blob: 3ca03b3c1d9f1f1fa981345d07a2a597e04ae4a8 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13// * Assumes values are constant unless proven otherwise
14// * Assumes BasicBlocks are dead unless proven otherwise
15// * Proves values to be constant, and replaces them with constants
16// * Proves conditional branches to be unconditional
17//
18// Notice that:
19// * This pass has a habit of making definitions be dead. It is a good idea
20// to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/ConstantFolding.h"
Dan Gohman856193b2008-06-20 01:15:44 +000032#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033#include "llvm/Transforms/Utils/Local.h"
34#include "llvm/Support/CallSite.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/InstVisitor.h"
38#include "llvm/ADT/DenseMap.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/STLExtras.h"
43#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000044#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000045using namespace llvm;
46
47STATISTIC(NumInstRemoved, "Number of instructions removed");
48STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
49
Nick Lewyckybbdfc9c2008-03-08 07:48:41 +000050STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
52STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
53STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
54
55namespace {
56/// LatticeVal class - This class represents the different lattice values that
57/// an LLVM value may occupy. It is a simple class with value semantics.
58///
59class VISIBILITY_HIDDEN LatticeVal {
60 enum {
61 /// undefined - This LLVM Value has no known value yet.
62 undefined,
63
64 /// constant - This LLVM Value has a specific constant value.
65 constant,
66
67 /// forcedconstant - This LLVM Value was thought to be undef until
68 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
69 /// with another (different) constant, it goes to overdefined, instead of
70 /// asserting.
71 forcedconstant,
72
73 /// overdefined - This instruction is not known to be constant, and we know
74 /// it has a value.
75 overdefined
76 } LatticeValue; // The current lattice position
77
78 Constant *ConstantVal; // If Constant value, the current value
79public:
80 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
81
82 // markOverdefined - Return true if this is a new status to be in...
83 inline bool markOverdefined() {
84 if (LatticeValue != overdefined) {
85 LatticeValue = overdefined;
86 return true;
87 }
88 return false;
89 }
90
91 // markConstant - Return true if this is a new status for us.
92 inline bool markConstant(Constant *V) {
93 if (LatticeValue != constant) {
94 if (LatticeValue == undefined) {
95 LatticeValue = constant;
96 assert(V && "Marking constant with NULL");
97 ConstantVal = V;
98 } else {
99 assert(LatticeValue == forcedconstant &&
100 "Cannot move from overdefined to constant!");
101 // Stay at forcedconstant if the constant is the same.
102 if (V == ConstantVal) return false;
103
104 // Otherwise, we go to overdefined. Assumptions made based on the
105 // forced value are possibly wrong. Assuming this is another constant
106 // could expose a contradiction.
107 LatticeValue = overdefined;
108 }
109 return true;
110 } else {
111 assert(ConstantVal == V && "Marking constant with different value");
112 }
113 return false;
114 }
115
116 inline void markForcedConstant(Constant *V) {
117 assert(LatticeValue == undefined && "Can't force a defined value!");
118 LatticeValue = forcedconstant;
119 ConstantVal = V;
120 }
121
122 inline bool isUndefined() const { return LatticeValue == undefined; }
123 inline bool isConstant() const {
124 return LatticeValue == constant || LatticeValue == forcedconstant;
125 }
126 inline bool isOverdefined() const { return LatticeValue == overdefined; }
127
128 inline Constant *getConstant() const {
129 assert(isConstant() && "Cannot get the constant of a non-constant!");
130 return ConstantVal;
131 }
132};
133
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134//===----------------------------------------------------------------------===//
135//
136/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
137/// Constant Propagation.
138///
139class SCCPSolver : public InstVisitor<SCCPSolver> {
140 SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable
141 std::map<Value*, LatticeVal> ValueState; // The state each value is in.
142
143 /// GlobalValue - If we are tracking any values for the contents of a global
144 /// variable, we keep a mapping from the constant accessor to the element of
145 /// the global, to the currently known value. If the value becomes
146 /// overdefined, it's entry is simply removed from this map.
147 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
148
Devang Pateladd320d2008-03-11 05:46:42 +0000149 /// TrackedRetVals - If we are tracking arguments into and the return
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000150 /// value out of a function, it will have an entry in this map, indicating
151 /// what the known return value for the function is.
Devang Pateladd320d2008-03-11 05:46:42 +0000152 DenseMap<Function*, LatticeVal> TrackedRetVals;
153
154 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
155 /// that return multiple values.
Chris Lattnercd73be02008-04-23 05:38:20 +0000156 std::map<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157
158 // The reason for two worklists is that overdefined is the lowest state
159 // on the lattice, and moving things to overdefined as fast as possible
160 // makes SCCP converge much faster.
161 // By having a separate worklist, we accomplish this because everything
162 // possibly overdefined will become overdefined at the soonest possible
163 // point.
164 std::vector<Value*> OverdefinedInstWorkList;
165 std::vector<Value*> InstWorkList;
166
167
168 std::vector<BasicBlock*> BBWorkList; // The BasicBlock work list
169
170 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
171 /// overdefined, despite the fact that the PHI node is overdefined.
172 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
173
174 /// KnownFeasibleEdges - Entries in this set are edges which have already had
175 /// PHI nodes retriggered.
176 typedef std::pair<BasicBlock*,BasicBlock*> Edge;
177 std::set<Edge> KnownFeasibleEdges;
178public:
179
180 /// MarkBlockExecutable - This method can be used by clients to mark all of
181 /// the blocks that are known to be intrinsically live in the processed unit.
182 void MarkBlockExecutable(BasicBlock *BB) {
Chris Lattner56bf9a92008-05-11 01:55:59 +0000183 DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184 BBExecutable.insert(BB); // Basic block is executable!
185 BBWorkList.push_back(BB); // Add the block to the work list!
186 }
187
188 /// TrackValueOfGlobalVariable - Clients can use this method to
189 /// inform the SCCPSolver that it should track loads and stores to the
190 /// specified global variable if it can. This is only legal to call if
191 /// performing Interprocedural SCCP.
192 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
193 const Type *ElTy = GV->getType()->getElementType();
194 if (ElTy->isFirstClassType()) {
195 LatticeVal &IV = TrackedGlobals[GV];
196 if (!isa<UndefValue>(GV->getInitializer()))
197 IV.markConstant(GV->getInitializer());
198 }
199 }
200
201 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
202 /// and out of the specified function (which cannot have its address taken),
203 /// this method must be called.
204 void AddTrackedFunction(Function *F) {
205 assert(F->hasInternalLinkage() && "Can only track internal functions!");
206 // Add an entry, F -> undef.
Devang Pateladd320d2008-03-11 05:46:42 +0000207 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
208 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Chris Lattnercd73be02008-04-23 05:38:20 +0000209 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
210 LatticeVal()));
211 } else
212 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000213 }
214
215 /// Solve - Solve for constants and executable blocks.
216 ///
217 void Solve();
218
219 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
220 /// that branches on undef values cannot reach any of their successors.
221 /// However, this is not a safe assumption. After we solve dataflow, this
222 /// method should be use to handle this. If this returns true, the solver
223 /// should be rerun.
224 bool ResolvedUndefsIn(Function &F);
225
226 /// getExecutableBlocks - Once we have solved for constants, return the set of
227 /// blocks that is known to be executable.
228 SmallSet<BasicBlock*, 16> &getExecutableBlocks() {
229 return BBExecutable;
230 }
231
232 /// getValueMapping - Once we have solved for constants, return the mapping of
233 /// LLVM values to LatticeVals.
234 std::map<Value*, LatticeVal> &getValueMapping() {
235 return ValueState;
236 }
237
Devang Pateladd320d2008-03-11 05:46:42 +0000238 /// getTrackedRetVals - Get the inferred return value map.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239 ///
Devang Pateladd320d2008-03-11 05:46:42 +0000240 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
241 return TrackedRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 }
243
244 /// getTrackedGlobals - Get and return the set of inferred initializers for
245 /// global variables.
246 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
247 return TrackedGlobals;
248 }
249
250 inline void markOverdefined(Value *V) {
251 markOverdefined(ValueState[V], V);
252 }
253
254private:
255 // markConstant - Make a value be marked as "constant". If the value
256 // is not already a constant, add it to the instruction work list so that
257 // the users of the instruction are updated later.
