Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 1 | //===- InstCombineMulDivRem.cpp -------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv, |
| 11 | // srem, urem, frem. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "InstCombine.h" |
| 16 | #include "llvm/IntrinsicInst.h" |
| 17 | #include "llvm/Support/PatternMatch.h" |
| 18 | using namespace llvm; |
| 19 | using namespace PatternMatch; |
| 20 | |
| 21 | /// SubOne - Subtract one from a ConstantInt. |
| 22 | static Constant *SubOne(ConstantInt *C) { |
| 23 | return ConstantInt::get(C->getContext(), C->getValue()-1); |
| 24 | } |
| 25 | |
| 26 | /// MultiplyOverflows - True if the multiply can not be expressed in an int |
| 27 | /// this size. |
| 28 | static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) { |
| 29 | uint32_t W = C1->getBitWidth(); |
| 30 | APInt LHSExt = C1->getValue(), RHSExt = C2->getValue(); |
| 31 | if (sign) { |
| 32 | LHSExt.sext(W * 2); |
| 33 | RHSExt.sext(W * 2); |
| 34 | } else { |
| 35 | LHSExt.zext(W * 2); |
| 36 | RHSExt.zext(W * 2); |
| 37 | } |
| 38 | |
| 39 | APInt MulExt = LHSExt * RHSExt; |
| 40 | |
| 41 | if (!sign) |
| 42 | return MulExt.ugt(APInt::getLowBitsSet(W * 2, W)); |
| 43 | |
| 44 | APInt Min = APInt::getSignedMinValue(W).sext(W * 2); |
| 45 | APInt Max = APInt::getSignedMaxValue(W).sext(W * 2); |
| 46 | return MulExt.slt(Min) || MulExt.sgt(Max); |
| 47 | } |
| 48 | |
| 49 | Instruction *InstCombiner::visitMul(BinaryOperator &I) { |
| 50 | bool Changed = SimplifyCommutative(I); |
| 51 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 52 | |
| 53 | if (isa<UndefValue>(Op1)) // undef * X -> 0 |
| 54 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 55 | |
| 56 | // Simplify mul instructions with a constant RHS. |
| 57 | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { |
| 58 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) { |
| 59 | |
| 60 | // ((X << C1)*C2) == (X * (C2 << C1)) |
| 61 | if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0)) |
| 62 | if (SI->getOpcode() == Instruction::Shl) |
| 63 | if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1))) |
| 64 | return BinaryOperator::CreateMul(SI->getOperand(0), |
| 65 | ConstantExpr::getShl(CI, ShOp)); |
| 66 | |
| 67 | if (CI->isZero()) |
| 68 | return ReplaceInstUsesWith(I, Op1C); // X * 0 == 0 |
| 69 | if (CI->equalsInt(1)) // X * 1 == X |
| 70 | return ReplaceInstUsesWith(I, Op0); |
| 71 | if (CI->isAllOnesValue()) // X * -1 == 0 - X |
| 72 | return BinaryOperator::CreateNeg(Op0, I.getName()); |
| 73 | |
| 74 | const APInt& Val = cast<ConstantInt>(CI)->getValue(); |
| 75 | if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C |
| 76 | return BinaryOperator::CreateShl(Op0, |
| 77 | ConstantInt::get(Op0->getType(), Val.logBase2())); |
| 78 | } |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 79 | } else if (Op1C->getType()->isVectorTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 80 | if (Op1C->isNullValue()) |
| 81 | return ReplaceInstUsesWith(I, Op1C); |
| 82 | |
| 83 | if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) { |
| 84 | if (Op1V->isAllOnesValue()) // X * -1 == 0 - X |
| 85 | return BinaryOperator::CreateNeg(Op0, I.getName()); |
| 86 | |
| 87 | // As above, vector X*splat(1.0) -> X in all defined cases. |
| 88 | if (Constant *Splat = Op1V->getSplatValue()) { |
| 89 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat)) |
| 90 | if (CI->equalsInt(1)) |
| 91 | return ReplaceInstUsesWith(I, Op0); |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) |
| 97 | if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() && |
| 98 | isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) { |
| 99 | // Canonicalize (X+C1)*C2 -> X*C2+C1*C2. |
| 100 | Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp"); |
| 101 | Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1)); |
| 102 | return BinaryOperator::CreateAdd(Add, C1C2); |
| 103 | |
| 104 | } |
| 105 | |
| 106 | // Try to fold constant mul into select arguments. |
| 107 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| 108 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 109 | return R; |
