Dan Gohman | 2d1be87 | 2009-04-16 03:18:22 +0000 | [diff] [blame] | 1 | //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// |
Misha Brukman | fd93908 | 2005-04-21 23:48:37 +0000 | [diff] [blame] | 2 | // |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
Chris Lattner | 4ee451d | 2007-12-29 20:36:04 +0000 | [diff] [blame] | 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
Misha Brukman | fd93908 | 2005-04-21 23:48:37 +0000 | [diff] [blame] | 7 | // |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
Dan Gohman | cec8f9d | 2009-05-19 20:37:36 +0000 | [diff] [blame] | 10 | // This transformation analyzes and transforms the induction variables (and |
| 11 | // computations derived from them) into forms suitable for efficient execution |
| 12 | // on the target. |
| 13 | // |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 14 | // This pass performs a strength reduction on array references inside loops that |
Dan Gohman | cec8f9d | 2009-05-19 20:37:36 +0000 | [diff] [blame] | 15 | // have as one or more of their components the loop induction variable, it |
| 16 | // rewrites expressions to take advantage of scaled-index addressing modes |
| 17 | // available on the target, and it performs a variety of other optimizations |
| 18 | // related to loop induction variables. |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 19 | // |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 20 | // Terminology note: this code has a lot of handling for "post-increment" or |
| 21 | // "post-inc" users. This is not talking about post-increment addressing modes; |
| 22 | // it is instead talking about code like this: |
| 23 | // |
| 24 | // %i = phi [ 0, %entry ], [ %i.next, %latch ] |
| 25 | // ... |
| 26 | // %i.next = add %i, 1 |
| 27 | // %c = icmp eq %i.next, %n |
| 28 | // |
| 29 | // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however |
| 30 | // it's useful to think about these as the same register, with some uses using |
| 31 | // the value of the register before the add and some using // it after. In this |
| 32 | // example, the icmp is a post-increment user, since it uses %i.next, which is |
| 33 | // the value of the induction variable after the increment. The other common |
| 34 | // case of post-increment users is users outside the loop. |
| 35 | // |
| 36 | // TODO: More sophistication in the way Formulae are generated and filtered. |
| 37 | // |
| 38 | // TODO: Handle multiple loops at a time. |
| 39 | // |
| 40 | // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr |
| 41 | // instead of a GlobalValue? |
| 42 | // |
| 43 | // TODO: When truncation is free, truncate ICmp users' operands to make it a |
| 44 | // smaller encoding (on x86 at least). |
| 45 | // |
| 46 | // TODO: When a negated register is used by an add (such as in a list of |
| 47 | // multiple base registers, or as the increment expression in an addrec), |
| 48 | // we may not actually need both reg and (-1 * reg) in registers; the |
| 49 | // negation can be implemented by using a sub instead of an add. The |
| 50 | // lack of support for taking this into consideration when making |
| 51 | // register pressure decisions is partly worked around by the "Special" |
| 52 | // use kind. |
| 53 | // |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 54 | //===----------------------------------------------------------------------===// |
| 55 | |
Chris Lattner | be3e521 | 2005-08-03 23:30:08 +0000 | [diff] [blame] | 56 | #define DEBUG_TYPE "loop-reduce" |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 57 | #include "llvm/Transforms/Scalar.h" |
| 58 | #include "llvm/Constants.h" |
| 59 | #include "llvm/Instructions.h" |
Dan Gohman | e5b01be | 2007-05-04 14:59:09 +0000 | [diff] [blame] | 60 | #include "llvm/IntrinsicInst.h" |
Jeff Cohen | 2f3c9b7 | 2005-03-04 04:04:26 +0000 | [diff] [blame] | 61 | #include "llvm/DerivedTypes.h" |
Dan Gohman | 81db61a | 2009-05-12 02:17:14 +0000 | [diff] [blame] | 62 | #include "llvm/Analysis/IVUsers.h" |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 63 | #include "llvm/Analysis/Dominators.h" |
Devang Patel | 0f54dcb | 2007-03-06 21:14:09 +0000 | [diff] [blame] | 64 | #include "llvm/Analysis/LoopPass.h" |
Nate Begeman | 1699748 | 2005-07-30 00:15:07 +0000 | [diff] [blame] | 65 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
Chris Lattner | e0391be | 2005-08-12 22:06:11 +0000 | [diff] [blame] | 66 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 67 | #include "llvm/Transforms/Utils/Local.h" |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 68 | #include "llvm/ADT/SmallBitVector.h" |
| 69 | #include "llvm/ADT/SetVector.h" |
| 70 | #include "llvm/ADT/DenseSet.h" |
Nate Begeman | 1699748 | 2005-07-30 00:15:07 +0000 | [diff] [blame] | 71 | #include "llvm/Support/Debug.h" |
Dan Gohman | afc36a9 | 2009-05-02 18:29:22 +0000 | [diff] [blame] | 72 | #include "llvm/Support/ValueHandle.h" |
Daniel Dunbar | 460f656 | 2009-07-26 09:48:23 +0000 | [diff] [blame] | 73 | #include "llvm/Support/raw_ostream.h" |
Evan Cheng | d277f2c | 2006-03-13 23:14:23 +0000 | [diff] [blame] | 74 | #include "llvm/Target/TargetLowering.h" |
Jeff Cohen | cfb1d42 | 2005-07-30 18:22:27 +0000 | [diff] [blame] | 75 | #include <algorithm> |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 76 | using namespace llvm; |
| 77 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 78 | namespace { |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 79 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 80 | /// RegSortData - This class holds data which is used to order reuse candidates. |
| 81 | class RegSortData { |
| 82 | public: |
| 83 | /// UsedByIndices - This represents the set of LSRUse indices which reference |
| 84 | /// a particular register. |
| 85 | SmallBitVector UsedByIndices; |
| 86 | |
| 87 | RegSortData() {} |
| 88 | |
| 89 | void print(raw_ostream &OS) const; |
| 90 | void dump() const; |
| 91 | }; |
| 92 | |
| 93 | } |
| 94 | |
| 95 | void RegSortData::print(raw_ostream &OS) const { |
| 96 | OS << "[NumUses=" << UsedByIndices.count() << ']'; |
| 97 | } |
| 98 | |
| 99 | void RegSortData::dump() const { |
| 100 | print(errs()); errs() << '\n'; |
| 101 | } |
Dan Gohman | c17e0cf | 2009-02-20 04:17:46 +0000 | [diff] [blame] | 102 | |
Chris Lattner | 0e5f499 | 2006-12-19 21:40:18 +0000 | [diff] [blame] | 103 | namespace { |
Dale Johannesen | dc42f48 | 2007-03-20 00:47:50 +0000 | [diff] [blame] | 104 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 105 | /// RegUseTracker - Map register candidates to information about how they are |
| 106 | /// used. |
| 107 | class RegUseTracker { |
| 108 | typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; |
Dale Johannesen | dc42f48 | 2007-03-20 00:47:50 +0000 | [diff] [blame] | 109 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 110 | RegUsesTy RegUses; |
| 111 | SmallVector<const SCEV *, 16> RegSequence; |
Evan Cheng | d1d6b5c | 2006-03-16 21:53:05 +0000 | [diff] [blame] | 112 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 113 | public: |
| 114 | void CountRegister(const SCEV *Reg, size_t LUIdx); |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 115 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 116 | bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 117 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 118 | const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 119 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 120 | void clear(); |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 121 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 122 | typedef SmallVectorImpl<const SCEV *>::iterator iterator; |
| 123 | typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; |
| 124 | iterator begin() { return RegSequence.begin(); } |
| 125 | iterator end() { return RegSequence.end(); } |
| 126 | const_iterator begin() const { return RegSequence.begin(); } |
| 127 | const_iterator end() const { return RegSequence.end(); } |
| 128 | }; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 129 | |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 130 | } |
| 131 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 132 | void |
| 133 | RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { |
| 134 | std::pair<RegUsesTy::iterator, bool> Pair = |
| 135 | RegUses.insert(std::make_pair(Reg, RegSortData())); |
| 136 | RegSortData &RSD = Pair.first->second; |
| 137 | if (Pair.second) |
| 138 | RegSequence.push_back(Reg); |
| 139 | RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); |
| 140 | RSD.UsedByIndices.set(LUIdx); |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 141 | } |
| 142 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 143 | bool |
| 144 | RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { |
| 145 | if (!RegUses.count(Reg)) return false; |
| 146 | const SmallBitVector &UsedByIndices = |
| 147 | RegUses.find(Reg)->second.UsedByIndices; |
| 148 | int i = UsedByIndices.find_first(); |
| 149 | if (i == -1) return false; |
| 150 | if ((size_t)i != LUIdx) return true; |
| 151 | return UsedByIndices.find_next(i) != -1; |
| 152 | } |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 153 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 154 | const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { |
| 155 | RegUsesTy::const_iterator I = RegUses.find(Reg); |
| 156 | assert(I != RegUses.end() && "Unknown register!"); |
| 157 | return I->second.UsedByIndices; |
| 158 | } |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 159 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 160 | void RegUseTracker::clear() { |
| 161 | RegUses.clear(); |
| 162 | RegSequence.clear(); |
| 163 | } |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 164 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 165 | namespace { |
| 166 | |
| 167 | /// Formula - This class holds information that describes a formula for |
| 168 | /// computing satisfying a use. It may include broken-out immediates and scaled |
| 169 | /// registers. |
| 170 | struct Formula { |
| 171 | /// AM - This is used to represent complex addressing, as well as other kinds |
| 172 | /// of interesting uses. |
| 173 | TargetLowering::AddrMode AM; |
| 174 | |
| 175 | /// BaseRegs - The list of "base" registers for this use. When this is |
| 176 | /// non-empty, AM.HasBaseReg should be set to true. |
| 177 | SmallVector<const SCEV *, 2> BaseRegs; |
| 178 | |
| 179 | /// ScaledReg - The 'scaled' register for this use. This should be non-null |
| 180 | /// when AM.Scale is not zero. |
| 181 | const SCEV *ScaledReg; |
| 182 | |
| 183 | Formula() : ScaledReg(0) {} |
| 184 | |
| 185 | void InitialMatch(const SCEV *S, Loop *L, |
| 186 | ScalarEvolution &SE, DominatorTree &DT); |
| 187 | |
| 188 | unsigned getNumRegs() const; |
| 189 | const Type *getType() const; |
| 190 | |
| 191 | bool referencesReg(const SCEV *S) const; |
| 192 | bool hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| 193 | const RegUseTracker &RegUses) const; |
| 194 | |
| 195 | void print(raw_ostream &OS) const; |
| 196 | void dump() const; |
| 197 | }; |
| 198 | |
| 199 | } |
| 200 | |
| 201 | /// DoInitialMatch - Recurrsion helper for InitialMatch. |
| 202 | static void DoInitialMatch(const SCEV *S, Loop *L, |
| 203 | SmallVectorImpl<const SCEV *> &Good, |
| 204 | SmallVectorImpl<const SCEV *> &Bad, |
| 205 | ScalarEvolution &SE, DominatorTree &DT) { |
| 206 | // Collect expressions which properly dominate the loop header. |
| 207 | if (S->properlyDominates(L->getHeader(), &DT)) { |
| 208 | Good.push_back(S); |
| 209 | return; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 210 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 211 | |
| 212 | // Look at add operands. |
| 213 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| 214 | for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| 215 | I != E; ++I) |
| 216 | DoInitialMatch(*I, L, Good, Bad, SE, DT); |
| 217 | return; |
| 218 | } |
| 219 | |
| 220 | // Look at addrec operands. |
| 221 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) |
| 222 | if (!AR->getStart()->isZero()) { |
| 223 | DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT); |
| 224 | DoInitialMatch(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()), |
| 225 | AR->getStepRecurrence(SE), |
| 226 | AR->getLoop()), |
| 227 | L, Good, Bad, SE, DT); |
| 228 | return; |
| 229 | } |
| 230 | |
| 231 | // Handle a multiplication by -1 (negation) if it didn't fold. |
| 232 | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) |
| 233 | if (Mul->getOperand(0)->isAllOnesValue()) { |
| 234 | SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); |
| 235 | const SCEV *NewMul = SE.getMulExpr(Ops); |
| 236 | |
| 237 | SmallVector<const SCEV *, 4> MyGood; |
| 238 | SmallVector<const SCEV *, 4> MyBad; |
| 239 | DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT); |
| 240 | const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( |
| 241 | SE.getEffectiveSCEVType(NewMul->getType()))); |
| 242 | for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), |
| 243 | E = MyGood.end(); I != E; ++I) |
| 244 | Good.push_back(SE.getMulExpr(NegOne, *I)); |
| 245 | for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), |
| 246 | E = MyBad.end(); I != E; ++I) |
| 247 | Bad.push_back(SE.getMulExpr(NegOne, *I)); |
| 248 | return; |
| 249 | } |
| 250 | |
| 251 | // Ok, we can't do anything interesting. Just stuff the whole thing into a |
| 252 | // register and hope for the best. |
| 253 | Bad.push_back(S); |
| 254 | } |
| 255 | |
| 256 | /// InitialMatch - Incorporate loop-variant parts of S into this Formula, |
| 257 | /// attempting to keep all loop-invariant and loop-computable values in a |
| 258 | /// single base register. |
| 259 | void Formula::InitialMatch(const SCEV *S, Loop *L, |
| 260 | ScalarEvolution &SE, DominatorTree &DT) { |
| 261 | SmallVector<const SCEV *, 4> Good; |
| 262 | SmallVector<const SCEV *, 4> Bad; |
| 263 | DoInitialMatch(S, L, Good, Bad, SE, DT); |
| 264 | if (!Good.empty()) { |
| 265 | BaseRegs.push_back(SE.getAddExpr(Good)); |
| 266 | AM.HasBaseReg = true; |
| 267 | } |
| 268 | if (!Bad.empty()) { |
| 269 | BaseRegs.push_back(SE.getAddExpr(Bad)); |
| 270 | AM.HasBaseReg = true; |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | /// getNumRegs - Return the total number of register operands used by this |
| 275 | /// formula. This does not include register uses implied by non-constant |
| 276 | /// addrec strides. |
| 277 | unsigned Formula::getNumRegs() const { |
| 278 | return !!ScaledReg + BaseRegs.size(); |
| 279 | } |
| 280 | |
| 281 | /// getType - Return the type of this formula, if it has one, or null |
| 282 | /// otherwise. This type is meaningless except for the bit size. |
| 283 | const Type *Formula::getType() const { |
| 284 | return !BaseRegs.empty() ? BaseRegs.front()->getType() : |
| 285 | ScaledReg ? ScaledReg->getType() : |
| 286 | AM.BaseGV ? AM.BaseGV->getType() : |
| 287 | 0; |
| 288 | } |
| 289 | |
| 290 | /// referencesReg - Test if this formula references the given register. |
| 291 | bool Formula::referencesReg(const SCEV *S) const { |
| 292 | return S == ScaledReg || |
| 293 | std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); |
| 294 | } |
| 295 | |
| 296 | /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers |
| 297 | /// which are used by uses other than the use with the given index. |
| 298 | bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, |
| 299 | const RegUseTracker &RegUses) const { |
| 300 | if (ScaledReg) |
| 301 | if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) |
| 302 | return true; |
| 303 | for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), |
| 304 | E = BaseRegs.end(); I != E; ++I) |
| 305 | if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) |
| 306 | return true; |
| 307 | return false; |
| 308 | } |
| 309 | |
| 310 | void Formula::print(raw_ostream &OS) const { |
| 311 | bool First = true; |
| 312 | if (AM.BaseGV) { |
| 313 | if (!First) OS << " + "; else First = false; |
| 314 | WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); |
| 315 | } |
| 316 | if (AM.BaseOffs != 0) { |
| 317 | if (!First) OS << " + "; else First = false; |
| 318 | OS << AM.BaseOffs; |
| 319 | } |
| 320 | for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), |
| 321 | E = BaseRegs.end(); I != E; ++I) { |
| 322 | if (!First) OS << " + "; else First = false; |
| 323 | OS << "reg(" << **I << ')'; |
| 324 | } |
| 325 | if (AM.Scale != 0) { |
| 326 | if (!First) OS << " + "; else First = false; |
| 327 | OS << AM.Scale << "*reg("; |
| 328 | if (ScaledReg) |
| 329 | OS << *ScaledReg; |
| 330 | else |
| 331 | OS << "<unknown>"; |
| 332 | OS << ')'; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | void Formula::dump() const { |
| 337 | print(errs()); errs() << '\n'; |
| 338 | } |
| 339 | |
| 340 | /// getSDiv - Return an expression for LHS /s RHS, if it can be determined, |
| 341 | /// or null otherwise. If IgnoreSignificantBits is true, expressions like |
| 342 | /// (X * Y) /s Y are simplified to Y, ignoring that the multiplication may |
| 343 | /// overflow, which is useful when the result will be used in a context where |
| 344 | /// the most significant bits are ignored. |
| 345 | static const SCEV *getSDiv(const SCEV *LHS, const SCEV *RHS, |
| 346 | ScalarEvolution &SE, |
| 347 | bool IgnoreSignificantBits = false) { |
| 348 | // Handle the trivial case, which works for any SCEV type. |
| 349 | if (LHS == RHS) |
| 350 | return SE.getIntegerSCEV(1, LHS->getType()); |
| 351 | |
| 352 | // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do some |
| 353 | // folding. |
| 354 | if (RHS->isAllOnesValue()) |
| 355 | return SE.getMulExpr(LHS, RHS); |
| 356 | |
| 357 | // Check for a division of a constant by a constant. |
| 358 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { |
| 359 | const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); |
| 360 | if (!RC) |
| 361 | return 0; |
| 362 | if (C->getValue()->getValue().srem(RC->getValue()->getValue()) != 0) |
| 363 | return 0; |
| 364 | return SE.getConstant(C->getValue()->getValue() |
| 365 | .sdiv(RC->getValue()->getValue())); |
| 366 | } |
| 367 | |
| 368 | // Distribute the sdiv over addrec operands. |
| 369 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { |
| 370 | const SCEV *Start = getSDiv(AR->getStart(), RHS, SE, |
| 371 | IgnoreSignificantBits); |
| 372 | if (!Start) return 0; |
| 373 | const SCEV *Step = getSDiv(AR->getStepRecurrence(SE), RHS, SE, |
| 374 | IgnoreSignificantBits); |
| 375 | if (!Step) return 0; |
| 376 | return SE.getAddRecExpr(Start, Step, AR->getLoop()); |
| 377 | } |
| 378 | |
| 379 | // Distribute the sdiv over add operands. |
| 380 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { |
| 381 | SmallVector<const SCEV *, 8> Ops; |
| 382 | for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| 383 | I != E; ++I) { |
| 384 | const SCEV *Op = getSDiv(*I, RHS, SE, |
| 385 | IgnoreSignificantBits); |
| 386 | if (!Op) return 0; |
| 387 | Ops.push_back(Op); |
| 388 | } |
| 389 | return SE.getAddExpr(Ops); |
| 390 | } |
| 391 | |
