bool MadeChange = false;
8618
8619 gep_type_iterator GTI = gep_type_begin(GEP);
8620 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
8621 if (isa<SequentialType>(*GTI)) {
8622 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
8623 if (CI->getOpcode() == Instruction::ZExt ||
8624 CI->getOpcode() == Instruction::SExt) {
8625 const Type *SrcTy = CI->getOperand(0)->getType();
8626 // We can eliminate a cast from i32 to i64 iff the target
8627 // is a 32-bit pointer target.
8628 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
8629 MadeChange = true;
8630 GEP.setOperand(i, CI->getOperand(0));
8631 }
8632 }
8633 }
8634 // If we are using a wider index than needed for this platform, shrink it
8635 // to what we need. If the incoming value needs a cast instruction,
8636 // insert it. This explicit cast can make subsequent optimizations more
8637 // obvious.
8638 Value *Op = GEP.getOperand(i);
8639 if (TD->getTypeSize(Op->getType()) > TD->getPointerSize())
8640 if (Constant *C = dyn_cast<Constant>(Op)) {
8641 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
8642 MadeChange = true;
8643 } else {
8644 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
8645 GEP);
8646 GEP.setOperand(i, Op);
8647 MadeChange = true;
8648 }
8649 }
8650 }
8651 if (MadeChange) return &GEP;
8652
8653 // If this GEP instruction doesn't move the pointer, and if the input operand
8654 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
8655 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +00008656 if (GEP.hasAllZeroIndices()) {
8657 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
8658 // If the bitcast is of an allocation, and the allocation will be
8659 // converted to match the type of the cast, don't touch this.
8660 if (isa<AllocationInst>(BCI->getOperand(0))) {
8661 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +00008662 if (Instruction *I = visitBitCast(*BCI)) {
8663 if (I != BCI) {
8664 I->takeName(BCI);
8665 BCI->getParent()->getInstList().insert(BCI, I);
8666 ReplaceInstUsesWith(*BCI, I);
8667 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00008668 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +00008669 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00008670 }
8671 return new BitCastInst(BCI->getOperand(0), GEP.getType());
8672 }
8673 }
8674
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008675 // Combine Indices - If the source pointer to this getelementptr instruction
8676 // is a getelementptr instruction, combine the indices of the two
8677 // getelementptr instructions into a single instruction.
8678 //
8679 SmallVector<Value*, 8> SrcGEPOperands;
8680 if (User *Src = dyn_castGetElementPtr(PtrOp))
8681 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
8682
8683 if (!SrcGEPOperands.empty()) {
8684 // Note that if our source is a gep chain itself that we wait for that
8685 // chain to be resolved before we perform this transformation. This
8686 // avoids us creating a TON of code in some cases.
8687 //
8688 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
8689 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
8690 return 0; // Wait until our source is folded to completion.
8691
8692 SmallVector<Value*, 8> Indices;
8693
8694 // Find out whether the last index in the source GEP is a sequential idx.
8695 bool EndsWithSequential = false;
8696 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
8697 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
8698 EndsWithSequential = !isa<StructType>(*I);
8699
8700 // Can we combine the two pointer arithmetics offsets?
8701 if (EndsWithSequential) {
8702 // Replace: gep (gep %P, long B), long A, ...
8703 // With: T = long A+B; gep %P, T, ...
8704 //
8705 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
8706 if (SO1 == Constant::getNullValue(SO1->getType())) {
8707 Sum = GO1;
8708 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
8709 Sum = SO1;
8710 } else {
8711 // If they aren't the same type, convert both to an integer of the
8712 // target's pointer size.
8713 if (SO1->getType() != GO1->getType()) {
8714 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
8715 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
8716 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
8717 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
8718 } else {
8719 unsigned PS = TD->getPointerSize();
8720 if (TD->getTypeSize(SO1->getType()) == PS) {
8721 // Convert GO1 to SO1's type.
8722 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
8723
8724 } else if (TD->getTypeSize(GO1->getType()) == PS) {
8725 // Convert SO1 to GO1's type.
8726 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
8727 } else {
8728 const Type *PT = TD->getIntPtrType();
8729 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
8730 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
8731 }
8732 }
8733 }
8734 if (isa<Constant>(SO1) && isa<Constant>(GO1))
8735 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
8736 else {
8737 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
8738 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
8739 }
8740 }
8741
8742 // Recycle the GEP we already have if possible.
8743 if (SrcGEPOperands.size() == 2) {
8744 GEP.setOperand(0, SrcGEPOperands[0]);
8745 GEP.setOperand(1, Sum);
8746 return &GEP;
8747 } else {
8748 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8749 SrcGEPOperands.end()-1);
8750 Indices.push_back(Sum);
8751 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
8752 }
8753 } else if (isa<Constant>(*GEP.idx_begin()) &&
8754 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
8755 SrcGEPOperands.size() != 1) {
8756 // Otherwise we can do the fold if the first index of the GEP is a zero
8757 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8758 SrcGEPOperands.end());
8759 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
8760 }
8761
8762 if (!Indices.empty())
David Greene393be882007-09-04 15:46:09 +00008763 return new GetElementPtrInst(SrcGEPOperands[0], Indices.begin(),
8764 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008765
8766 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
8767 // GEP of global variable. If all of the indices for this GEP are
8768 // constants, we can promote this to a constexpr instead of an instruction.
8769
8770 // Scan for nonconstants...
8771 SmallVector<Constant*, 8> Indices;
8772 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
8773 for (; I != E && isa<Constant>(*I); ++I)
8774 Indices.push_back(cast<Constant>(*I));
8775
8776 if (I == E) { // If they are all constants...
8777 Constant *CE = ConstantExpr::getGetElementPtr(GV,
8778 &Indices[0],Indices.size());
8779
8780 // Replace all uses of the GEP with the new constexpr...
8781 return ReplaceInstUsesWith(GEP, CE);
8782 }
8783 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
8784 if (!isa<PointerType>(X->getType())) {
8785 // Not interesting. Source pointer must be a cast from pointer.
8786 } else if (HasZeroPointerIndex) {
8787 // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ...
8788 // into : GEP [10 x ubyte]* X, long 0, ...
8789 //
8790 // This occurs when the program declares an array extern like "int X[];"
8791 //
8792 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
8793 const PointerType *XTy = cast<PointerType>(X->getType());
8794 if (const ArrayType *XATy =
8795 dyn_cast<ArrayType>(XTy->getElementType()))
8796 if (const ArrayType *CATy =
8797 dyn_cast<ArrayType>(CPTy->getElementType()))
8798 if (CATy->getElementType() == XATy->getElementType()) {
8799 // At this point, we know that the cast source type is a pointer
8800 // to an array of the same type as the destination pointer
8801 // array. Because the array type is never stepped over (there
8802 // is a leading zero) we can fold the cast into this GEP.
8803 GEP.setOperand(0, X);
8804 return &GEP;
8805 }
8806 } else if (GEP.getNumOperands() == 2) {
8807 // Transform things like:
8808 // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V
8809 // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast
8810 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
8811 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
8812 if (isa<ArrayType>(SrcElTy) &&
8813 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
8814 TD->getTypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +00008815 Value *Idx[2];
8816 Idx[0] = Constant::getNullValue(Type::Int32Ty);
8817 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008818 Value *V = InsertNewInstBefore(
David Greene393be882007-09-04 15:46:09 +00008819 new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008820 // V and GEP are both pointer types --> BitCast
8821 return new BitCastInst(V, GEP.getType());
8822 }
8823
8824 // Transform things like:
8825 // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp
8826 // (where tmp = 8*tmp2) into:
8827 // getelementptr [100 x double]* %arr, int 0, int %tmp.2
8828
8829 if (isa<ArrayType>(SrcElTy) &&
8830 (ResElTy == Type::Int8Ty || ResElTy == Type::Int8Ty)) {
8831 uint64_t ArrayEltSize =
8832 TD->getTypeSize(cast<ArrayType>(SrcElTy)->getElementType());
8833
8834 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
8835 // allow either a mul, shift, or constant here.