258 //
259 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
260 if (IV.markConstant(C)) {
261 DOUT << "markConstant: " << *C << ": " << *V;
262 InstWorkList.push_back(V);
263 }
264 }
265
266 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
267 IV.markForcedConstant(C);
268 DOUT << "markForcedConstant: " << *C << ": " << *V;
269 InstWorkList.push_back(V);
270 }
271
272 inline void markConstant(Value *V, Constant *C) {
273 markConstant(ValueState[V], V, C);
274 }
275
276 // markOverdefined - Make a value be marked as "overdefined". If the
277 // value is not already overdefined, add it to the overdefined instruction
278 // work list so that the users of the instruction are updated later.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000279 inline void markOverdefined(LatticeVal &IV, Value *V) {
280 if (IV.markOverdefined()) {
281 DEBUG(DOUT << "markOverdefined: ";
282 if (Function *F = dyn_cast<Function>(V))
283 DOUT << "Function '" << F->getName() << "'\n";
284 else
285 DOUT << *V);
286 // Only instructions go on the work list
287 OverdefinedInstWorkList.push_back(V);
288 }
289 }
290
291 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
292 if (IV.isOverdefined() || MergeWithV.isUndefined())
293 return; // Noop.
294 if (MergeWithV.isOverdefined())
295 markOverdefined(IV, V);
296 else if (IV.isUndefined())
297 markConstant(IV, V, MergeWithV.getConstant());
298 else if (IV.getConstant() != MergeWithV.getConstant())
299 markOverdefined(IV, V);
300 }
301
302 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
303 return mergeInValue(ValueState[V], V, MergeWithV);
304 }
305
306
307 // getValueState - Return the LatticeVal object that corresponds to the value.
308 // This function is necessary because not all values should start out in the
309 // underdefined state... Argument's should be overdefined, and
310 // constants should be marked as constants. If a value is not known to be an
311 // Instruction object, then use this accessor to get its value from the map.
312 //
313 inline LatticeVal &getValueState(Value *V) {
314 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
315 if (I != ValueState.end()) return I->second; // Common case, in the map
316
317 if (Constant *C = dyn_cast<Constant>(V)) {
318 if (isa<UndefValue>(V)) {
319 // Nothing to do, remain undefined.
320 } else {
321 LatticeVal &LV = ValueState[C];
322 LV.markConstant(C); // Constants are constant
323 return LV;
324 }
325 }
326 // All others are underdefined by default...
327 return ValueState[V];
328 }
329
330 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
331 // work list if it is not already executable...
332 //
333 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
334 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
335 return; // This edge is already known to be executable!
336
337 if (BBExecutable.count(Dest)) {
Chris Lattner56bf9a92008-05-11 01:55:59 +0000338 DOUT << "Marking Edge Executable: " << Source->getNameStart()
339 << " -> " << Dest->getNameStart() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000340
341 // The destination is already executable, but we just made an edge
342 // feasible that wasn't before. Revisit the PHI nodes in the block
343 // because they have potentially new operands.
344 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
345 visitPHINode(*cast<PHINode>(I));
346
347 } else {
348 MarkBlockExecutable(Dest);
349 }
350 }
351
352 // getFeasibleSuccessors - Return a vector of booleans to indicate which
353 // successors are reachable from a given terminator instruction.
354 //
355 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
356
357 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
358 // block to the 'To' basic block is currently feasible...
359 //
360 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
361
362 // OperandChangedState - This method is invoked on all of the users of an
363 // instruction that was just changed state somehow.... Based on this
364 // information, we need to update the specified user of this instruction.
365 //
366 void OperandChangedState(User *U) {
367 // Only instructions use other variable values!
368 Instruction &I = cast<Instruction>(*U);
369 if (BBExecutable.count(I.getParent())) // Inst is executable?
370 visit(I);
371 }
372
373private:
374 friend class InstVisitor<SCCPSolver>;
375
376 // visit implementations - Something changed in this instruction... Either an
377 // operand made a transition, or the instruction is newly executable. Change
378 // the value type of I to reflect these changes if appropriate.
379 //
380 void visitPHINode(PHINode &I);
381
382 // Terminators
383 void visitReturnInst(ReturnInst &I);
384 void visitTerminatorInst(TerminatorInst &TI);
385
386 void visitCastInst(CastInst &I);
Devang Pateladd320d2008-03-11 05:46:42 +0000387 void visitGetResultInst(GetResultInst &GRI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000388 void visitSelectInst(SelectInst &I);
389 void visitBinaryOperator(Instruction &I);
390 void visitCmpInst(CmpInst &I);
391 void visitExtractElementInst(ExtractElementInst &I);
392 void visitInsertElementInst(InsertElementInst &I);
393 void visitShuffleVectorInst(ShuffleVectorInst &I);
Dan Gohman856193b2008-06-20 01:15:44 +0000394 void visitExtractValueInst(ExtractValueInst &EVI);
395 void visitInsertValueInst(InsertValueInst &IVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000396
397 // Instructions that cannot be folded away...
398 void visitStoreInst (Instruction &I);
399 void visitLoadInst (LoadInst &I);
400 void visitGetElementPtrInst(GetElementPtrInst &I);
401 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
402 void visitInvokeInst (InvokeInst &II) {
403 visitCallSite(CallSite::get(&II));
404 visitTerminatorInst(II);
405 }
406 void visitCallSite (CallSite CS);
407 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
408 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
409 void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
410 void visitVANextInst (Instruction &I) { markOverdefined(&I); }
411 void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
412 void visitFreeInst (Instruction &I) { /*returns void*/ }
413
414 void visitInstruction(Instruction &I) {
415 // If a new instruction is added to LLVM that we don't handle...
416 cerr << "SCCP: Don't know how to handle: " << I;
417 markOverdefined(&I); // Just in case
418 }
419};
420
Duncan Sands40f67972007-07-20 08:56:21 +0000421} // end anonymous namespace
422
423
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000424// getFeasibleSuccessors - Return a vector of booleans to indicate which
425// successors are reachable from a given terminator instruction.
426//
427void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
428 SmallVector<bool, 16> &Succs) {
429 Succs.resize(TI.getNumSuccessors());
430 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
431 if (BI->isUnconditional()) {
432 Succs[0] = true;
433 } else {
434 LatticeVal &BCValue = getValueState(BI->getCondition());
435 if (BCValue.isOverdefined() ||
436 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
437 // Overdefined condition variables, and branches on unfoldable constant
438 // conditions, mean the branch could go either way.
439 Succs[0] = Succs[1] = true;
440 } else if (BCValue.isConstant()) {
441 // Constant condition variables mean the branch can only go a single way
442 Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
443 }
444 }
445 } else if (isa<InvokeInst>(&TI)) {
446 // Invoke instructions successors are always executable.
447 Succs[0] = Succs[1] = true;
448 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
449 LatticeVal &SCValue = getValueState(SI->getCondition());
450 if (SCValue.isOverdefined() || // Overdefined condition?
451 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
452 // All destinations are executable!
453 Succs.assign(TI.getNumSuccessors(), true);
Chris Lattner81335532008-05-10 23:56:54 +0000454 } else if (SCValue.isConstant())
455 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 } else {
457 assert(0 && "SCCP: Don't know how to handle this terminator!");
458 }
459}
460
461
462// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
463// block to the 'To' basic block is currently feasible...
464//
465bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
466 assert(BBExecutable.count(To) && "Dest should always be alive!");
467
468 // Make sure the source basic block is executable!!
469 if (!BBExecutable.count(From)) return false;
470
471 // Check to make sure this edge itself is actually feasible now...
472 TerminatorInst *TI = From->getTerminator();
473 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
474 if (BI->isUnconditional())
475 return true;
476 else {
477 LatticeVal &BCValue = getValueState(BI->getCondition());
478 if (BCValue.isOverdefined()) {
479 // Overdefined condition variables mean the branch could go either way.
480 return true;
481 } else if (BCValue.isConstant()) {
482 // Not branching on an evaluatable constant?
483 if (!isa<ConstantInt>(BCValue.getConstant())) return true;
484
485 // Constant condition variables mean the branch can only go a single way
486 return BI->getSuccessor(BCValue.getConstant() ==
487 ConstantInt::getFalse()) == To;
488 }
489 return false;
490 }
491 } else if (isa<InvokeInst>(TI)) {
492 // Invoke instructions successors are always executable.
493 return true;
494 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
495 LatticeVal &SCValue = getValueState(SI->getCondition());
496 if (SCValue.isOverdefined()) { // Overdefined condition?
