blob: b5500dec6e74b73b28a029bd69bdd0490a2cad05 [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Chris Lattner40bf8b42004-04-02 20:24:31 +000014// If the trip count of a loop is computable, this pass also makes the following
15// changes:
16// 1. The exit condition for the loop is canonicalized to compare the
17// induction value against the exit value. This turns loops like:
18// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19// 2. Any use outside of the loop of an expression derived from the indvar
20// is changed to compute the derived value outside of the loop, eliminating
21// the dependence on the exit value of the induction variable. If the only
22// purpose of the loop is to compute the exit value of some derived
23// expression, this transformation will make the loop dead.
24//
Chris Lattner6148c022001-12-03 17:28:42 +000025//===----------------------------------------------------------------------===//
26
Chris Lattner0e5f4992006-12-19 21:40:18 +000027#define DEBUG_TYPE "indvars"
Chris Lattner022103b2002-05-07 20:03:00 +000028#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000029#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000030#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000031#include "llvm/Instructions.h"
Devang Patel7b9f6b12010-03-15 22:23:03 +000032#include "llvm/IntrinsicInst.h"
Owen Andersond672ecb2009-07-03 00:17:18 +000033#include "llvm/LLVMContext.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000034#include "llvm/Type.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000035#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/IVUsers.h"
Nate Begeman36f891b2005-07-30 00:12:19 +000037#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswell47df12d2003-12-18 17:19:19 +000038#include "llvm/Analysis/LoopInfo.h"
Devang Patel5ee99972007-03-07 06:39:01 +000039#include "llvm/Analysis/LoopPass.h"
Chris Lattner455889a2002-02-12 22:39:50 +000040#include "llvm/Support/CFG.h"
Andrew Trick56caa092011-06-28 03:01:46 +000041#include "llvm/Support/CommandLine.h"
Chris Lattneree4f13a2007-01-07 01:14:12 +000042#include "llvm/Support/Debug.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000043#include "llvm/Support/raw_ostream.h"
John Criswell47df12d2003-12-18 17:19:19 +000044#include "llvm/Transforms/Utils/Local.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000045#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Andrew Trick4b4bb712011-08-10 03:46:27 +000046#include "llvm/Transforms/Utils/SimplifyIndVar.h"
Andrew Trick37da4082011-05-04 02:10:13 +000047#include "llvm/Target/TargetData.h"
Andrew Trick037d1c02011-07-06 20:50:43 +000048#include "llvm/ADT/DenseMap.h"
Reid Spencera54b7cb2007-01-12 07:05:14 +000049#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000050#include "llvm/ADT/Statistic.h"
John Criswell47df12d2003-12-18 17:19:19 +000051using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000052
Andrew Trick2fabd462011-06-21 03:22:38 +000053STATISTIC(NumRemoved , "Number of aux indvars removed");
54STATISTIC(NumWidened , "Number of indvars widened");
55STATISTIC(NumInserted , "Number of canonical indvars added");
56STATISTIC(NumReplaced , "Number of exit values replaced");
57STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Andrew Trick2fabd462011-06-21 03:22:38 +000058STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
Andrew Trick037d1c02011-07-06 20:50:43 +000059STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattner3324e712003-12-22 03:58:44 +000060
Andrew Trick4b4bb712011-08-10 03:46:27 +000061namespace llvm {
Andrew Trickf21bdf42011-09-12 18:28:44 +000062 cl::opt<bool> EnableIVRewrite(
Andrew Trickeffb6472011-09-13 05:23:49 +000063 "enable-iv-rewrite", cl::Hidden, cl::init(true),
Andrew Trickf21bdf42011-09-12 18:28:44 +000064 cl::desc("Enable canonical induction variable rewriting"));
Andrew Trick75ebc0e2011-09-06 20:20:38 +000065
66 // Trip count verification can be enabled by default under NDEBUG if we
67 // implement a strong expression equivalence checker in SCEV. Until then, we
68 // use the verify-indvars flag, which may assert in some cases.