| 110 | |
| 111 | if (isa<PHINode>(Op0)) |
| 112 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 113 | return NV; |
| 114 | } |
| 115 | |
| 116 | if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y |
| 117 | if (Value *Op1v = dyn_castNegVal(Op1)) |
| 118 | return BinaryOperator::CreateMul(Op0v, Op1v); |
| 119 | |
| 120 | // (X / Y) * Y = X - (X % Y) |
| 121 | // (X / Y) * -Y = (X % Y) - X |
| 122 | { |
| 123 | Value *Op1C = Op1; |
| 124 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0); |
| 125 | if (!BO || |
| 126 | (BO->getOpcode() != Instruction::UDiv && |
| 127 | BO->getOpcode() != Instruction::SDiv)) { |
| 128 | Op1C = Op0; |
| 129 | BO = dyn_cast<BinaryOperator>(Op1); |
| 130 | } |
| 131 | Value *Neg = dyn_castNegVal(Op1C); |
| 132 | if (BO && BO->hasOneUse() && |
| 133 | (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) && |
| 134 | (BO->getOpcode() == Instruction::UDiv || |
| 135 | BO->getOpcode() == Instruction::SDiv)) { |
| 136 | Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1); |
| 137 | |
| 138 | // If the division is exact, X % Y is zero. |
| 139 | if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO)) |
| 140 | if (SDiv->isExact()) { |
| 141 | if (Op1BO == Op1C) |
| 142 | return ReplaceInstUsesWith(I, Op0BO); |
| 143 | return BinaryOperator::CreateNeg(Op0BO); |
| 144 | } |
| 145 | |
| 146 | Value *Rem; |
| 147 | if (BO->getOpcode() == Instruction::UDiv) |
| 148 | Rem = Builder->CreateURem(Op0BO, Op1BO); |
| 149 | else |
| 150 | Rem = Builder->CreateSRem(Op0BO, Op1BO); |
| 151 | Rem->takeName(BO); |
| 152 | |
| 153 | if (Op1BO == Op1C) |
| 154 | return BinaryOperator::CreateSub(Op0BO, Rem); |
| 155 | return BinaryOperator::CreateSub(Rem, Op0BO); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /// i1 mul -> i1 and. |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 160 | if (I.getType()->isIntegerTy(1)) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 161 | return BinaryOperator::CreateAnd(Op0, Op1); |
| 162 | |
| 163 | // X*(1 << Y) --> X << Y |
| 164 | // (1 << Y)*X --> X << Y |
| 165 | { |
| 166 | Value *Y; |
| 167 | if (match(Op0, m_Shl(m_One(), m_Value(Y)))) |
| 168 | return BinaryOperator::CreateShl(Op1, Y); |
| 169 | if (match(Op1, m_Shl(m_One(), m_Value(Y)))) |
| 170 | return BinaryOperator::CreateShl(Op0, Y); |
| 171 | } |
| 172 | |
| 173 | // If one of the operands of the multiply is a cast from a boolean value, then |
| 174 | // we know the bool is either zero or one, so this is a 'masking' multiply. |
| 175 | // X * Y (where Y is 0 or 1) -> X & (0-Y) |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 176 | if (!I.getType()->isVectorTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 177 | // -2 is "-1 << 1" so it is all bits set except the low one. |
| 178 | APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); |
| 179 | |
| 180 | Value *BoolCast = 0, *OtherOp = 0; |
| 181 | if (MaskedValueIsZero(Op0, Negative2)) |
| 182 | BoolCast = Op0, OtherOp = Op1; |
| 183 | else if (MaskedValueIsZero(Op1, Negative2)) |
| 184 | BoolCast = Op1, OtherOp = Op0; |
| 185 | |
| 186 | if (BoolCast) { |
| 187 | Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()), |
| 188 | BoolCast, "tmp"); |
| 189 | return BinaryOperator::CreateAnd(V, OtherOp); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | return Changed ? &I : 0; |
| 194 | } |
| 195 | |
| 196 | Instruction *InstCombiner::visitFMul(BinaryOperator &I) { |
| 197 | bool Changed = SimplifyCommutative(I); |
| 198 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 199 | |
| 200 | // Simplify mul instructions with a constant RHS... |
| 201 | if (Constant *Op1C = dyn_cast<Constant>(Op1)) { |
| 202 | if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) { |
| 203 | // "In IEEE floating point, x*1 is not equivalent to x for nans. However, |
| 204 | // ANSI says we can drop signals, so we can do this anyway." (from GCC) |
| 205 | if (Op1F->isExactlyValue(1.0)) |