8836 Value *NewIdx = 0;
8837 ConstantInt *Scale = 0;
8838 if (ArrayEltSize == 1) {
8839 NewIdx = GEP.getOperand(1);
8840 Scale = ConstantInt::get(NewIdx->getType(), 1);
8841 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
8842 NewIdx = ConstantInt::get(CI->getType(), 1);
8843 Scale = CI;
8844 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
8845 if (Inst->getOpcode() == Instruction::Shl &&
8846 isa<ConstantInt>(Inst->getOperand(1))) {
8847 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
8848 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
8849 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
8850 NewIdx = Inst->getOperand(0);
8851 } else if (Inst->getOpcode() == Instruction::Mul &&
8852 isa<ConstantInt>(Inst->getOperand(1))) {
8853 Scale = cast<ConstantInt>(Inst->getOperand(1));
8854 NewIdx = Inst->getOperand(0);
8855 }
8856 }
8857
8858 // If the index will be to exactly the right offset with the scale taken
8859 // out, perform the transformation.
8860 if (Scale && Scale->getZExtValue() % ArrayEltSize == 0) {
8861 if (isa<ConstantInt>(Scale))
8862 Scale = ConstantInt::get(Scale->getType(),
8863 Scale->getZExtValue() / ArrayEltSize);
8864 if (Scale->getZExtValue() != 1) {
8865 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
8866 true /*SExt*/);
8867 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
8868 NewIdx = InsertNewInstBefore(Sc, GEP);
8869 }
8870
8871 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +00008872 Value *Idx[2];
8873 Idx[0] = Constant::getNullValue(Type::Int32Ty);
8874 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008875 Instruction *NewGEP =
David Greene393be882007-09-04 15:46:09 +00008876 new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008877 NewGEP = InsertNewInstBefore(NewGEP, GEP);
8878 // The NewGEP must be pointer typed, so must the old one -> BitCast
8879 return new BitCastInst(NewGEP, GEP.getType());
8880 }
8881 }
8882 }
8883 }
8884
8885 return 0;
8886}
8887
8888Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
8889 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
8890 if (AI.isArrayAllocation()) // Check C != 1
8891 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
8892 const Type *NewTy =
8893 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
8894 AllocationInst *New = 0;
8895
8896 // Create and insert the replacement instruction...
8897 if (isa<MallocInst>(AI))
8898 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
8899 else {
8900 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
8901 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
8902 }
8903
8904 InsertNewInstBefore(New, AI);
8905
8906 // Scan to the end of the allocation instructions, to skip over a block of
8907 // allocas if possible...
8908 //
8909 BasicBlock::iterator It = New;
8910 while (isa<AllocationInst>(*It)) ++It;
8911
8912 // Now that I is pointing to the first non-allocation-inst in the block,
8913 // insert our getelementptr instruction...
8914 //
8915 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +00008916 Value *Idx[2];
8917 Idx[0] = NullIdx;
8918 Idx[1] = NullIdx;
8919 Value *V = new GetElementPtrInst(New, Idx, Idx + 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008920 New->getName()+".sub", It);
8921
8922 // Now make everything use the getelementptr instead of the original
8923 // allocation.
8924 return ReplaceInstUsesWith(AI, V);
8925 } else if (isa<UndefValue>(AI.getArraySize())) {
8926 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
8927 }
8928
8929 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
8930 // Note that we only do this for alloca's, because malloc should allocate and
8931 // return a unique pointer, even for a zero byte allocation.
8932 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
8933 TD->getTypeSize(AI.getAllocatedType()) == 0)
8934 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
8935
8936 return 0;
8937}
8938
8939Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
8940 Value *Op = FI.getOperand(0);
8941
8942 // free undef -> unreachable.
8943 if (isa<UndefValue>(Op)) {
8944 // Insert a new store to null because we cannot modify the CFG here.
8945 new StoreInst(ConstantInt::getTrue(),
8946 UndefValue::get(PointerType::get(Type::Int1Ty)), &FI);
8947 return EraseInstFromFunction(FI);
8948 }
8949
8950 // If we have 'free null' delete the instruction. This can happen in stl code
8951 // when lots of inlining happens.
8952 if (isa<ConstantPointerNull>(Op))
8953 return EraseInstFromFunction(FI);
8954
8955 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
8956 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
8957 FI.setOperand(0, CI->getOperand(0));
8958 return &FI;
8959 }
8960
8961 // Change free (gep X, 0,0,0,0) into free(X)
8962 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
8963 if (GEPI->hasAllZeroIndices()) {
8964 AddToWorkList(GEPI);
8965 FI.setOperand(0, GEPI->getOperand(0));
8966 return &FI;
8967 }
8968 }
8969
8970 // Change free(malloc) into nothing, if the malloc has a single use.
8971 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
8972 if (MI->hasOneUse()) {
8973 EraseInstFromFunction(FI);
8974 return EraseInstFromFunction(*MI);
8975 }
8976
8977 return 0;
8978}
8979
8980
8981/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +00008982static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
8983 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008984 User *CI = cast<User>(LI.getOperand(0));
8985 Value *CastOp = CI->getOperand(0);
8986
Devang Patela0f8ea82007-10-18 19:52:32 +00008987 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
8988 // Instead of loading constant c string, use corresponding integer value
8989 // directly if string length is small enough.
8990 const std::string &Str = CE->getOperand(0)->getStringValue();
8991 if (!Str.empty()) {
8992 unsigned len = Str.length();
8993 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
8994 unsigned numBits = Ty->getPrimitiveSizeInBits();
8995 // Replace LI with immediate integer store.
8996 if ((numBits >> 3) == len + 1) {
8997 APInt StrVal(numBits, 0);
8998 APInt SingleChar(numBits, 0);
8999 if (TD->isLittleEndian()) {
9000 for (signed i = len-1; i >= 0; i--) {
9001 SingleChar = (uint64_t) Str[i];
9002 StrVal = (StrVal << 8) | SingleChar;
9003 }
9004 } else {
9005 for (unsigned i = 0; i < len; i++) {
9006 SingleChar = (uint64_t) Str[i];
9007 StrVal = (StrVal << 8) | SingleChar;
9008 }
9009 // Append NULL at the end.
9010 SingleChar = 0;
9011 StrVal = (StrVal << 8) | SingleChar;
9012 }
9013 Value *NL = ConstantInt::get(StrVal);
9014 return IC.ReplaceInstUsesWith(LI, NL);
9015 }
9016 }
9017 }
9018
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009019 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
9020 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
9021 const Type *SrcPTy = SrcTy->getElementType();
9022
9023 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
9024 isa<VectorType>(DestPTy)) {
9025 // If the source is an array, the code below will not succeed. Check to
9026 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9027 // constants.
9028 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9029 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9030 if (ASrcTy->getNumElements() != 0) {
9031 Value *Idxs[2];
9032 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9033 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
9034 SrcTy = cast<PointerType>(CastOp->getType());
9035 SrcPTy = SrcTy->getElementType();
9036 }
9037
9038 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
9039 isa<VectorType>(SrcPTy)) &&
9040 // Do not allow turning this into a load of an integer, which is then
9041 // casted to a pointer, this pessimizes pointer analysis a lot.
9042 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
9043 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9044 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
9045
9046 // Okay, we are casting from one integer or pointer type to another of
9047 // the same size. Instead of casting the pointer before the load, cast
9048 // the result of the loaded value.