69 cl::opt<bool> VerifyIndvars(
70 "verify-indvars", cl::Hidden,
71 cl::desc("Verify the ScalarEvolution result after running indvars"));
Andrew Trick4b4bb712011-08-10 03:46:27 +000072}
Andrew Trick37da4082011-05-04 02:10:13 +000073
Chris Lattner0e5f4992006-12-19 21:40:18 +000074namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000075 class IndVarSimplify : public LoopPass {
Dan Gohman81db61a2009-05-12 02:17:14 +000076 IVUsers *IU;
Chris Lattner40bf8b42004-04-02 20:24:31 +000077 LoopInfo *LI;
78 ScalarEvolution *SE;
Dan Gohmande53dc02009-06-27 05:16:57 +000079 DominatorTree *DT;
Andrew Trick37da4082011-05-04 02:10:13 +000080 TargetData *TD;
Andrew Trick2fabd462011-06-21 03:22:38 +000081
Andrew Trickb12a7542011-03-17 23:51:11 +000082 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner15cad752003-12-23 07:47:09 +000083 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +000084 public:
Devang Patel794fd752007-05-01 21:15:47 +000085
Dan Gohman5668cf72009-07-15 01:26:32 +000086 static char ID; // Pass identification, replacement for typeid
Andrew Trick2fabd462011-06-21 03:22:38 +000087 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
Andrew Trick15832f62011-06-28 02:49:20 +000088 Changed(false) {
Owen Anderson081c34b2010-10-19 17:21:58 +000089 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
90 }
Devang Patel794fd752007-05-01 21:15:47 +000091
Dan Gohman5668cf72009-07-15 01:26:32 +000092 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman60f8a632009-02-17 20:49:49 +000093
Dan Gohman5668cf72009-07-15 01:26:32 +000094 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
95 AU.addRequired<DominatorTree>();
96 AU.addRequired<LoopInfo>();
97 AU.addRequired<ScalarEvolution>();
98 AU.addRequiredID(LoopSimplifyID);
99 AU.addRequiredID(LCSSAID);
Andrew Trickf21bdf42011-09-12 18:28:44 +0000100 if (EnableIVRewrite)
Andrew Trick56caa092011-06-28 03:01:46 +0000101 AU.addRequired<IVUsers>();
Dan Gohman5668cf72009-07-15 01:26:32 +0000102 AU.addPreserved<ScalarEvolution>();
103 AU.addPreservedID(LoopSimplifyID);
104 AU.addPreservedID(LCSSAID);
Andrew Trickf21bdf42011-09-12 18:28:44 +0000105 if (EnableIVRewrite)
Andrew Trick2fabd462011-06-21 03:22:38 +0000106 AU.addPreserved<IVUsers>();
Dan Gohman5668cf72009-07-15 01:26:32 +0000107 AU.setPreservesCFG();
108 }
Chris Lattner15cad752003-12-23 07:47:09 +0000109
Chris Lattner40bf8b42004-04-02 20:24:31 +0000110 private:
Andrew Trick037d1c02011-07-06 20:50:43 +0000111 virtual void releaseMemory() {
Andrew Trick037d1c02011-07-06 20:50:43 +0000112 DeadInsts.clear();
113 }
114
Andrew Trickb12a7542011-03-17 23:51:11 +0000115 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel5ee99972007-03-07 06:39:01 +0000116
Andrew Trick1a54bb22011-07-12 00:08:50 +0000117 void HandleFloatingPointIV(Loop *L, PHINode *PH);
118 void RewriteNonIntegerIVs(Loop *L);
119
Andrew Trick4b4bb712011-08-10 03:46:27 +0000120 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
Andrew Trick06988bc2011-08-06 07:00:37 +0000121
Andrew Trick037d1c02011-07-06 20:50:43 +0000122 void SimplifyCongruentIVs(Loop *L);
123
Andrew Trick4b4bb712011-08-10 03:46:27 +0000124 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
125
Dan Gohman454d26d2010-02-22 04:11:59 +0000126 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
Devang Pateld22a8492008-09-09 21:41:07 +0000127
Andrew Trickfc933c02011-07-18 20:32:31 +0000128 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
129 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohman81db61a2009-05-12 02:17:14 +0000130
Andrew Trick1a54bb22011-07-12 00:08:50 +0000131 void SinkUnusedInvariants(Loop *L);
Chris Lattner3324e712003-12-22 03:58:44 +0000132 };
Chris Lattner5e761402002-09-10 05:24:05 +0000133}
Chris Lattner394437f2001-12-04 04:32:29 +0000134
Dan Gohman844731a2008-05-13 00:00:25 +0000135char IndVarSimplify::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000136INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000137 "Induction Variable Simplification", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000138INITIALIZE_PASS_DEPENDENCY(DominatorTree)
139INITIALIZE_PASS_DEPENDENCY(LoopInfo)
140INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
141INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
142INITIALIZE_PASS_DEPENDENCY(LCSSA)
143INITIALIZE_PASS_DEPENDENCY(IVUsers)
144INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000145 "Induction Variable Simplification", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000146
Daniel Dunbar394f0442008-10-22 23:32:42 +0000147Pass *llvm::createIndVarSimplifyPass() {
Chris Lattner3324e712003-12-22 03:58:44 +0000148 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000149}
150
Andrew Trickb12a7542011-03-17 23:51:11 +0000151/// isValidRewrite - Return true if the SCEV expansion generated by the
152/// rewriter can replace the original value. SCEV guarantees that it
153/// produces the same value, but the way it is produced may be illegal IR.