497 // All destinations are executable!
498 return true;
499 } else if (SCValue.isConstant()) {
500 Constant *CPV = SCValue.getConstant();
501 if (!isa<ConstantInt>(CPV))
502 return true; // not a foldable constant?
503
504 // Make sure to skip the "default value" which isn't a value
505 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
506 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
507 return SI->getSuccessor(i) == To;
508
509 // Constant value not equal to any of the branches... must execute
510 // default branch then...
511 return SI->getDefaultDest() == To;
512 }
513 return false;
514 } else {
515 cerr << "Unknown terminator instruction: " << *TI;
516 abort();
517 }
518}
519
520// visit Implementations - Something changed in this instruction... Either an
521// operand made a transition, or the instruction is newly executable. Change
522// the value type of I to reflect these changes if appropriate. This method
523// makes sure to do the following actions:
524//
525// 1. If a phi node merges two constants in, and has conflicting value coming
526// from different branches, or if the PHI node merges in an overdefined
527// value, then the PHI node becomes overdefined.
528// 2. If a phi node merges only constants in, and they all agree on value, the
529// PHI node becomes a constant value equal to that.
530// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
531// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
532// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
533// 6. If a conditional branch has a value that is constant, make the selected
534// destination executable
535// 7. If a conditional branch has a value that is overdefined, make all
536// successors executable.
537//
538void SCCPSolver::visitPHINode(PHINode &PN) {
539 LatticeVal &PNIV = getValueState(&PN);
540 if (PNIV.isOverdefined()) {
541 // There may be instructions using this PHI node that are not overdefined
542 // themselves. If so, make sure that they know that the PHI node operand
543 // changed.
544 std::multimap<PHINode*, Instruction*>::iterator I, E;
545 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
546 if (I != E) {
547 SmallVector<Instruction*, 16> Users;
548 for (; I != E; ++I) Users.push_back(I->second);
549 while (!Users.empty()) {
550 visit(Users.back());
551 Users.pop_back();
552 }
553 }
554 return; // Quick exit
555 }
556
557 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
558 // and slow us down a lot. Just mark them overdefined.
559 if (PN.getNumIncomingValues() > 64) {
560 markOverdefined(PNIV, &PN);
561 return;
562 }
563
564 // Look at all of the executable operands of the PHI node. If any of them
565 // are overdefined, the PHI becomes overdefined as well. If they are all
566 // constant, and they agree with each other, the PHI becomes the identical
567 // constant. If they are constant and don't agree, the PHI is overdefined.
568 // If there are no executable operands, the PHI remains undefined.
569 //
570 Constant *OperandVal = 0;
571 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
572 LatticeVal &IV = getValueState(PN.getIncomingValue(i));
573 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
574
575 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
576 if (IV.isOverdefined()) { // PHI node becomes overdefined!
577 markOverdefined(PNIV, &PN);
578 return;
579 }
580
581 if (OperandVal == 0) { // Grab the first value...
582 OperandVal = IV.getConstant();
583 } else { // Another value is being merged in!
584 // There is already a reachable operand. If we conflict with it,
585 // then the PHI node becomes overdefined. If we agree with it, we
586 // can continue on.
587
588 // Check to see if there are two different constants merging...
589 if (IV.getConstant() != OperandVal) {
590 // Yes there is. This means the PHI node is not constant.
591 // You must be overdefined poor PHI.
592 //
593 markOverdefined(PNIV, &PN); // The PHI node now becomes overdefined
594 return; // I'm done analyzing you
595 }
596 }
597 }
598 }
599
600 // If we exited the loop, this means that the PHI node only has constant
601 // arguments that agree with each other(and OperandVal is the constant) or
602 // OperandVal is null because there are no defined incoming arguments. If
603 // this is the case, the PHI remains undefined.
604 //
605 if (OperandVal)
606 markConstant(PNIV, &PN, OperandVal); // Acquire operand value
607}
608
609void SCCPSolver::visitReturnInst(ReturnInst &I) {
610 if (I.getNumOperands() == 0) return; // Ret void
611
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000612 Function *F = I.getParent()->getParent();
Devang Pateladd320d2008-03-11 05:46:42 +0000613 // If we are tracking the return value of this function, merge it in.
614 if (!F->hasInternalLinkage())
615 return;
616
Chris Lattnercd73be02008-04-23 05:38:20 +0000617 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618 DenseMap<Function*, LatticeVal>::iterator TFRVI =
Devang Pateladd320d2008-03-11 05:46:42 +0000619 TrackedRetVals.find(F);
620 if (TFRVI != TrackedRetVals.end() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000621 !TFRVI->second.isOverdefined()) {
622 LatticeVal &IV = getValueState(I.getOperand(0));
623 mergeInValue(TFRVI->second, F, IV);
Devang Pateladd320d2008-03-11 05:46:42 +0000624 return;
625 }
626 }
627
Chris Lattnercd73be02008-04-23 05:38:20 +0000628 // Handle functions that return multiple values.
629 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
630 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
631 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
632 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
633 if (It == TrackedMultipleRetVals.end()) break;
634 mergeInValue(It->second, F, getValueState(I.getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000635 }
Dan Gohman856193b2008-06-20 01:15:44 +0000636 } else if (!TrackedMultipleRetVals.empty() &&
637 I.getNumOperands() == 1 &&
638 isa<StructType>(I.getOperand(0)->getType())) {
639 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
640 i != e; ++i) {
641 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
642 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
643 if (It == TrackedMultipleRetVals.end()) break;
644 Value *Val = FindInsertedValue(I.getOperand(0), i);
645 mergeInValue(It->second, F, getValueState(Val));
646 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000647 }
648}
649
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000650void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
651 SmallVector<bool, 16> SuccFeasible;
652 getFeasibleSuccessors(TI, SuccFeasible);
653
654 BasicBlock *BB = TI.getParent();
655
656 // Mark all feasible successors executable...
657 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
658 if (SuccFeasible[i])
659 markEdgeExecutable(BB, TI.getSuccessor(i));
660}
661
662void SCCPSolver::visitCastInst(CastInst &I) {
663 Value *V = I.getOperand(0);
664 LatticeVal &VState = getValueState(V);
665 if (VState.isOverdefined()) // Inherit overdefinedness of operand
666 markOverdefined(&I);
667 else if (VState.isConstant()) // Propagate constant value
668 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
669 VState.getConstant(), I.getType()));
670}
671
Devang Pateladd320d2008-03-11 05:46:42 +0000672void SCCPSolver::visitGetResultInst(GetResultInst &GRI) {
Devang Pateladd320d2008-03-11 05:46:42 +0000673 Value *Aggr = GRI.getOperand(0);
Chris Lattnercd73be02008-04-23 05:38:20 +0000674
675 // If the operand to the getresult is an undef, the result is undef.
676 if (isa<UndefValue>(Aggr))
677 return;
678
679 Function *F;
Devang Patelfbb201d2008-04-09 15:58:24 +0000680 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
Devang Pateladd320d2008-03-11 05:46:42 +0000681 F = CI->getCalledFunction();
Chris Lattnercd73be02008-04-23 05:38:20 +0000682 else
683 F = cast<InvokeInst>(Aggr)->getCalledFunction();
Devang Pateladd320d2008-03-11 05:46:42 +0000684
Chris Lattnercd73be02008-04-23 05:38:20 +0000685 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
686 // result back!
687 if (F == 0 || TrackedMultipleRetVals.empty()) {
688 markOverdefined(&GRI);
Devang Patelfbb201d2008-04-09 15:58:24 +0000689 return;
Devang Pateladd320d2008-03-11 05:46:42 +0000690 }
Chris Lattnercd73be02008-04-23 05:38:20 +0000691
692 // See if we are tracking the result of the callee.
693 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
694 It = TrackedMultipleRetVals.find(std::make_pair(F, GRI.getIndex()));
695
696 // If not tracking this function (for example, it is a declaration) just move
697 // to overdefined.
698 if (It == TrackedMultipleRetVals.end()) {
699 markOverdefined(&GRI);
700 return;
701 }
702
703 // Otherwise, the value will be merged in here as a result of CallSite
704 // handling.
Devang Pateladd320d2008-03-11 05:46:42 +0000705}
706
Dan Gohman856193b2008-06-20 01:15:44 +0000707void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
708 Value *Aggr = EVI.getOperand(0);
709
710 // If the operand to the getresult is an undef, the result is undef.