Dan Gohman | a9445e1 | 2010-03-02 01:11:08 +0000 | [diff] [blame^] | 206 | return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0' |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 207 | } else if (Op1C->getType()->isVectorTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 208 | if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) { |
| 209 | // As above, vector X*splat(1.0) -> X in all defined cases. |
| 210 | if (Constant *Splat = Op1V->getSplatValue()) { |
| 211 | if (ConstantFP *F = dyn_cast<ConstantFP>(Splat)) |
| 212 | if (F->isExactlyValue(1.0)) |
| 213 | return ReplaceInstUsesWith(I, Op0); |
| 214 | } |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | // Try to fold constant mul into select arguments. |
| 219 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| 220 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 221 | return R; |
| 222 | |
| 223 | if (isa<PHINode>(Op0)) |
| 224 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 225 | return NV; |
| 226 | } |
| 227 | |
| 228 | if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y |
| 229 | if (Value *Op1v = dyn_castFNegVal(Op1)) |
| 230 | return BinaryOperator::CreateFMul(Op0v, Op1v); |
| 231 | |
| 232 | return Changed ? &I : 0; |
| 233 | } |
| 234 | |
| 235 | /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select |
| 236 | /// instruction. |
| 237 | bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { |
| 238 | SelectInst *SI = cast<SelectInst>(I.getOperand(1)); |
| 239 | |
| 240 | // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y |
| 241 | int NonNullOperand = -1; |
| 242 | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1))) |
| 243 | if (ST->isNullValue()) |
| 244 | NonNullOperand = 2; |
| 245 | // div/rem X, (Cond ? Y : 0) -> div/rem X, Y |
| 246 | if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2))) |
| 247 | if (ST->isNullValue()) |
| 248 | NonNullOperand = 1; |
| 249 | |
| 250 | if (NonNullOperand == -1) |
| 251 | return false; |
| 252 | |
| 253 | Value *SelectCond = SI->getOperand(0); |
| 254 | |
| 255 | // Change the div/rem to use 'Y' instead of the select. |
| 256 | I.setOperand(1, SI->getOperand(NonNullOperand)); |
| 257 | |
| 258 | // Okay, we know we replace the operand of the div/rem with 'Y' with no |
| 259 | // problem. However, the select, or the condition of the select may have |
| 260 | // multiple uses. Based on our knowledge that the operand must be non-zero, |
| 261 | // propagate the known value for the select into other uses of it, and |
| 262 | // propagate a known value of the condition into its other users. |
| 263 | |
| 264 | // If the select and condition only have a single use, don't bother with this, |
| 265 | // early exit. |
| 266 | if (SI->use_empty() && SelectCond->hasOneUse()) |
| 267 | return true; |
| 268 | |
| 269 | // Scan the current block backward, looking for other uses of SI. |
| 270 | BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin(); |
| 271 | |
| 272 | while (BBI != BBFront) { |
| 273 | --BBI; |
| 274 | // If we found a call to a function, we can't assume it will return, so |
| 275 | // information from below it cannot be propagated above it. |
| 276 | if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI)) |
| 277 | break; |
| 278 | |
| 279 | // Replace uses of the select or its condition with the known values. |
| 280 | for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end(); |
| 281 | I != E; ++I) { |
| 282 | if (*I == SI) { |
| 283 | *I = SI->getOperand(NonNullOperand); |
| 284 | Worklist.Add(BBI); |
| 285 | } else if (*I == SelectCond) { |
| 286 | *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) : |
| 287 | ConstantInt::getFalse(BBI->getContext()); |
| 288 | Worklist.Add(BBI); |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | // If we past the instruction, quit looking for it. |
| 293 | if (&*BBI == SI) |
| 294 | SI = 0; |
| 295 | if (&*BBI == SelectCond) |
| 296 | SelectCond = 0; |
| 297 | |
| 298 | // If we ran out of things to eliminate, break out of the loop. |
| 299 | if (SelectCond == 0 && SI == 0) |
| 300 | break; |
| 301 | |
| 302 | } |
| 303 | return true; |
| 304 | } |
| 305 | |
| 306 | |
| 307 | /// This function implements the transforms on div instructions that work |