154/// Ideally, this function will only be called for verification.
155bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
156 // If an SCEV expression subsumed multiple pointers, its expansion could
157 // reassociate the GEP changing the base pointer. This is illegal because the
158 // final address produced by a GEP chain must be inbounds relative to its
159 // underlying object. Otherwise basic alias analysis, among other things,
160 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
161 // producing an expression involving multiple pointers. Until then, we must
162 // bail out here.
163 //
164 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
165 // because it understands lcssa phis while SCEV does not.
166 Value *FromPtr = FromVal;
167 Value *ToPtr = ToVal;
168 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
169 FromPtr = GEP->getPointerOperand();
170 }
171 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
172 ToPtr = GEP->getPointerOperand();
173 }
174 if (FromPtr != FromVal || ToPtr != ToVal) {
175 // Quickly check the common case
176 if (FromPtr == ToPtr)
177 return true;
178
179 // SCEV may have rewritten an expression that produces the GEP's pointer
180 // operand. That's ok as long as the pointer operand has the same base
181 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
182 // base of a recurrence. This handles the case in which SCEV expansion
183 // converts a pointer type recurrence into a nonrecurrent pointer base
184 // indexed by an integer recurrence.
185 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
186 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
187 if (FromBase == ToBase)
188 return true;
189
190 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
191 << *FromBase << " != " << *ToBase << "\n");
192
193 return false;
194 }
195 return true;
196}
197
Andrew Trick86c98142011-07-20 05:32:06 +0000198/// Determine the insertion point for this user. By default, insert immediately
199/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
200/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
201/// common dominator for the incoming blocks.
202static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
203 DominatorTree *DT) {
204 PHINode *PHI = dyn_cast<PHINode>(User);
205 if (!PHI)
206 return User;
207
208 Instruction *InsertPt = 0;
209 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
210 if (PHI->getIncomingValue(i) != Def)
211 continue;
212
213 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
214 if (!InsertPt) {
215 InsertPt = InsertBB->getTerminator();
216 continue;
217 }
218 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
219 InsertPt = InsertBB->getTerminator();
220 }
221 assert(InsertPt && "Missing phi operand");
Jay Foad626f52d2011-07-20 08:15:21 +0000222 assert((!isa<Instruction>(Def) ||
223 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick86c98142011-07-20 05:32:06 +0000224 "def does not dominate all uses");
225 return InsertPt;
226}
227
Andrew Trick1a54bb22011-07-12 00:08:50 +0000228//===----------------------------------------------------------------------===//
229// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
230//===----------------------------------------------------------------------===//
Andrew Trick4dfdf242011-05-03 22:24:10 +0000231
Andrew Trick1a54bb22011-07-12 00:08:50 +0000232/// ConvertToSInt - Convert APF to an integer, if possible.