711 if (isa<UndefValue>(Aggr))
712 return;
713
714 // Currently only handle single-index extractvalues.
715 if (EVI.getNumIndices() != 1) {
716 markOverdefined(&EVI);
717 return;
718 }
719
720 Function *F = 0;
721 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
722 F = CI->getCalledFunction();
723 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
724 F = II->getCalledFunction();
725
726 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
727 // result back!
728 if (F == 0 || TrackedMultipleRetVals.empty()) {
729 markOverdefined(&EVI);
730 return;
731 }
732
733 // See if we are tracking the result of the callee.
734 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
735 It = TrackedMultipleRetVals.find(std::make_pair(F, *EVI.idx_begin()));
736
737 // If not tracking this function (for example, it is a declaration) just move
738 // to overdefined.
739 if (It == TrackedMultipleRetVals.end()) {
740 markOverdefined(&EVI);
741 return;
742 }
743
744 // Otherwise, the value will be merged in here as a result of CallSite
745 // handling.
746}
747
748void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
749 Value *Aggr = IVI.getOperand(0);
750 Value *Val = IVI.getOperand(1);
751
752 // If the operand to the getresult is an undef, the result is undef.
Dan Gohman78b2c392008-06-20 16:39:44 +0000753 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
Dan Gohman856193b2008-06-20 01:15:44 +0000754 return;
755
756 // Currently only handle single-index insertvalues.
757 if (IVI.getNumIndices() != 1) {
758 markOverdefined(&IVI);
759 return;
760 }
Dan Gohman78b2c392008-06-20 16:39:44 +0000761
762 // Currently only handle insertvalue instructions that are in a single-use
763 // chain that builds up a return value.
764 for (const InsertValueInst *TmpIVI = &IVI; ; ) {
765 if (!TmpIVI->hasOneUse()) {
766 markOverdefined(&IVI);
767 return;
768 }
769 const Value *V = *TmpIVI->use_begin();
770 if (isa<ReturnInst>(V))
771 break;
772 TmpIVI = dyn_cast<InsertValueInst>(V);
773 if (!TmpIVI) {
774 markOverdefined(&IVI);
775 return;
776 }
777 }
Dan Gohman856193b2008-06-20 01:15:44 +0000778
779 // See if we are tracking the result of the callee.
780 Function *F = IVI.getParent()->getParent();
781 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
782 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
783
784 // Merge in the inserted member value.
785 if (It != TrackedMultipleRetVals.end())
786 mergeInValue(It->second, F, getValueState(Val));
787
788 // Mark the aggregate result of the IVI overdefined; any tracking that we do will
789 // be done on the individual member values.
790 markOverdefined(&IVI);
791}
792
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793void SCCPSolver::visitSelectInst(SelectInst &I) {
794 LatticeVal &CondValue = getValueState(I.getCondition());
795 if (CondValue.isUndefined())
796 return;
797 if (CondValue.isConstant()) {
798 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
799 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
800 : I.getFalseValue()));
801 return;
802 }
803 }
804
805 // Otherwise, the condition is overdefined or a constant we can't evaluate.
806 // See if we can produce something better than overdefined based on the T/F
807 // value.
808 LatticeVal &TVal = getValueState(I.getTrueValue());
809 LatticeVal &FVal = getValueState(I.getFalseValue());
810
811 // select ?, C, C -> C.
812 if (TVal.isConstant() && FVal.isConstant() &&
813 TVal.getConstant() == FVal.getConstant()) {
814 markConstant(&I, FVal.getConstant());
815 return;
816 }
817
818 if (TVal.isUndefined()) { // select ?, undef, X -> X.
819 mergeInValue(&I, FVal);
820 } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
821 mergeInValue(&I, TVal);
822 } else {
823 markOverdefined(&I);
824 }
825}
826
827// Handle BinaryOperators and Shift Instructions...
828void SCCPSolver::visitBinaryOperator(Instruction &I) {
829 LatticeVal &IV = ValueState[&I];
830 if (IV.isOverdefined()) return;
831
832 LatticeVal &V1State = getValueState(I.getOperand(0));
833 LatticeVal &V2State = getValueState(I.getOperand(1));
834
835 if (V1State.isOverdefined() || V2State.isOverdefined()) {
836 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
837 // operand is overdefined.
838 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
839 LatticeVal *NonOverdefVal = 0;
840 if (!V1State.isOverdefined()) {
841 NonOverdefVal = &V1State;
842 } else if (!V2State.isOverdefined()) {
843 NonOverdefVal = &V2State;
844 }
845
846 if (NonOverdefVal) {
847 if (NonOverdefVal->isUndefined()) {
848 // Could annihilate value.
849 if (I.getOpcode() == Instruction::And)
850 markConstant(IV, &I, Constant::getNullValue(I.getType()));
851 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
852 markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
853 else
854 markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
855 return;
856 } else {
857 if (I.getOpcode() == Instruction::And) {
858 if (NonOverdefVal->getConstant()->isNullValue()) {
859 markConstant(IV, &I, NonOverdefVal->getConstant());
860 return; // X and 0 = 0
861 }
862 } else {
863 if (ConstantInt *CI =
864 dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
865 if (CI->isAllOnesValue()) {
866 markConstant(IV, &I, NonOverdefVal->getConstant());
867 return; // X or -1 = -1
868 }
869 }
870 }
871 }
872 }
873
874
875 // If both operands are PHI nodes, it is possible that this instruction has
876 // a constant value, despite the fact that the PHI node doesn't. Check for
877 // this condition now.
878 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
879 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
880 if (PN1->getParent() == PN2->getParent()) {
881 // Since the two PHI nodes are in the same basic block, they must have
882 // entries for the same predecessors. Walk the predecessor list, and
883 // if all of the incoming values are constants, and the result of
884 // evaluating this expression with all incoming value pairs is the
885 // same, then this expression is a constant even though the PHI node
886 // is not a constant!
887 LatticeVal Result;
888 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
889 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
890 BasicBlock *InBlock = PN1->getIncomingBlock(i);
891 LatticeVal &In2 =
892 getValueState(PN2->getIncomingValueForBlock(InBlock));
893
894 if (In1.isOverdefined() || In2.isOverdefined()) {
895 Result.markOverdefined();
896 break; // Cannot fold this operation over the PHI nodes!
897 } else if (In1.isConstant() && In2.isConstant()) {
898 Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
899 In2.getConstant());
900 if (Result.isUndefined())
901 Result.markConstant(V);
902 else if (Result.isConstant() && Result.getConstant() != V) {
903 Result.markOverdefined();
904 break;
905 }
906 }
907 }
908
909 // If we found a constant value here, then we know the instruction is
910 // constant despite the fact that the PHI nodes are overdefined.
911 if (Result.isConstant()) {
912 markConstant(IV, &I, Result.getConstant());
913 // Remember that this instruction is virtually using the PHI node
914 // operands.
915 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
916 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
917 return;
918 } else if (Result.isUndefined()) {
919 return;
920 }
921
922 // Okay, this really is overdefined now. Since we might have
923 // speculatively thought that this was not overdefined before, and
924 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
925 // make sure to clean out any entries that we put there, for
926 // efficiency.
927 std::multimap<PHINode*, Instruction*>::iterator It, E;
928 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
929 while (It != E) {
930 if (It->second == &I) {
931 UsersOfOverdefinedPHIs.erase(It++);
932 } else
933 ++It;
934 }
935 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
936 while (It != E) {
937 if (It->second == &I) {
938 UsersOfOverdefinedPHIs.erase(It++);
939 } else
940 ++It;
941 }
942 }
943
944 markOverdefined(IV, &I);
945 } else if (V1State.isConstant() && V2State.isConstant()) {
946 markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
947 V2State.getConstant()));
948 }
949}
950
951// Handle ICmpInst instruction...
952void SCCPSolver::visitCmpInst(CmpInst &I) {
953 LatticeVal &IV = ValueState[&I];
954 if (IV.isOverdefined()) return;
955
956 LatticeVal &V1State = getValueState(I.getOperand(0));
957 LatticeVal &V2State = getValueState(I.getOperand(1));
958
959 if (V1State.isOverdefined() || V2State.isOverdefined()) {
960 // If both operands are PHI nodes, it is possible that this instruction has
961 // a constant value, despite the fact that the PHI node doesn't. Check for
962 // this condition now.