| 392 | // Check for a multiply operand that we can pull RHS out of. |
| 393 | if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) |
| 394 | if (IgnoreSignificantBits || Mul->hasNoSignedWrap()) { |
| 395 | SmallVector<const SCEV *, 4> Ops; |
| 396 | bool Found = false; |
| 397 | for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); |
| 398 | I != E; ++I) { |
| 399 | if (!Found) |
| 400 | if (const SCEV *Q = getSDiv(*I, RHS, SE, IgnoreSignificantBits)) { |
| 401 | Ops.push_back(Q); |
| 402 | Found = true; |
| 403 | continue; |
| 404 | } |
| 405 | Ops.push_back(*I); |
| 406 | } |
| 407 | return Found ? SE.getMulExpr(Ops) : 0; |
| 408 | } |
| 409 | |
| 410 | // Otherwise we don't know. |
| 411 | return 0; |
| 412 | } |
| 413 | |
| 414 | /// ExtractImmediate - If S involves the addition of a constant integer value, |
| 415 | /// return that integer value, and mutate S to point to a new SCEV with that |
| 416 | /// value excluded. |
| 417 | static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { |
| 418 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { |
| 419 | if (C->getValue()->getValue().getMinSignedBits() <= 64) { |
| 420 | S = SE.getIntegerSCEV(0, C->getType()); |
| 421 | return C->getValue()->getSExtValue(); |
| 422 | } |
| 423 | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| 424 | SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); |
| 425 | int64_t Result = ExtractImmediate(NewOps.front(), SE); |
| 426 | S = SE.getAddExpr(NewOps); |
| 427 | return Result; |
| 428 | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| 429 | SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); |
| 430 | int64_t Result = ExtractImmediate(NewOps.front(), SE); |
| 431 | S = SE.getAddRecExpr(NewOps, AR->getLoop()); |
| 432 | return Result; |
| 433 | } |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | /// ExtractSymbol - If S involves the addition of a GlobalValue address, |
| 438 | /// return that symbol, and mutate S to point to a new SCEV with that |
| 439 | /// value excluded. |
| 440 | static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { |
| 441 | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| 442 | if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { |
| 443 | S = SE.getIntegerSCEV(0, GV->getType()); |
| 444 | return GV; |
| 445 | } |
| 446 | } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| 447 | SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); |
| 448 | GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); |
| 449 | S = SE.getAddExpr(NewOps); |
| 450 | return Result; |
| 451 | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| 452 | SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); |
| 453 | GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); |
| 454 | S = SE.getAddRecExpr(NewOps, AR->getLoop()); |
| 455 | return Result; |
| 456 | } |
| 457 | return 0; |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 458 | } |
| 459 | |
Dan Gohman | f284ce2 | 2009-02-18 00:08:39 +0000 | [diff] [blame] | 460 | /// isAddressUse - Returns true if the specified instruction is using the |
Dale Johannesen | 203af58 | 2008-12-05 21:47:27 +0000 | [diff] [blame] | 461 | /// specified value as an address. |
| 462 | static bool isAddressUse(Instruction *Inst, Value *OperandVal) { |
| 463 | bool isAddress = isa<LoadInst>(Inst); |
| 464 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| 465 | if (SI->getOperand(1) == OperandVal) |
| 466 | isAddress = true; |
| 467 | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| 468 | // Addressing modes can also be folded into prefetches and a variety |
| 469 | // of intrinsics. |
| 470 | switch (II->getIntrinsicID()) { |
| 471 | default: break; |
| 472 | case Intrinsic::prefetch: |
| 473 | case Intrinsic::x86_sse2_loadu_dq: |
| 474 | case Intrinsic::x86_sse2_loadu_pd: |
| 475 | case Intrinsic::x86_sse_loadu_ps: |
| 476 | case Intrinsic::x86_sse_storeu_ps: |
| 477 | case Intrinsic::x86_sse2_storeu_pd: |
| 478 | case Intrinsic::x86_sse2_storeu_dq: |
| 479 | case Intrinsic::x86_sse2_storel_dq: |
| 480 | if (II->getOperand(1) == OperandVal) |
| 481 | isAddress = true; |
| 482 | break; |
| 483 | } |
| 484 | } |
| 485 | return isAddress; |
| 486 | } |
Chris Lattner | 0ae33eb | 2005-10-03 01:04:44 +0000 | [diff] [blame] | 487 | |
Dan Gohman | 21e7722 | 2009-03-09 21:01:17 +0000 | [diff] [blame] | 488 | /// getAccessType - Return the type of the memory being accessed. |
| 489 | static const Type *getAccessType(const Instruction *Inst) { |
Dan Gohman | a537bf8 | 2009-05-18 16:45:28 +0000 | [diff] [blame] | 490 | const Type *AccessTy = Inst->getType(); |
Dan Gohman | 21e7722 | 2009-03-09 21:01:17 +0000 | [diff] [blame] | 491 | if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
Dan Gohman | a537bf8 | 2009-05-18 16:45:28 +0000 | [diff] [blame] | 492 | AccessTy = SI->getOperand(0)->getType(); |
Dan Gohman | 21e7722 | 2009-03-09 21:01:17 +0000 | [diff] [blame] | 493 | else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { |
| 494 | // Addressing modes can also be folded into prefetches and a variety |
| 495 | // of intrinsics. |
| 496 | switch (II->getIntrinsicID()) { |
| 497 | default: break; |
| 498 | case Intrinsic::x86_sse_storeu_ps: |
| 499 | case Intrinsic::x86_sse2_storeu_pd: |
| 500 | case Intrinsic::x86_sse2_storeu_dq: |
| 501 | case Intrinsic::x86_sse2_storel_dq: |
Dan Gohman | a537bf8 | 2009-05-18 16:45:28 +0000 | [diff] [blame] | 502 | AccessTy = II->getOperand(1)->getType(); |
Dan Gohman | 21e7722 | 2009-03-09 21:01:17 +0000 | [diff] [blame] | 503 | break; |
| 504 | } |
| 505 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 506 | |
| 507 | // All pointers have the same requirements, so canonicalize them to an |
| 508 | // arbitrary pointer type to minimize variation. |
| 509 | if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy)) |
| 510 | AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), |
| 511 | PTy->getAddressSpace()); |
| 512 | |
Dan Gohman | a537bf8 | 2009-05-18 16:45:28 +0000 | [diff] [blame] | 513 | return AccessTy; |
Dan Gohman | 21e7722 | 2009-03-09 21:01:17 +0000 | [diff] [blame] | 514 | } |
| 515 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 516 | /// DeleteTriviallyDeadInstructions - If any of the instructions is the |
| 517 | /// specified set are trivially dead, delete them and see if this makes any of |
| 518 | /// their operands subsequently dead. |
| 519 | static bool |
| 520 | DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { |
| 521 | bool Changed = false; |
| 522 | |
| 523 | while (!DeadInsts.empty()) { |
| 524 | Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); |
| 525 | |
| 526 | if (I == 0 || !isInstructionTriviallyDead(I)) |
| 527 | continue; |
| 528 | |
| 529 | for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) |
| 530 | if (Instruction *U = dyn_cast<Instruction>(*OI)) { |
| 531 | *OI = 0; |
| 532 | if (U->use_empty()) |
| 533 | DeadInsts.push_back(U); |
| 534 | } |
| 535 | |
| 536 | I->eraseFromParent(); |
| 537 | Changed = true; |
| 538 | } |
| 539 | |
| 540 | return Changed; |
| 541 | } |
| 542 | |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 543 | namespace { |
Jim Grosbach | 56a1f80 | 2009-11-17 17:53:56 +0000 | [diff] [blame] | 544 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 545 | /// Cost - This class is used to measure and compare candidate formulae. |
| 546 | class Cost { |
| 547 | /// TODO: Some of these could be merged. Also, a lexical ordering |
| 548 | /// isn't always optimal. |
| 549 | unsigned NumRegs; |
| 550 | unsigned AddRecCost; |
| 551 | unsigned NumIVMuls; |
| 552 | unsigned NumBaseAdds; |
| 553 | unsigned ImmCost; |
| 554 | unsigned SetupCost; |
Nate Begeman | 1699748 | 2005-07-30 00:15:07 +0000 | [diff] [blame] | 555 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 556 | public: |
| 557 | Cost() |
| 558 | : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), |
| 559 | SetupCost(0) {} |
Jim Grosbach | 56a1f80 | 2009-11-17 17:53:56 +0000 | [diff] [blame] | 560 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 561 | unsigned getNumRegs() const { return NumRegs; } |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 562 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 563 | bool operator<(const Cost &Other) const; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 564 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 565 | void Loose(); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 566 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 567 | void RateFormula(const Formula &F, |
| 568 | SmallPtrSet<const SCEV *, 16> &Regs, |
| 569 | const DenseSet<const SCEV *> &VisitedRegs, |
| 570 | const Loop *L, |
| 571 | const SmallVectorImpl<int64_t> &Offsets, |
| 572 | ScalarEvolution &SE, DominatorTree &DT); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 573 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 574 | void print(raw_ostream &OS) const; |
| 575 | void dump() const; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 576 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 577 | private: |
| 578 | void RateRegister(const SCEV *Reg, |
| 579 | SmallPtrSet<const SCEV *, 16> &Regs, |
| 580 | const Loop *L, |
| 581 | ScalarEvolution &SE, DominatorTree &DT); |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 582 | void RatePrimaryRegister(const SCEV *Reg, |
| 583 | SmallPtrSet<const SCEV *, 16> &Regs, |
| 584 | const Loop *L, |
| 585 | ScalarEvolution &SE, DominatorTree &DT); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 586 | }; |
| 587 | |
| 588 | } |
| 589 | |
| 590 | /// RateRegister - Tally up interesting quantities from the given register. |
| 591 | void Cost::RateRegister(const SCEV *Reg, |
| 592 | SmallPtrSet<const SCEV *, 16> &Regs, |
| 593 | const Loop *L, |
| 594 | ScalarEvolution &SE, DominatorTree &DT) { |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 595 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { |
| 596 | if (AR->getLoop() == L) |
| 597 | AddRecCost += 1; /// TODO: This should be a function of the stride. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 598 | |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 599 | // If this is an addrec for a loop that's already been visited by LSR, |
| 600 | // don't second-guess its addrec phi nodes. LSR isn't currently smart |
| 601 | // enough to reason about more than one loop at a time. Consider these |
| 602 | // registers free and leave them alone. |
| 603 | else if (L->contains(AR->getLoop()) || |
| 604 | (!AR->getLoop()->contains(L) && |
| 605 | DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { |
| 606 | for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); |
| 607 | PHINode *PN = dyn_cast<PHINode>(I); ++I) |
| 608 | if (SE.isSCEVable(PN->getType()) && |
| 609 | (SE.getEffectiveSCEVType(PN->getType()) == |
| 610 | SE.getEffectiveSCEVType(AR->getType())) && |
| 611 | SE.getSCEV(PN) == AR) |
| 612 | return; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 613 | |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 614 | // If this isn't one of the addrecs that the loop already has, it |
| 615 | // would require a costly new phi and add. TODO: This isn't |
| 616 | // precisely modeled right now. |
| 617 | ++NumBaseAdds; |
| 618 | if (!Regs.count(AR->getStart())) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 619 | RateRegister(AR->getStart(), Regs, L, SE, DT); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 620 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 621 | |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 622 | // Add the step value register, if it needs one. |
| 623 | // TODO: The non-affine case isn't precisely modeled here. |
| 624 | if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) |
| 625 | if (!Regs.count(AR->getStart())) |
| 626 | RateRegister(AR->getOperand(1), Regs, L, SE, DT); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 627 | } |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 628 | ++NumRegs; |
| 629 | |
| 630 | // Rough heuristic; favor registers which don't require extra setup |
| 631 | // instructions in the preheader. |
| 632 | if (!isa<SCEVUnknown>(Reg) && |
| 633 | !isa<SCEVConstant>(Reg) && |
| 634 | !(isa<SCEVAddRecExpr>(Reg) && |
| 635 | (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || |
| 636 | isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) |
| 637 | ++SetupCost; |
| 638 | } |
| 639 | |
| 640 | /// RatePrimaryRegister - Record this register in the set. If we haven't seen it |
| 641 | /// before, rate it. |
| 642 | void Cost::RatePrimaryRegister(const SCEV *Reg, |
Dan Gohman | 7fca229 | 2010-02-16 19:42:34 +0000 | [diff] [blame] | 643 | SmallPtrSet<const SCEV *, 16> &Regs, |
| 644 | const Loop *L, |
| 645 | ScalarEvolution &SE, DominatorTree &DT) { |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 646 | if (Regs.insert(Reg)) |
| 647 | RateRegister(Reg, Regs, L, SE, DT); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 648 | } |
| 649 | |
| 650 | void Cost::RateFormula(const Formula &F, |
| 651 | SmallPtrSet<const SCEV *, 16> &Regs, |
| 652 | const DenseSet<const SCEV *> &VisitedRegs, |
| 653 | const Loop *L, |
| 654 | const SmallVectorImpl<int64_t> &Offsets, |
| 655 | ScalarEvolution &SE, DominatorTree &DT) { |
| 656 | // Tally up the registers. |
| 657 | if (const SCEV *ScaledReg = F.ScaledReg) { |
| 658 | if (VisitedRegs.count(ScaledReg)) { |
| 659 | Loose(); |
| 660 | return; |
| 661 | } |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 662 | RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 663 | } |
| 664 | for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), |
| 665 | E = F.BaseRegs.end(); I != E; ++I) { |
| 666 | const SCEV *BaseReg = *I; |
| 667 | if (VisitedRegs.count(BaseReg)) { |
| 668 | Loose(); |
| 669 | return; |
| 670 | } |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 671 | RatePrimaryRegister(BaseReg, Regs, L, SE, DT); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 672 | |
| 673 | NumIVMuls += isa<SCEVMulExpr>(BaseReg) && |
| 674 | BaseReg->hasComputableLoopEvolution(L); |
| 675 | } |
| 676 | |
| 677 | if (F.BaseRegs.size() > 1) |
| 678 | NumBaseAdds += F.BaseRegs.size() - 1; |
| 679 | |
| 680 | // Tally up the non-zero immediates. |
| 681 | for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), |
| 682 | E = Offsets.end(); I != E; ++I) { |
| 683 | int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; |
| 684 | if (F.AM.BaseGV) |
| 685 | ImmCost += 64; // Handle symbolic values conservatively. |
| 686 | // TODO: This should probably be the pointer size. |
| 687 | else if (Offset != 0) |
| 688 | ImmCost += APInt(64, Offset, true).getMinSignedBits(); |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | /// Loose - Set this cost to a loosing value. |
| 693 | void Cost::Loose() { |
| 694 | NumRegs = ~0u; |
| 695 | AddRecCost = ~0u; |
| 696 | NumIVMuls = ~0u; |
| 697 | NumBaseAdds = ~0u; |
| 698 | ImmCost = ~0u; |
| 699 | SetupCost = ~0u; |
| 700 | } |
| 701 | |
| 702 | /// operator< - Choose the lower cost. |
| 703 | bool Cost::operator<(const Cost &Other) const { |
| 704 | if (NumRegs != Other.NumRegs) |
| 705 | return NumRegs < Other.NumRegs; |
| 706 | if (AddRecCost != Other.AddRecCost) |
| 707 | return AddRecCost < Other.AddRecCost; |
| 708 | if (NumIVMuls != Other.NumIVMuls) |
| 709 | return NumIVMuls < Other.NumIVMuls; |
| 710 | if (NumBaseAdds != Other.NumBaseAdds) |
| 711 | return NumBaseAdds < Other.NumBaseAdds; |
| 712 | if (ImmCost != Other.ImmCost) |
| 713 | return ImmCost < Other.ImmCost; |
| 714 | if (SetupCost != Other.SetupCost) |
| 715 | return SetupCost < Other.SetupCost; |
| 716 | return false; |
| 717 | } |
| 718 | |
| 719 | void Cost::print(raw_ostream &OS) const { |
| 720 | OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); |
| 721 | if (AddRecCost != 0) |
| 722 | OS << ", with addrec cost " << AddRecCost; |
| 723 | if (NumIVMuls != 0) |
| 724 | OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); |
| 725 | if (NumBaseAdds != 0) |
| 726 | OS << ", plus " << NumBaseAdds << " base add" |
| 727 | << (NumBaseAdds == 1 ? "" : "s"); |
| 728 | if (ImmCost != 0) |
| 729 | OS << ", plus " << ImmCost << " imm cost"; |
| 730 | if (SetupCost != 0) |
| 731 | OS << ", plus " << SetupCost << " setup cost"; |
| 732 | } |
| 733 | |
| 734 | void Cost::dump() const { |
| 735 | print(errs()); errs() << '\n'; |
| 736 | } |
| 737 | |
| 738 | namespace { |
| 739 | |
| 740 | /// LSRFixup - An operand value in an instruction which is to be replaced |
| 741 | /// with some equivalent, possibly strength-reduced, replacement. |
| 742 | struct LSRFixup { |
| 743 | /// UserInst - The instruction which will be updated. |
| 744 | Instruction *UserInst; |
| 745 | |
| 746 | /// OperandValToReplace - The operand of the instruction which will |
| 747 | /// be replaced. The operand may be used more than once; every instance |
| 748 | /// will be replaced. |
| 749 | Value *OperandValToReplace; |
| 750 | |
| 751 | /// PostIncLoop - If this user is to use the post-incremented value of an |
| 752 | /// induction variable, this variable is non-null and holds the loop |
| 753 | /// associated with the induction variable. |
| 754 | const Loop *PostIncLoop; |
| 755 | |
| 756 | /// LUIdx - The index of the LSRUse describing the expression which |
| 757 | /// this fixup needs, minus an offset (below). |
| 758 | size_t LUIdx; |
| 759 | |
| 760 | /// Offset - A constant offset to be added to the LSRUse expression. |
| 761 | /// This allows multiple fixups to share the same LSRUse with different |
| 762 | /// offsets, for example in an unrolled loop. |
| 763 | int64_t Offset; |
| 764 | |
| 765 | LSRFixup(); |
| 766 | |
| 767 | void print(raw_ostream &OS) const; |
| 768 | void dump() const; |
| 769 | }; |
| 770 | |
| 771 | } |
| 772 | |
| 773 | LSRFixup::LSRFixup() |
| 774 | : UserInst(0), OperandValToReplace(0), PostIncLoop(0), |
| 775 | LUIdx(~size_t(0)), Offset(0) {} |
| 776 | |
| 777 | void LSRFixup::print(raw_ostream &OS) const { |
| 778 | OS << "UserInst="; |
| 779 | // Store is common and interesting enough to be worth special-casing. |
| 780 | if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { |
| 781 | OS << "store "; |
| 782 | WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); |
| 783 | } else if (UserInst->getType()->isVoidTy()) |
| 784 | OS << UserInst->getOpcodeName(); |
| 785 | else |
| 786 | WriteAsOperand(OS, UserInst, /*PrintType=*/false); |
| 787 | |
| 788 | OS << ", OperandValToReplace="; |
| 789 | WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); |
| 790 | |
| 791 | if (PostIncLoop) { |
| 792 | OS << ", PostIncLoop="; |
| 793 | WriteAsOperand(OS, PostIncLoop->getHeader(), /*PrintType=*/false); |
| 794 | } |
| 795 | |
| 796 | if (LUIdx != ~size_t(0)) |
| 797 | OS << ", LUIdx=" << LUIdx; |
| 798 | |
| 799 | if (Offset != 0) |
| 800 | OS << ", Offset=" << Offset; |
| 801 | } |
| 802 | |
| 803 | void LSRFixup::dump() const { |
| 804 | print(errs()); errs() << '\n'; |
| 805 | } |
| 806 | |
| 807 | namespace { |
| 808 | |
| 809 | /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding |
| 810 | /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. |