233static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
234 bool isExact = false;
235 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000236 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000237 // See if we can convert this to an int64_t
238 uint64_t UIntVal;
239 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
240 &isExact) != APFloat::opOK || !isExact)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000241 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000242 IntVal = UIntVal;
Andrew Trick4dfdf242011-05-03 22:24:10 +0000243 return true;
244}
245
Andrew Trick1a54bb22011-07-12 00:08:50 +0000246/// HandleFloatingPointIV - If the loop has floating induction variable
247/// then insert corresponding integer induction variable if possible.
248/// For example,
249/// for(double i = 0; i < 10000; ++i)
250/// bar(i)
251/// is converted into
252/// for(int i = 0; i < 10000; ++i)
253/// bar((double)i);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000254///
Andrew Trick1a54bb22011-07-12 00:08:50 +0000255void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
256 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
257 unsigned BackEdge = IncomingEdge^1;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000258
Andrew Trick1a54bb22011-07-12 00:08:50 +0000259 // Check incoming value.
260 ConstantFP *InitValueVal =
261 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000262
Andrew Trick1a54bb22011-07-12 00:08:50 +0000263 int64_t InitValue;
264 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
265 return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000266
Andrew Trick1a54bb22011-07-12 00:08:50 +0000267 // Check IV increment. Reject this PN if increment operation is not
268 // an add or increment value can not be represented by an integer.
269 BinaryOperator *Incr =
270 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
271 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000272
Andrew Trick1a54bb22011-07-12 00:08:50 +0000273 // If this is not an add of the PHI with a constantfp, or if the constant fp
274 // is not an integer, bail out.
275 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
276 int64_t IncValue;
277 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
278 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
279 return;
280
281 // Check Incr uses. One user is PN and the other user is an exit condition
282 // used by the conditional terminator.
283 Value::use_iterator IncrUse = Incr->use_begin();
284 Instruction *U1 = cast<Instruction>(*IncrUse++);
285 if (IncrUse == Incr->use_end()) return;
286 Instruction *U2 = cast<Instruction>(*IncrUse++);
287 if (IncrUse != Incr->use_end()) return;
288
289 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
290 // only used by a branch, we can't transform it.
291 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
292 if (!Compare)
293 Compare = dyn_cast<FCmpInst>(U2);
294 if (Compare == 0 || !Compare->hasOneUse() ||
295 !isa<BranchInst>(Compare->use_back()))
296 return;
297
298 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
299
300 // We need to verify that the branch actually controls the iteration count
301 // of the loop. If not, the new IV can overflow and no one will notice.
302 // The branch block must be in the loop and one of the successors must be out
303 // of the loop.
304 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
305 if (!L->contains(TheBr->getParent()) ||
306 (L->contains(TheBr->getSuccessor(0)) &&
307 L->contains(TheBr->getSuccessor(1))))
308 return;
309
310
311 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
312 // transform it.
313 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
314 int64_t ExitValue;
315 if (ExitValueVal == 0 ||
316 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
317 return;
318
319 // Find new predicate for integer comparison.
320 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
321 switch (Compare->getPredicate()) {
322 default: return; // Unknown comparison.
323 case CmpInst::FCMP_OEQ:
324 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
325 case CmpInst::FCMP_ONE:
326 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
327 case CmpInst::FCMP_OGT:
328 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
329 case CmpInst::FCMP_OGE:
330 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
331 case CmpInst::FCMP_OLT:
332 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
333 case CmpInst::FCMP_OLE:
334 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000335 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000336
Andrew Trick1a54bb22011-07-12 00:08:50 +0000337 // We convert the floating point induction variable to a signed i32 value if
338 // we can. This is only safe if the comparison will not overflow in a way
339 // that won't be trapped by the integer equivalent operations. Check for this
340 // now.
341 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohmanca9b7032010-04-12 21:13:43 +0000342
Andrew Trick1a54bb22011-07-12 00:08:50 +0000343 // The start/stride/exit values must all fit in signed i32.
344 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
345 return;
346
347 // If not actually striding (add x, 0.0), avoid touching the code.
348 if (IncValue == 0)
349 return;
350
351 // Positive and negative strides have different safety conditions.
352 if (IncValue > 0) {
353 // If we have a positive stride, we require the init to be less than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000354 // exit value.