| 308 | /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is |
| 309 | /// used by the visitors to those instructions. |
| 310 | /// @brief Transforms common to all three div instructions |
| 311 | Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) { |
| 312 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 313 | |
| 314 | // undef / X -> 0 for integer. |
| 315 | // undef / X -> undef for FP (the undef could be a snan). |
| 316 | if (isa<UndefValue>(Op0)) { |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 317 | if (Op0->getType()->isFPOrFPVectorTy()) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 318 | return ReplaceInstUsesWith(I, Op0); |
| 319 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 320 | } |
| 321 | |
| 322 | // X / undef -> undef |
| 323 | if (isa<UndefValue>(Op1)) |
| 324 | return ReplaceInstUsesWith(I, Op1); |
| 325 | |
| 326 | return 0; |
| 327 | } |
| 328 | |
| 329 | /// This function implements the transforms common to both integer division |
| 330 | /// instructions (udiv and sdiv). It is called by the visitors to those integer |
| 331 | /// division instructions. |
| 332 | /// @brief Common integer divide transforms |
| 333 | Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { |
| 334 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 335 | |
| 336 | // (sdiv X, X) --> 1 (udiv X, X) --> 1 |
| 337 | if (Op0 == Op1) { |
| 338 | if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) { |
| 339 | Constant *CI = ConstantInt::get(Ty->getElementType(), 1); |
| 340 | std::vector<Constant*> Elts(Ty->getNumElements(), CI); |
| 341 | return ReplaceInstUsesWith(I, ConstantVector::get(Elts)); |
| 342 | } |
| 343 | |
| 344 | Constant *CI = ConstantInt::get(I.getType(), 1); |
| 345 | return ReplaceInstUsesWith(I, CI); |
| 346 | } |
| 347 | |
| 348 | if (Instruction *Common = commonDivTransforms(I)) |
| 349 | return Common; |
| 350 | |
| 351 | // Handle cases involving: [su]div X, (select Cond, Y, Z) |
| 352 | // This does not apply for fdiv. |
| 353 | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| 354 | return &I; |
| 355 | |
| 356 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| 357 | // div X, 1 == X |
| 358 | if (RHS->equalsInt(1)) |
| 359 | return ReplaceInstUsesWith(I, Op0); |
| 360 | |
| 361 | // (X / C1) / C2 -> X / (C1*C2) |
| 362 | if (Instruction *LHS = dyn_cast<Instruction>(Op0)) |
| 363 | if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) |
| 364 | if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { |
| 365 | if (MultiplyOverflows(RHS, LHSRHS, |
| 366 | I.getOpcode()==Instruction::SDiv)) |
| 367 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 368 | else |
| 369 | return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), |
| 370 | ConstantExpr::getMul(RHS, LHSRHS)); |
| 371 | } |
| 372 | |
| 373 | if (!RHS->isZero()) { // avoid X udiv 0 |
| 374 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| 375 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 376 | return R; |
| 377 | if (isa<PHINode>(Op0)) |
| 378 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 379 | return NV; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | // 0 / X == 0, we don't need to preserve faults! |
| 384 | if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0)) |
| 385 | if (LHS->equalsInt(0)) |
| 386 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 387 | |
| 388 | // It can't be division by zero, hence it must be division by one. |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 389 | if (I.getType()->isIntegerTy(1)) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 390 | return ReplaceInstUsesWith(I, Op0); |
| 391 | |
| 392 | if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) { |
| 393 | if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue())) |
| 394 | // div X, 1 == X |
| 395 | if (X->isOne()) |
| 396 | return ReplaceInstUsesWith(I, Op0); |
| 397 | } |
| 398 | |
| 399 | return 0; |
| 400 | } |
| 401 | |
| 402 | Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { |
| 403 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 404 | |
| 405 | // Handle the integer div common cases |