| 811 | struct UniquifierDenseMapInfo { |
| 812 | static SmallVector<const SCEV *, 2> getEmptyKey() { |
| 813 | SmallVector<const SCEV *, 2> V; |
| 814 | V.push_back(reinterpret_cast<const SCEV *>(-1)); |
| 815 | return V; |
| 816 | } |
| 817 | |
| 818 | static SmallVector<const SCEV *, 2> getTombstoneKey() { |
| 819 | SmallVector<const SCEV *, 2> V; |
| 820 | V.push_back(reinterpret_cast<const SCEV *>(-2)); |
| 821 | return V; |
| 822 | } |
| 823 | |
| 824 | static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { |
| 825 | unsigned Result = 0; |
| 826 | for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), |
| 827 | E = V.end(); I != E; ++I) |
| 828 | Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); |
| 829 | return Result; |
| 830 | } |
| 831 | |
| 832 | static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, |
| 833 | const SmallVector<const SCEV *, 2> &RHS) { |
| 834 | return LHS == RHS; |
| 835 | } |
| 836 | }; |
| 837 | |
| 838 | /// LSRUse - This class holds the state that LSR keeps for each use in |
| 839 | /// IVUsers, as well as uses invented by LSR itself. It includes information |
| 840 | /// about what kinds of things can be folded into the user, information about |
| 841 | /// the user itself, and information about how the use may be satisfied. |
| 842 | /// TODO: Represent multiple users of the same expression in common? |
| 843 | class LSRUse { |
| 844 | DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; |
| 845 | |
| 846 | public: |
| 847 | /// KindType - An enum for a kind of use, indicating what types of |
| 848 | /// scaled and immediate operands it might support. |
| 849 | enum KindType { |
| 850 | Basic, ///< A normal use, with no folding. |
| 851 | Special, ///< A special case of basic, allowing -1 scales. |
| 852 | Address, ///< An address use; folding according to TargetLowering |
| 853 | ICmpZero ///< An equality icmp with both operands folded into one. |
| 854 | // TODO: Add a generic icmp too? |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 855 | }; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 856 | |
| 857 | KindType Kind; |
| 858 | const Type *AccessTy; |
| 859 | |
| 860 | SmallVector<int64_t, 8> Offsets; |
| 861 | int64_t MinOffset; |
| 862 | int64_t MaxOffset; |
| 863 | |
| 864 | /// AllFixupsOutsideLoop - This records whether all of the fixups using this |
| 865 | /// LSRUse are outside of the loop, in which case some special-case heuristics |
| 866 | /// may be used. |
| 867 | bool AllFixupsOutsideLoop; |
| 868 | |
| 869 | /// Formulae - A list of ways to build a value that can satisfy this user. |
| 870 | /// After the list is populated, one of these is selected heuristically and |
| 871 | /// used to formulate a replacement for OperandValToReplace in UserInst. |
| 872 | SmallVector<Formula, 12> Formulae; |
| 873 | |
| 874 | /// Regs - The set of register candidates used by all formulae in this LSRUse. |
| 875 | SmallPtrSet<const SCEV *, 4> Regs; |
| 876 | |
| 877 | LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T), |
| 878 | MinOffset(INT64_MAX), |
| 879 | MaxOffset(INT64_MIN), |
| 880 | AllFixupsOutsideLoop(true) {} |
| 881 | |
| 882 | bool InsertFormula(size_t LUIdx, const Formula &F); |
| 883 | |
| 884 | void check() const; |
| 885 | |
| 886 | void print(raw_ostream &OS) const; |
| 887 | void dump() const; |
| 888 | }; |
| 889 | |
| 890 | /// InsertFormula - If the given formula has not yet been inserted, add it to |
| 891 | /// the list, and return true. Return false otherwise. |
| 892 | bool LSRUse::InsertFormula(size_t LUIdx, const Formula &F) { |
| 893 | SmallVector<const SCEV *, 2> Key = F.BaseRegs; |
| 894 | if (F.ScaledReg) Key.push_back(F.ScaledReg); |
| 895 | // Unstable sort by host order ok, because this is only used for uniquifying. |
| 896 | std::sort(Key.begin(), Key.end()); |
| 897 | |
| 898 | if (!Uniquifier.insert(Key).second) |
| 899 | return false; |
| 900 | |
| 901 | // Using a register to hold the value of 0 is not profitable. |
| 902 | assert((!F.ScaledReg || !F.ScaledReg->isZero()) && |
| 903 | "Zero allocated in a scaled register!"); |
| 904 | #ifndef NDEBUG |
| 905 | for (SmallVectorImpl<const SCEV *>::const_iterator I = |
| 906 | F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) |
| 907 | assert(!(*I)->isZero() && "Zero allocated in a base register!"); |
| 908 | #endif |
| 909 | |
| 910 | // Add the formula to the list. |
| 911 | Formulae.push_back(F); |
| 912 | |
| 913 | // Record registers now being used by this use. |
| 914 | if (F.ScaledReg) Regs.insert(F.ScaledReg); |
| 915 | Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| 916 | |
| 917 | return true; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 918 | } |
| 919 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 920 | void LSRUse::print(raw_ostream &OS) const { |
| 921 | OS << "LSR Use: Kind="; |
| 922 | switch (Kind) { |
| 923 | case Basic: OS << "Basic"; break; |
| 924 | case Special: OS << "Special"; break; |
| 925 | case ICmpZero: OS << "ICmpZero"; break; |
| 926 | case Address: |
| 927 | OS << "Address of "; |
Duncan Sands | 1df9859 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 928 | if (AccessTy->isPointerTy()) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 929 | OS << "pointer"; // the full pointer type could be really verbose |
| 930 | else |
| 931 | OS << *AccessTy; |
Evan Cheng | cdf43b1 | 2007-10-25 09:11:16 +0000 | [diff] [blame] | 932 | } |
| 933 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 934 | OS << ", Offsets={"; |
| 935 | for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), |
| 936 | E = Offsets.end(); I != E; ++I) { |
| 937 | OS << *I; |
| 938 | if (next(I) != E) |
| 939 | OS << ','; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 940 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 941 | OS << '}'; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 942 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 943 | if (AllFixupsOutsideLoop) |
| 944 | OS << ", all-fixups-outside-loop"; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 945 | } |
| 946 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 947 | void LSRUse::dump() const { |
| 948 | print(errs()); errs() << '\n'; |
| 949 | } |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 950 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 951 | /// isLegalUse - Test whether the use described by AM is "legal", meaning it can |
| 952 | /// be completely folded into the user instruction at isel time. This includes |
| 953 | /// address-mode folding and special icmp tricks. |
| 954 | static bool isLegalUse(const TargetLowering::AddrMode &AM, |
| 955 | LSRUse::KindType Kind, const Type *AccessTy, |
| 956 | const TargetLowering *TLI) { |
| 957 | switch (Kind) { |
| 958 | case LSRUse::Address: |
| 959 | // If we have low-level target information, ask the target if it can |
| 960 | // completely fold this address. |
| 961 | if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); |
| 962 | |
| 963 | // Otherwise, just guess that reg+reg addressing is legal. |
| 964 | return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; |
| 965 | |
| 966 | case LSRUse::ICmpZero: |
| 967 | // There's not even a target hook for querying whether it would be legal to |
| 968 | // fold a GV into an ICmp. |
| 969 | if (AM.BaseGV) |
| 970 | return false; |
| 971 | |
| 972 | // ICmp only has two operands; don't allow more than two non-trivial parts. |
| 973 | if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) |
| 974 | return false; |
| 975 | |
| 976 | // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by |
| 977 | // putting the scaled register in the other operand of the icmp. |
| 978 | if (AM.Scale != 0 && AM.Scale != -1) |
| 979 | return false; |
| 980 | |
| 981 | // If we have low-level target information, ask the target if it can fold an |
| 982 | // integer immediate on an icmp. |
| 983 | if (AM.BaseOffs != 0) { |
| 984 | if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs); |
| 985 | return false; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 986 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 987 | |
| 988 | return true; |
| 989 | |
| 990 | case LSRUse::Basic: |
| 991 | // Only handle single-register values. |
| 992 | return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; |
| 993 | |
| 994 | case LSRUse::Special: |
| 995 | // Only handle -1 scales, or no scale. |
| 996 | return AM.Scale == 0 || AM.Scale == -1; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 997 | } |
| 998 | |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 999 | return false; |
| 1000 | } |
| 1001 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1002 | static bool isLegalUse(TargetLowering::AddrMode AM, |
| 1003 | int64_t MinOffset, int64_t MaxOffset, |
| 1004 | LSRUse::KindType Kind, const Type *AccessTy, |
| 1005 | const TargetLowering *TLI) { |
| 1006 | // Check for overflow. |
| 1007 | if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != |
| 1008 | (MinOffset > 0)) |
| 1009 | return false; |
| 1010 | AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; |
| 1011 | if (isLegalUse(AM, Kind, AccessTy, TLI)) { |
| 1012 | AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; |
| 1013 | // Check for overflow. |
| 1014 | if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != |
| 1015 | (MaxOffset > 0)) |
| 1016 | return false; |
| 1017 | AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; |
| 1018 | return isLegalUse(AM, Kind, AccessTy, TLI); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1019 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1020 | return false; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1021 | } |
| 1022 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1023 | static bool isAlwaysFoldable(int64_t BaseOffs, |
| 1024 | GlobalValue *BaseGV, |
| 1025 | bool HasBaseReg, |
| 1026 | LSRUse::KindType Kind, const Type *AccessTy, |
| 1027 | const TargetLowering *TLI, |
| 1028 | ScalarEvolution &SE) { |
| 1029 | // Fast-path: zero is always foldable. |
| 1030 | if (BaseOffs == 0 && !BaseGV) return true; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1031 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1032 | // Conservatively, create an address with an immediate and a |
| 1033 | // base and a scale. |
| 1034 | TargetLowering::AddrMode AM; |
| 1035 | AM.BaseOffs = BaseOffs; |
| 1036 | AM.BaseGV = BaseGV; |
| 1037 | AM.HasBaseReg = HasBaseReg; |
| 1038 | AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1039 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1040 | return isLegalUse(AM, Kind, AccessTy, TLI); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1041 | } |
| 1042 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1043 | static bool isAlwaysFoldable(const SCEV *S, |
| 1044 | int64_t MinOffset, int64_t MaxOffset, |
| 1045 | bool HasBaseReg, |
| 1046 | LSRUse::KindType Kind, const Type *AccessTy, |
| 1047 | const TargetLowering *TLI, |
| 1048 | ScalarEvolution &SE) { |
| 1049 | // Fast-path: zero is always foldable. |
| 1050 | if (S->isZero()) return true; |
| 1051 | |
| 1052 | // Conservatively, create an address with an immediate and a |
| 1053 | // base and a scale. |
| 1054 | int64_t BaseOffs = ExtractImmediate(S, SE); |
| 1055 | GlobalValue *BaseGV = ExtractSymbol(S, SE); |
| 1056 | |
| 1057 | // If there's anything else involved, it's not foldable. |
| 1058 | if (!S->isZero()) return false; |
| 1059 | |
| 1060 | // Fast-path: zero is always foldable. |
| 1061 | if (BaseOffs == 0 && !BaseGV) return true; |
| 1062 | |
| 1063 | // Conservatively, create an address with an immediate and a |
| 1064 | // base and a scale. |
| 1065 | TargetLowering::AddrMode AM; |
| 1066 | AM.BaseOffs = BaseOffs; |
| 1067 | AM.BaseGV = BaseGV; |
| 1068 | AM.HasBaseReg = HasBaseReg; |
| 1069 | AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; |
| 1070 | |
| 1071 | return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1072 | } |
| 1073 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1074 | /// FormulaSorter - This class implements an ordering for formulae which sorts |
| 1075 | /// the by their standalone cost. |
| 1076 | class FormulaSorter { |
| 1077 | /// These two sets are kept empty, so that we compute standalone costs. |
| 1078 | DenseSet<const SCEV *> VisitedRegs; |
| 1079 | SmallPtrSet<const SCEV *, 16> Regs; |
| 1080 | Loop *L; |
| 1081 | LSRUse *LU; |
| 1082 | ScalarEvolution &SE; |
| 1083 | DominatorTree &DT; |
| 1084 | |
| 1085 | public: |
| 1086 | FormulaSorter(Loop *l, LSRUse &lu, ScalarEvolution &se, DominatorTree &dt) |
| 1087 | : L(l), LU(&lu), SE(se), DT(dt) {} |
| 1088 | |
| 1089 | bool operator()(const Formula &A, const Formula &B) { |
| 1090 | Cost CostA; |
| 1091 | CostA.RateFormula(A, Regs, VisitedRegs, L, LU->Offsets, SE, DT); |
| 1092 | Regs.clear(); |
| 1093 | Cost CostB; |
| 1094 | CostB.RateFormula(B, Regs, VisitedRegs, L, LU->Offsets, SE, DT); |
| 1095 | Regs.clear(); |
| 1096 | return CostA < CostB; |
| 1097 | } |
| 1098 | }; |
| 1099 | |
| 1100 | /// LSRInstance - This class holds state for the main loop strength reduction |
| 1101 | /// logic. |
| 1102 | class LSRInstance { |
| 1103 | IVUsers &IU; |
| 1104 | ScalarEvolution &SE; |
| 1105 | DominatorTree &DT; |
| 1106 | const TargetLowering *const TLI; |
| 1107 | Loop *const L; |
| 1108 | bool Changed; |
| 1109 | |
| 1110 | /// IVIncInsertPos - This is the insert position that the current loop's |
| 1111 | /// induction variable increment should be placed. In simple loops, this is |
| 1112 | /// the latch block's terminator. But in more complicated cases, this is a |
| 1113 | /// position which will dominate all the in-loop post-increment users. |
| 1114 | Instruction *IVIncInsertPos; |
| 1115 | |
| 1116 | /// Factors - Interesting factors between use strides. |
| 1117 | SmallSetVector<int64_t, 8> Factors; |
| 1118 | |
| 1119 | /// Types - Interesting use types, to facilitate truncation reuse. |
| 1120 | SmallSetVector<const Type *, 4> Types; |
| 1121 | |
| 1122 | /// Fixups - The list of operands which are to be replaced. |
| 1123 | SmallVector<LSRFixup, 16> Fixups; |
| 1124 | |
| 1125 | /// Uses - The list of interesting uses. |
| 1126 | SmallVector<LSRUse, 16> Uses; |
| 1127 | |
| 1128 | /// RegUses - Track which uses use which register candidates. |
| 1129 | RegUseTracker RegUses; |
| 1130 | |
| 1131 | void OptimizeShadowIV(); |
| 1132 | bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); |
| 1133 | ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); |
| 1134 | bool OptimizeLoopTermCond(); |
| 1135 | |
| 1136 | void CollectInterestingTypesAndFactors(); |
| 1137 | void CollectFixupsAndInitialFormulae(); |
| 1138 | |
| 1139 | LSRFixup &getNewFixup() { |
| 1140 | Fixups.push_back(LSRFixup()); |
| 1141 | return Fixups.back(); |
| 1142 | } |
| 1143 | |
| 1144 | // Support for sharing of LSRUses between LSRFixups. |
| 1145 | typedef DenseMap<const SCEV *, size_t> UseMapTy; |
| 1146 | UseMapTy UseMap; |
| 1147 | |
| 1148 | bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, |
| 1149 | LSRUse::KindType Kind, const Type *AccessTy); |
| 1150 | |
| 1151 | std::pair<size_t, int64_t> getUse(const SCEV *&Expr, |
| 1152 | LSRUse::KindType Kind, |
| 1153 | const Type *AccessTy); |
| 1154 | |
| 1155 | public: |
| 1156 | void InsertInitialFormula(const SCEV *S, Loop *L, LSRUse &LU, size_t LUIdx); |
| 1157 | void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); |
| 1158 | void CountRegisters(const Formula &F, size_t LUIdx); |
| 1159 | bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); |
| 1160 | |
| 1161 | void CollectLoopInvariantFixupsAndFormulae(); |
| 1162 | |
| 1163 | void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, |
| 1164 | unsigned Depth = 0); |
| 1165 | void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 1166 | void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 1167 | void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 1168 | void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 1169 | void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 1170 | void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); |
| 1171 | void GenerateCrossUseConstantOffsets(); |
| 1172 | void GenerateAllReuseFormulae(); |
| 1173 | |
| 1174 | void FilterOutUndesirableDedicatedRegisters(); |
| 1175 | void NarrowSearchSpaceUsingHeuristics(); |
| 1176 | |
| 1177 | void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| 1178 | Cost &SolutionCost, |
| 1179 | SmallVectorImpl<const Formula *> &Workspace, |
| 1180 | const Cost &CurCost, |
| 1181 | const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| 1182 | DenseSet<const SCEV *> &VisitedRegs) const; |
| 1183 | void Solve(SmallVectorImpl<const Formula *> &Solution) const; |
| 1184 | |
| 1185 | Value *Expand(const LSRFixup &LF, |
| 1186 | const Formula &F, |
| 1187 | BasicBlock::iterator IP, Loop *L, Instruction *IVIncInsertPos, |
| 1188 | SCEVExpander &Rewriter, |
| 1189 | SmallVectorImpl<WeakVH> &DeadInsts, |
| 1190 | ScalarEvolution &SE, DominatorTree &DT) const; |
Dan Gohman | 3a02cbc | 2010-02-16 20:25:07 +0000 | [diff] [blame] | 1191 | void RewriteForPHI(PHINode *PN, const LSRFixup &LF, |
| 1192 | const Formula &F, |
| 1193 | Loop *L, Instruction *IVIncInsertPos, |
| 1194 | SCEVExpander &Rewriter, |
| 1195 | SmallVectorImpl<WeakVH> &DeadInsts, |
| 1196 | ScalarEvolution &SE, DominatorTree &DT, |
| 1197 | Pass *P) const; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1198 | void Rewrite(const LSRFixup &LF, |
| 1199 | const Formula &F, |
| 1200 | Loop *L, Instruction *IVIncInsertPos, |
| 1201 | SCEVExpander &Rewriter, |
| 1202 | SmallVectorImpl<WeakVH> &DeadInsts, |
| 1203 | ScalarEvolution &SE, DominatorTree &DT, |
| 1204 | Pass *P) const; |
| 1205 | void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, |
| 1206 | Pass *P); |
| 1207 | |
| 1208 | LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); |
| 1209 | |
| 1210 | bool getChanged() const { return Changed; } |
| 1211 | |
| 1212 | void print_factors_and_types(raw_ostream &OS) const; |
| 1213 | void print_fixups(raw_ostream &OS) const; |
| 1214 | void print_uses(raw_ostream &OS) const; |
| 1215 | void print(raw_ostream &OS) const; |
| 1216 | void dump() const; |
| 1217 | }; |
| 1218 | |
| 1219 | } |
| 1220 | |
| 1221 | /// OptimizeShadowIV - If IV is used in a int-to-float cast |
| 1222 | /// inside the loop then try to eliminate the cast opeation. |
| 1223 | void LSRInstance::OptimizeShadowIV() { |
| 1224 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
| 1225 | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| 1226 | return; |
| 1227 | |
| 1228 | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); |
| 1229 | UI != E; /* empty */) { |
| 1230 | IVUsers::const_iterator CandidateUI = UI; |
| 1231 | ++UI; |
| 1232 | Instruction *ShadowUse = CandidateUI->getUser(); |
| 1233 | const Type *DestTy = NULL; |
| 1234 | |
| 1235 | /* If shadow use is a int->float cast then insert a second IV |
| 1236 | to eliminate this cast. |
| 1237 | |
| 1238 | for (unsigned i = 0; i < n; ++i) |
| 1239 | foo((double)i); |
| 1240 | |
| 1241 | is transformed into |
| 1242 | |
| 1243 | double d = 0.0; |