355 if (InitValue >= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000356 return;
357
358 uint32_t Range = uint32_t(ExitValue-InitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000359 // Check for infinite loop, either:
360 // while (i <= Exit) or until (i > Exit)
361 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000362 if (++Range == 0) return; // Range overflows.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000363 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000364
Andrew Trick1a54bb22011-07-12 00:08:50 +0000365 unsigned Leftover = Range % uint32_t(IncValue);
366
367 // If this is an equality comparison, we require that the strided value
368 // exactly land on the exit value, otherwise the IV condition will wrap
369 // around and do things the fp IV wouldn't.
370 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
371 Leftover != 0)
372 return;
373
374 // If the stride would wrap around the i32 before exiting, we can't
375 // transform the IV.
376 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
377 return;
378
Chris Lattnerd2440572004-04-15 20:26:22 +0000379 } else {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000380 // If we have a negative stride, we require the init to be greater than the
Andrew Trick94f2c232011-09-13 01:59:32 +0000381 // exit value.
382 if (InitValue <= ExitValue)
Andrew Trick1a54bb22011-07-12 00:08:50 +0000383 return;
384
385 uint32_t Range = uint32_t(InitValue-ExitValue);
Andrew Trick94f2c232011-09-13 01:59:32 +0000386 // Check for infinite loop, either:
387 // while (i >= Exit) or until (i < Exit)
388 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000389 if (++Range == 0) return; // Range overflows.
390 }
391
392 unsigned Leftover = Range % uint32_t(-IncValue);
393
394 // If this is an equality comparison, we require that the strided value
395 // exactly land on the exit value, otherwise the IV condition will wrap
396 // around and do things the fp IV wouldn't.
397 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
398 Leftover != 0)
399 return;
400
401 // If the stride would wrap around the i32 before exiting, we can't
402 // transform the IV.
403 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
404 return;
Chris Lattnerd2440572004-04-15 20:26:22 +0000405 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000406
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000407 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000408
Andrew Trick1a54bb22011-07-12 00:08:50 +0000409 // Insert new integer induction variable.
410 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
411 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
412 PN->getIncomingBlock(IncomingEdge));
Chris Lattner40bf8b42004-04-02 20:24:31 +0000413
Andrew Trick1a54bb22011-07-12 00:08:50 +0000414 Value *NewAdd =
415 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
416 Incr->getName()+".int", Incr);
417 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmanc2390b12009-02-12 22:19:27 +0000418
Andrew Trick1a54bb22011-07-12 00:08:50 +0000419 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
420 ConstantInt::get(Int32Ty, ExitValue),
421 Compare->getName());
Dan Gohman81db61a2009-05-12 02:17:14 +0000422
Andrew Trick1a54bb22011-07-12 00:08:50 +0000423 // In the following deletions, PN may become dead and may be deleted.
424 // Use a WeakVH to observe whether this happens.
425 WeakVH WeakPH = PN;
426
427 // Delete the old floating point exit comparison. The branch starts using the
428 // new comparison.
429 NewCompare->takeName(Compare);
430 Compare->replaceAllUsesWith(NewCompare);
431 RecursivelyDeleteTriviallyDeadInstructions(Compare);
432
433 // Delete the old floating point increment.
434 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
435 RecursivelyDeleteTriviallyDeadInstructions(Incr);
436
437 // If the FP induction variable still has uses, this is because something else
438 // in the loop uses its value. In order to canonicalize the induction
439 // variable, we chose to eliminate the IV and rewrite it in terms of an
440 // int->fp cast.
441 //
442 // We give preference to sitofp over uitofp because it is faster on most
443 // platforms.
444 if (WeakPH) {
445 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
Bill Wendlingb05fdd62011-08-24 20:28:43 +0000446 PN->getParent()->getFirstInsertionPt());
Andrew Trick1a54bb22011-07-12 00:08:50 +0000447 PN->replaceAllUsesWith(Conv);
448 RecursivelyDeleteTriviallyDeadInstructions(PN);
449 }
450
451 // Add a new IVUsers entry for the newly-created integer PHI.
452 if (IU)
453 IU->AddUsersIfInteresting(NewPHI);
Andrew Trick4b4bb712011-08-10 03:46:27 +0000454
455 Changed = true;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000456}
457
Andrew Trick1a54bb22011-07-12 00:08:50 +0000458void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
459 // First step. Check to see if there are any floating-point recurrences.