9049 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
9050 CI->getName(),
9051 LI.isVolatile()),LI);
9052 // Now cast the result of the load.
9053 return new BitCastInst(NewLoad, LI.getType());
9054 }
9055 }
9056 }
9057 return 0;
9058}
9059
9060/// isSafeToLoadUnconditionally - Return true if we know that executing a load
9061/// from this value cannot trap. If it is not obviously safe to load from the
9062/// specified pointer, we do a quick local scan of the basic block containing
9063/// ScanFrom, to determine if the address is already accessed.
9064static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009065 // If it is an alloca it is always safe to load from.
9066 if (isa<AllocaInst>(V)) return true;
9067
Duncan Sandse40a94a2007-09-19 10:25:38 +00009068 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009069 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +00009070 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009071 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009072
9073 // Otherwise, be a little bit agressive by scanning the local block where we
9074 // want to check to see if the pointer is already being loaded or stored
9075 // from/to. If so, the previous load or store would have already trapped,
9076 // so there is no harm doing an extra load (also, CSE will later eliminate
9077 // the load entirely).
9078 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
9079
9080 while (BBI != E) {
9081 --BBI;
9082
9083 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
9084 if (LI->getOperand(0) == V) return true;
9085 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
9086 if (SI->getOperand(1) == V) return true;
9087
9088 }
9089 return false;
9090}
9091
Chris Lattner0270a112007-08-11 18:48:48 +00009092/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
9093/// until we find the underlying object a pointer is referring to or something
9094/// we don't understand. Note that the returned pointer may be offset from the
9095/// input, because we ignore GEP indices.
9096static Value *GetUnderlyingObject(Value *Ptr) {
9097 while (1) {
9098 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
9099 if (CE->getOpcode() == Instruction::BitCast ||
9100 CE->getOpcode() == Instruction::GetElementPtr)
9101 Ptr = CE->getOperand(0);
9102 else
9103 return Ptr;
9104 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
9105 Ptr = BCI->getOperand(0);
9106 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
9107 Ptr = GEP->getOperand(0);
9108 } else {
9109 return Ptr;
9110 }
9111 }
9112}
9113
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009114Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
9115 Value *Op = LI.getOperand(0);
9116
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009117 // Attempt to improve the alignment.
Chris Lattner47cf3452007-08-09 19:05:49 +00009118 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op, TD);
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009119 if (KnownAlign > LI.getAlignment())
9120 LI.setAlignment(KnownAlign);
9121
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009122 // load (cast X) --> cast (load X) iff safe
9123 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +00009124 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009125 return Res;
9126
9127 // None of the following transforms are legal for volatile loads.
9128 if (LI.isVolatile()) return 0;
9129
9130 if (&LI.getParent()->front() != &LI) {
9131 BasicBlock::iterator BBI = &LI; --BBI;
9132 // If the instruction immediately before this is a store to the same
9133 // address, do a simple form of store->load forwarding.
9134 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
9135 if (SI->getOperand(1) == LI.getOperand(0))
9136 return ReplaceInstUsesWith(LI, SI->getOperand(0));
9137 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
9138 if (LIB->getOperand(0) == LI.getOperand(0))
9139 return ReplaceInstUsesWith(LI, LIB);
9140 }
9141
9142 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
9143 if (isa<ConstantPointerNull>(GEPI->getOperand(0))) {
9144 // Insert a new store to null instruction before the load to indicate
9145 // that this code is not reachable. We do this instead of inserting
9146 // an unreachable instruction directly because we cannot modify the
9147 // CFG.
9148 new StoreInst(UndefValue::get(LI.getType()),
9149 Constant::getNullValue(Op->getType()), &LI);
9150 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9151 }
9152
9153 if (Constant *C = dyn_cast<Constant>(Op)) {
9154 // load null/undef -> undef
9155 if ((C->isNullValue() || isa<UndefValue>(C))) {
9156 // Insert a new store to null instruction before the load to indicate that
9157 // this code is not reachable. We do this instead of inserting an
9158 // unreachable instruction directly because we cannot modify the CFG.
9159 new StoreInst(UndefValue::get(LI.getType()),
9160 Constant::getNullValue(Op->getType()), &LI);
9161 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9162 }
9163
9164 // Instcombine load (constant global) into the value loaded.
9165 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
9166 if (GV->isConstant() && !GV->isDeclaration())
9167 return ReplaceInstUsesWith(LI, GV->getInitializer());
9168
9169 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
9170 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
9171 if (CE->getOpcode() == Instruction::GetElementPtr) {
9172 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
9173 if (GV->isConstant() && !GV->isDeclaration())
9174 if (Constant *V =
9175 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
9176 return ReplaceInstUsesWith(LI, V);
9177 if (CE->getOperand(0)->isNullValue()) {
9178 // Insert a new store to null instruction before the load to indicate
9179 // that this code is not reachable. We do this instead of inserting
9180 // an unreachable instruction directly because we cannot modify the
9181 // CFG.
9182 new StoreInst(UndefValue::get(LI.getType()),
9183 Constant::getNullValue(Op->getType()), &LI);
9184 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9185 }
9186
9187 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +00009188 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009189 return Res;
9190 }
9191 }
Chris Lattner0270a112007-08-11 18:48:48 +00009192
9193 // If this load comes from anywhere in a constant global, and if the global
9194 // is all undef or zero, we know what it loads.
9195 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
9196 if (GV->isConstant() && GV->hasInitializer()) {
9197 if (GV->getInitializer()->isNullValue())
9198 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
9199 else if (isa<UndefValue>(GV->getInitializer()))
9200 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9201 }
9202 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009203
9204 if (Op->hasOneUse()) {
9205 // Change select and PHI nodes to select values instead of addresses: this
9206 // helps alias analysis out a lot, allows many others simplifications, and
9207 // exposes redundancy in the code.
9208 //
9209 // Note that we cannot do the transformation unless we know that the
9210 // introduced loads cannot trap! Something like this is valid as long as
9211 // the condition is always false: load (select bool %C, int* null, int* %G),
9212 // but it would not be valid if we transformed it to load from null
9213 // unconditionally.
9214 //
9215 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
9216 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
9217 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
9218 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
9219 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
9220 SI->getOperand(1)->getName()+".val"), LI);
9221 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
9222 SI->getOperand(2)->getName()+".val"), LI);
9223 return new SelectInst(SI->getCondition(), V1, V2);
9224 }
9225
9226 // load (select (cond, null, P)) -> load P
9227 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
9228 if (C->isNullValue()) {
9229 LI.setOperand(0, SI->getOperand(2));
9230 return &LI;
9231 }
9232
9233 // load (select (cond, P, null)) -> load P
9234 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
9235 if (C->isNullValue()) {
9236 LI.setOperand(0, SI->getOperand(1));
9237 return &LI;
9238 }
9239 }
9240 }
9241 return 0;
9242}
9243
9244/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
9245/// when possible.
9246static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
9247 User *CI = cast<User>(SI.getOperand(1));
9248 Value *CastOp = CI->getOperand(0);
9249
9250 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
9251 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
9252 const Type *SrcPTy = SrcTy->getElementType();
9253
9254 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
9255 // If the source is an array, the code below will not succeed. Check to
9256 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9257 // constants.
9258 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9259 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9260 if (ASrcTy->getNumElements() != 0) {
9261 Value* Idxs[2];
9262 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9263 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
9264 SrcTy = cast<PointerType>(CastOp->getType());
9265 SrcPTy = SrcTy->getElementType();
9266 }
9267
9268 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
9269 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9270 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
9271
9272 // Okay, we are casting from one integer or pointer type to another of
9273 // the same size. Instead of casting the pointer before
9274 // the store, cast the value to be stored.