| 1244 | for (unsigned i = 0; i < n; ++i, ++d) |
| 1245 | foo(d); |
| 1246 | */ |
| 1247 | if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) |
| 1248 | DestTy = UCast->getDestTy(); |
| 1249 | else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) |
| 1250 | DestTy = SCast->getDestTy(); |
| 1251 | if (!DestTy) continue; |
| 1252 | |
| 1253 | if (TLI) { |
| 1254 | // If target does not support DestTy natively then do not apply |
| 1255 | // this transformation. |
| 1256 | EVT DVT = TLI->getValueType(DestTy); |
| 1257 | if (!TLI->isTypeLegal(DVT)) continue; |
| 1258 | } |
| 1259 | |
| 1260 | PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); |
| 1261 | if (!PH) continue; |
| 1262 | if (PH->getNumIncomingValues() != 2) continue; |
| 1263 | |
| 1264 | const Type *SrcTy = PH->getType(); |
| 1265 | int Mantissa = DestTy->getFPMantissaWidth(); |
| 1266 | if (Mantissa == -1) continue; |
| 1267 | if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) |
| 1268 | continue; |
| 1269 | |
| 1270 | unsigned Entry, Latch; |
| 1271 | if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { |
| 1272 | Entry = 0; |
| 1273 | Latch = 1; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1274 | } else { |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1275 | Entry = 1; |
| 1276 | Latch = 0; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1277 | } |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1278 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1279 | ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); |
| 1280 | if (!Init) continue; |
| 1281 | Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue()); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1282 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1283 | BinaryOperator *Incr = |
| 1284 | dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); |
| 1285 | if (!Incr) continue; |
| 1286 | if (Incr->getOpcode() != Instruction::Add |
| 1287 | && Incr->getOpcode() != Instruction::Sub) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1288 | continue; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1289 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1290 | /* Initialize new IV, double d = 0.0 in above example. */ |
| 1291 | ConstantInt *C = NULL; |
| 1292 | if (Incr->getOperand(0) == PH) |
| 1293 | C = dyn_cast<ConstantInt>(Incr->getOperand(1)); |
| 1294 | else if (Incr->getOperand(1) == PH) |
| 1295 | C = dyn_cast<ConstantInt>(Incr->getOperand(0)); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1296 | else |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1297 | continue; |
| 1298 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1299 | if (!C) continue; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1300 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1301 | // Ignore negative constants, as the code below doesn't handle them |
| 1302 | // correctly. TODO: Remove this restriction. |
| 1303 | if (!C->getValue().isStrictlyPositive()) continue; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1304 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1305 | /* Add new PHINode. */ |
| 1306 | PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1307 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1308 | /* create new increment. '++d' in above example. */ |
| 1309 | Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); |
| 1310 | BinaryOperator *NewIncr = |
| 1311 | BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? |
| 1312 | Instruction::FAdd : Instruction::FSub, |
| 1313 | NewPH, CFP, "IV.S.next.", Incr); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1314 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1315 | NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); |
| 1316 | NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1317 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1318 | /* Remove cast operation */ |
| 1319 | ShadowUse->replaceAllUsesWith(NewPH); |
| 1320 | ShadowUse->eraseFromParent(); |
| 1321 | break; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1322 | } |
| 1323 | } |
| 1324 | |
| 1325 | /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, |
| 1326 | /// set the IV user and stride information and return true, otherwise return |
| 1327 | /// false. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1328 | bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, |
| 1329 | IVStrideUse *&CondUse) { |
| 1330 | for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) |
| 1331 | if (UI->getUser() == Cond) { |
| 1332 | // NOTE: we could handle setcc instructions with multiple uses here, but |
| 1333 | // InstCombine does it as well for simple uses, it's not clear that it |
| 1334 | // occurs enough in real life to handle. |
| 1335 | CondUse = UI; |
| 1336 | return true; |
| 1337 | } |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1338 | return false; |
Evan Cheng | cdf43b1 | 2007-10-25 09:11:16 +0000 | [diff] [blame] | 1339 | } |
| 1340 | |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1341 | /// OptimizeMax - Rewrite the loop's terminating condition if it uses |
| 1342 | /// a max computation. |
| 1343 | /// |
| 1344 | /// This is a narrow solution to a specific, but acute, problem. For loops |
| 1345 | /// like this: |
| 1346 | /// |
| 1347 | /// i = 0; |
| 1348 | /// do { |
| 1349 | /// p[i] = 0.0; |
| 1350 | /// } while (++i < n); |
| 1351 | /// |
| 1352 | /// the trip count isn't just 'n', because 'n' might not be positive. And |
| 1353 | /// unfortunately this can come up even for loops where the user didn't use |
| 1354 | /// a C do-while loop. For example, seemingly well-behaved top-test loops |
| 1355 | /// will commonly be lowered like this: |
| 1356 | // |
| 1357 | /// if (n > 0) { |
| 1358 | /// i = 0; |
| 1359 | /// do { |
| 1360 | /// p[i] = 0.0; |
| 1361 | /// } while (++i < n); |
| 1362 | /// } |
| 1363 | /// |
| 1364 | /// and then it's possible for subsequent optimization to obscure the if |
| 1365 | /// test in such a way that indvars can't find it. |
| 1366 | /// |
| 1367 | /// When indvars can't find the if test in loops like this, it creates a |
| 1368 | /// max expression, which allows it to give the loop a canonical |
| 1369 | /// induction variable: |
| 1370 | /// |
| 1371 | /// i = 0; |
| 1372 | /// max = n < 1 ? 1 : n; |
| 1373 | /// do { |
| 1374 | /// p[i] = 0.0; |
| 1375 | /// } while (++i != max); |
| 1376 | /// |
| 1377 | /// Canonical induction variables are necessary because the loop passes |
| 1378 | /// are designed around them. The most obvious example of this is the |
| 1379 | /// LoopInfo analysis, which doesn't remember trip count values. It |
| 1380 | /// expects to be able to rediscover the trip count each time it is |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1381 | /// needed, and it does this using a simple analysis that only succeeds if |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1382 | /// the loop has a canonical induction variable. |
| 1383 | /// |
| 1384 | /// However, when it comes time to generate code, the maximum operation |
| 1385 | /// can be quite costly, especially if it's inside of an outer loop. |
| 1386 | /// |
| 1387 | /// This function solves this problem by detecting this type of loop and |
| 1388 | /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting |
| 1389 | /// the instructions for the maximum computation. |
| 1390 | /// |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1391 | ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1392 | // Check that the loop matches the pattern we're looking for. |
| 1393 | if (Cond->getPredicate() != CmpInst::ICMP_EQ && |
| 1394 | Cond->getPredicate() != CmpInst::ICMP_NE) |
| 1395 | return Cond; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 1396 | |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1397 | SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); |
| 1398 | if (!Sel || !Sel->hasOneUse()) return Cond; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 1399 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1400 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1401 | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) |
| 1402 | return Cond; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1403 | const SCEV *One = SE.getIntegerSCEV(1, BackedgeTakenCount->getType()); |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 1404 | |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1405 | // Add one to the backedge-taken count to get the trip count. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1406 | const SCEV *IterationCount = SE.getAddExpr(BackedgeTakenCount, One); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1407 | |
| 1408 | // Check for a max calculation that matches the pattern. |
| 1409 | if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount)) |
| 1410 | return Cond; |
| 1411 | const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1412 | if (Max != SE.getSCEV(Sel)) return Cond; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1413 | |
| 1414 | // To handle a max with more than two operands, this optimization would |
| 1415 | // require additional checking and setup. |
| 1416 | if (Max->getNumOperands() != 2) |
| 1417 | return Cond; |
| 1418 | |
| 1419 | const SCEV *MaxLHS = Max->getOperand(0); |
| 1420 | const SCEV *MaxRHS = Max->getOperand(1); |
| 1421 | if (!MaxLHS || MaxLHS != One) return Cond; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1422 | // Check the relevant induction variable for conformance to |
| 1423 | // the pattern. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1424 | const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1425 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); |
| 1426 | if (!AR || !AR->isAffine() || |
| 1427 | AR->getStart() != One || |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1428 | AR->getStepRecurrence(SE) != One) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1429 | return Cond; |
| 1430 | |
| 1431 | assert(AR->getLoop() == L && |
| 1432 | "Loop condition operand is an addrec in a different loop!"); |
| 1433 | |
| 1434 | // Check the right operand of the select, and remember it, as it will |
| 1435 | // be used in the new comparison instruction. |
| 1436 | Value *NewRHS = 0; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1437 | if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1438 | NewRHS = Sel->getOperand(1); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1439 | else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1440 | NewRHS = Sel->getOperand(2); |
| 1441 | if (!NewRHS) return Cond; |
| 1442 | |
| 1443 | // Determine the new comparison opcode. It may be signed or unsigned, |
| 1444 | // and the original comparison may be either equality or inequality. |
| 1445 | CmpInst::Predicate Pred = |
| 1446 | isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; |
| 1447 | if (Cond->getPredicate() == CmpInst::ICMP_EQ) |
| 1448 | Pred = CmpInst::getInversePredicate(Pred); |
| 1449 | |
| 1450 | // Ok, everything looks ok to change the condition into an SLT or SGE and |
| 1451 | // delete the max calculation. |
| 1452 | ICmpInst *NewCond = |
| 1453 | new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); |
| 1454 | |
| 1455 | // Delete the max calculation instructions. |
| 1456 | Cond->replaceAllUsesWith(NewCond); |
| 1457 | CondUse->setUser(NewCond); |
| 1458 | Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); |
| 1459 | Cond->eraseFromParent(); |
| 1460 | Sel->eraseFromParent(); |
| 1461 | if (Cmp->use_empty()) |
| 1462 | Cmp->eraseFromParent(); |
| 1463 | return NewCond; |
Dan Gohman | ad7321f | 2008-09-15 21:22:06 +0000 | [diff] [blame] | 1464 | } |
| 1465 | |
Jim Grosbach | 56a1f80 | 2009-11-17 17:53:56 +0000 | [diff] [blame] | 1466 | /// OptimizeLoopTermCond - Change loop terminating condition to use the |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 1467 | /// postinc iv when possible. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1468 | bool |
| 1469 | LSRInstance::OptimizeLoopTermCond() { |
| 1470 | SmallPtrSet<Instruction *, 4> PostIncs; |
| 1471 | |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 1472 | BasicBlock *LatchBlock = L->getLoopLatch(); |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1473 | SmallVector<BasicBlock*, 8> ExitingBlocks; |
| 1474 | L->getExitingBlocks(ExitingBlocks); |
Jim Grosbach | 56a1f80 | 2009-11-17 17:53:56 +0000 | [diff] [blame] | 1475 | |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1476 | for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| 1477 | BasicBlock *ExitingBlock = ExitingBlocks[i]; |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 1478 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1479 | // Get the terminating condition for the loop if possible. If we |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1480 | // can, we want to change it to use a post-incremented version of its |
| 1481 | // induction variable, to allow coalescing the live ranges for the IV into |
| 1482 | // one register value. |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 1483 | |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1484 | BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| 1485 | if (!TermBr) |
| 1486 | continue; |
| 1487 | // FIXME: Overly conservative, termination condition could be an 'or' etc.. |
| 1488 | if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) |
| 1489 | continue; |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 1490 | |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1491 | // Search IVUsesByStride to find Cond's IVUse if there is one. |
| 1492 | IVStrideUse *CondUse = 0; |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1493 | ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1494 | if (!FindIVUserForCond(Cond, CondUse)) |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1495 | continue; |
| 1496 | |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1497 | // If the trip count is computed in terms of a max (due to ScalarEvolution |
| 1498 | // being unable to find a sufficient guard, for example), change the loop |
| 1499 | // comparison to use SLT or ULT instead of NE. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1500 | // One consequence of doing this now is that it disrupts the count-down |
| 1501 | // optimization. That's not always a bad thing though, because in such |
| 1502 | // cases it may still be worthwhile to avoid a max. |
| 1503 | Cond = OptimizeMax(Cond, CondUse); |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1504 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1505 | // If this exiting block dominates the latch block, it may also use |
| 1506 | // the post-inc value if it won't be shared with other uses. |
| 1507 | // Check for dominance. |
| 1508 | if (!DT.dominates(ExitingBlock, LatchBlock)) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1509 | continue; |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1510 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1511 | // Conservatively avoid trying to use the post-inc value in non-latch |
| 1512 | // exits if there may be pre-inc users in intervening blocks. |
Dan Gohman | 590bfe8 | 2010-02-14 03:21:49 +0000 | [diff] [blame] | 1513 | if (LatchBlock != ExitingBlock) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1514 | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) |
| 1515 | // Test if the use is reachable from the exiting block. This dominator |
| 1516 | // query is a conservative approximation of reachability. |
| 1517 | if (&*UI != CondUse && |
| 1518 | !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { |
| 1519 | // Conservatively assume there may be reuse if the quotient of their |
| 1520 | // strides could be a legal scale. |
| 1521 | const SCEV *A = CondUse->getStride(); |
| 1522 | const SCEV *B = UI->getStride(); |
| 1523 | if (SE.getTypeSizeInBits(A->getType()) != |
| 1524 | SE.getTypeSizeInBits(B->getType())) { |
| 1525 | if (SE.getTypeSizeInBits(A->getType()) > |
| 1526 | SE.getTypeSizeInBits(B->getType())) |
| 1527 | B = SE.getSignExtendExpr(B, A->getType()); |
| 1528 | else |
| 1529 | A = SE.getSignExtendExpr(A, B->getType()); |
| 1530 | } |
| 1531 | if (const SCEVConstant *D = |
| 1532 | dyn_cast_or_null<SCEVConstant>(getSDiv(B, A, SE))) { |
| 1533 | // Stride of one or negative one can have reuse with non-addresses. |
| 1534 | if (D->getValue()->isOne() || |
| 1535 | D->getValue()->isAllOnesValue()) |
| 1536 | goto decline_post_inc; |
| 1537 | // Avoid weird situations. |
| 1538 | if (D->getValue()->getValue().getMinSignedBits() >= 64 || |
| 1539 | D->getValue()->getValue().isMinSignedValue()) |
| 1540 | goto decline_post_inc; |
Dan Gohman | 590bfe8 | 2010-02-14 03:21:49 +0000 | [diff] [blame] | 1541 | // Without TLI, assume that any stride might be valid, and so any |
| 1542 | // use might be shared. |
| 1543 | if (!TLI) |
| 1544 | goto decline_post_inc; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1545 | // Check for possible scaled-address reuse. |
| 1546 | const Type *AccessTy = getAccessType(UI->getUser()); |
| 1547 | TargetLowering::AddrMode AM; |
| 1548 | AM.Scale = D->getValue()->getSExtValue(); |
Dan Gohman | 2763dfd | 2010-02-14 02:45:21 +0000 | [diff] [blame] | 1549 | if (TLI->isLegalAddressingMode(AM, AccessTy)) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1550 | goto decline_post_inc; |
| 1551 | AM.Scale = -AM.Scale; |
Dan Gohman | 2763dfd | 2010-02-14 02:45:21 +0000 | [diff] [blame] | 1552 | if (TLI->isLegalAddressingMode(AM, AccessTy)) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1553 | goto decline_post_inc; |
| 1554 | } |
| 1555 | } |
| 1556 | |
David Greene | 63c9463 | 2009-12-23 22:58:38 +0000 | [diff] [blame] | 1557 | DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1558 | << *Cond << '\n'); |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1559 | |
| 1560 | // It's possible for the setcc instruction to be anywhere in the loop, and |
| 1561 | // possible for it to have multiple users. If it is not immediately before |
| 1562 | // the exiting block branch, move it. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1563 | if (&*++BasicBlock::iterator(Cond) != TermBr) { |
| 1564 | if (Cond->hasOneUse()) { |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1565 | Cond->moveBefore(TermBr); |
| 1566 | } else { |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1567 | // Clone the terminating condition and insert into the loopend. |
| 1568 | ICmpInst *OldCond = Cond; |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1569 | Cond = cast<ICmpInst>(Cond->clone()); |
| 1570 | Cond->setName(L->getHeader()->getName() + ".termcond"); |
| 1571 | ExitingBlock->getInstList().insert(TermBr, Cond); |
| 1572 | |
| 1573 | // Clone the IVUse, as the old use still exists! |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1574 | CondUse = &IU.AddUser(CondUse->getStride(), CondUse->getOffset(), |
| 1575 | Cond, CondUse->getOperandValToReplace()); |
| 1576 | TermBr->replaceUsesOfWith(OldCond, Cond); |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1577 | } |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 1578 | } |