963 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
964 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
965 if (PN1->getParent() == PN2->getParent()) {
966 // Since the two PHI nodes are in the same basic block, they must have
967 // entries for the same predecessors. Walk the predecessor list, and
968 // if all of the incoming values are constants, and the result of
969 // evaluating this expression with all incoming value pairs is the
970 // same, then this expression is a constant even though the PHI node
971 // is not a constant!
972 LatticeVal Result;
973 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
974 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
975 BasicBlock *InBlock = PN1->getIncomingBlock(i);
976 LatticeVal &In2 =
977 getValueState(PN2->getIncomingValueForBlock(InBlock));
978
979 if (In1.isOverdefined() || In2.isOverdefined()) {
980 Result.markOverdefined();
981 break; // Cannot fold this operation over the PHI nodes!
982 } else if (In1.isConstant() && In2.isConstant()) {
983 Constant *V = ConstantExpr::getCompare(I.getPredicate(),
984 In1.getConstant(),
985 In2.getConstant());
986 if (Result.isUndefined())
987 Result.markConstant(V);
988 else if (Result.isConstant() && Result.getConstant() != V) {
989 Result.markOverdefined();
990 break;
991 }
992 }
993 }
994
995 // If we found a constant value here, then we know the instruction is
996 // constant despite the fact that the PHI nodes are overdefined.
997 if (Result.isConstant()) {
998 markConstant(IV, &I, Result.getConstant());
999 // Remember that this instruction is virtually using the PHI node
1000 // operands.
1001 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
1002 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
1003 return;
1004 } else if (Result.isUndefined()) {
1005 return;
1006 }
1007
1008 // Okay, this really is overdefined now. Since we might have
1009 // speculatively thought that this was not overdefined before, and
1010 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1011 // make sure to clean out any entries that we put there, for
1012 // efficiency.
1013 std::multimap<PHINode*, Instruction*>::iterator It, E;
1014 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
1015 while (It != E) {
1016 if (It->second == &I) {
1017 UsersOfOverdefinedPHIs.erase(It++);
1018 } else
1019 ++It;
1020 }
1021 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
1022 while (It != E) {
1023 if (It->second == &I) {
1024 UsersOfOverdefinedPHIs.erase(It++);
1025 } else
1026 ++It;
1027 }
1028 }
1029
1030 markOverdefined(IV, &I);
1031 } else if (V1State.isConstant() && V2State.isConstant()) {
1032 markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
1033 V1State.getConstant(),
1034 V2State.getConstant()));
1035 }
1036}
1037
1038void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1039 // FIXME : SCCP does not handle vectors properly.
1040 markOverdefined(&I);
1041 return;
1042
1043#if 0
1044 LatticeVal &ValState = getValueState(I.getOperand(0));
1045 LatticeVal &IdxState = getValueState(I.getOperand(1));
1046
1047 if (ValState.isOverdefined() || IdxState.isOverdefined())
1048 markOverdefined(&I);
1049 else if(ValState.isConstant() && IdxState.isConstant())
1050 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1051 IdxState.getConstant()));
1052#endif
1053}
1054
1055void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1056 // FIXME : SCCP does not handle vectors properly.
1057 markOverdefined(&I);
1058 return;
1059#if 0
1060 LatticeVal &ValState = getValueState(I.getOperand(0));
1061 LatticeVal &EltState = getValueState(I.getOperand(1));
1062 LatticeVal &IdxState = getValueState(I.getOperand(2));
1063
1064 if (ValState.isOverdefined() || EltState.isOverdefined() ||
1065 IdxState.isOverdefined())
1066 markOverdefined(&I);
1067 else if(ValState.isConstant() && EltState.isConstant() &&
1068 IdxState.isConstant())
1069 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1070 EltState.getConstant(),
1071 IdxState.getConstant()));
1072 else if (ValState.isUndefined() && EltState.isConstant() &&
1073 IdxState.isConstant())
1074 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1075 EltState.getConstant(),
1076 IdxState.getConstant()));
1077#endif
1078}
1079
1080void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1081 // FIXME : SCCP does not handle vectors properly.
1082 markOverdefined(&I);
1083 return;
1084#if 0
1085 LatticeVal &V1State = getValueState(I.getOperand(0));
1086 LatticeVal &V2State = getValueState(I.getOperand(1));
1087 LatticeVal &MaskState = getValueState(I.getOperand(2));
1088
1089 if (MaskState.isUndefined() ||
1090 (V1State.isUndefined() && V2State.isUndefined()))
1091 return; // Undefined output if mask or both inputs undefined.
1092
1093 if (V1State.isOverdefined() || V2State.isOverdefined() ||
1094 MaskState.isOverdefined()) {
1095 markOverdefined(&I);
1096 } else {
1097 // A mix of constant/undef inputs.
1098 Constant *V1 = V1State.isConstant() ?
1099 V1State.getConstant() : UndefValue::get(I.getType());
1100 Constant *V2 = V2State.isConstant() ?
1101 V2State.getConstant() : UndefValue::get(I.getType());
1102 Constant *Mask = MaskState.isConstant() ?
1103 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1104 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1105 }
1106#endif
1107}
1108
1109// Handle getelementptr instructions... if all operands are constants then we
1110// can turn this into a getelementptr ConstantExpr.
1111//
1112void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1113 LatticeVal &IV = ValueState[&I];
1114 if (IV.isOverdefined()) return;
1115
1116 SmallVector<Constant*, 8> Operands;
1117 Operands.reserve(I.getNumOperands());
1118
1119 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1120 LatticeVal &State = getValueState(I.getOperand(i));
1121 if (State.isUndefined())
1122 return; // Operands are not resolved yet...
1123 else if (State.isOverdefined()) {
1124 markOverdefined(IV, &I);
1125 return;
1126 }
1127 assert(State.isConstant() && "Unknown state!");
1128 Operands.push_back(State.getConstant());
1129 }
1130
1131 Constant *Ptr = Operands[0];
1132 Operands.erase(Operands.begin()); // Erase the pointer from idx list...
1133
1134 markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
1135 Operands.size()));
1136}
1137
1138void SCCPSolver::visitStoreInst(Instruction &SI) {
1139 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1140 return;
1141 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1142 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1143 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1144
1145 // Get the value we are storing into the global.
1146 LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1147
1148 mergeInValue(I->second, GV, PtrVal);
1149 if (I->second.isOverdefined())
1150 TrackedGlobals.erase(I); // No need to keep tracking this!
1151}
1152
1153
1154// Handle load instructions. If the operand is a constant pointer to a constant
1155// global, we can replace the load with the loaded constant value!
1156void SCCPSolver::visitLoadInst(LoadInst &I) {
1157 LatticeVal &IV = ValueState[&I];
1158 if (IV.isOverdefined()) return;
1159
1160 LatticeVal &PtrVal = getValueState(I.getOperand(0));
1161 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1162 if (PtrVal.isConstant() && !I.isVolatile()) {
1163 Value *Ptr = PtrVal.getConstant();
Christopher Lamb2c175392007-12-29 07:56:53 +00001164 // TODO: Consider a target hook for valid address spaces for this xform.
1165 if (isa<ConstantPointerNull>(Ptr) &&
1166 cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001167 // load null -> null
1168 markConstant(IV, &I, Constant::getNullValue(I.getType()));
1169 return;
1170 }
1171
1172 // Transform load (constant global) into the value loaded.
1173 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1174 if (GV->isConstant()) {
1175 if (!GV->isDeclaration()) {
1176 markConstant(IV, &I, GV->getInitializer());
1177 return;
1178 }
1179 } else if (!TrackedGlobals.empty()) {
1180 // If we are tracking this global, merge in the known value for it.
1181 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1182 TrackedGlobals.find(GV);
1183 if (It != TrackedGlobals.end()) {
1184 mergeInValue(IV, &I, It->second);
1185 return;
1186 }
1187 }
1188 }
1189
1190 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1191 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1192 if (CE->getOpcode() == Instruction::GetElementPtr)
1193 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
1194 if (GV->isConstant() && !GV->isDeclaration())
1195 if (Constant *V =
1196 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
1197 markConstant(IV, &I, V);
1198 return;
1199 }
1200 }
1201
1202 // Otherwise we cannot say for certain what value this load will produce.
1203 // Bail out.