9275 Value *NewCast;
9276 Value *SIOp0 = SI.getOperand(0);
9277 Instruction::CastOps opcode = Instruction::BitCast;
9278 const Type* CastSrcTy = SIOp0->getType();
9279 const Type* CastDstTy = SrcPTy;
9280 if (isa<PointerType>(CastDstTy)) {
9281 if (CastSrcTy->isInteger())
9282 opcode = Instruction::IntToPtr;
9283 } else if (isa<IntegerType>(CastDstTy)) {
9284 if (isa<PointerType>(SIOp0->getType()))
9285 opcode = Instruction::PtrToInt;
9286 }
9287 if (Constant *C = dyn_cast<Constant>(SIOp0))
9288 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
9289 else
9290 NewCast = IC.InsertNewInstBefore(
9291 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
9292 SI);
9293 return new StoreInst(NewCast, CastOp);
9294 }
9295 }
9296 }
9297 return 0;
9298}
9299
9300Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
9301 Value *Val = SI.getOperand(0);
9302 Value *Ptr = SI.getOperand(1);
9303
9304 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
9305 EraseInstFromFunction(SI);
9306 ++NumCombined;
9307 return 0;
9308 }
9309
9310 // If the RHS is an alloca with a single use, zapify the store, making the
9311 // alloca dead.
9312 if (Ptr->hasOneUse()) {
9313 if (isa<AllocaInst>(Ptr)) {
9314 EraseInstFromFunction(SI);
9315 ++NumCombined;
9316 return 0;
9317 }
9318
9319 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
9320 if (isa<AllocaInst>(GEP->getOperand(0)) &&
9321 GEP->getOperand(0)->hasOneUse()) {
9322 EraseInstFromFunction(SI);
9323 ++NumCombined;
9324 return 0;
9325 }
9326 }
9327
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009328 // Attempt to improve the alignment.
Chris Lattner47cf3452007-08-09 19:05:49 +00009329 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr, TD);
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009330 if (KnownAlign > SI.getAlignment())
9331 SI.setAlignment(KnownAlign);
9332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009333 // Do really simple DSE, to catch cases where there are several consequtive
9334 // stores to the same location, separated by a few arithmetic operations. This
9335 // situation often occurs with bitfield accesses.
9336 BasicBlock::iterator BBI = &SI;
9337 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
9338 --ScanInsts) {
9339 --BBI;
9340
9341 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
9342 // Prev store isn't volatile, and stores to the same location?
9343 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
9344 ++NumDeadStore;
9345 ++BBI;
9346 EraseInstFromFunction(*PrevSI);
9347 continue;
9348 }
9349 break;
9350 }
9351
9352 // If this is a load, we have to stop. However, if the loaded value is from
9353 // the pointer we're loading and is producing the pointer we're storing,
9354 // then *this* store is dead (X = load P; store X -> P).
9355 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattner24905f72007-09-07 05:33:03 +00009356 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009357 EraseInstFromFunction(SI);
9358 ++NumCombined;
9359 return 0;
9360 }
9361 // Otherwise, this is a load from some other location. Stores before it
9362 // may not be dead.
9363 break;
9364 }
9365
9366 // Don't skip over loads or things that can modify memory.
9367 if (BBI->mayWriteToMemory())
9368 break;
9369 }
9370
9371
9372 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
9373
9374 // store X, null -> turns into 'unreachable' in SimplifyCFG
9375 if (isa<ConstantPointerNull>(Ptr)) {
9376 if (!isa<UndefValue>(Val)) {
9377 SI.setOperand(0, UndefValue::get(Val->getType()));
9378 if (Instruction *U = dyn_cast<Instruction>(Val))
9379 AddToWorkList(U); // Dropped a use.
9380 ++NumCombined;
9381 }
9382 return 0; // Do not modify these!
9383 }
9384
9385 // store undef, Ptr -> noop
9386 if (isa<UndefValue>(Val)) {
9387 EraseInstFromFunction(SI);
9388 ++NumCombined;
9389 return 0;
9390 }
9391
9392 // If the pointer destination is a cast, see if we can fold the cast into the
9393 // source instead.
9394 if (isa<CastInst>(Ptr))
9395 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9396 return Res;
9397 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
9398 if (CE->isCast())
9399 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9400 return Res;
9401
9402
9403 // If this store is the last instruction in the basic block, and if the block
9404 // ends with an unconditional branch, try to move it to the successor block.
9405 BBI = &SI; ++BBI;
9406 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
9407 if (BI->isUnconditional())
9408 if (SimplifyStoreAtEndOfBlock(SI))
9409 return 0; // xform done!
9410
9411 return 0;
9412}
9413
9414/// SimplifyStoreAtEndOfBlock - Turn things like:
9415/// if () { *P = v1; } else { *P = v2 }
9416/// into a phi node with a store in the successor.
9417///
9418/// Simplify things like:
9419/// *P = v1; if () { *P = v2; }
9420/// into a phi node with a store in the successor.
9421///
9422bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
9423 BasicBlock *StoreBB = SI.getParent();
9424
9425 // Check to see if the successor block has exactly two incoming edges. If
9426 // so, see if the other predecessor contains a store to the same location.
9427 // if so, insert a PHI node (if needed) and move the stores down.
9428 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
9429
9430 // Determine whether Dest has exactly two predecessors and, if so, compute
9431 // the other predecessor.
9432 pred_iterator PI = pred_begin(DestBB);
9433 BasicBlock *OtherBB = 0;
9434 if (*PI != StoreBB)
9435 OtherBB = *PI;
9436 ++PI;
9437 if (PI == pred_end(DestBB))
9438 return false;
9439
9440 if (*PI != StoreBB) {
9441 if (OtherBB)
9442 return false;
9443 OtherBB = *PI;
9444 }
9445 if (++PI != pred_end(DestBB))
9446 return false;
9447
9448
9449 // Verify that the other block ends in a branch and is not otherwise empty.
9450 BasicBlock::iterator BBI = OtherBB->getTerminator();
9451 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
9452 if (!OtherBr || BBI == OtherBB->begin())
9453 return false;
9454
9455 // If the other block ends in an unconditional branch, check for the 'if then
9456 // else' case. there is an instruction before the branch.
9457 StoreInst *OtherStore = 0;
9458 if (OtherBr->isUnconditional()) {
9459 // If this isn't a store, or isn't a store to the same location, bail out.
9460 --BBI;
9461 OtherStore = dyn_cast<StoreInst>(BBI);
9462 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
9463 return false;
9464 } else {
9465 // Otherwise, the other block ended with a conditional branch. If one of the
9466 // destinations is StoreBB, then we have the if/then case.
9467 if (OtherBr->getSuccessor(0) != StoreBB &&
9468 OtherBr->getSuccessor(1) != StoreBB)
9469 return false;
9470
9471 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
9472 // if/then triangle. See if there is a store to the same ptr as SI that
9473 // lives in OtherBB.
9474 for (;; --BBI) {
9475 // Check to see if we find the matching store.
9476 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
9477 if (OtherStore->getOperand(1) != SI.getOperand(1))
9478 return false;
9479 break;
9480 }
9481 // If we find something that may be using the stored value, or if we run
9482 // out of instructions, we can't do the xform.
9483 if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
9484 BBI == OtherBB->begin())
9485 return false;
9486 }
9487
9488 // In order to eliminate the store in OtherBr, we have to
9489 // make sure nothing reads the stored value in StoreBB.
9490 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
9491 // FIXME: This should really be AA driven.
9492 if (isa<LoadInst>(I) || I->mayWriteToMemory())
9493 return false;
9494 }
9495 }
9496
9497 // Insert a PHI node now if we need it.