| 406 | if (Instruction *Common = commonIDivTransforms(I)) |
| 407 | return Common; |
| 408 | |
| 409 | if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) { |
Owen Anderson | 5b39620 | 2010-01-17 06:49:03 +0000 | [diff] [blame] | 410 | // X udiv 2^C -> X >> C |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 411 | // Check to see if this is an unsigned division with an exact power of 2, |
| 412 | // if so, convert to a right shift. |
| 413 | if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2 |
| 414 | return BinaryOperator::CreateLShr(Op0, |
| 415 | ConstantInt::get(Op0->getType(), C->getValue().logBase2())); |
| 416 | |
| 417 | // X udiv C, where C >= signbit |
| 418 | if (C->getValue().isNegative()) { |
| 419 | Value *IC = Builder->CreateICmpULT( Op0, C); |
| 420 | return SelectInst::Create(IC, Constant::getNullValue(I.getType()), |
| 421 | ConstantInt::get(I.getType(), 1)); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2) |
| 426 | if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) { |
| 427 | if (RHSI->getOpcode() == Instruction::Shl && |
| 428 | isa<ConstantInt>(RHSI->getOperand(0))) { |
| 429 | const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue(); |
| 430 | if (C1.isPowerOf2()) { |
| 431 | Value *N = RHSI->getOperand(1); |
| 432 | const Type *NTy = N->getType(); |
| 433 | if (uint32_t C2 = C1.logBase2()) |
| 434 | N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp"); |
| 435 | return BinaryOperator::CreateLShr(Op0, N); |
| 436 | } |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2) |
| 441 | // where C1&C2 are powers of two. |
| 442 | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| 443 | if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) |
| 444 | if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) { |
| 445 | const APInt &TVA = STO->getValue(), &FVA = SFO->getValue(); |
| 446 | if (TVA.isPowerOf2() && FVA.isPowerOf2()) { |
| 447 | // Compute the shift amounts |
| 448 | uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2(); |
| 449 | // Construct the "on true" case of the select |
| 450 | Constant *TC = ConstantInt::get(Op0->getType(), TSA); |
| 451 | Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t"); |
| 452 | |
| 453 | // Construct the "on false" case of the select |
| 454 | Constant *FC = ConstantInt::get(Op0->getType(), FSA); |
| 455 | Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f"); |
| 456 | |
| 457 | // construct the select instruction and return it. |
| 458 | return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName()); |
| 459 | } |
| 460 | } |
| 461 | return 0; |
| 462 | } |
| 463 | |
| 464 | Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { |
| 465 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 466 | |
| 467 | // Handle the integer div common cases |
| 468 | if (Instruction *Common = commonIDivTransforms(I)) |
| 469 | return Common; |
| 470 | |
| 471 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| 472 | // sdiv X, -1 == -X |
| 473 | if (RHS->isAllOnesValue()) |
| 474 | return BinaryOperator::CreateNeg(Op0); |
| 475 | |
| 476 | // sdiv X, C --> ashr X, log2(C) |
| 477 | if (cast<SDivOperator>(&I)->isExact() && |
| 478 | RHS->getValue().isNonNegative() && |
| 479 | RHS->getValue().isPowerOf2()) { |
| 480 | Value *ShAmt = llvm::ConstantInt::get(RHS->getType(), |
| 481 | RHS->getValue().exactLogBase2()); |
| 482 | return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName()); |
| 483 | } |
| 484 | |
| 485 | // -X/C --> X/-C provided the negation doesn't overflow. |
| 486 | if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) |
| 487 | if (isa<Constant>(Sub->getOperand(0)) && |
| 488 | cast<Constant>(Sub->getOperand(0))->isNullValue() && |
| 489 | Sub->hasNoSignedWrap()) |
| 490 | return BinaryOperator::CreateSDiv(Sub->getOperand(1), |
| 491 | ConstantExpr::getNeg(RHS)); |
| 492 | } |
| 493 | |
| 494 | // If the sign bits of both operands are zero (i.e. we can prove they are |
| 495 | // unsigned inputs), turn this into a udiv. |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 496 | if (I.getType()->isIntegerTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 497 | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| 498 | if (MaskedValueIsZero(Op0, Mask)) { |