| 1579 | |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1580 | // If we get to here, we know that we can transform the setcc instruction to |
| 1581 | // use the post-incremented version of the IV, allowing us to coalesce the |
| 1582 | // live ranges for the IV correctly. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1583 | CondUse->setOffset(SE.getMinusSCEV(CondUse->getOffset(), |
| 1584 | CondUse->getStride())); |
Evan Cheng | 076e085 | 2009-11-17 18:10:11 +0000 | [diff] [blame] | 1585 | CondUse->setIsUseOfPostIncrementedValue(true); |
| 1586 | Changed = true; |
| 1587 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1588 | PostIncs.insert(Cond); |
| 1589 | decline_post_inc:; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 1590 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1591 | |
| 1592 | // Determine an insertion point for the loop induction variable increment. It |
| 1593 | // must dominate all the post-inc comparisons we just set up, and it must |
| 1594 | // dominate the loop latch edge. |
| 1595 | IVIncInsertPos = L->getLoopLatch()->getTerminator(); |
| 1596 | for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), |
| 1597 | E = PostIncs.end(); I != E; ++I) { |
| 1598 | BasicBlock *BB = |
| 1599 | DT.findNearestCommonDominator(IVIncInsertPos->getParent(), |
| 1600 | (*I)->getParent()); |
| 1601 | if (BB == (*I)->getParent()) |
| 1602 | IVIncInsertPos = *I; |
| 1603 | else if (BB != IVIncInsertPos->getParent()) |
| 1604 | IVIncInsertPos = BB->getTerminator(); |
| 1605 | } |
| 1606 | |
| 1607 | return Changed; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 1608 | } |
| 1609 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1610 | bool |
| 1611 | LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, |
| 1612 | LSRUse::KindType Kind, const Type *AccessTy) { |
| 1613 | int64_t NewMinOffset = LU.MinOffset; |
| 1614 | int64_t NewMaxOffset = LU.MaxOffset; |
| 1615 | const Type *NewAccessTy = AccessTy; |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1616 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1617 | // Check for a mismatched kind. It's tempting to collapse mismatched kinds to |
| 1618 | // something conservative, however this can pessimize in the case that one of |
| 1619 | // the uses will have all its uses outside the loop, for example. |
| 1620 | if (LU.Kind != Kind) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1621 | return false; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1622 | // Conservatively assume HasBaseReg is true for now. |
| 1623 | if (NewOffset < LU.MinOffset) { |
| 1624 | if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, /*HasBaseReg=*/true, |
| 1625 | Kind, AccessTy, TLI, SE)) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1626 | return false; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1627 | NewMinOffset = NewOffset; |
| 1628 | } else if (NewOffset > LU.MaxOffset) { |
| 1629 | if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, /*HasBaseReg=*/true, |
| 1630 | Kind, AccessTy, TLI, SE)) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1631 | return false; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1632 | NewMaxOffset = NewOffset; |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 1633 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1634 | // Check for a mismatched access type, and fall back conservatively as needed. |
| 1635 | if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) |
| 1636 | NewAccessTy = Type::getVoidTy(AccessTy->getContext()); |
Dan Gohman | a10756e | 2010-01-21 02:09:26 +0000 | [diff] [blame] | 1637 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1638 | // Update the use. |
| 1639 | LU.MinOffset = NewMinOffset; |
| 1640 | LU.MaxOffset = NewMaxOffset; |
| 1641 | LU.AccessTy = NewAccessTy; |
| 1642 | if (NewOffset != LU.Offsets.back()) |
| 1643 | LU.Offsets.push_back(NewOffset); |
Dan Gohman | 8b0ade3 | 2010-01-21 22:42:49 +0000 | [diff] [blame] | 1644 | return true; |
| 1645 | } |
| 1646 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1647 | /// getUse - Return an LSRUse index and an offset value for a fixup which |
| 1648 | /// needs the given expression, with the given kind and optional access type. |
| 1649 | /// Either reuse an exisitng use or create a new one, as needed. |
| 1650 | std::pair<size_t, int64_t> |
| 1651 | LSRInstance::getUse(const SCEV *&Expr, |
| 1652 | LSRUse::KindType Kind, const Type *AccessTy) { |
| 1653 | const SCEV *Copy = Expr; |
| 1654 | int64_t Offset = ExtractImmediate(Expr, SE); |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 1655 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1656 | // Basic uses can't accept any offset, for example. |
| 1657 | if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, |
| 1658 | Kind, AccessTy, TLI, SE)) { |
| 1659 | Expr = Copy; |
| 1660 | Offset = 0; |
| 1661 | } |
| 1662 | |
| 1663 | std::pair<UseMapTy::iterator, bool> P = |
| 1664 | UseMap.insert(std::make_pair(Expr, 0)); |
| 1665 | if (!P.second) { |
| 1666 | // A use already existed with this base. |
| 1667 | size_t LUIdx = P.first->second; |
| 1668 | LSRUse &LU = Uses[LUIdx]; |
| 1669 | if (reconcileNewOffset(LU, Offset, Kind, AccessTy)) |
| 1670 | // Reuse this use. |
| 1671 | return std::make_pair(LUIdx, Offset); |
| 1672 | } |
| 1673 | |
| 1674 | // Create a new use. |
| 1675 | size_t LUIdx = Uses.size(); |
| 1676 | P.first->second = LUIdx; |
| 1677 | Uses.push_back(LSRUse(Kind, AccessTy)); |
| 1678 | LSRUse &LU = Uses[LUIdx]; |
| 1679 | |
| 1680 | // We don't need to track redundant offsets, but we don't need to go out |
| 1681 | // of our way here to avoid them. |
| 1682 | if (LU.Offsets.empty() || Offset != LU.Offsets.back()) |
| 1683 | LU.Offsets.push_back(Offset); |
| 1684 | |
| 1685 | LU.MinOffset = Offset; |
| 1686 | LU.MaxOffset = Offset; |
| 1687 | return std::make_pair(LUIdx, Offset); |
| 1688 | } |
| 1689 | |
| 1690 | void LSRInstance::CollectInterestingTypesAndFactors() { |
| 1691 | SmallSetVector<const SCEV *, 4> Strides; |
| 1692 | |
Dan Gohman | 1b7bf18 | 2010-02-19 00:05:23 +0000 | [diff] [blame] | 1693 | // Collect interesting types and strides. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1694 | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { |
| 1695 | const SCEV *Stride = UI->getStride(); |
| 1696 | |
| 1697 | // Collect interesting types. |
| 1698 | Types.insert(SE.getEffectiveSCEVType(Stride->getType())); |
| 1699 | |
Dan Gohman | 1b7bf18 | 2010-02-19 00:05:23 +0000 | [diff] [blame] | 1700 | // Add the stride for this loop. |
| 1701 | Strides.insert(Stride); |
| 1702 | |
| 1703 | // Add strides for other mentioned loops. |
| 1704 | for (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(UI->getOffset()); |
| 1705 | AR; AR = dyn_cast<SCEVAddRecExpr>(AR->getStart())) |
| 1706 | Strides.insert(AR->getStepRecurrence(SE)); |
| 1707 | } |
| 1708 | |
| 1709 | // Compute interesting factors from the set of interesting strides. |
| 1710 | for (SmallSetVector<const SCEV *, 4>::const_iterator |
| 1711 | I = Strides.begin(), E = Strides.end(); I != E; ++I) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1712 | for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = |
Dan Gohman | 1b7bf18 | 2010-02-19 00:05:23 +0000 | [diff] [blame] | 1713 | next(I); NewStrideIter != E; ++NewStrideIter) { |
| 1714 | const SCEV *OldStride = *I; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1715 | const SCEV *NewStride = *NewStrideIter; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1716 | |
| 1717 | if (SE.getTypeSizeInBits(OldStride->getType()) != |
| 1718 | SE.getTypeSizeInBits(NewStride->getType())) { |
| 1719 | if (SE.getTypeSizeInBits(OldStride->getType()) > |
| 1720 | SE.getTypeSizeInBits(NewStride->getType())) |
| 1721 | NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); |
| 1722 | else |
| 1723 | OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); |
| 1724 | } |
| 1725 | if (const SCEVConstant *Factor = |
| 1726 | dyn_cast_or_null<SCEVConstant>(getSDiv(NewStride, OldStride, |
| 1727 | SE, true))) { |
| 1728 | if (Factor->getValue()->getValue().getMinSignedBits() <= 64) |
| 1729 | Factors.insert(Factor->getValue()->getValue().getSExtValue()); |
| 1730 | } else if (const SCEVConstant *Factor = |
| 1731 | dyn_cast_or_null<SCEVConstant>(getSDiv(OldStride, NewStride, |
| 1732 | SE, true))) { |
| 1733 | if (Factor->getValue()->getValue().getMinSignedBits() <= 64) |
| 1734 | Factors.insert(Factor->getValue()->getValue().getSExtValue()); |
| 1735 | } |
| 1736 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1737 | |
| 1738 | // If all uses use the same type, don't bother looking for truncation-based |
| 1739 | // reuse. |
| 1740 | if (Types.size() == 1) |
| 1741 | Types.clear(); |
| 1742 | |
| 1743 | DEBUG(print_factors_and_types(dbgs())); |
| 1744 | } |
| 1745 | |
| 1746 | void LSRInstance::CollectFixupsAndInitialFormulae() { |
| 1747 | for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { |
| 1748 | // Record the uses. |
| 1749 | LSRFixup &LF = getNewFixup(); |
| 1750 | LF.UserInst = UI->getUser(); |
| 1751 | LF.OperandValToReplace = UI->getOperandValToReplace(); |
| 1752 | if (UI->isUseOfPostIncrementedValue()) |
| 1753 | LF.PostIncLoop = L; |
| 1754 | |
| 1755 | LSRUse::KindType Kind = LSRUse::Basic; |
| 1756 | const Type *AccessTy = 0; |
| 1757 | if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { |
| 1758 | Kind = LSRUse::Address; |
| 1759 | AccessTy = getAccessType(LF.UserInst); |
| 1760 | } |
| 1761 | |
| 1762 | const SCEV *S = IU.getCanonicalExpr(*UI); |
| 1763 | |
| 1764 | // Equality (== and !=) ICmps are special. We can rewrite (i == N) as |
| 1765 | // (N - i == 0), and this allows (N - i) to be the expression that we work |
| 1766 | // with rather than just N or i, so we can consider the register |
| 1767 | // requirements for both N and i at the same time. Limiting this code to |
| 1768 | // equality icmps is not a problem because all interesting loops use |
| 1769 | // equality icmps, thanks to IndVarSimplify. |
| 1770 | if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) |
| 1771 | if (CI->isEquality()) { |
| 1772 | // Swap the operands if needed to put the OperandValToReplace on the |
| 1773 | // left, for consistency. |
| 1774 | Value *NV = CI->getOperand(1); |
| 1775 | if (NV == LF.OperandValToReplace) { |
| 1776 | CI->setOperand(1, CI->getOperand(0)); |
| 1777 | CI->setOperand(0, NV); |
| 1778 | } |
| 1779 | |
| 1780 | // x == y --> x - y == 0 |
| 1781 | const SCEV *N = SE.getSCEV(NV); |
| 1782 | if (N->isLoopInvariant(L)) { |
| 1783 | Kind = LSRUse::ICmpZero; |
| 1784 | S = SE.getMinusSCEV(N, S); |
| 1785 | } |
| 1786 | |
| 1787 | // -1 and the negations of all interesting strides (except the negation |
| 1788 | // of -1) are now also interesting. |
| 1789 | for (size_t i = 0, e = Factors.size(); i != e; ++i) |
| 1790 | if (Factors[i] != -1) |
| 1791 | Factors.insert(-(uint64_t)Factors[i]); |
| 1792 | Factors.insert(-1); |
| 1793 | } |
| 1794 | |
| 1795 | // Set up the initial formula for this use. |
| 1796 | std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); |
| 1797 | LF.LUIdx = P.first; |
| 1798 | LF.Offset = P.second; |
| 1799 | LSRUse &LU = Uses[LF.LUIdx]; |
| 1800 | LU.AllFixupsOutsideLoop &= !L->contains(LF.UserInst); |
| 1801 | |
| 1802 | // If this is the first use of this LSRUse, give it a formula. |
| 1803 | if (LU.Formulae.empty()) { |
| 1804 | InsertInitialFormula(S, L, LU, LF.LUIdx); |
| 1805 | CountRegisters(LU.Formulae.back(), LF.LUIdx); |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | DEBUG(print_fixups(dbgs())); |
| 1810 | } |
| 1811 | |
| 1812 | void |
| 1813 | LSRInstance::InsertInitialFormula(const SCEV *S, Loop *L, |
| 1814 | LSRUse &LU, size_t LUIdx) { |
| 1815 | Formula F; |
| 1816 | F.InitialMatch(S, L, SE, DT); |
| 1817 | bool Inserted = InsertFormula(LU, LUIdx, F); |
| 1818 | assert(Inserted && "Initial formula already exists!"); (void)Inserted; |
| 1819 | } |
| 1820 | |
| 1821 | void |
| 1822 | LSRInstance::InsertSupplementalFormula(const SCEV *S, |
| 1823 | LSRUse &LU, size_t LUIdx) { |
| 1824 | Formula F; |
| 1825 | F.BaseRegs.push_back(S); |
| 1826 | F.AM.HasBaseReg = true; |
| 1827 | bool Inserted = InsertFormula(LU, LUIdx, F); |
| 1828 | assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; |
| 1829 | } |
| 1830 | |
| 1831 | /// CountRegisters - Note which registers are used by the given formula, |
| 1832 | /// updating RegUses. |
| 1833 | void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { |
| 1834 | if (F.ScaledReg) |
| 1835 | RegUses.CountRegister(F.ScaledReg, LUIdx); |
| 1836 | for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), |
| 1837 | E = F.BaseRegs.end(); I != E; ++I) |
| 1838 | RegUses.CountRegister(*I, LUIdx); |
| 1839 | } |
| 1840 | |
| 1841 | /// InsertFormula - If the given formula has not yet been inserted, add it to |
| 1842 | /// the list, and return true. Return false otherwise. |
| 1843 | bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { |
| 1844 | if (!LU.InsertFormula(LUIdx, F)) |
| 1845 | return false; |
| 1846 | |
| 1847 | CountRegisters(F, LUIdx); |
| 1848 | return true; |
| 1849 | } |
| 1850 | |
| 1851 | /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of |
| 1852 | /// loop-invariant values which we're tracking. These other uses will pin these |
| 1853 | /// values in registers, making them less profitable for elimination. |
| 1854 | /// TODO: This currently misses non-constant addrec step registers. |
| 1855 | /// TODO: Should this give more weight to users inside the loop? |
| 1856 | void |
| 1857 | LSRInstance::CollectLoopInvariantFixupsAndFormulae() { |
| 1858 | SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); |
| 1859 | SmallPtrSet<const SCEV *, 8> Inserted; |
| 1860 | |
| 1861 | while (!Worklist.empty()) { |
| 1862 | const SCEV *S = Worklist.pop_back_val(); |
| 1863 | |
| 1864 | if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) |
| 1865 | Worklist.insert(Worklist.end(), N->op_begin(), N->op_end()); |
| 1866 | else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) |
| 1867 | Worklist.push_back(C->getOperand()); |
| 1868 | else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { |
| 1869 | Worklist.push_back(D->getLHS()); |
| 1870 | Worklist.push_back(D->getRHS()); |
| 1871 | } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { |
| 1872 | if (!Inserted.insert(U)) continue; |
| 1873 | const Value *V = U->getValue(); |
| 1874 | if (const Instruction *Inst = dyn_cast<Instruction>(V)) |
| 1875 | if (L->contains(Inst)) continue; |
| 1876 | for (Value::use_const_iterator UI = V->use_begin(), UE = V->use_end(); |
| 1877 | UI != UE; ++UI) { |
| 1878 | const Instruction *UserInst = dyn_cast<Instruction>(*UI); |
| 1879 | // Ignore non-instructions. |
| 1880 | if (!UserInst) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1881 | continue; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1882 | // Ignore instructions in other functions (as can happen with |
| 1883 | // Constants). |
| 1884 | if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) |
Dan Gohman | 7979b72 | 2010-01-22 00:46:49 +0000 | [diff] [blame] | 1885 | continue; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1886 | // Ignore instructions not dominated by the loop. |
| 1887 | const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? |
| 1888 | UserInst->getParent() : |
| 1889 | cast<PHINode>(UserInst)->getIncomingBlock( |
| 1890 | PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); |
| 1891 | if (!DT.dominates(L->getHeader(), UseBB)) |
| 1892 | continue; |
| 1893 | // Ignore uses which are part of other SCEV expressions, to avoid |
| 1894 | // analyzing them multiple times. |
| 1895 | if (SE.isSCEVable(UserInst->getType()) && |
| 1896 | !isa<SCEVUnknown>(SE.getSCEV(const_cast<Instruction *>(UserInst)))) |
| 1897 | continue; |
| 1898 | // Ignore icmp instructions which are already being analyzed. |
| 1899 | if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { |
| 1900 | unsigned OtherIdx = !UI.getOperandNo(); |
| 1901 | Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); |
| 1902 | if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L)) |
| 1903 | continue; |
| 1904 | } |
| 1905 | |
| 1906 | LSRFixup &LF = getNewFixup(); |
| 1907 | LF.UserInst = const_cast<Instruction *>(UserInst); |
| 1908 | LF.OperandValToReplace = UI.getUse(); |
| 1909 | std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); |
| 1910 | LF.LUIdx = P.first; |
| 1911 | LF.Offset = P.second; |
| 1912 | LSRUse &LU = Uses[LF.LUIdx]; |
| 1913 | LU.AllFixupsOutsideLoop &= L->contains(LF.UserInst); |
| 1914 | InsertSupplementalFormula(U, LU, LF.LUIdx); |
| 1915 | CountRegisters(LU.Formulae.back(), Uses.size() - 1); |
| 1916 | break; |
| 1917 | } |
| 1918 | } |
| 1919 | } |
| 1920 | } |
| 1921 | |
| 1922 | /// CollectSubexprs - Split S into subexpressions which can be pulled out into |
| 1923 | /// separate registers. If C is non-null, multiply each subexpression by C. |
| 1924 | static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, |
| 1925 | SmallVectorImpl<const SCEV *> &Ops, |
| 1926 | ScalarEvolution &SE) { |
| 1927 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| 1928 | // Break out add operands. |
| 1929 | for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); |
| 1930 | I != E; ++I) |
| 1931 | CollectSubexprs(*I, C, Ops, SE); |
| 1932 | return; |
| 1933 | } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
| 1934 | // Split a non-zero base out of an addrec. |
| 1935 | if (!AR->getStart()->isZero()) { |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1936 | CollectSubexprs(SE.getAddRecExpr(SE.getIntegerSCEV(0, AR->getType()), |
| 1937 | AR->getStepRecurrence(SE), |
| 1938 | AR->getLoop()), C, Ops, SE); |
Dan Gohman | 68d6da1 | 2010-02-12 19:35:25 +0000 | [diff] [blame] | 1939 | CollectSubexprs(AR->getStart(), C, Ops, SE); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 1940 | return; |
| 1941 | } |
| 1942 | } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| 1943 | // Break (C * (a + b + c)) into C*a + C*b + C*c. |
| 1944 | if (Mul->getNumOperands() == 2) |
| 1945 | if (const SCEVConstant *Op0 = |
| 1946 | dyn_cast<SCEVConstant>(Mul->getOperand(0))) { |
| 1947 | CollectSubexprs(Mul->getOperand(1), |
| 1948 | C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, |
| 1949 | Ops, SE); |
| 1950 | return; |
| 1951 | } |
| 1952 | } |
| 1953 | |
| 1954 | // Otherwise use the value itself. |
| 1955 | Ops.push_back(C ? SE.getMulExpr(C, S) : S); |
| 1956 | } |
| 1957 | |
| 1958 | /// GenerateReassociations - Split out subexpressions from adds and the bases of |
| 1959 | /// addrecs. |
| 1960 | void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, |
| 1961 | Formula Base, |
| 1962 | unsigned Depth) { |
| 1963 | // Arbitrarily cap recursion to protect compile time. |
| 1964 | if (Depth >= 3) return; |
| 1965 | |
| 1966 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| 1967 | const SCEV *BaseReg = Base.BaseRegs[i]; |
| 1968 | |
| 1969 | SmallVector<const SCEV *, 8> AddOps; |
| 1970 | CollectSubexprs(BaseReg, 0, AddOps, SE); |