9498 Value *MergedVal = OtherStore->getOperand(0);
9499 if (MergedVal != SI.getOperand(0)) {
9500 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
9501 PN->reserveOperandSpace(2);
9502 PN->addIncoming(SI.getOperand(0), SI.getParent());
9503 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
9504 MergedVal = InsertNewInstBefore(PN, DestBB->front());
9505 }
9506
9507 // Advance to a place where it is safe to insert the new store and
9508 // insert it.
9509 BBI = DestBB->begin();
9510 while (isa<PHINode>(BBI)) ++BBI;
9511 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
9512 OtherStore->isVolatile()), *BBI);
9513
9514 // Nuke the old stores.
9515 EraseInstFromFunction(SI);
9516 EraseInstFromFunction(*OtherStore);
9517 ++NumCombined;
9518 return true;
9519}
9520
9521
9522Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
9523 // Change br (not X), label True, label False to: br X, label False, True
9524 Value *X = 0;
9525 BasicBlock *TrueDest;
9526 BasicBlock *FalseDest;
9527 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
9528 !isa<Constant>(X)) {
9529 // Swap Destinations and condition...
9530 BI.setCondition(X);
9531 BI.setSuccessor(0, FalseDest);
9532 BI.setSuccessor(1, TrueDest);
9533 return &BI;
9534 }
9535
9536 // Cannonicalize fcmp_one -> fcmp_oeq
9537 FCmpInst::Predicate FPred; Value *Y;
9538 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
9539 TrueDest, FalseDest)))
9540 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
9541 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
9542 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
9543 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
9544 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
9545 NewSCC->takeName(I);
9546 // Swap Destinations and condition...
9547 BI.setCondition(NewSCC);
9548 BI.setSuccessor(0, FalseDest);
9549 BI.setSuccessor(1, TrueDest);
9550 RemoveFromWorkList(I);
9551 I->eraseFromParent();
9552 AddToWorkList(NewSCC);
9553 return &BI;
9554 }
9555
9556 // Cannonicalize icmp_ne -> icmp_eq
9557 ICmpInst::Predicate IPred;
9558 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
9559 TrueDest, FalseDest)))
9560 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
9561 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
9562 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
9563 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
9564 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
9565 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
9566 NewSCC->takeName(I);
9567 // Swap Destinations and condition...
9568 BI.setCondition(NewSCC);
9569 BI.setSuccessor(0, FalseDest);
9570 BI.setSuccessor(1, TrueDest);
9571 RemoveFromWorkList(I);
9572 I->eraseFromParent();;
9573 AddToWorkList(NewSCC);
9574 return &BI;
9575 }
9576
9577 return 0;
9578}
9579
9580Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
9581 Value *Cond = SI.getCondition();
9582 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
9583 if (I->getOpcode() == Instruction::Add)
9584 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
9585 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
9586 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
9587 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
9588 AddRHS));
9589 SI.setOperand(0, I->getOperand(0));
9590 AddToWorkList(I);
9591 return &SI;
9592 }
9593 }
9594 return 0;
9595}
9596
9597/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
9598/// is to leave as a vector operation.
9599static bool CheapToScalarize(Value *V, bool isConstant) {
9600 if (isa<ConstantAggregateZero>(V))
9601 return true;
9602 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
9603 if (isConstant) return true;
9604 // If all elts are the same, we can extract.
9605 Constant *Op0 = C->getOperand(0);
9606 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9607 if (C->getOperand(i) != Op0)
9608 return false;
9609 return true;
9610 }
9611 Instruction *I = dyn_cast<Instruction>(V);
9612 if (!I) return false;
9613
9614 // Insert element gets simplified to the inserted element or is deleted if
9615 // this is constant idx extract element and its a constant idx insertelt.
9616 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
9617 isa<ConstantInt>(I->getOperand(2)))
9618 return true;
9619 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
9620 return true;
9621 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
9622 if (BO->hasOneUse() &&
9623 (CheapToScalarize(BO->getOperand(0), isConstant) ||
9624 CheapToScalarize(BO->getOperand(1), isConstant)))
9625 return true;
9626 if (CmpInst *CI = dyn_cast<CmpInst>(I))
9627 if (CI->hasOneUse() &&
9628 (CheapToScalarize(CI->getOperand(0), isConstant) ||
9629 CheapToScalarize(CI->getOperand(1), isConstant)))
9630 return true;
9631
9632 return false;
9633}
9634
9635/// Read and decode a shufflevector mask.
9636///
9637/// It turns undef elements into values that are larger than the number of
9638/// elements in the input.
9639static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
9640 unsigned NElts = SVI->getType()->getNumElements();
9641 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
9642 return std::vector<unsigned>(NElts, 0);
9643 if (isa<UndefValue>(SVI->getOperand(2)))
9644 return std::vector<unsigned>(NElts, 2*NElts);
9645
9646 std::vector<unsigned> Result;
9647 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
9648 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
9649 if (isa<UndefValue>(CP->getOperand(i)))
9650 Result.push_back(NElts*2); // undef -> 8
9651 else
9652 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
9653 return Result;
9654}
9655
9656/// FindScalarElement - Given a vector and an element number, see if the scalar
9657/// value is already around as a register, for example if it were inserted then
9658/// extracted from the vector.
9659static Value *FindScalarElement(Value *V, unsigned EltNo) {
9660 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
9661 const VectorType *PTy = cast<VectorType>(V->getType());
9662 unsigned Width = PTy->getNumElements();
9663 if (EltNo >= Width) // Out of range access.
9664 return UndefValue::get(PTy->getElementType());
9665
9666 if (isa<UndefValue>(V))
9667 return UndefValue::get(PTy->getElementType());
9668 else if (isa<ConstantAggregateZero>(V))
9669 return Constant::getNullValue(PTy->getElementType());
9670 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
9671 return CP->getOperand(EltNo);
9672 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
9673 // If this is an insert to a variable element, we don't know what it is.
9674 if (!isa<ConstantInt>(III->getOperand(2)))
9675 return 0;
9676 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
9677
9678 // If this is an insert to the element we are looking for, return the
9679 // inserted value.
9680 if (EltNo == IIElt)
9681 return III->getOperand(1);
9682
9683 // Otherwise, the insertelement doesn't modify the value, recurse on its
9684 // vector input.
9685 return FindScalarElement(III->getOperand(0), EltNo);
9686 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
9687 unsigned InEl = getShuffleMask(SVI)[EltNo];
9688 if (InEl < Width)
9689 return FindScalarElement(SVI->getOperand(0), InEl);
9690 else if (InEl < Width*2)
9691 return FindScalarElement(SVI->getOperand(1), InEl - Width);
9692 else
9693 return UndefValue::get(PTy->getElementType());
9694 }
9695
9696 // Otherwise, we don't know.
9697 return 0;
9698}
9699
9700Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
9701
9702 // If vector val is undef, replace extract with scalar undef.
9703 if (isa<UndefValue>(EI.getOperand(0)))
9704 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9705
9706 // If vector val is constant 0, replace extract with scalar 0.
9707 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
9708 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
9709
9710 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
9711 // If vector val is constant with uniform operands, replace EI
9712 // with that operand
9713 Constant *op0 = C->getOperand(0);
9714 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9715 if (C->getOperand(i) != op0) {
9716 op0 = 0;
9717 break;
9718 }
9719 if (op0)
9720 return ReplaceInstUsesWith(EI, op0);
9721 }
9722
9723 // If extracting a specified index from the vector, see if we can recursively
9724 // find a previously computed scalar that was inserted into the vector.
9725 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9726 unsigned IndexVal = IdxC->getZExtValue();
9727 unsigned VectorWidth =
9728 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
9729
9730 // If this is extracting an invalid index, turn this into undef, to avoid
9731 // crashing the code below.