1204 markOverdefined(IV, &I);
1205}
1206
1207void SCCPSolver::visitCallSite(CallSite CS) {
1208 Function *F = CS.getCalledFunction();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001209 Instruction *I = CS.getInstruction();
Chris Lattnercd73be02008-04-23 05:38:20 +00001210
1211 // The common case is that we aren't tracking the callee, either because we
1212 // are not doing interprocedural analysis or the callee is indirect, or is
1213 // external. Handle these cases first.
1214 if (F == 0 || !F->hasInternalLinkage()) {
1215CallOverdefined:
1216 // Void return and not tracking callee, just bail.
1217 if (I->getType() == Type::VoidTy) return;
1218
1219 // Otherwise, if we have a single return value case, and if the function is
1220 // a declaration, maybe we can constant fold it.
1221 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1222 canConstantFoldCallTo(F)) {
1223
1224 SmallVector<Constant*, 8> Operands;
1225 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1226 AI != E; ++AI) {
1227 LatticeVal &State = getValueState(*AI);
1228 if (State.isUndefined())
1229 return; // Operands are not resolved yet.
1230 else if (State.isOverdefined()) {
1231 markOverdefined(I);
1232 return;
1233 }
1234 assert(State.isConstant() && "Unknown state!");
1235 Operands.push_back(State.getConstant());
1236 }
1237
1238 // If we can constant fold this, mark the result of the call as a
1239 // constant.
1240 if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size())) {
1241 markConstant(I, C);
1242 return;
1243 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 }
Chris Lattnercd73be02008-04-23 05:38:20 +00001245
1246 // Otherwise, we don't know anything about this call, mark it overdefined.
1247 markOverdefined(I);
1248 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 }
1250
Chris Lattnercd73be02008-04-23 05:38:20 +00001251 // If this is a single/zero retval case, see if we're tracking the function.
Dan Gohman856193b2008-06-20 01:15:44 +00001252 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1253 if (TFRVI != TrackedRetVals.end()) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001254 // If so, propagate the return value of the callee into this call result.
1255 mergeInValue(I, TFRVI->second);
Dan Gohman856193b2008-06-20 01:15:44 +00001256 } else if (isa<StructType>(I->getType())) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001257 // Check to see if we're tracking this callee, if not, handle it in the
1258 // common path above.
1259 std::map<std::pair<Function*, unsigned>, LatticeVal>::iterator
1260 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
1261 if (TMRVI == TrackedMultipleRetVals.end())
1262 goto CallOverdefined;
1263
1264 // If we are tracking this callee, propagate the return values of the call
Dan Gohman856193b2008-06-20 01:15:44 +00001265 // into this call site. We do this by walking all the uses. Single-index
1266 // ExtractValueInst uses can be tracked; anything more complicated is
1267 // currently handled conservatively.
Chris Lattnercd73be02008-04-23 05:38:20 +00001268 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1269 UI != E; ++UI) {
Dan Gohman856193b2008-06-20 01:15:44 +00001270 if (GetResultInst *GRI = dyn_cast<GetResultInst>(*UI)) {
1271 mergeInValue(GRI,
1272 TrackedMultipleRetVals[std::make_pair(F, GRI->getIndex())]);
1273 continue;
1274 }
1275 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1276 if (EVI->getNumIndices() == 1) {
1277 mergeInValue(EVI,
1278 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
1279 continue;
1280 }
1281 }
1282 // The aggregate value is used in a way not handled here. Assume nothing.
1283 markOverdefined(*UI);
Chris Lattnercd73be02008-04-23 05:38:20 +00001284 }
Dan Gohman856193b2008-06-20 01:15:44 +00001285 } else {
1286 // Otherwise we're not tracking this callee, so handle it in the
1287 // common path above.
1288 goto CallOverdefined;
Chris Lattnercd73be02008-04-23 05:38:20 +00001289 }
1290
1291 // Finally, if this is the first call to the function hit, mark its entry
1292 // block executable.
1293 if (!BBExecutable.count(F->begin()))
1294 MarkBlockExecutable(F->begin());
1295
1296 // Propagate information from this call site into the callee.
1297 CallSite::arg_iterator CAI = CS.arg_begin();
1298 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1299 AI != E; ++AI, ++CAI) {
1300 LatticeVal &IV = ValueState[AI];
1301 if (!IV.isOverdefined())
1302 mergeInValue(IV, AI, getValueState(*CAI));
1303 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304}
1305
1306
1307void SCCPSolver::Solve() {
1308 // Process the work lists until they are empty!
1309 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1310 !OverdefinedInstWorkList.empty()) {
1311 // Process the instruction work list...
1312 while (!OverdefinedInstWorkList.empty()) {
1313 Value *I = OverdefinedInstWorkList.back();
1314 OverdefinedInstWorkList.pop_back();
1315
1316 DOUT << "\nPopped off OI-WL: " << *I;
1317
1318 // "I" got into the work list because it either made the transition from
1319 // bottom to constant
1320 //
1321 // Anything on this worklist that is overdefined need not be visited
1322 // since all of its users will have already been marked as overdefined
1323 // Update all of the users of this instruction's value...
1324 //
1325 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1326 UI != E; ++UI)
1327 OperandChangedState(*UI);
1328 }
1329 // Process the instruction work list...
1330 while (!InstWorkList.empty()) {
1331 Value *I = InstWorkList.back();
1332 InstWorkList.pop_back();
1333
1334 DOUT << "\nPopped off I-WL: " << *I;
1335
1336 // "I" got into the work list because it either made the transition from
1337 // bottom to constant
1338 //
1339 // Anything on this worklist that is overdefined need not be visited
1340 // since all of its users will have already been marked as overdefined.
1341 // Update all of the users of this instruction's value...
1342 //
1343 if (!getValueState(I).isOverdefined())
1344 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1345 UI != E; ++UI)
1346 OperandChangedState(*UI);
1347 }
1348
1349 // Process the basic block work list...
1350 while (!BBWorkList.empty()) {
1351 BasicBlock *BB = BBWorkList.back();
1352 BBWorkList.pop_back();
1353
1354 DOUT << "\nPopped off BBWL: " << *BB;
1355
1356 // Notify all instructions in this basic block that they are newly
1357 // executable.
1358 visit(BB);
1359 }
1360 }
1361}
1362
1363/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1364/// that branches on undef values cannot reach any of their successors.
1365/// However, this is not a safe assumption. After we solve dataflow, this
1366/// method should be use to handle this. If this returns true, the solver
1367/// should be rerun.
1368///
1369/// This method handles this by finding an unresolved branch and marking it one
1370/// of the edges from the block as being feasible, even though the condition
1371/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1372/// CFG and only slightly pessimizes the analysis results (by marking one,
1373/// potentially infeasible, edge feasible). This cannot usefully modify the
1374/// constraints on the condition of the branch, as that would impact other users
1375/// of the value.
1376///
1377/// This scan also checks for values that use undefs, whose results are actually
1378/// defined. For example, 'zext i8 undef to i32' should produce all zeros
1379/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1380/// even if X isn't defined.
1381bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1382 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1383 if (!BBExecutable.count(BB))
1384 continue;
1385
1386 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1387 // Look for instructions which produce undef values.
1388 if (I->getType() == Type::VoidTy) continue;
1389
1390 LatticeVal &LV = getValueState(I);
1391 if (!LV.isUndefined()) continue;
1392
1393 // Get the lattice values of the first two operands for use below.
1394 LatticeVal &Op0LV = getValueState(I->getOperand(0));
1395 LatticeVal Op1LV;
1396 if (I->getNumOperands() == 2) {
1397 // If this is a two-operand instruction, and if both operands are
1398 // undefs, the result stays undef.
1399 Op1LV = getValueState(I->getOperand(1));
1400 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1401 continue;
1402 }
1403
1404 // If this is an instructions whose result is defined even if the input is
1405 // not fully defined, propagate the information.
1406 const Type *ITy = I->getType();
1407 switch (I->getOpcode()) {
1408 default: break; // Leave the instruction as an undef.
1409 case Instruction::ZExt:
1410 // After a zero extend, we know the top part is zero. SExt doesn't have
1411 // to be handled here, because we don't know whether the top part is 1's
1412 // or 0's.
1413 assert(Op0LV.isUndefined());
1414 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1415 return true;
1416 case Instruction::Mul:
1417 case Instruction::And:
1418 // undef * X -> 0. X could be zero.
1419 // undef & X -> 0. X could be zero.
1420 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1421 return true;
1422
1423 case Instruction::Or:
1424 // undef | X -> -1. X could be -1.