| 1971 | if (AddOps.size() == 1) continue; |
| 1972 | |
| 1973 | for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), |
| 1974 | JE = AddOps.end(); J != JE; ++J) { |
| 1975 | // Don't pull a constant into a register if the constant could be folded |
| 1976 | // into an immediate field. |
| 1977 | if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, |
| 1978 | Base.getNumRegs() > 1, |
| 1979 | LU.Kind, LU.AccessTy, TLI, SE)) |
| 1980 | continue; |
| 1981 | |
| 1982 | // Collect all operands except *J. |
| 1983 | SmallVector<const SCEV *, 8> InnerAddOps; |
| 1984 | for (SmallVectorImpl<const SCEV *>::const_iterator K = AddOps.begin(), |
| 1985 | KE = AddOps.end(); K != KE; ++K) |
| 1986 | if (K != J) |
| 1987 | InnerAddOps.push_back(*K); |
| 1988 | |
| 1989 | // Don't leave just a constant behind in a register if the constant could |
| 1990 | // be folded into an immediate field. |
| 1991 | if (InnerAddOps.size() == 1 && |
| 1992 | isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, |
| 1993 | Base.getNumRegs() > 1, |
| 1994 | LU.Kind, LU.AccessTy, TLI, SE)) |
| 1995 | continue; |
| 1996 | |
| 1997 | Formula F = Base; |
| 1998 | F.BaseRegs[i] = SE.getAddExpr(InnerAddOps); |
| 1999 | F.BaseRegs.push_back(*J); |
| 2000 | if (InsertFormula(LU, LUIdx, F)) |
| 2001 | // If that formula hadn't been seen before, recurse to find more like |
| 2002 | // it. |
| 2003 | GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); |
| 2004 | } |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | /// GenerateCombinations - Generate a formula consisting of all of the |
| 2009 | /// loop-dominating registers added into a single register. |
| 2010 | void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, |
Dan Gohman | 441a389 | 2010-02-14 18:51:39 +0000 | [diff] [blame] | 2011 | Formula Base) { |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2012 | // This method is only intersting on a plurality of registers. |
| 2013 | if (Base.BaseRegs.size() <= 1) return; |
| 2014 | |
| 2015 | Formula F = Base; |
| 2016 | F.BaseRegs.clear(); |
| 2017 | SmallVector<const SCEV *, 4> Ops; |
| 2018 | for (SmallVectorImpl<const SCEV *>::const_iterator |
| 2019 | I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { |
| 2020 | const SCEV *BaseReg = *I; |
| 2021 | if (BaseReg->properlyDominates(L->getHeader(), &DT) && |
| 2022 | !BaseReg->hasComputableLoopEvolution(L)) |
| 2023 | Ops.push_back(BaseReg); |
| 2024 | else |
| 2025 | F.BaseRegs.push_back(BaseReg); |
| 2026 | } |
| 2027 | if (Ops.size() > 1) { |
Dan Gohman | ce94736 | 2010-02-14 18:50:49 +0000 | [diff] [blame] | 2028 | const SCEV *Sum = SE.getAddExpr(Ops); |
| 2029 | // TODO: If Sum is zero, it probably means ScalarEvolution missed an |
| 2030 | // opportunity to fold something. For now, just ignore such cases |
| 2031 | // rather than procede with zero in a register. |
| 2032 | if (!Sum->isZero()) { |
| 2033 | F.BaseRegs.push_back(Sum); |
| 2034 | (void)InsertFormula(LU, LUIdx, F); |
| 2035 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2036 | } |
| 2037 | } |
| 2038 | |
| 2039 | /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. |
| 2040 | void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, |
| 2041 | Formula Base) { |
| 2042 | // We can't add a symbolic offset if the address already contains one. |
| 2043 | if (Base.AM.BaseGV) return; |
| 2044 | |
| 2045 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| 2046 | const SCEV *G = Base.BaseRegs[i]; |
| 2047 | GlobalValue *GV = ExtractSymbol(G, SE); |
| 2048 | if (G->isZero() || !GV) |
| 2049 | continue; |
| 2050 | Formula F = Base; |
| 2051 | F.AM.BaseGV = GV; |
| 2052 | if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, |
| 2053 | LU.Kind, LU.AccessTy, TLI)) |
| 2054 | continue; |
| 2055 | F.BaseRegs[i] = G; |
| 2056 | (void)InsertFormula(LU, LUIdx, F); |
| 2057 | } |
| 2058 | } |
| 2059 | |
| 2060 | /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. |
| 2061 | void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, |
| 2062 | Formula Base) { |
| 2063 | // TODO: For now, just add the min and max offset, because it usually isn't |
| 2064 | // worthwhile looking at everything inbetween. |
| 2065 | SmallVector<int64_t, 4> Worklist; |
| 2066 | Worklist.push_back(LU.MinOffset); |
| 2067 | if (LU.MaxOffset != LU.MinOffset) |
| 2068 | Worklist.push_back(LU.MaxOffset); |
| 2069 | |
| 2070 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { |
| 2071 | const SCEV *G = Base.BaseRegs[i]; |
| 2072 | |
| 2073 | for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), |
| 2074 | E = Worklist.end(); I != E; ++I) { |
| 2075 | Formula F = Base; |
| 2076 | F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; |
| 2077 | if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, |
| 2078 | LU.Kind, LU.AccessTy, TLI)) { |
| 2079 | F.BaseRegs[i] = SE.getAddExpr(G, SE.getIntegerSCEV(*I, G->getType())); |
| 2080 | |
| 2081 | (void)InsertFormula(LU, LUIdx, F); |
| 2082 | } |
| 2083 | } |
| 2084 | |
| 2085 | int64_t Imm = ExtractImmediate(G, SE); |
| 2086 | if (G->isZero() || Imm == 0) |
| 2087 | continue; |
| 2088 | Formula F = Base; |
| 2089 | F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; |
| 2090 | if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, |
| 2091 | LU.Kind, LU.AccessTy, TLI)) |
| 2092 | continue; |
| 2093 | F.BaseRegs[i] = G; |
| 2094 | (void)InsertFormula(LU, LUIdx, F); |
| 2095 | } |
| 2096 | } |
| 2097 | |
| 2098 | /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up |
| 2099 | /// the comparison. For example, x == y -> x*c == y*c. |
| 2100 | void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, |
| 2101 | Formula Base) { |
| 2102 | if (LU.Kind != LSRUse::ICmpZero) return; |
| 2103 | |
| 2104 | // Determine the integer type for the base formula. |
| 2105 | const Type *IntTy = Base.getType(); |
| 2106 | if (!IntTy) return; |
| 2107 | if (SE.getTypeSizeInBits(IntTy) > 64) return; |
| 2108 | |
| 2109 | // Don't do this if there is more than one offset. |
| 2110 | if (LU.MinOffset != LU.MaxOffset) return; |
| 2111 | |
| 2112 | assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); |
| 2113 | |
| 2114 | // Check each interesting stride. |
| 2115 | for (SmallSetVector<int64_t, 8>::const_iterator |
| 2116 | I = Factors.begin(), E = Factors.end(); I != E; ++I) { |
| 2117 | int64_t Factor = *I; |
| 2118 | Formula F = Base; |
| 2119 | |
| 2120 | // Check that the multiplication doesn't overflow. |
Dan Gohman | 968cb93 | 2010-02-17 00:41:53 +0000 | [diff] [blame] | 2121 | if (F.AM.BaseOffs == INT64_MIN && Factor == -1) |
| 2122 | continue; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2123 | F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; |
Dan Gohman | 378c0b3 | 2010-02-17 00:42:19 +0000 | [diff] [blame] | 2124 | if (F.AM.BaseOffs / Factor != Base.AM.BaseOffs) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2125 | continue; |
| 2126 | |
| 2127 | // Check that multiplying with the use offset doesn't overflow. |
| 2128 | int64_t Offset = LU.MinOffset; |
Dan Gohman | 968cb93 | 2010-02-17 00:41:53 +0000 | [diff] [blame] | 2129 | if (Offset == INT64_MIN && Factor == -1) |
| 2130 | continue; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2131 | Offset = (uint64_t)Offset * Factor; |
Dan Gohman | 378c0b3 | 2010-02-17 00:42:19 +0000 | [diff] [blame] | 2132 | if (Offset / Factor != LU.MinOffset) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2133 | continue; |
| 2134 | |
| 2135 | // Check that this scale is legal. |
| 2136 | if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) |
| 2137 | continue; |
| 2138 | |
| 2139 | // Compensate for the use having MinOffset built into it. |
| 2140 | F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; |
| 2141 | |
| 2142 | const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy); |
| 2143 | |
| 2144 | // Check that multiplying with each base register doesn't overflow. |
| 2145 | for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { |
| 2146 | F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); |
| 2147 | if (getSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) |
| 2148 | goto next; |
| 2149 | } |
| 2150 | |
| 2151 | // Check that multiplying with the scaled register doesn't overflow. |
| 2152 | if (F.ScaledReg) { |
| 2153 | F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); |
| 2154 | if (getSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) |
| 2155 | continue; |
| 2156 | } |
| 2157 | |
| 2158 | // If we make it here and it's legal, add it. |
| 2159 | (void)InsertFormula(LU, LUIdx, F); |
| 2160 | next:; |
| 2161 | } |
| 2162 | } |
| 2163 | |
| 2164 | /// GenerateScales - Generate stride factor reuse formulae by making use of |
| 2165 | /// scaled-offset address modes, for example. |
| 2166 | void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, |
| 2167 | Formula Base) { |
| 2168 | // Determine the integer type for the base formula. |
| 2169 | const Type *IntTy = Base.getType(); |
| 2170 | if (!IntTy) return; |
| 2171 | |
| 2172 | // If this Formula already has a scaled register, we can't add another one. |
| 2173 | if (Base.AM.Scale != 0) return; |
| 2174 | |
| 2175 | // Check each interesting stride. |
| 2176 | for (SmallSetVector<int64_t, 8>::const_iterator |
| 2177 | I = Factors.begin(), E = Factors.end(); I != E; ++I) { |
| 2178 | int64_t Factor = *I; |
| 2179 | |
| 2180 | Base.AM.Scale = Factor; |
| 2181 | Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; |
| 2182 | // Check whether this scale is going to be legal. |
| 2183 | if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, |
| 2184 | LU.Kind, LU.AccessTy, TLI)) { |
| 2185 | // As a special-case, handle special out-of-loop Basic users specially. |
| 2186 | // TODO: Reconsider this special case. |
| 2187 | if (LU.Kind == LSRUse::Basic && |
| 2188 | isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, |
| 2189 | LSRUse::Special, LU.AccessTy, TLI) && |
| 2190 | LU.AllFixupsOutsideLoop) |
| 2191 | LU.Kind = LSRUse::Special; |
| 2192 | else |
| 2193 | continue; |
| 2194 | } |
| 2195 | // For an ICmpZero, negating a solitary base register won't lead to |
| 2196 | // new solutions. |
| 2197 | if (LU.Kind == LSRUse::ICmpZero && |
| 2198 | !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) |
| 2199 | continue; |
| 2200 | // For each addrec base reg, apply the scale, if possible. |
| 2201 | for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) |
| 2202 | if (const SCEVAddRecExpr *AR = |
| 2203 | dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { |
| 2204 | const SCEV *FactorS = SE.getIntegerSCEV(Factor, IntTy); |
| 2205 | if (FactorS->isZero()) |
| 2206 | continue; |
| 2207 | // Divide out the factor, ignoring high bits, since we'll be |
| 2208 | // scaling the value back up in the end. |
| 2209 | if (const SCEV *Quotient = getSDiv(AR, FactorS, SE, true)) { |
| 2210 | // TODO: This could be optimized to avoid all the copying. |
| 2211 | Formula F = Base; |
| 2212 | F.ScaledReg = Quotient; |
| 2213 | std::swap(F.BaseRegs[i], F.BaseRegs.back()); |
| 2214 | F.BaseRegs.pop_back(); |
| 2215 | (void)InsertFormula(LU, LUIdx, F); |
| 2216 | } |
| 2217 | } |
| 2218 | } |
| 2219 | } |
| 2220 | |
| 2221 | /// GenerateTruncates - Generate reuse formulae from different IV types. |
| 2222 | void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, |
| 2223 | Formula Base) { |
| 2224 | // This requires TargetLowering to tell us which truncates are free. |
| 2225 | if (!TLI) return; |
| 2226 | |
| 2227 | // Don't bother truncating symbolic values. |
| 2228 | if (Base.AM.BaseGV) return; |
| 2229 | |
| 2230 | // Determine the integer type for the base formula. |
| 2231 | const Type *DstTy = Base.getType(); |
| 2232 | if (!DstTy) return; |
| 2233 | DstTy = SE.getEffectiveSCEVType(DstTy); |
| 2234 | |
| 2235 | for (SmallSetVector<const Type *, 4>::const_iterator |
| 2236 | I = Types.begin(), E = Types.end(); I != E; ++I) { |
| 2237 | const Type *SrcTy = *I; |
| 2238 | if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { |
| 2239 | Formula F = Base; |
| 2240 | |
| 2241 | if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); |
| 2242 | for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), |
| 2243 | JE = F.BaseRegs.end(); J != JE; ++J) |
| 2244 | *J = SE.getAnyExtendExpr(*J, SrcTy); |
| 2245 | |
| 2246 | // TODO: This assumes we've done basic processing on all uses and |
| 2247 | // have an idea what the register usage is. |
| 2248 | if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) |
| 2249 | continue; |
| 2250 | |
| 2251 | (void)InsertFormula(LU, LUIdx, F); |
| 2252 | } |
| 2253 | } |
| 2254 | } |
| 2255 | |
| 2256 | namespace { |
| 2257 | |
Dan Gohman | 6020d85 | 2010-02-14 18:51:20 +0000 | [diff] [blame] | 2258 | /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2259 | /// defer modifications so that the search phase doesn't have to worry about |
| 2260 | /// the data structures moving underneath it. |
| 2261 | struct WorkItem { |
| 2262 | size_t LUIdx; |
| 2263 | int64_t Imm; |
| 2264 | const SCEV *OrigReg; |
| 2265 | |
| 2266 | WorkItem(size_t LI, int64_t I, const SCEV *R) |
| 2267 | : LUIdx(LI), Imm(I), OrigReg(R) {} |
| 2268 | |
| 2269 | void print(raw_ostream &OS) const; |
| 2270 | void dump() const; |
| 2271 | }; |
| 2272 | |
| 2273 | } |
| 2274 | |
| 2275 | void WorkItem::print(raw_ostream &OS) const { |
| 2276 | OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx |
| 2277 | << " , add offset " << Imm; |
| 2278 | } |
| 2279 | |
| 2280 | void WorkItem::dump() const { |
| 2281 | print(errs()); errs() << '\n'; |
| 2282 | } |
| 2283 | |
| 2284 | /// GenerateCrossUseConstantOffsets - Look for registers which are a constant |
| 2285 | /// distance apart and try to form reuse opportunities between them. |
| 2286 | void LSRInstance::GenerateCrossUseConstantOffsets() { |
| 2287 | // Group the registers by their value without any added constant offset. |
| 2288 | typedef std::map<int64_t, const SCEV *> ImmMapTy; |
| 2289 | typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; |
| 2290 | RegMapTy Map; |
| 2291 | DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; |
| 2292 | SmallVector<const SCEV *, 8> Sequence; |
| 2293 | for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); |
| 2294 | I != E; ++I) { |
| 2295 | const SCEV *Reg = *I; |
| 2296 | int64_t Imm = ExtractImmediate(Reg, SE); |
| 2297 | std::pair<RegMapTy::iterator, bool> Pair = |
| 2298 | Map.insert(std::make_pair(Reg, ImmMapTy())); |
| 2299 | if (Pair.second) |
| 2300 | Sequence.push_back(Reg); |
| 2301 | Pair.first->second.insert(std::make_pair(Imm, *I)); |
| 2302 | UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); |
| 2303 | } |
| 2304 | |
| 2305 | // Now examine each set of registers with the same base value. Build up |
| 2306 | // a list of work to do and do the work in a separate step so that we're |
| 2307 | // not adding formulae and register counts while we're searching. |
| 2308 | SmallVector<WorkItem, 32> WorkItems; |
| 2309 | SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; |
| 2310 | for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), |
| 2311 | E = Sequence.end(); I != E; ++I) { |
| 2312 | const SCEV *Reg = *I; |
| 2313 | const ImmMapTy &Imms = Map.find(Reg)->second; |
| 2314 | |
Dan Gohman | cd045c0 | 2010-02-12 19:20:37 +0000 | [diff] [blame] | 2315 | // It's not worthwhile looking for reuse if there's only one offset. |
| 2316 | if (Imms.size() == 1) |
| 2317 | continue; |
| 2318 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2319 | DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; |
| 2320 | for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); |
| 2321 | J != JE; ++J) |
| 2322 | dbgs() << ' ' << J->first; |
| 2323 | dbgs() << '\n'); |
| 2324 | |
| 2325 | // Examine each offset. |
| 2326 | for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); |
| 2327 | J != JE; ++J) { |
| 2328 | const SCEV *OrigReg = J->second; |
| 2329 | |
| 2330 | int64_t JImm = J->first; |
| 2331 | const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); |
| 2332 | |
| 2333 | if (!isa<SCEVConstant>(OrigReg) && |
| 2334 | UsedByIndicesMap[Reg].count() == 1) { |
| 2335 | DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); |
| 2336 | continue; |
| 2337 | } |
| 2338 | |
| 2339 | // Conservatively examine offsets between this orig reg a few selected |
| 2340 | // other orig regs. |
| 2341 | ImmMapTy::const_iterator OtherImms[] = { |
| 2342 | Imms.begin(), prior(Imms.end()), |
| 2343 | Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) |
| 2344 | }; |
| 2345 | for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { |
| 2346 | ImmMapTy::const_iterator M = OtherImms[i]; |
Dan Gohman | cd045c0 | 2010-02-12 19:20:37 +0000 | [diff] [blame] | 2347 | if (M == J || M == JE) continue; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2348 | |
| 2349 | // Compute the difference between the two. |
| 2350 | int64_t Imm = (uint64_t)JImm - M->first; |
| 2351 | for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; |
| 2352 | LUIdx = UsedByIndices.find_next(LUIdx)) |
| 2353 | // Make a memo of this use, offset, and register tuple. |
| 2354 | if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) |
| 2355 | WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); |
Evan Cheng | 586f69a | 2009-11-12 07:35:05 +0000 | [diff] [blame] | 2356 | } |
| 2357 | } |
| 2358 | } |
| 2359 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2360 | Map.clear(); |
| 2361 | Sequence.clear(); |
| 2362 | UsedByIndicesMap.clear(); |
| 2363 | UniqueItems.clear(); |
| 2364 | |
| 2365 | // Now iterate through the worklist and add new formulae. |
| 2366 | for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), |
| 2367 | E = WorkItems.end(); I != E; ++I) { |
| 2368 | const WorkItem &WI = *I; |
| 2369 | size_t LUIdx = WI.LUIdx; |
| 2370 | LSRUse &LU = Uses[LUIdx]; |
| 2371 | int64_t Imm = WI.Imm; |
| 2372 | const SCEV *OrigReg = WI.OrigReg; |
| 2373 | |
| 2374 | const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); |
| 2375 | const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); |
| 2376 | unsigned BitWidth = SE.getTypeSizeInBits(IntTy); |
| 2377 | |
| 2378 | // TODO: Use a more targetted data structure. |
| 2379 | for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { |
| 2380 | Formula F = LU.Formulae[L]; |
| 2381 | // Use the immediate in the scaled register. |
| 2382 | if (F.ScaledReg == OrigReg) { |
| 2383 | int64_t Offs = (uint64_t)F.AM.BaseOffs + |
| 2384 | Imm * (uint64_t)F.AM.Scale; |
| 2385 | // Don't create 50 + reg(-50). |
| 2386 | if (F.referencesReg(SE.getSCEV( |
| 2387 | ConstantInt::get(IntTy, -(uint64_t)Offs)))) |
| 2388 | continue; |
| 2389 | Formula NewF = F; |
| 2390 | NewF.AM.BaseOffs = Offs; |
| 2391 | if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, |
| 2392 | LU.Kind, LU.AccessTy, TLI)) |
| 2393 | continue; |
| 2394 | NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); |
| 2395 | |
| 2396 | // If the new scale is a constant in a register, and adding the constant |
| 2397 | // value to the immediate would produce a value closer to zero than the |
| 2398 | // immediate itself, then the formula isn't worthwhile. |