9732 if (IndexVal >= VectorWidth)
9733 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9734
9735 // This instruction only demands the single element from the input vector.
9736 // If the input vector has a single use, simplify it based on this use
9737 // property.
9738 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
9739 uint64_t UndefElts;
9740 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
9741 1 << IndexVal,
9742 UndefElts)) {
9743 EI.setOperand(0, V);
9744 return &EI;
9745 }
9746 }
9747
9748 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
9749 return ReplaceInstUsesWith(EI, Elt);
9750
9751 // If the this extractelement is directly using a bitcast from a vector of
9752 // the same number of elements, see if we can find the source element from
9753 // it. In this case, we will end up needing to bitcast the scalars.
9754 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
9755 if (const VectorType *VT =
9756 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
9757 if (VT->getNumElements() == VectorWidth)
9758 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
9759 return new BitCastInst(Elt, EI.getType());
9760 }
9761 }
9762
9763 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
9764 if (I->hasOneUse()) {
9765 // Push extractelement into predecessor operation if legal and
9766 // profitable to do so
9767 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
9768 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
9769 if (CheapToScalarize(BO, isConstantElt)) {
9770 ExtractElementInst *newEI0 =
9771 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
9772 EI.getName()+".lhs");
9773 ExtractElementInst *newEI1 =
9774 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
9775 EI.getName()+".rhs");
9776 InsertNewInstBefore(newEI0, EI);
9777 InsertNewInstBefore(newEI1, EI);
9778 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
9779 }
9780 } else if (isa<LoadInst>(I)) {
9781 Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0),
9782 PointerType::get(EI.getType()), EI);
9783 GetElementPtrInst *GEP =
9784 new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep");
9785 InsertNewInstBefore(GEP, EI);
9786 return new LoadInst(GEP);
9787 }
9788 }
9789 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
9790 // Extracting the inserted element?
9791 if (IE->getOperand(2) == EI.getOperand(1))
9792 return ReplaceInstUsesWith(EI, IE->getOperand(1));
9793 // If the inserted and extracted elements are constants, they must not
9794 // be the same value, extract from the pre-inserted value instead.
9795 if (isa<Constant>(IE->getOperand(2)) &&
9796 isa<Constant>(EI.getOperand(1))) {
9797 AddUsesToWorkList(EI);
9798 EI.setOperand(0, IE->getOperand(0));
9799 return &EI;
9800 }
9801 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
9802 // If this is extracting an element from a shufflevector, figure out where
9803 // it came from and extract from the appropriate input element instead.
9804 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9805 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
9806 Value *Src;
9807 if (SrcIdx < SVI->getType()->getNumElements())
9808 Src = SVI->getOperand(0);
9809 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
9810 SrcIdx -= SVI->getType()->getNumElements();
9811 Src = SVI->getOperand(1);
9812 } else {
9813 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9814 }
9815 return new ExtractElementInst(Src, SrcIdx);
9816 }
9817 }
9818 }
9819 return 0;
9820}
9821
9822/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
9823/// elements from either LHS or RHS, return the shuffle mask and true.
9824/// Otherwise, return false.
9825static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
9826 std::vector<Constant*> &Mask) {
9827 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
9828 "Invalid CollectSingleShuffleElements");
9829 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
9830
9831 if (isa<UndefValue>(V)) {
9832 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
9833 return true;
9834 } else if (V == LHS) {
9835 for (unsigned i = 0; i != NumElts; ++i)
9836 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
9837 return true;
9838 } else if (V == RHS) {
9839 for (unsigned i = 0; i != NumElts; ++i)
9840 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
9841 return true;
9842 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9843 // If this is an insert of an extract from some other vector, include it.
9844 Value *VecOp = IEI->getOperand(0);
9845 Value *ScalarOp = IEI->getOperand(1);
9846 Value *IdxOp = IEI->getOperand(2);
9847
9848 if (!isa<ConstantInt>(IdxOp))
9849 return false;
9850 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
9851
9852 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
9853 // Okay, we can handle this if the vector we are insertinting into is
9854 // transitively ok.
9855 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9856 // If so, update the mask to reflect the inserted undef.
9857 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
9858 return true;
9859 }
9860 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
9861 if (isa<ConstantInt>(EI->getOperand(1)) &&
9862 EI->getOperand(0)->getType() == V->getType()) {
9863 unsigned ExtractedIdx =
9864 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9865
9866 // This must be extracting from either LHS or RHS.
9867 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
9868 // Okay, we can handle this if the vector we are insertinting into is
9869 // transitively ok.
9870 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
9871 // If so, update the mask to reflect the inserted value.
9872 if (EI->getOperand(0) == LHS) {
9873 Mask[InsertedIdx & (NumElts-1)] =
9874 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
9875 } else {
9876 assert(EI->getOperand(0) == RHS);
9877 Mask[InsertedIdx & (NumElts-1)] =
9878 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
9879
9880 }
9881 return true;
9882 }
9883 }
9884 }
9885 }
9886 }
9887 // TODO: Handle shufflevector here!
9888
9889 return false;
9890}
9891
9892/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
9893/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
9894/// that computes V and the LHS value of the shuffle.
9895static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
9896 Value *&RHS) {
9897 assert(isa<VectorType>(V->getType()) &&
9898 (RHS == 0 || V->getType() == RHS->getType()) &&
9899 "Invalid shuffle!");
9900 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
9901
9902 if (isa<UndefValue>(V)) {
9903 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
9904 return V;
9905 } else if (isa<ConstantAggregateZero>(V)) {
9906 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
9907 return V;
9908 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9909 // If this is an insert of an extract from some other vector, include it.
9910 Value *VecOp = IEI->getOperand(0);
9911 Value *ScalarOp = IEI->getOperand(1);
9912 Value *IdxOp = IEI->getOperand(2);
9913
9914 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9915 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9916 EI->getOperand(0)->getType() == V->getType()) {
9917 unsigned ExtractedIdx =
9918 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9919 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
9920
9921 // Either the extracted from or inserted into vector must be RHSVec,
9922 // otherwise we'd end up with a shuffle of three inputs.
9923 if (EI->getOperand(0) == RHS || RHS == 0) {
9924 RHS = EI->getOperand(0);
9925 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
9926 Mask[InsertedIdx & (NumElts-1)] =
9927 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
9928 return V;
9929 }
9930
9931 if (VecOp == RHS) {
9932 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
9933 // Everything but the extracted element is replaced with the RHS.
9934 for (unsigned i = 0; i != NumElts; ++i) {
9935 if (i != InsertedIdx)
9936 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
9937 }
9938 return V;
9939 }
9940
9941 // If this insertelement is a chain that comes from exactly these two
9942 // vectors, return the vector and the effective shuffle.
9943 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
9944 return EI->getOperand(0);
9945
9946 }
9947 }
9948 }
9949 // TODO: Handle shufflevector here!
9950
9951 // Otherwise, can't do anything fancy. Return an identity vector.
9952 for (unsigned i = 0; i != NumElts; ++i)
9953 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
9954 return V;
9955}
9956
9957Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
9958 Value *VecOp = IE.getOperand(0);
9959 Value *ScalarOp = IE.getOperand(1);
9960 Value *IdxOp = IE.getOperand(2);
9961
9962 // Inserting an undef or into an undefined place, remove this.
9963 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
9964 ReplaceInstUsesWith(IE, VecOp);
9965
9966 // If the inserted element was extracted from some other vector, and if the
9967 // indexes are constant, try to turn this into a shufflevector operation.