1425 if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
1426 markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
1427 else
1428 markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
1429 return true;
1430
1431 case Instruction::SDiv:
1432 case Instruction::UDiv:
1433 case Instruction::SRem:
1434 case Instruction::URem:
1435 // X / undef -> undef. No change.
1436 // X % undef -> undef. No change.
1437 if (Op1LV.isUndefined()) break;
1438
1439 // undef / X -> 0. X could be maxint.
1440 // undef % X -> 0. X could be 1.
1441 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1442 return true;
1443
1444 case Instruction::AShr:
1445 // undef >>s X -> undef. No change.
1446 if (Op0LV.isUndefined()) break;
1447
1448 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1449 if (Op0LV.isConstant())
1450 markForcedConstant(LV, I, Op0LV.getConstant());
1451 else
1452 markOverdefined(LV, I);
1453 return true;
1454 case Instruction::LShr:
1455 case Instruction::Shl:
1456 // undef >> X -> undef. No change.
1457 // undef << X -> undef. No change.
1458 if (Op0LV.isUndefined()) break;
1459
1460 // X >> undef -> 0. X could be 0.
1461 // X << undef -> 0. X could be 0.
1462 markForcedConstant(LV, I, Constant::getNullValue(ITy));
1463 return true;
1464 case Instruction::Select:
1465 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1466 if (Op0LV.isUndefined()) {
1467 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1468 Op1LV = getValueState(I->getOperand(2));
1469 } else if (Op1LV.isUndefined()) {
1470 // c ? undef : undef -> undef. No change.
1471 Op1LV = getValueState(I->getOperand(2));
1472 if (Op1LV.isUndefined())
1473 break;
1474 // Otherwise, c ? undef : x -> x.
1475 } else {
1476 // Leave Op1LV as Operand(1)'s LatticeValue.
1477 }
1478
1479 if (Op1LV.isConstant())
1480 markForcedConstant(LV, I, Op1LV.getConstant());
1481 else
1482 markOverdefined(LV, I);
1483 return true;
Chris Lattner9110ac92008-05-24 03:59:33 +00001484 case Instruction::Call:
1485 // If a call has an undef result, it is because it is constant foldable
1486 // but one of the inputs was undef. Just force the result to
1487 // overdefined.
1488 markOverdefined(LV, I);
1489 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001490 }
1491 }
1492
1493 TerminatorInst *TI = BB->getTerminator();
1494 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1495 if (!BI->isConditional()) continue;
1496 if (!getValueState(BI->getCondition()).isUndefined())
1497 continue;
1498 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Dale Johannesenfb06d0c2008-05-23 01:01:31 +00001499 if (SI->getNumSuccessors()<2) // no cases
1500 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001501 if (!getValueState(SI->getCondition()).isUndefined())
1502 continue;
1503 } else {
1504 continue;
1505 }
1506
Chris Lattner6186e8c2008-01-28 00:32:30 +00001507 // If the edge to the second successor isn't thought to be feasible yet,
1508 // mark it so now. We pick the second one so that this goes to some
1509 // enumerated value in a switch instead of going to the default destination.
1510 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001511 continue;
1512
1513 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1514 // and return. This will make other blocks reachable, which will allow new
1515 // values to be discovered and existing ones to be moved in the lattice.
Chris Lattner6186e8c2008-01-28 00:32:30 +00001516 markEdgeExecutable(BB, TI->getSuccessor(1));
1517
1518 // This must be a conditional branch of switch on undef. At this point,
1519 // force the old terminator to branch to the first successor. This is
1520 // required because we are now influencing the dataflow of the function with
1521 // the assumption that this edge is taken. If we leave the branch condition
1522 // as undef, then further analysis could think the undef went another way
1523 // leading to an inconsistent set of conclusions.
1524 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1525 BI->setCondition(ConstantInt::getFalse());
1526 } else {
1527 SwitchInst *SI = cast<SwitchInst>(TI);
1528 SI->setCondition(SI->getCaseValue(1));
1529 }
1530
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001531 return true;
1532 }
1533
1534 return false;
1535}
1536
1537
1538namespace {
1539 //===--------------------------------------------------------------------===//
1540 //
1541 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1542 /// Sparse Conditional Constant Propagator.
1543 ///
1544 struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1545 static char ID; // Pass identification, replacement for typeid
1546 SCCP() : FunctionPass((intptr_t)&ID) {}
1547
1548 // runOnFunction - Run the Sparse Conditional Constant Propagation
1549 // algorithm, and return true if the function was modified.
1550 //
1551 bool runOnFunction(Function &F);
1552
1553 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1554 AU.setPreservesCFG();
1555 }
1556 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001557} // end anonymous namespace
1558
Dan Gohman089efff2008-05-13 00:00:25 +00001559char SCCP::ID = 0;
1560static RegisterPass<SCCP>
1561X("sccp", "Sparse Conditional Constant Propagation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001562
1563// createSCCPPass - This is the public interface to this file...
1564FunctionPass *llvm::createSCCPPass() {
1565 return new SCCP();
1566}
1567
1568
1569// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1570// and return true if the function was modified.
1571//
1572bool SCCP::runOnFunction(Function &F) {
Chris Lattner56bf9a92008-05-11 01:55:59 +00001573 DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001574 SCCPSolver Solver;
1575
1576 // Mark the first block of the function as being executable.
1577 Solver.MarkBlockExecutable(F.begin());
1578
1579 // Mark all arguments to the function as being overdefined.
1580 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1581 Solver.markOverdefined(AI);
1582
1583 // Solve for constants.
1584 bool ResolvedUndefs = true;
1585 while (ResolvedUndefs) {
1586 Solver.Solve();
1587 DOUT << "RESOLVING UNDEFs\n";
1588 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1589 }
1590
1591 bool MadeChanges = false;
1592
1593 // If we decided that there are basic blocks that are dead in this function,
1594 // delete their contents now. Note that we cannot actually delete the blocks,
1595 // as we cannot modify the CFG of the function.
1596 //
1597 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
1598 SmallVector<Instruction*, 32> Insts;
1599 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1600
1601 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1602 if (!ExecutableBBs.count(BB)) {
1603 DOUT << " BasicBlock Dead:" << *BB;
1604 ++NumDeadBlocks;
1605
1606 // Delete the instructions backwards, as it has a reduced likelihood of
1607 // having to update as many def-use and use-def chains.
1608 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1609 I != E; ++I)
1610 Insts.push_back(I);
1611 while (!Insts.empty()) {
1612 Instruction *I = Insts.back();
1613 Insts.pop_back();
1614 if (!I->use_empty())
1615 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1616 BB->getInstList().erase(I);
1617 MadeChanges = true;
1618 ++NumInstRemoved;
1619 }
1620 } else {
1621 // Iterate over all of the instructions in a function, replacing them with
1622 // constants if we have found them to be of constant values.
1623 //
1624 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1625 Instruction *Inst = BI++;
Chris Lattner204cfde2008-04-24 00:19:54 +00001626 if (Inst->getType() == Type::VoidTy ||
1627 isa<StructType>(Inst->getType()) ||
Chris Lattnerb6f89362008-04-24 00:16:28 +00001628 isa<TerminatorInst>(Inst))
1629 continue;
1630
1631 LatticeVal &IV = Values[Inst];
1632 if (!IV.isConstant() && !IV.isUndefined())
1633 continue;
1634
1635 Constant *Const = IV.isConstant()
1636 ? IV.getConstant() : UndefValue::get(Inst->getType());
1637 DOUT << " Constant: " << *Const << " = " << *Inst;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001638
Chris Lattnerb6f89362008-04-24 00:16:28 +00001639 // Replaces all of the uses of a variable with uses of the constant.
1640 Inst->replaceAllUsesWith(Const);
1641
1642 // Delete the instruction.
1643 Inst->eraseFromParent();
1644
1645 // Hey, we just changed something!
1646 MadeChanges = true;
1647 ++NumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001648 }
1649 }
1650
1651 return MadeChanges;
1652}
1653
1654namespace {
1655 //===--------------------------------------------------------------------===//
1656 //
1657 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1658 /// Constant Propagation.
1659 ///
1660 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1661 static char ID;
1662 IPSCCP() : ModulePass((intptr_t)&ID) {}
1663 bool runOnModule(Module &M);
1664 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001665} // end anonymous namespace
1666
Dan Gohman089efff2008-05-13 00:00:25 +00001667char IPSCCP::ID = 0;
1668static RegisterPass<IPSCCP>
1669Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1670
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001671// createIPSCCPPass - This is the public interface to this file...