| 2399 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) |
| 2400 | if (C->getValue()->getValue().isNegative() != |
| 2401 | (NewF.AM.BaseOffs < 0) && |
| 2402 | (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) |
| 2403 | .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs())) |
| 2404 | continue; |
| 2405 | |
| 2406 | // OK, looks good. |
| 2407 | (void)InsertFormula(LU, LUIdx, NewF); |
| 2408 | } else { |
| 2409 | // Use the immediate in a base register. |
| 2410 | for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { |
| 2411 | const SCEV *BaseReg = F.BaseRegs[N]; |
| 2412 | if (BaseReg != OrigReg) |
| 2413 | continue; |
| 2414 | Formula NewF = F; |
| 2415 | NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; |
| 2416 | if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, |
| 2417 | LU.Kind, LU.AccessTy, TLI)) |
| 2418 | continue; |
| 2419 | NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); |
| 2420 | |
| 2421 | // If the new formula has a constant in a register, and adding the |
| 2422 | // constant value to the immediate would produce a value closer to |
| 2423 | // zero than the immediate itself, then the formula isn't worthwhile. |
| 2424 | for (SmallVectorImpl<const SCEV *>::const_iterator |
| 2425 | J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); |
| 2426 | J != JE; ++J) |
| 2427 | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) |
| 2428 | if (C->getValue()->getValue().isNegative() != |
| 2429 | (NewF.AM.BaseOffs < 0) && |
| 2430 | C->getValue()->getValue().abs() |
| 2431 | .ule(APInt(BitWidth, NewF.AM.BaseOffs).abs())) |
| 2432 | goto skip_formula; |
| 2433 | |
| 2434 | // Ok, looks good. |
| 2435 | (void)InsertFormula(LU, LUIdx, NewF); |
| 2436 | break; |
| 2437 | skip_formula:; |
| 2438 | } |
| 2439 | } |
| 2440 | } |
| 2441 | } |
Dale Johannesen | c1acc3f | 2009-05-11 17:15:42 +0000 | [diff] [blame] | 2442 | } |
| 2443 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2444 | /// GenerateAllReuseFormulae - Generate formulae for each use. |
| 2445 | void |
| 2446 | LSRInstance::GenerateAllReuseFormulae() { |
Dan Gohman | c2385a0 | 2010-02-16 01:42:53 +0000 | [diff] [blame] | 2447 | // This is split into multiple loops so that hasRegsUsedByUsesOtherThan |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2448 | // queries are more precise. |
| 2449 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 2450 | LSRUse &LU = Uses[LUIdx]; |
| 2451 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 2452 | GenerateReassociations(LU, LUIdx, LU.Formulae[i]); |
| 2453 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 2454 | GenerateCombinations(LU, LUIdx, LU.Formulae[i]); |
| 2455 | } |
| 2456 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 2457 | LSRUse &LU = Uses[LUIdx]; |
| 2458 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 2459 | GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); |
| 2460 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 2461 | GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); |
| 2462 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 2463 | GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); |
| 2464 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 2465 | GenerateScales(LU, LUIdx, LU.Formulae[i]); |
Dan Gohman | c2385a0 | 2010-02-16 01:42:53 +0000 | [diff] [blame] | 2466 | } |
| 2467 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 2468 | LSRUse &LU = Uses[LUIdx]; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2469 | for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) |
| 2470 | GenerateTruncates(LU, LUIdx, LU.Formulae[i]); |
| 2471 | } |
| 2472 | |
| 2473 | GenerateCrossUseConstantOffsets(); |
| 2474 | } |
| 2475 | |
| 2476 | /// If their are multiple formulae with the same set of registers used |
| 2477 | /// by other uses, pick the best one and delete the others. |
| 2478 | void LSRInstance::FilterOutUndesirableDedicatedRegisters() { |
| 2479 | #ifndef NDEBUG |
| 2480 | bool Changed = false; |
| 2481 | #endif |
| 2482 | |
| 2483 | // Collect the best formula for each unique set of shared registers. This |
| 2484 | // is reset for each use. |
| 2485 | typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> |
| 2486 | BestFormulaeTy; |
| 2487 | BestFormulaeTy BestFormulae; |
| 2488 | |
| 2489 | for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { |
| 2490 | LSRUse &LU = Uses[LUIdx]; |
| 2491 | FormulaSorter Sorter(L, LU, SE, DT); |
| 2492 | |
| 2493 | // Clear out the set of used regs; it will be recomputed. |
| 2494 | LU.Regs.clear(); |
| 2495 | |
| 2496 | for (size_t FIdx = 0, NumForms = LU.Formulae.size(); |
| 2497 | FIdx != NumForms; ++FIdx) { |
| 2498 | Formula &F = LU.Formulae[FIdx]; |
| 2499 | |
| 2500 | SmallVector<const SCEV *, 2> Key; |
| 2501 | for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), |
| 2502 | JE = F.BaseRegs.end(); J != JE; ++J) { |
| 2503 | const SCEV *Reg = *J; |
| 2504 | if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) |
| 2505 | Key.push_back(Reg); |
| 2506 | } |
| 2507 | if (F.ScaledReg && |
| 2508 | RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) |
| 2509 | Key.push_back(F.ScaledReg); |
| 2510 | // Unstable sort by host order ok, because this is only used for |
| 2511 | // uniquifying. |
| 2512 | std::sort(Key.begin(), Key.end()); |
| 2513 | |
| 2514 | std::pair<BestFormulaeTy::const_iterator, bool> P = |
| 2515 | BestFormulae.insert(std::make_pair(Key, FIdx)); |
| 2516 | if (!P.second) { |
| 2517 | Formula &Best = LU.Formulae[P.first->second]; |
| 2518 | if (Sorter.operator()(F, Best)) |
| 2519 | std::swap(F, Best); |
| 2520 | DEBUG(dbgs() << "Filtering out "; F.print(dbgs()); |
| 2521 | dbgs() << "\n" |
| 2522 | " in favor of "; Best.print(dbgs()); |
| 2523 | dbgs() << '\n'); |
| 2524 | #ifndef NDEBUG |
| 2525 | Changed = true; |
| 2526 | #endif |
| 2527 | std::swap(F, LU.Formulae.back()); |
| 2528 | LU.Formulae.pop_back(); |
| 2529 | --FIdx; |
| 2530 | --NumForms; |
| 2531 | continue; |
| 2532 | } |
| 2533 | if (F.ScaledReg) LU.Regs.insert(F.ScaledReg); |
| 2534 | LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| 2535 | } |
| 2536 | BestFormulae.clear(); |
| 2537 | } |
| 2538 | |
| 2539 | DEBUG(if (Changed) { |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 2540 | dbgs() << "\n" |
| 2541 | "After filtering out undesirable candidates:\n"; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2542 | print_uses(dbgs()); |
| 2543 | }); |
| 2544 | } |
| 2545 | |
| 2546 | /// NarrowSearchSpaceUsingHeuristics - If there are an extrordinary number of |
| 2547 | /// formulae to choose from, use some rough heuristics to prune down the number |
| 2548 | /// of formulae. This keeps the main solver from taking an extrordinary amount |
| 2549 | /// of time in some worst-case scenarios. |
| 2550 | void LSRInstance::NarrowSearchSpaceUsingHeuristics() { |
| 2551 | // This is a rough guess that seems to work fairly well. |
| 2552 | const size_t Limit = UINT16_MAX; |
| 2553 | |
| 2554 | SmallPtrSet<const SCEV *, 4> Taken; |
| 2555 | for (;;) { |
| 2556 | // Estimate the worst-case number of solutions we might consider. We almost |
| 2557 | // never consider this many solutions because we prune the search space, |
| 2558 | // but the pruning isn't always sufficient. |
| 2559 | uint32_t Power = 1; |
| 2560 | for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), |
| 2561 | E = Uses.end(); I != E; ++I) { |
| 2562 | size_t FSize = I->Formulae.size(); |
| 2563 | if (FSize >= Limit) { |
| 2564 | Power = Limit; |
| 2565 | break; |
| 2566 | } |
| 2567 | Power *= FSize; |
| 2568 | if (Power >= Limit) |
| 2569 | break; |
| 2570 | } |
| 2571 | if (Power < Limit) |
| 2572 | break; |
| 2573 | |
| 2574 | // Ok, we have too many of formulae on our hands to conveniently handle. |
| 2575 | // Use a rough heuristic to thin out the list. |
| 2576 | |
| 2577 | // Pick the register which is used by the most LSRUses, which is likely |
| 2578 | // to be a good reuse register candidate. |
| 2579 | const SCEV *Best = 0; |
| 2580 | unsigned BestNum = 0; |
| 2581 | for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); |
| 2582 | I != E; ++I) { |
| 2583 | const SCEV *Reg = *I; |
| 2584 | if (Taken.count(Reg)) |
| 2585 | continue; |
| 2586 | if (!Best) |
| 2587 | Best = Reg; |
| 2588 | else { |
| 2589 | unsigned Count = RegUses.getUsedByIndices(Reg).count(); |
| 2590 | if (Count > BestNum) { |
| 2591 | Best = Reg; |
| 2592 | BestNum = Count; |
| 2593 | } |
| 2594 | } |
| 2595 | } |
| 2596 | |
| 2597 | DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best |
| 2598 | << " will yeild profitable reuse.\n"); |
| 2599 | Taken.insert(Best); |
| 2600 | |
| 2601 | // In any use with formulae which references this register, delete formulae |
| 2602 | // which don't reference it. |
| 2603 | for (SmallVectorImpl<LSRUse>::iterator I = Uses.begin(), |
| 2604 | E = Uses.end(); I != E; ++I) { |
| 2605 | LSRUse &LU = *I; |
| 2606 | if (!LU.Regs.count(Best)) continue; |
| 2607 | |
| 2608 | // Clear out the set of used regs; it will be recomputed. |
| 2609 | LU.Regs.clear(); |
| 2610 | |
| 2611 | for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { |
| 2612 | Formula &F = LU.Formulae[i]; |
| 2613 | if (!F.referencesReg(Best)) { |
| 2614 | DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); |
| 2615 | std::swap(LU.Formulae.back(), F); |
| 2616 | LU.Formulae.pop_back(); |
| 2617 | --e; |
| 2618 | --i; |
| 2619 | continue; |
| 2620 | } |
| 2621 | |
| 2622 | if (F.ScaledReg) LU.Regs.insert(F.ScaledReg); |
| 2623 | LU.Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); |
| 2624 | } |
| 2625 | } |
| 2626 | |
| 2627 | DEBUG(dbgs() << "After pre-selection:\n"; |
| 2628 | print_uses(dbgs())); |
| 2629 | } |
| 2630 | } |
| 2631 | |
| 2632 | /// SolveRecurse - This is the recursive solver. |
| 2633 | void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, |
| 2634 | Cost &SolutionCost, |
| 2635 | SmallVectorImpl<const Formula *> &Workspace, |
| 2636 | const Cost &CurCost, |
| 2637 | const SmallPtrSet<const SCEV *, 16> &CurRegs, |
| 2638 | DenseSet<const SCEV *> &VisitedRegs) const { |
| 2639 | // Some ideas: |
| 2640 | // - prune more: |
| 2641 | // - use more aggressive filtering |
| 2642 | // - sort the formula so that the most profitable solutions are found first |
| 2643 | // - sort the uses too |
| 2644 | // - search faster: |
| 2645 | // - dont compute a cost, and then compare. compare while computing a cost |
| 2646 | // and bail early. |
| 2647 | // - track register sets with SmallBitVector |
| 2648 | |
| 2649 | const LSRUse &LU = Uses[Workspace.size()]; |
| 2650 | |
| 2651 | // If this use references any register that's already a part of the |
| 2652 | // in-progress solution, consider it a requirement that a formula must |
| 2653 | // reference that register in order to be considered. This prunes out |
| 2654 | // unprofitable searching. |
| 2655 | SmallSetVector<const SCEV *, 4> ReqRegs; |
| 2656 | for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), |
| 2657 | E = CurRegs.end(); I != E; ++I) |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 2658 | if (LU.Regs.count(*I)) |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2659 | ReqRegs.insert(*I); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2660 | |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 2661 | bool AnySatisfiedReqRegs = false; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2662 | SmallPtrSet<const SCEV *, 16> NewRegs; |
| 2663 | Cost NewCost; |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 2664 | retry: |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2665 | for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), |
| 2666 | E = LU.Formulae.end(); I != E; ++I) { |
| 2667 | const Formula &F = *I; |
| 2668 | |
| 2669 | // Ignore formulae which do not use any of the required registers. |
| 2670 | for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), |
| 2671 | JE = ReqRegs.end(); J != JE; ++J) { |
| 2672 | const SCEV *Reg = *J; |
| 2673 | if ((!F.ScaledReg || F.ScaledReg != Reg) && |
| 2674 | std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == |
| 2675 | F.BaseRegs.end()) |
| 2676 | goto skip; |
| 2677 | } |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 2678 | AnySatisfiedReqRegs = true; |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2679 | |
| 2680 | // Evaluate the cost of the current formula. If it's already worse than |
| 2681 | // the current best, prune the search at that point. |
| 2682 | NewCost = CurCost; |
| 2683 | NewRegs = CurRegs; |
| 2684 | NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); |
| 2685 | if (NewCost < SolutionCost) { |
| 2686 | Workspace.push_back(&F); |
| 2687 | if (Workspace.size() != Uses.size()) { |
| 2688 | SolveRecurse(Solution, SolutionCost, Workspace, NewCost, |
| 2689 | NewRegs, VisitedRegs); |
| 2690 | if (F.getNumRegs() == 1 && Workspace.size() == 1) |
| 2691 | VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); |
| 2692 | } else { |
| 2693 | DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); |
| 2694 | dbgs() << ". Regs:"; |
| 2695 | for (SmallPtrSet<const SCEV *, 16>::const_iterator |
| 2696 | I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) |
| 2697 | dbgs() << ' ' << **I; |
| 2698 | dbgs() << '\n'); |
| 2699 | |
| 2700 | SolutionCost = NewCost; |
| 2701 | Solution = Workspace; |
| 2702 | } |
| 2703 | Workspace.pop_back(); |
| 2704 | } |
| 2705 | skip:; |
| 2706 | } |
Dan Gohman | 9214b82 | 2010-02-13 02:06:02 +0000 | [diff] [blame] | 2707 | |
| 2708 | // If none of the formulae had all of the required registers, relax the |
| 2709 | // constraint so that we don't exclude all formulae. |
| 2710 | if (!AnySatisfiedReqRegs) { |
| 2711 | ReqRegs.clear(); |
| 2712 | goto retry; |
| 2713 | } |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 2714 | } |
| 2715 | |
| 2716 | void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { |
| 2717 | SmallVector<const Formula *, 8> Workspace; |
| 2718 | Cost SolutionCost; |
| 2719 | SolutionCost.Loose(); |
| 2720 | Cost CurCost; |
| 2721 | SmallPtrSet<const SCEV *, 16> CurRegs; |
| 2722 | DenseSet<const SCEV *> VisitedRegs; |
| 2723 | Workspace.reserve(Uses.size()); |
| 2724 | |
| 2725 | SolveRecurse(Solution, SolutionCost, Workspace, CurCost, |
| 2726 | CurRegs, VisitedRegs); |
| 2727 | |
| 2728 | // Ok, we've now made all our decisions. |
| 2729 | DEBUG(dbgs() << "\n" |
| 2730 | "The chosen solution requires "; SolutionCost.print(dbgs()); |
| 2731 | dbgs() << ":\n"; |
| 2732 | for (size_t i = 0, e = Uses.size(); i != e; ++i) { |
| 2733 | dbgs() << " "; |
| 2734 | Uses[i].print(dbgs()); |
| 2735 | dbgs() << "\n" |
| 2736 | " "; |
| 2737 | Solution[i]->print(dbgs()); |
| 2738 | dbgs() << '\n'; |
| 2739 | }); |
| 2740 | } |
| 2741 | |
| 2742 | /// getImmediateDominator - A handy utility for the specific DominatorTree |
| 2743 | /// query that we need here. |
| 2744 | /// |
| 2745 | static BasicBlock *getImmediateDominator(BasicBlock *BB, DominatorTree &DT) { |
| 2746 | DomTreeNode *Node = DT.getNode(BB); |
| 2747 | if (!Node) return 0; |
| 2748 | Node = Node->getIDom(); |
| 2749 | if (!Node) return 0; |
| 2750 | return Node->getBlock(); |
| 2751 | } |
| 2752 | |
| 2753 | Value *LSRInstance::Expand(const LSRFixup &LF, |
| 2754 | const Formula &F, |
| 2755 | BasicBlock::iterator IP, |
| 2756 | Loop *L, Instruction *IVIncInsertPos, |
| 2757 | SCEVExpander &Rewriter, |
| 2758 | SmallVectorImpl<WeakVH> &DeadInsts, |
| 2759 | ScalarEvolution &SE, DominatorTree &DT) const { |
| 2760 | const LSRUse &LU = Uses[LF.LUIdx]; |
| 2761 | |
| 2762 | // Then, collect some instructions which we will remain dominated by when |
| 2763 | // expanding the replacement. These must be dominated by any operands that |
| 2764 | // will be required in the expansion. |
| 2765 | SmallVector<Instruction *, 4> Inputs; |
| 2766 | if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) |
| 2767 | Inputs.push_back(I); |
| 2768 | if (LU.Kind == LSRUse::ICmpZero) |
| 2769 | if (Instruction *I = |
| 2770 | dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) |
| 2771 | Inputs.push_back(I); |
| 2772 | if (LF.PostIncLoop && !L->contains(LF.UserInst)) |
| 2773 | Inputs.push_back(L->getLoopLatch()->getTerminator()); |
| 2774 | |
| 2775 | // Then, climb up the immediate dominator tree as far as we can go while |
| 2776 | // still being dominated by the input positions. |
| 2777 | for (;;) { |
| 2778 | bool AllDominate = true; |
| 2779 | Instruction *BetterPos = 0; |
| 2780 | BasicBlock *IDom = getImmediateDominator(IP->getParent(), DT); |
| 2781 | if (!IDom) break; |
| 2782 | Instruction *Tentative = IDom->getTerminator(); |
| 2783 | for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), |
| 2784 | E = Inputs.end(); I != E; ++I) { |
| 2785 | Instruction *Inst = *I; |
| 2786 | if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { |
| 2787 | AllDominate = false; |
| 2788 | break; |
| 2789 | } |
| 2790 | if (IDom == Inst->getParent() && |
| 2791 | (!BetterPos || DT.dominates(BetterPos, Inst))) |
| 2792 | BetterPos = next(BasicBlock::iterator(Inst)); |
| 2793 | } |
| 2794 | if (!AllDominate) |
| 2795 | break; |
| 2796 | if (BetterPos) |
| 2797 | IP = BetterPos; |
| 2798 | else |
| 2799 | IP = Tentative; |
| 2800 | } |
| 2801 | while (isa<PHINode>(IP)) ++IP; |
| 2802 | |
| 2803 | // Inform the Rewriter if we have a post-increment use, so that it can |
| 2804 | // perform an advantageous expansion. |
| 2805 | Rewriter.setPostInc(LF.PostIncLoop); |
| 2806 | |
| 2807 | // This is the type that the user actually needs. |
| 2808 | const Type *OpTy = LF.OperandValToReplace->getType(); |
| 2809 | // This will be the type that we'll initially expand to. |
| 2810 | const Type *Ty = F.getType(); |
| 2811 | if (!Ty) |
| 2812 | // No type known; just expand directly to the ultimate type. |
| 2813 | Ty = OpTy; |
| 2814 | else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) |
| 2815 | // Expand directly to the ultimate type if it's the right size. |
| 2816 | Ty = OpTy; |
| 2817 | // This is the type to do integer arithmetic in. |
| 2818 | const Type *IntTy = SE.getEffectiveSCEVType(Ty); |
| 2819 | |
| 2820 | // Build up a list of operands to add together to form the full base. |
| 2821 | SmallVector<const SCEV *, 8> Ops; |
| 2822 | |
| 2823 | // Expand the BaseRegs portion. |
| 2824 | for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), |
| 2825 | E = F.BaseRegs.end(); I != E; ++I) { |
| 2826 | const SCEV *Reg = *I; |
| 2827 | assert(!Reg->isZero() && "Zero allocated in a base register!"); |
| 2828 | |
| 2829 | // If we're expanding for a post-inc user for the add-rec's loop, make the |
| 2830 | // post-inc adjustment. |
| 2831 | const SCEV *Start = Reg; |
| 2832 | while (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Start)) { |
| 2833 | if (AR->getLoop() == LF.PostIncLoop) { |
| 2834 | Reg = SE.getAddExpr(Reg, AR->getStepRecurrence(SE)); |
| 2835 | // If the user is inside the loop, insert the code after the increment |
| 2836 | // so that it is dominated by its operand. |
| 2837 | if (L->contains(LF.UserInst)) |
| 2838 | IP = IVIncInsertPos; |
| 2839 | break; |
| 2840 | } |