9968 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
9969 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
9970 EI->getOperand(0)->getType() == IE.getType()) {
9971 unsigned NumVectorElts = IE.getType()->getNumElements();
9972 unsigned ExtractedIdx =
9973 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
9974 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
9975
9976 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
9977 return ReplaceInstUsesWith(IE, VecOp);
9978
9979 if (InsertedIdx >= NumVectorElts) // Out of range insert.
9980 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
9981
9982 // If we are extracting a value from a vector, then inserting it right
9983 // back into the same place, just use the input vector.
9984 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
9985 return ReplaceInstUsesWith(IE, VecOp);
9986
9987 // We could theoretically do this for ANY input. However, doing so could
9988 // turn chains of insertelement instructions into a chain of shufflevector
9989 // instructions, and right now we do not merge shufflevectors. As such,
9990 // only do this in a situation where it is clear that there is benefit.
9991 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
9992 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
9993 // the values of VecOp, except then one read from EIOp0.
9994 // Build a new shuffle mask.
9995 std::vector<Constant*> Mask;
9996 if (isa<UndefValue>(VecOp))
9997 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
9998 else {
9999 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
10000 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
10001 NumVectorElts));
10002 }
10003 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10004 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
10005 ConstantVector::get(Mask));
10006 }
10007
10008 // If this insertelement isn't used by some other insertelement, turn it
10009 // (and any insertelements it points to), into one big shuffle.
10010 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
10011 std::vector<Constant*> Mask;
10012 Value *RHS = 0;
10013 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
10014 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
10015 // We now have a shuffle of LHS, RHS, Mask.
10016 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
10017 }
10018 }
10019 }
10020
10021 return 0;
10022}
10023
10024
10025Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
10026 Value *LHS = SVI.getOperand(0);
10027 Value *RHS = SVI.getOperand(1);
10028 std::vector<unsigned> Mask = getShuffleMask(&SVI);
10029
10030 bool MadeChange = false;
10031
10032 // Undefined shuffle mask -> undefined value.
10033 if (isa<UndefValue>(SVI.getOperand(2)))
10034 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
10035
10036 // If we have shuffle(x, undef, mask) and any elements of mask refer to
10037 // the undef, change them to undefs.
10038 if (isa<UndefValue>(SVI.getOperand(1))) {
10039 // Scan to see if there are any references to the RHS. If so, replace them
10040 // with undef element refs and set MadeChange to true.
10041 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10042 if (Mask[i] >= e && Mask[i] != 2*e) {
10043 Mask[i] = 2*e;
10044 MadeChange = true;
10045 }
10046 }
10047
10048 if (MadeChange) {
10049 // Remap any references to RHS to use LHS.
10050 std::vector<Constant*> Elts;
10051 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10052 if (Mask[i] == 2*e)
10053 Elts.push_back(UndefValue::get(Type::Int32Ty));
10054 else
10055 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
10056 }
10057 SVI.setOperand(2, ConstantVector::get(Elts));
10058 }
10059 }
10060
10061 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
10062 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
10063 if (LHS == RHS || isa<UndefValue>(LHS)) {
10064 if (isa<UndefValue>(LHS) && LHS == RHS) {
10065 // shuffle(undef,undef,mask) -> undef.
10066 return ReplaceInstUsesWith(SVI, LHS);
10067 }
10068
10069 // Remap any references to RHS to use LHS.
10070 std::vector<Constant*> Elts;
10071 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10072 if (Mask[i] >= 2*e)
10073 Elts.push_back(UndefValue::get(Type::Int32Ty));
10074 else {
10075 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
10076 (Mask[i] < e && isa<UndefValue>(LHS)))
10077 Mask[i] = 2*e; // Turn into undef.
10078 else
10079 Mask[i] &= (e-1); // Force to LHS.
10080 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
10081 }
10082 }
10083 SVI.setOperand(0, SVI.getOperand(1));
10084 SVI.setOperand(1, UndefValue::get(RHS->getType()));
10085 SVI.setOperand(2, ConstantVector::get(Elts));
10086 LHS = SVI.getOperand(0);
10087 RHS = SVI.getOperand(1);
10088 MadeChange = true;
10089 }
10090
10091 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
10092 bool isLHSID = true, isRHSID = true;
10093
10094 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10095 if (Mask[i] >= e*2) continue; // Ignore undef values.
10096 // Is this an identity shuffle of the LHS value?
10097 isLHSID &= (Mask[i] == i);
10098
10099 // Is this an identity shuffle of the RHS value?
10100 isRHSID &= (Mask[i]-e == i);
10101 }
10102
10103 // Eliminate identity shuffles.
10104 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
10105 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
10106
10107 // If the LHS is a shufflevector itself, see if we can combine it with this
10108 // one without producing an unusual shuffle. Here we are really conservative:
10109 // we are absolutely afraid of producing a shuffle mask not in the input
10110 // program, because the code gen may not be smart enough to turn a merged
10111 // shuffle into two specific shuffles: it may produce worse code. As such,
10112 // we only merge two shuffles if the result is one of the two input shuffle
10113 // masks. In this case, merging the shuffles just removes one instruction,
10114 // which we know is safe. This is good for things like turning:
10115 // (splat(splat)) -> splat.
10116 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
10117 if (isa<UndefValue>(RHS)) {
10118 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
10119
10120 std::vector<unsigned> NewMask;
10121 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
10122 if (Mask[i] >= 2*e)
10123 NewMask.push_back(2*e);
10124 else
10125 NewMask.push_back(LHSMask[Mask[i]]);
10126
10127 // If the result mask is equal to the src shuffle or this shuffle mask, do
10128 // the replacement.
10129 if (NewMask == LHSMask || NewMask == Mask) {
10130 std::vector<Constant*> Elts;
10131 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
10132 if (NewMask[i] >= e*2) {
10133 Elts.push_back(UndefValue::get(Type::Int32Ty));
10134 } else {
10135 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
10136 }
10137 }
10138 return new ShuffleVectorInst(LHSSVI->getOperand(0),
10139 LHSSVI->getOperand(1),
10140 ConstantVector::get(Elts));
10141 }
10142 }
10143 }
10144
10145 return MadeChange ? &SVI : 0;
10146}
10147
10148
10149
10150
10151/// TryToSinkInstruction - Try to move the specified instruction from its
10152/// current block into the beginning of DestBlock, which can only happen if it's
10153/// safe to move the instruction past all of the instructions between it and the
10154/// end of its block.
10155static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
10156 assert(I->hasOneUse() && "Invariants didn't hold!");
10157
10158 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
10159 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
10160
10161 // Do not sink alloca instructions out of the entry block.
10162 if (isa<AllocaInst>(I) && I->getParent() ==
10163 &DestBlock->getParent()->getEntryBlock())
10164 return false;
10165
10166 // We can only sink load instructions if there is nothing between the load and
10167 // the end of block that could change the value.
10168 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10169 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
10170 Scan != E; ++Scan)
10171 if (Scan->mayWriteToMemory())
10172 return false;
10173 }
10174
10175 BasicBlock::iterator InsertPos = DestBlock->begin();
10176 while (isa<PHINode>(InsertPos)) ++InsertPos;
10177
10178 I->moveBefore(InsertPos);
10179 ++NumSunkInst;
10180 return true;
10181}
10182
10183
10184/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
10185/// all reachable code to the worklist.
10186///
10187/// This has a couple of tricks to make the code faster and more powerful. In
10188/// particular, we constant fold and DCE instructions as we go, to avoid adding
10189/// them to the worklist (this significantly speeds up instcombine on code where
10190/// many instructions are dead or constant). Additionally, if we find a branch
10191/// whose condition is a known constant, we only visit the reachable successors.