1672ModulePass *llvm::createIPSCCPPass() {
1673 return new IPSCCP();
1674}
1675
1676
1677static bool AddressIsTaken(GlobalValue *GV) {
1678 // Delete any dead constantexpr klingons.
1679 GV->removeDeadConstantUsers();
1680
1681 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1682 UI != E; ++UI)
1683 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1684 if (SI->getOperand(0) == GV || SI->isVolatile())
1685 return true; // Storing addr of GV.
1686 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1687 // Make sure we are calling the function, not passing the address.
1688 CallSite CS = CallSite::get(cast<Instruction>(*UI));
1689 for (CallSite::arg_iterator AI = CS.arg_begin(),
1690 E = CS.arg_end(); AI != E; ++AI)
1691 if (*AI == GV)
1692 return true;
1693 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1694 if (LI->isVolatile())
1695 return true;
1696 } else {
1697 return true;
1698 }
1699 return false;
1700}
1701
1702bool IPSCCP::runOnModule(Module &M) {
1703 SCCPSolver Solver;
1704
1705 // Loop over all functions, marking arguments to those with their addresses
1706 // taken or that are external as overdefined.
1707 //
1708 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1709 if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
1710 if (!F->isDeclaration())
1711 Solver.MarkBlockExecutable(F->begin());
1712 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1713 AI != E; ++AI)
1714 Solver.markOverdefined(AI);
1715 } else {
1716 Solver.AddTrackedFunction(F);
1717 }
1718
1719 // Loop over global variables. We inform the solver about any internal global
1720 // variables that do not have their 'addresses taken'. If they don't have
1721 // their addresses taken, we can propagate constants through them.
1722 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1723 G != E; ++G)
1724 if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
1725 Solver.TrackValueOfGlobalVariable(G);
1726
1727 // Solve for constants.
1728 bool ResolvedUndefs = true;
1729 while (ResolvedUndefs) {
1730 Solver.Solve();
1731
1732 DOUT << "RESOLVING UNDEFS\n";
1733 ResolvedUndefs = false;
1734 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1735 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1736 }
1737
1738 bool MadeChanges = false;
1739
1740 // Iterate over all of the instructions in the module, replacing them with
1741 // constants if we have found them to be of constant values.
1742 //
1743 SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
1744 SmallVector<Instruction*, 32> Insts;
1745 SmallVector<BasicBlock*, 32> BlocksToErase;
1746 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
1747
1748 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1749 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1750 AI != E; ++AI)
1751 if (!AI->use_empty()) {
1752 LatticeVal &IV = Values[AI];
1753 if (IV.isConstant() || IV.isUndefined()) {
1754 Constant *CST = IV.isConstant() ?
1755 IV.getConstant() : UndefValue::get(AI->getType());
1756 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n";
1757
1758 // Replaces all of the uses of a variable with uses of the
1759 // constant.
1760 AI->replaceAllUsesWith(CST);
1761 ++IPNumArgsElimed;
1762 }
1763 }
1764
1765 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1766 if (!ExecutableBBs.count(BB)) {
1767 DOUT << " BasicBlock Dead:" << *BB;
1768 ++IPNumDeadBlocks;
1769
1770 // Delete the instructions backwards, as it has a reduced likelihood of
1771 // having to update as many def-use and use-def chains.
1772 TerminatorInst *TI = BB->getTerminator();
1773 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1774 Insts.push_back(I);
1775
1776 while (!Insts.empty()) {
1777 Instruction *I = Insts.back();
1778 Insts.pop_back();
1779 if (!I->use_empty())
1780 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1781 BB->getInstList().erase(I);
1782 MadeChanges = true;
1783 ++IPNumInstRemoved;
1784 }
1785
1786 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1787 BasicBlock *Succ = TI->getSuccessor(i);
Dan Gohman3f7d94b2007-10-03 19:26:29 +00001788 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001789 TI->getSuccessor(i)->removePredecessor(BB);
1790 }
1791 if (!TI->use_empty())
1792 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1793 BB->getInstList().erase(TI);
1794
1795 if (&*BB != &F->front())
1796 BlocksToErase.push_back(BB);
1797 else
1798 new UnreachableInst(BB);
1799
1800 } else {
1801 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1802 Instruction *Inst = BI++;
Chris Lattner50846cf2008-04-24 00:21:50 +00001803 if (Inst->getType() == Type::VoidTy ||
1804 isa<StructType>(Inst->getType()) ||
1805 isa<TerminatorInst>(Inst))
1806 continue;
1807
1808 LatticeVal &IV = Values[Inst];
1809 if (!IV.isConstant() && !IV.isUndefined())
1810 continue;
1811
1812 Constant *Const = IV.isConstant()
1813 ? IV.getConstant() : UndefValue::get(Inst->getType());
1814 DOUT << " Constant: " << *Const << " = " << *Inst;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001815
Chris Lattner50846cf2008-04-24 00:21:50 +00001816 // Replaces all of the uses of a variable with uses of the
1817 // constant.
1818 Inst->replaceAllUsesWith(Const);
1819
1820 // Delete the instruction.
1821 if (!isa<CallInst>(Inst))
1822 Inst->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001823
Chris Lattner50846cf2008-04-24 00:21:50 +00001824 // Hey, we just changed something!
1825 MadeChanges = true;
1826 ++IPNumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001827 }
1828 }
1829
1830 // Now that all instructions in the function are constant folded, erase dead
1831 // blocks, because we can now use ConstantFoldTerminator to get rid of
1832 // in-edges.
1833 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1834 // If there are any PHI nodes in this successor, drop entries for BB now.
1835 BasicBlock *DeadBB = BlocksToErase[i];
1836 while (!DeadBB->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001837 Instruction *I = cast<Instruction>(DeadBB->use_back());
1838 bool Folded = ConstantFoldTerminator(I->getParent());
1839 if (!Folded) {
1840 // The constant folder may not have been able to fold the terminator
1841 // if this is a branch or switch on undef. Fold it manually as a
1842 // branch to the first successor.
1843 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1844 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1845 "Branch should be foldable!");
1846 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1847 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1848 } else {
1849 assert(0 && "Didn't fold away reference to block!");
1850 }
1851
1852 // Make this an uncond branch to the first successor.
1853 TerminatorInst *TI = I->getParent()->getTerminator();
Gabor Greifd6da1d02008-04-06 20:25:17 +00001854 BranchInst::Create(TI->getSuccessor(0), TI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001855
1856 // Remove entries in successor phi nodes to remove edges.
1857 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1858 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1859
1860 // Remove the old terminator.
1861 TI->eraseFromParent();
1862 }
1863 }
1864
1865 // Finally, delete the basic block.
1866 F->getBasicBlockList().erase(DeadBB);
1867 }
1868 BlocksToErase.clear();
1869 }
1870
1871 // If we inferred constant or undef return values for a function, we replaced
1872 // all call uses with the inferred value. This means we don't need to bother
1873 // actually returning anything from the function. Replace all return
1874 // instructions with return undef.
Devang Pateld04d42b2008-03-11 17:32:05 +00001875 // TODO: Process multiple value ret instructions also.
Devang Pateladd320d2008-03-11 05:46:42 +00001876 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001877 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1878 E = RV.end(); I != E; ++I)
1879 if (!I->second.isOverdefined() &&
1880 I->first->getReturnType() != Type::VoidTy) {
1881 Function *F = I->first;
1882 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1883 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1884 if (!isa<UndefValue>(RI->getOperand(0)))
1885 RI->setOperand(0, UndefValue::get(F->getReturnType()));
1886 }
1887
1888 // If we infered constant or undef values for globals variables, we can delete
1889 // the global and any stores that remain to it.
1890 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1891 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1892 E = TG.end(); I != E; ++I) {
1893 GlobalVariable *GV = I->first;
1894 assert(!I->second.isOverdefined() &&
1895 "Overdefined values should have been taken out of the map!");
Chris Lattner56bf9a92008-05-11 01:55:59 +00001896 DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001897 while (!GV->use_empty()) {
1898 StoreInst *SI = cast<StoreInst>(GV->use_back());
1899 SI->eraseFromParent();
1900 }
1901 M.getGlobalList().erase(GV);
1902 ++IPNumGlobalConst;
1903 }
1904
1905 return MadeChanges;
1906}