| 499 | if (MaskedValueIsZero(Op1, Mask)) { |
| 500 | // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set |
| 501 | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| 502 | } |
| 503 | ConstantInt *ShiftedInt; |
| 504 | if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) && |
| 505 | ShiftedInt->getValue().isPowerOf2()) { |
| 506 | // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y) |
| 507 | // Safe because the only negative value (1 << Y) can take on is |
| 508 | // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have |
| 509 | // the sign bit set. |
| 510 | return BinaryOperator::CreateUDiv(Op0, Op1, I.getName()); |
| 511 | } |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | return 0; |
| 516 | } |
| 517 | |
| 518 | Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { |
| 519 | return commonDivTransforms(I); |
| 520 | } |
| 521 | |
| 522 | /// This function implements the transforms on rem instructions that work |
| 523 | /// regardless of the kind of rem instruction it is (urem, srem, or frem). It |
| 524 | /// is used by the visitors to those instructions. |
| 525 | /// @brief Transforms common to all three rem instructions |
| 526 | Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) { |
| 527 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 528 | |
| 529 | if (isa<UndefValue>(Op0)) { // undef % X -> 0 |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 530 | if (I.getType()->isFPOrFPVectorTy()) |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 531 | return ReplaceInstUsesWith(I, Op0); // X % undef -> undef (could be SNaN) |
| 532 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 533 | } |
| 534 | if (isa<UndefValue>(Op1)) |
| 535 | return ReplaceInstUsesWith(I, Op1); // X % undef -> undef |
| 536 | |
| 537 | // Handle cases involving: rem X, (select Cond, Y, Z) |
| 538 | if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) |
| 539 | return &I; |
| 540 | |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | /// This function implements the transforms common to both integer remainder |
| 545 | /// instructions (urem and srem). It is called by the visitors to those integer |
| 546 | /// remainder instructions. |
| 547 | /// @brief Common integer remainder transforms |
| 548 | Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { |
| 549 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 550 | |
| 551 | if (Instruction *common = commonRemTransforms(I)) |
| 552 | return common; |
| 553 | |
| 554 | // 0 % X == 0 for integer, we don't need to preserve faults! |
| 555 | if (Constant *LHS = dyn_cast<Constant>(Op0)) |
| 556 | if (LHS->isNullValue()) |
| 557 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 558 | |
| 559 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| 560 | // X % 0 == undef, we don't need to preserve faults! |
| 561 | if (RHS->equalsInt(0)) |
| 562 | return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); |
| 563 | |
| 564 | if (RHS->equalsInt(1)) // X % 1 == 0 |
| 565 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 566 | |
| 567 | if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { |
| 568 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { |
| 569 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 570 | return R; |
| 571 | } else if (isa<PHINode>(Op0I)) { |
| 572 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 573 | return NV; |
| 574 | } |
| 575 | |
| 576 | // See if we can fold away this rem instruction. |
| 577 | if (SimplifyDemandedInstructionBits(I)) |
| 578 | return &I; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | return 0; |
| 583 | } |
| 584 | |
| 585 | Instruction *InstCombiner::visitURem(BinaryOperator &I) { |
| 586 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 587 | |
| 588 | if (Instruction *common = commonIRemTransforms(I)) |
| 589 | return common; |
| 590 | |
| 591 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { |
| 592 | // X urem C^2 -> X and C |