10192///
10193static void AddReachableCodeToWorklist(BasicBlock *BB,
10194 SmallPtrSet<BasicBlock*, 64> &Visited,
10195 InstCombiner &IC,
10196 const TargetData *TD) {
10197 std::vector<BasicBlock*> Worklist;
10198 Worklist.push_back(BB);
10199
10200 while (!Worklist.empty()) {
10201 BB = Worklist.back();
10202 Worklist.pop_back();
10203
10204 // We have now visited this block! If we've already been here, ignore it.
10205 if (!Visited.insert(BB)) continue;
10206
10207 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
10208 Instruction *Inst = BBI++;
10209
10210 // DCE instruction if trivially dead.
10211 if (isInstructionTriviallyDead(Inst)) {
10212 ++NumDeadInst;
10213 DOUT << "IC: DCE: " << *Inst;
10214 Inst->eraseFromParent();
10215 continue;
10216 }
10217
10218 // ConstantProp instruction if trivially constant.
10219 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
10220 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
10221 Inst->replaceAllUsesWith(C);
10222 ++NumConstProp;
10223 Inst->eraseFromParent();
10224 continue;
10225 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000010226
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010227 IC.AddToWorkList(Inst);
10228 }
10229
10230 // Recursively visit successors. If this is a branch or switch on a
10231 // constant, only visit the reachable successor.
10232 TerminatorInst *TI = BB->getTerminator();
10233 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
10234 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
10235 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
10236 Worklist.push_back(BI->getSuccessor(!CondVal));
10237 continue;
10238 }
10239 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
10240 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
10241 // See if this is an explicit destination.
10242 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
10243 if (SI->getCaseValue(i) == Cond) {
10244 Worklist.push_back(SI->getSuccessor(i));
10245 continue;
10246 }
10247
10248 // Otherwise it is the default destination.
10249 Worklist.push_back(SI->getSuccessor(0));
10250 continue;
10251 }
10252 }
10253
10254 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
10255 Worklist.push_back(TI->getSuccessor(i));
10256 }
10257}
10258
10259bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
10260 bool Changed = false;
10261 TD = &getAnalysis<TargetData>();
10262
10263 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
10264 << F.getNameStr() << "\n");
10265
10266 {
10267 // Do a depth-first traversal of the function, populate the worklist with
10268 // the reachable instructions. Ignore blocks that are not reachable. Keep
10269 // track of which blocks we visit.
10270 SmallPtrSet<BasicBlock*, 64> Visited;
10271 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
10272
10273 // Do a quick scan over the function. If we find any blocks that are
10274 // unreachable, remove any instructions inside of them. This prevents
10275 // the instcombine code from having to deal with some bad special cases.
10276 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
10277 if (!Visited.count(BB)) {
10278 Instruction *Term = BB->getTerminator();
10279 while (Term != BB->begin()) { // Remove instrs bottom-up
10280 BasicBlock::iterator I = Term; --I;
10281
10282 DOUT << "IC: DCE: " << *I;
10283 ++NumDeadInst;
10284
10285 if (!I->use_empty())
10286 I->replaceAllUsesWith(UndefValue::get(I->getType()));
10287 I->eraseFromParent();
10288 }
10289 }
10290 }
10291
10292 while (!Worklist.empty()) {
10293 Instruction *I = RemoveOneFromWorkList();
10294 if (I == 0) continue; // skip null values.
10295
10296 // Check to see if we can DCE the instruction.
10297 if (isInstructionTriviallyDead(I)) {
10298 // Add operands to the worklist.
10299 if (I->getNumOperands() < 4)
10300 AddUsesToWorkList(*I);
10301 ++NumDeadInst;
10302
10303 DOUT << "IC: DCE: " << *I;
10304
10305 I->eraseFromParent();
10306 RemoveFromWorkList(I);
10307 continue;
10308 }
10309
10310 // Instruction isn't dead, see if we can constant propagate it.
10311 if (Constant *C = ConstantFoldInstruction(I, TD)) {
10312 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
10313
10314 // Add operands to the worklist.
10315 AddUsesToWorkList(*I);
10316 ReplaceInstUsesWith(*I, C);
10317
10318 ++NumConstProp;
10319 I->eraseFromParent();
10320 RemoveFromWorkList(I);
10321 continue;
10322 }
10323
10324 // See if we can trivially sink this instruction to a successor basic block.
10325 if (I->hasOneUse()) {
10326 BasicBlock *BB = I->getParent();
10327 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
10328 if (UserParent != BB) {
10329 bool UserIsSuccessor = false;
10330 // See if the user is one of our successors.
10331 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
10332 if (*SI == UserParent) {
10333 UserIsSuccessor = true;
10334 break;
10335 }
10336
10337 // If the user is one of our immediate successors, and if that successor
10338 // only has us as a predecessors (we'd have to split the critical edge
10339 // otherwise), we can keep going.
10340 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
10341 next(pred_begin(UserParent)) == pred_end(UserParent))
10342 // Okay, the CFG is simple enough, try to sink this instruction.
10343 Changed |= TryToSinkInstruction(I, UserParent);
10344 }
10345 }
10346
10347 // Now that we have an instruction, try combining it to simplify it...
10348#ifndef NDEBUG
10349 std::string OrigI;
10350#endif
10351 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
10352 if (Instruction *Result = visit(*I)) {
10353 ++NumCombined;
10354 // Should we replace the old instruction with a new one?
10355 if (Result != I) {
10356 DOUT << "IC: Old = " << *I
10357 << " New = " << *Result;
10358
10359 // Everything uses the new instruction now.
10360 I->replaceAllUsesWith(Result);
10361
10362 // Push the new instruction and any users onto the worklist.
10363 AddToWorkList(Result);
10364 AddUsersToWorkList(*Result);
10365
10366 // Move the name to the new instruction first.
10367 Result->takeName(I);
10368
10369 // Insert the new instruction into the basic block...
10370 BasicBlock *InstParent = I->getParent();
10371 BasicBlock::iterator InsertPos = I;
10372
10373 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
10374 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
10375 ++InsertPos;
10376
10377 InstParent->getInstList().insert(InsertPos, Result);
10378
10379 // Make sure that we reprocess all operands now that we reduced their
10380 // use counts.
10381 AddUsesToWorkList(*I);
10382
10383 // Instructions can end up on the worklist more than once. Make sure
10384 // we do not process an instruction that has been deleted.
10385 RemoveFromWorkList(I);
10386
10387 // Erase the old instruction.
10388 InstParent->getInstList().erase(I);
10389 } else {
10390#ifndef NDEBUG
10391 DOUT << "IC: Mod = " << OrigI
10392 << " New = " << *I;
10393#endif
10394
10395 // If the instruction was modified, it's possible that it is now dead.
10396 // if so, remove it.
10397 if (isInstructionTriviallyDead(I)) {
10398 // Make sure we process all operands now that we are reducing their
10399 // use counts.
10400 AddUsesToWorkList(*I);
10401
10402 // Instructions may end up in the worklist more than once. Erase all
10403 // occurrences of this instruction.
10404 RemoveFromWorkList(I);
10405 I->eraseFromParent();
10406 } else {
10407 AddToWorkList(I);
10408 AddUsersToWorkList(*I);
10409 }
10410 }
10411 Changed = true;
10412 }
10413 }
10414
10415 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000010416
10417 // Do an explicit clear, this shrinks the map if needed.
10418 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010419 return Changed;
10420}
10421
10422
10423bool InstCombiner::runOnFunction(Function &F) {
10424 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
10425
10426 bool EverMadeChange = false;
10427
10428 // Iterate while there is work to do.
10429 unsigned Iteration = 0;
10430 while (DoOneIteration(F, Iteration++))
10431 EverMadeChange = true;
10432 return EverMadeChange;
10433}
10434
10435FunctionPass *llvm::createInstructionCombiningPass() {
10436 return new InstCombiner();
10437}
10438