| 2841 | Start = AR->getStart(); |
| 2842 | } |
| 2843 | |
| 2844 | Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); |
| 2845 | } |
| 2846 | |
| 2847 | // Expand the ScaledReg portion. |
| 2848 | Value *ICmpScaledV = 0; |
| 2849 | if (F.AM.Scale != 0) { |
| 2850 | const SCEV *ScaledS = F.ScaledReg; |
| 2851 | |
| 2852 | // If we're expanding for a post-inc user for the add-rec's loop, make the |
| 2853 | // post-inc adjustment. |
| 2854 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ScaledS)) |
| 2855 | if (AR->getLoop() == LF.PostIncLoop) |
| 2856 | ScaledS = SE.getAddExpr(ScaledS, AR->getStepRecurrence(SE)); |
| 2857 | |
| 2858 | if (LU.Kind == LSRUse::ICmpZero) { |
| 2859 | // An interesting way of "folding" with an icmp is to use a negated |
| 2860 | // scale, which we'll implement by inserting it into the other operand |
| 2861 | // of the icmp. |
| 2862 | assert(F.AM.Scale == -1 && |
| 2863 | "The only scale supported by ICmpZero uses is -1!"); |
| 2864 | ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); |
| 2865 | } else { |
| 2866 | // Otherwise just expand the scaled register and an explicit scale, |
| 2867 | // which is expected to be matched as part of the address. |
| 2868 | ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); |
| 2869 | ScaledS = SE.getMulExpr(ScaledS, |
| 2870 | SE.getIntegerSCEV(F.AM.Scale, |
| 2871 | ScaledS->getType())); |
| 2872 | Ops.push_back(ScaledS); |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | // Expand the immediate portions. |
| 2877 | if (F.AM.BaseGV) |
| 2878 | Ops.push_back(SE.getSCEV(F.AM.BaseGV)); |
| 2879 | int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; |
| 2880 | if (Offset != 0) { |
| 2881 | if (LU.Kind == LSRUse::ICmpZero) { |
| 2882 | // The other interesting way of "folding" with an ICmpZero is to use a |
| 2883 | // negated immediate. |
| 2884 | if (!ICmpScaledV) |
| 2885 | ICmpScaledV = ConstantInt::get(IntTy, -Offset); |
| 2886 | else { |
| 2887 | Ops.push_back(SE.getUnknown(ICmpScaledV)); |
| 2888 | ICmpScaledV = ConstantInt::get(IntTy, Offset); |
| 2889 | } |
| 2890 | } else { |
| 2891 | // Just add the immediate values. These again are expected to be matched |
| 2892 | // as part of the address. |
| 2893 | Ops.push_back(SE.getIntegerSCEV(Offset, IntTy)); |
| 2894 | } |
| 2895 | } |
| 2896 | |
| 2897 | // Emit instructions summing all the operands. |
| 2898 | const SCEV *FullS = Ops.empty() ? |
| 2899 | SE.getIntegerSCEV(0, IntTy) : |
| 2900 | SE.getAddExpr(Ops); |
| 2901 | Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); |
| 2902 | |
| 2903 | // We're done expanding now, so reset the rewriter. |
| 2904 | Rewriter.setPostInc(0); |
| 2905 | |
| 2906 | // An ICmpZero Formula represents an ICmp which we're handling as a |
| 2907 | // comparison against zero. Now that we've expanded an expression for that |
| 2908 | // form, update the ICmp's other operand. |
| 2909 | if (LU.Kind == LSRUse::ICmpZero) { |
| 2910 | ICmpInst *CI = cast<ICmpInst>(LF.UserInst); |
| 2911 | DeadInsts.push_back(CI->getOperand(1)); |
| 2912 | assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " |
| 2913 | "a scale at the same time!"); |
| 2914 | if (F.AM.Scale == -1) { |
| 2915 | if (ICmpScaledV->getType() != OpTy) { |
| 2916 | Instruction *Cast = |
| 2917 | CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, |
| 2918 | OpTy, false), |
| 2919 | ICmpScaledV, OpTy, "tmp", CI); |
| 2920 | ICmpScaledV = Cast; |
| 2921 | } |
| 2922 | CI->setOperand(1, ICmpScaledV); |
| 2923 | } else { |
| 2924 | assert(F.AM.Scale == 0 && |
| 2925 | "ICmp does not support folding a global value and " |
| 2926 | "a scale at the same time!"); |
| 2927 | Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), |
| 2928 | -(uint64_t)Offset); |
| 2929 | if (C->getType() != OpTy) |
| 2930 | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, |
| 2931 | OpTy, false), |
| 2932 | C, OpTy); |
| 2933 | |
| 2934 | CI->setOperand(1, C); |
| 2935 | } |
| 2936 | } |
| 2937 | |
| 2938 | return FullV; |
| 2939 | } |
| 2940 | |
Dan Gohman | 3a02cbc | 2010-02-16 20:25:07 +0000 | [diff] [blame] | 2941 | /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use |
| 2942 | /// of their operands effectively happens in their predecessor blocks, so the |
| 2943 | /// expression may need to be expanded in multiple places. |
| 2944 | void LSRInstance::RewriteForPHI(PHINode *PN, |
| 2945 | const LSRFixup &LF, |
| 2946 | const Formula &F, |
| 2947 | Loop *L, Instruction *IVIncInsertPos, |
| 2948 | SCEVExpander &Rewriter, |
| 2949 | SmallVectorImpl<WeakVH> &DeadInsts, |
| 2950 | ScalarEvolution &SE, DominatorTree &DT, |
| 2951 | Pass *P) const { |
| 2952 | DenseMap<BasicBlock *, Value *> Inserted; |
| 2953 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 2954 | if (PN->getIncomingValue(i) == LF.OperandValToReplace) { |
| 2955 | BasicBlock *BB = PN->getIncomingBlock(i); |
| 2956 | |
| 2957 | // If this is a critical edge, split the edge so that we do not insert |
| 2958 | // the code on all predecessor/successor paths. We do this unless this |
| 2959 | // is the canonical backedge for this loop, which complicates post-inc |
| 2960 | // users. |
| 2961 | if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && |
| 2962 | !isa<IndirectBrInst>(BB->getTerminator()) && |
| 2963 | (PN->getParent() != L->getHeader() || !L->contains(BB))) { |
| 2964 | // Split the critical edge. |
| 2965 | BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P); |
| 2966 | |
| 2967 | // If PN is outside of the loop and BB is in the loop, we want to |
| 2968 | // move the block to be immediately before the PHI block, not |
| 2969 | // immediately after BB. |
| 2970 | if (L->contains(BB) && !L->contains(PN)) |
| 2971 | NewBB->moveBefore(PN->getParent()); |
| 2972 | |
| 2973 | // Splitting the edge can reduce the number of PHI entries we have. |
| 2974 | e = PN->getNumIncomingValues(); |
| 2975 | BB = NewBB; |
| 2976 | i = PN->getBasicBlockIndex(BB); |
| 2977 | } |
| 2978 | |
| 2979 | std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = |
| 2980 | Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); |
| 2981 | if (!Pair.second) |
| 2982 | PN->setIncomingValue(i, Pair.first->second); |
| 2983 | else { |
| 2984 | Value *FullV = Expand(LF, F, BB->getTerminator(), L, IVIncInsertPos, |
| 2985 | Rewriter, DeadInsts, SE, DT); |
| 2986 | |
| 2987 | // If this is reuse-by-noop-cast, insert the noop cast. |
| 2988 | const Type *OpTy = LF.OperandValToReplace->getType(); |
| 2989 | if (FullV->getType() != OpTy) |
| 2990 | FullV = |
| 2991 | CastInst::Create(CastInst::getCastOpcode(FullV, false, |
| 2992 | OpTy, false), |
| 2993 | FullV, LF.OperandValToReplace->getType(), |
| 2994 | "tmp", BB->getTerminator()); |
| 2995 | |
| 2996 | PN->setIncomingValue(i, FullV); |
| 2997 | Pair.first->second = FullV; |
| 2998 | } |
| 2999 | } |
| 3000 | } |
| 3001 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3002 | /// Rewrite - Emit instructions for the leading candidate expression for this |
| 3003 | /// LSRUse (this is called "expanding"), and update the UserInst to reference |
| 3004 | /// the newly expanded value. |
| 3005 | void LSRInstance::Rewrite(const LSRFixup &LF, |
| 3006 | const Formula &F, |
| 3007 | Loop *L, Instruction *IVIncInsertPos, |
| 3008 | SCEVExpander &Rewriter, |
| 3009 | SmallVectorImpl<WeakVH> &DeadInsts, |
| 3010 | ScalarEvolution &SE, DominatorTree &DT, |
| 3011 | Pass *P) const { |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3012 | // First, find an insertion point that dominates UserInst. For PHI nodes, |
| 3013 | // find the nearest block which dominates all the relevant uses. |
| 3014 | if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { |
Dan Gohman | 3a02cbc | 2010-02-16 20:25:07 +0000 | [diff] [blame] | 3015 | RewriteForPHI(PN, LF, F, L, IVIncInsertPos, Rewriter, DeadInsts, SE, DT, P); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3016 | } else { |
| 3017 | Value *FullV = Expand(LF, F, LF.UserInst, L, IVIncInsertPos, |
| 3018 | Rewriter, DeadInsts, SE, DT); |
| 3019 | |
| 3020 | // If this is reuse-by-noop-cast, insert the noop cast. |
Dan Gohman | 3a02cbc | 2010-02-16 20:25:07 +0000 | [diff] [blame] | 3021 | const Type *OpTy = LF.OperandValToReplace->getType(); |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3022 | if (FullV->getType() != OpTy) { |
| 3023 | Instruction *Cast = |
| 3024 | CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), |
| 3025 | FullV, OpTy, "tmp", LF.UserInst); |
| 3026 | FullV = Cast; |
| 3027 | } |
| 3028 | |
| 3029 | // Update the user. ICmpZero is handled specially here (for now) because |
| 3030 | // Expand may have updated one of the operands of the icmp already, and |
| 3031 | // its new value may happen to be equal to LF.OperandValToReplace, in |
| 3032 | // which case doing replaceUsesOfWith leads to replacing both operands |
| 3033 | // with the same value. TODO: Reorganize this. |
| 3034 | if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) |
| 3035 | LF.UserInst->setOperand(0, FullV); |
| 3036 | else |
| 3037 | LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); |
| 3038 | } |
| 3039 | |
| 3040 | DeadInsts.push_back(LF.OperandValToReplace); |
| 3041 | } |
| 3042 | |
| 3043 | void |
| 3044 | LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, |
| 3045 | Pass *P) { |
| 3046 | // Keep track of instructions we may have made dead, so that |
| 3047 | // we can remove them after we are done working. |
| 3048 | SmallVector<WeakVH, 16> DeadInsts; |
| 3049 | |
| 3050 | SCEVExpander Rewriter(SE); |
| 3051 | Rewriter.disableCanonicalMode(); |
| 3052 | Rewriter.setIVIncInsertPos(L, IVIncInsertPos); |
| 3053 | |
| 3054 | // Expand the new value definitions and update the users. |
| 3055 | for (size_t i = 0, e = Fixups.size(); i != e; ++i) { |
| 3056 | size_t LUIdx = Fixups[i].LUIdx; |
| 3057 | |
| 3058 | Rewrite(Fixups[i], *Solution[LUIdx], L, IVIncInsertPos, Rewriter, |
| 3059 | DeadInsts, SE, DT, P); |
| 3060 | |
| 3061 | Changed = true; |
| 3062 | } |
| 3063 | |
| 3064 | // Clean up after ourselves. This must be done before deleting any |
| 3065 | // instructions. |
| 3066 | Rewriter.clear(); |
| 3067 | |
| 3068 | Changed |= DeleteTriviallyDeadInstructions(DeadInsts); |
| 3069 | } |
| 3070 | |
| 3071 | LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) |
| 3072 | : IU(P->getAnalysis<IVUsers>()), |
| 3073 | SE(P->getAnalysis<ScalarEvolution>()), |
| 3074 | DT(P->getAnalysis<DominatorTree>()), |
| 3075 | TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { |
Devang Patel | 0f54dcb | 2007-03-06 21:14:09 +0000 | [diff] [blame] | 3076 | |
Dan Gohman | 03e896b | 2009-11-05 21:11:53 +0000 | [diff] [blame] | 3077 | // If LoopSimplify form is not available, stay out of trouble. |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3078 | if (!L->isLoopSimplifyForm()) return; |
Dan Gohman | 03e896b | 2009-11-05 21:11:53 +0000 | [diff] [blame] | 3079 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3080 | // If there's no interesting work to be done, bail early. |
| 3081 | if (IU.empty()) return; |
Dan Gohman | 80b0f8c | 2009-03-09 20:34:59 +0000 | [diff] [blame] | 3082 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3083 | DEBUG(dbgs() << "\nLSR on loop "; |
| 3084 | WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); |
| 3085 | dbgs() << ":\n"); |
Dan Gohman | f7912df | 2009-03-09 20:46:50 +0000 | [diff] [blame] | 3086 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3087 | /// OptimizeShadowIV - If IV is used in a int-to-float cast |
| 3088 | /// inside the loop then try to eliminate the cast opeation. |
| 3089 | OptimizeShadowIV(); |
Chris Lattner | 010de25 | 2005-08-08 05:28:22 +0000 | [diff] [blame] | 3090 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3091 | // Change loop terminating condition to use the postinc iv when possible. |
| 3092 | Changed |= OptimizeLoopTermCond(); |
Evan Cheng | 5792f51 | 2009-05-11 22:33:01 +0000 | [diff] [blame] | 3093 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3094 | CollectInterestingTypesAndFactors(); |
| 3095 | CollectFixupsAndInitialFormulae(); |
| 3096 | CollectLoopInvariantFixupsAndFormulae(); |
Chris Lattner | 010de25 | 2005-08-08 05:28:22 +0000 | [diff] [blame] | 3097 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3098 | DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; |
| 3099 | print_uses(dbgs())); |
Misha Brukman | fd93908 | 2005-04-21 23:48:37 +0000 | [diff] [blame] | 3100 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3101 | // Now use the reuse data to generate a bunch of interesting ways |
| 3102 | // to formulate the values needed for the uses. |
| 3103 | GenerateAllReuseFormulae(); |
Evan Cheng | d1d6b5c | 2006-03-16 21:53:05 +0000 | [diff] [blame] | 3104 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3105 | DEBUG(dbgs() << "\n" |
| 3106 | "After generating reuse formulae:\n"; |
| 3107 | print_uses(dbgs())); |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 3108 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3109 | FilterOutUndesirableDedicatedRegisters(); |
| 3110 | NarrowSearchSpaceUsingHeuristics(); |
Dan Gohman | 6bec5bb | 2009-12-18 00:06:20 +0000 | [diff] [blame] | 3111 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3112 | SmallVector<const Formula *, 8> Solution; |
| 3113 | Solve(Solution); |
| 3114 | assert(Solution.size() == Uses.size() && "Malformed solution!"); |
Dan Gohman | 6bec5bb | 2009-12-18 00:06:20 +0000 | [diff] [blame] | 3115 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3116 | // Release memory that is no longer needed. |
| 3117 | Factors.clear(); |
| 3118 | Types.clear(); |
| 3119 | RegUses.clear(); |
| 3120 | |
| 3121 | #ifndef NDEBUG |
| 3122 | // Formulae should be legal. |
| 3123 | for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), |
| 3124 | E = Uses.end(); I != E; ++I) { |
| 3125 | const LSRUse &LU = *I; |
| 3126 | for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), |
| 3127 | JE = LU.Formulae.end(); J != JE; ++J) |
| 3128 | assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, |
| 3129 | LU.Kind, LU.AccessTy, TLI) && |
| 3130 | "Illegal formula generated!"); |
| 3131 | }; |
| 3132 | #endif |
| 3133 | |
| 3134 | // Now that we've decided what we want, make it so. |
| 3135 | ImplementSolution(Solution, P); |
| 3136 | } |
| 3137 | |
| 3138 | void LSRInstance::print_factors_and_types(raw_ostream &OS) const { |
| 3139 | if (Factors.empty() && Types.empty()) return; |
| 3140 | |
| 3141 | OS << "LSR has identified the following interesting factors and types: "; |
| 3142 | bool First = true; |
| 3143 | |
| 3144 | for (SmallSetVector<int64_t, 8>::const_iterator |
| 3145 | I = Factors.begin(), E = Factors.end(); I != E; ++I) { |
| 3146 | if (!First) OS << ", "; |
| 3147 | First = false; |
| 3148 | OS << '*' << *I; |
Evan Cheng | 81ebdcf | 2009-11-10 21:14:05 +0000 | [diff] [blame] | 3149 | } |
Dale Johannesen | c1acc3f | 2009-05-11 17:15:42 +0000 | [diff] [blame] | 3150 | |
Dan Gohman | 572645c | 2010-02-12 10:34:29 +0000 | [diff] [blame] | 3151 | for (SmallSetVector<const Type *, 4>::const_iterator |
| 3152 | I = Types.begin(), E = Types.end(); I != E; ++I) { |
| 3153 | if (!First) OS << ", "; |
| 3154 | First = false; |
| 3155 | OS << '(' << **I << ')'; |
| 3156 | } |
| 3157 | OS << '\n'; |
| 3158 | } |
| 3159 | |
| 3160 | void LSRInstance::print_fixups(raw_ostream &OS) const { |
| 3161 | OS << "LSR is examining the following fixup sites:\n"; |
| 3162 | for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), |
| 3163 | E = Fixups.end(); I != E; ++I) { |
| 3164 | const LSRFixup &LF = *I; |
| 3165 | dbgs() << " "; |
| 3166 | LF.print(OS); |
| 3167 | OS << '\n'; |
| 3168 | } |
| 3169 | } |
| 3170 | |
| 3171 | void LSRInstance::print_uses(raw_ostream &OS) const { |
| 3172 | OS << "LSR is examining the following uses:\n"; |
| 3173 | for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), |
| 3174 | E = Uses.end(); I != E; ++I) { |
| 3175 | const LSRUse &LU = *I; |
| 3176 | dbgs() << " "; |
| 3177 | LU.print(OS); |
| 3178 | OS << '\n'; |
| 3179 | for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), |
| 3180 | JE = LU.Formulae.end(); J != JE; ++J) { |
| 3181 | OS << " "; |
| 3182 | J->print(OS); |
| 3183 | OS << '\n'; |
| 3184 | } |
| 3185 | } |
| 3186 | } |
| 3187 | |
| 3188 | void LSRInstance::print(raw_ostream &OS) const { |
| 3189 | print_factors_and_types(OS); |
| 3190 | print_fixups(OS); |
| 3191 | print_uses(OS); |
| 3192 | } |
| 3193 | |
| 3194 | void LSRInstance::dump() const { |
| 3195 | print(errs()); errs() << '\n'; |
| 3196 | } |
| 3197 | |
| 3198 | namespace { |
| 3199 | |
| 3200 | class LoopStrengthReduce : public LoopPass { |
| 3201 | /// TLI - Keep a pointer of a TargetLowering to consult for determining |
| 3202 | /// transformation profitability. |
| 3203 | const TargetLowering *const TLI; |
| 3204 | |
| 3205 | public: |
| 3206 | static char ID; // Pass ID, replacement for typeid |
| 3207 | explicit LoopStrengthReduce(const TargetLowering *tli = 0); |
| 3208 | |
| 3209 | private: |
| 3210 | bool runOnLoop(Loop *L, LPPassManager &LPM); |
| 3211 | void getAnalysisUsage(AnalysisUsage &AU) const; |
| 3212 | }; |
| 3213 | |
| 3214 | } |
| 3215 | |
| 3216 | char LoopStrengthReduce::ID = 0; |
| 3217 | static RegisterPass<LoopStrengthReduce> |
| 3218 | X("loop-reduce", "Loop Strength Reduction"); |
| 3219 | |
| 3220 | Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { |
| 3221 | return new LoopStrengthReduce(TLI); |
| 3222 | } |
| 3223 | |
| 3224 | LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) |
| 3225 | : LoopPass(&ID), TLI(tli) {} |
| 3226 | |
| 3227 | void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { |
| 3228 | // We split critical edges, so we change the CFG. However, we do update |
| 3229 | // many analyses if they are around. |
| 3230 | AU.addPreservedID(LoopSimplifyID); |
| 3231 | AU.addPreserved<LoopInfo>(); |
| 3232 | AU.addPreserved("domfrontier"); |
| 3233 | |
| 3234 | AU.addRequiredID(LoopSimplifyID); |
| 3235 | AU.addRequired<DominatorTree>(); |
| 3236 | AU.addPreserved<DominatorTree>(); |
| 3237 | AU.addRequired<ScalarEvolution>(); |
| 3238 | AU.addPreserved<ScalarEvolution>(); |
| 3239 | AU.addRequired<IVUsers>(); |
| 3240 | AU.addPreserved<IVUsers>(); |
| 3241 | } |
| 3242 | |
| 3243 | bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { |
| 3244 | bool Changed = false; |
| 3245 | |
| 3246 | // Run the main LSR transformation. |
| 3247 | Changed |= LSRInstance(TLI, L, this).getChanged(); |
| 3248 | |
Dan Gohman | afc36a9 | 2009-05-02 18:29:22 +0000 | [diff] [blame] | 3249 | // At this point, it is worth checking to see if any recurrence PHIs are also |
Dan Gohman | 35738ac | 2009-05-04 22:30:44 +0000 | [diff] [blame] | 3250 | // dead, so that we can remove them as well. |
Dan Gohman | 9fff218 | 2010-01-05 16:31:45 +0000 | [diff] [blame] | 3251 | Changed |= DeleteDeadPHIs(L->getHeader()); |
Dan Gohman | afc36a9 | 2009-05-02 18:29:22 +0000 | [diff] [blame] | 3252 | |
Evan Cheng | 1ce75dc | 2008-07-07 19:51:32 +0000 | [diff] [blame] | 3253 | return Changed; |
Nate Begeman | eaa1385 | 2004-10-18 21:08:22 +0000 | [diff] [blame] | 3254 | } |