| 593 | // Check to see if this is an unsigned remainder with an exact power of 2, |
| 594 | // if so, convert to a bitwise and. |
| 595 | if (ConstantInt *C = dyn_cast<ConstantInt>(RHS)) |
| 596 | if (C->getValue().isPowerOf2()) |
| 597 | return BinaryOperator::CreateAnd(Op0, SubOne(C)); |
| 598 | } |
| 599 | |
| 600 | if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) { |
| 601 | // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) |
| 602 | if (RHSI->getOpcode() == Instruction::Shl && |
| 603 | isa<ConstantInt>(RHSI->getOperand(0))) { |
| 604 | if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) { |
| 605 | Constant *N1 = Constant::getAllOnesValue(I.getType()); |
| 606 | Value *Add = Builder->CreateAdd(RHSI, N1, "tmp"); |
| 607 | return BinaryOperator::CreateAnd(Op0, Add); |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2) |
| 613 | // where C1&C2 are powers of two. |
| 614 | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) { |
| 615 | if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1))) |
| 616 | if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) { |
| 617 | // STO == 0 and SFO == 0 handled above. |
| 618 | if ((STO->getValue().isPowerOf2()) && |
| 619 | (SFO->getValue().isPowerOf2())) { |
| 620 | Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO), |
| 621 | SI->getName()+".t"); |
| 622 | Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO), |
| 623 | SI->getName()+".f"); |
| 624 | return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd); |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | return 0; |
| 630 | } |
| 631 | |
| 632 | Instruction *InstCombiner::visitSRem(BinaryOperator &I) { |
| 633 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 634 | |
| 635 | // Handle the integer rem common cases |
| 636 | if (Instruction *Common = commonIRemTransforms(I)) |
| 637 | return Common; |
| 638 | |
| 639 | if (Value *RHSNeg = dyn_castNegVal(Op1)) |
| 640 | if (!isa<Constant>(RHSNeg) || |
| 641 | (isa<ConstantInt>(RHSNeg) && |
| 642 | cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) { |
| 643 | // X % -Y -> X % Y |
| 644 | Worklist.AddValue(I.getOperand(1)); |
| 645 | I.setOperand(1, RHSNeg); |
| 646 | return &I; |
| 647 | } |
| 648 | |
| 649 | // If the sign bits of both operands are zero (i.e. we can prove they are |
| 650 | // unsigned inputs), turn this into a urem. |
Duncan Sands | b0bc6c3 | 2010-02-15 16:12:20 +0000 | [diff] [blame] | 651 | if (I.getType()->isIntegerTy()) { |
Chris Lattner | d12c27c | 2010-01-05 06:09:35 +0000 | [diff] [blame] | 652 | APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())); |
| 653 | if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { |
| 654 | // X srem Y -> X urem Y, iff X and Y don't have sign bit set |
| 655 | return BinaryOperator::CreateURem(Op0, Op1, I.getName()); |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | // If it's a constant vector, flip any negative values positive. |
| 660 | if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) { |
| 661 | unsigned VWidth = RHSV->getNumOperands(); |
| 662 | |
| 663 | bool hasNegative = false; |
| 664 | for (unsigned i = 0; !hasNegative && i != VWidth; ++i) |
| 665 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) |
| 666 | if (RHS->getValue().isNegative()) |
| 667 | hasNegative = true; |
| 668 | |
| 669 | if (hasNegative) { |
| 670 | std::vector<Constant *> Elts(VWidth); |
| 671 | for (unsigned i = 0; i != VWidth; ++i) { |
| 672 | if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) { |
| 673 | if (RHS->getValue().isNegative()) |
| 674 | Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS)); |
| 675 | else |
| 676 | Elts[i] = RHS; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | Constant *NewRHSV = ConstantVector::get(Elts); |
| 681 | if (NewRHSV != RHSV) { |
| 682 | Worklist.AddValue(I.getOperand(1)); |
| 683 | I.setOperand(1, NewRHSV); |
| 684 | return &I; |
| 685 | } |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | return 0; |
| 690 | } |
| 691 | |
| 692 | Instruction *InstCombiner::visitFRem(BinaryOperator &I) { |
| 693 | return commonRemTransforms(I); |
| 694 | } |
| 695 | |