460 // If there are, change them into integer recurrences, permitting analysis by
461 // the SCEV routines.
462 //
463 BasicBlock *Header = L->getHeader();
464
465 SmallVector<WeakVH, 8> PHIs;
466 for (BasicBlock::iterator I = Header->begin();
467 PHINode *PN = dyn_cast<PHINode>(I); ++I)
468 PHIs.push_back(PN);
469
470 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
471 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
472 HandleFloatingPointIV(L, PN);
473
474 // If the loop previously had floating-point IV, ScalarEvolution
475 // may not have been able to compute a trip count. Now that we've done some
476 // re-writing, the trip count may be computable.
477 if (Changed)
478 SE->forgetLoop(L);
479}
480
481//===----------------------------------------------------------------------===//
482// RewriteLoopExitValues - Optimize IV users outside the loop.
483// As a side effect, reduces the amount of IV processing within the loop.
484//===----------------------------------------------------------------------===//
485
Chris Lattner40bf8b42004-04-02 20:24:31 +0000486/// RewriteLoopExitValues - Check to see if this loop has a computable
487/// loop-invariant execution count. If so, this means that we can compute the
488/// final value of any expressions that are recurrent in the loop, and
489/// substitute the exit values from the loop into any instructions outside of
490/// the loop that use the final values of the current expressions.
Dan Gohman81db61a2009-05-12 02:17:14 +0000491///
492/// This is mostly redundant with the regular IndVarSimplify activities that
493/// happen later, except that it's more powerful in some cases, because it's
494/// able to brute-force evaluate arbitrary instructions as long as they have
495/// constant operands at the beginning of the loop.
Chris Lattnerf1859892011-01-09 02:16:18 +0000496void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohman81db61a2009-05-12 02:17:14 +0000497 // Verify the input to the pass in already in LCSSA form.
Dan Gohmanbbf81d82010-03-10 19:38:49 +0000498 assert(L->isLCSSAForm(*DT));
Dan Gohman81db61a2009-05-12 02:17:14 +0000499
Devang Patelb7211a22007-08-21 00:31:24 +0000500 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000501 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanfd939082005-04-21 23:48:37 +0000502
Chris Lattner9f3d7382007-03-04 03:43:23 +0000503 // Find all values that are computed inside the loop, but used outside of it.
504 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
505 // the exit blocks of the loop to find them.
506 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
507 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmancafb8132009-02-17 19:13:57 +0000508
Chris Lattner9f3d7382007-03-04 03:43:23 +0000509 // If there are no PHI nodes in this exit block, then no values defined
510 // inside the loop are used on this path, skip it.
511 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
512 if (!PN) continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000513
Chris Lattner9f3d7382007-03-04 03:43:23 +0000514 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmancafb8132009-02-17 19:13:57 +0000515
Chris Lattner9f3d7382007-03-04 03:43:23 +0000516 // Iterate over all of the PHI nodes.
517 BasicBlock::iterator BBI = ExitBB->begin();
518 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin3790fb02009-05-24 19:36:09 +0000519 if (PN->use_empty())
520 continue; // dead use, don't replace it
Dan Gohman814f2b22010-02-18 21:34:02 +0000521
522 // SCEV only supports integer expressions for now.
523 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
524 continue;
525
Dale Johannesen45a2d7d2010-02-19 07:14:22 +0000526 // It's necessary to tell ScalarEvolution about this explicitly so that
527 // it can walk the def-use list and forget all SCEVs, as it may not be
528 // watching the PHI itself. Once the new exit value is in place, there
529 // may not be a def-use connection between the loop and every instruction
530 // which got a SCEVAddRecExpr for that loop.
531 SE->forgetValue(PN);
532
Chris Lattner9f3d7382007-03-04 03:43:23 +0000533 // Iterate over all of the values in all the PHI nodes.
534 for (unsigned i = 0; i != NumPreds; ++i) {
535 // If the value being merged in is not integer or is not defined
536 // in the loop, skip it.
537 Value *InVal = PN->getIncomingValue(i);
Dan Gohman814f2b22010-02-18 21:34:02 +0000538 if (!isa<Instruction>(InVal))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000539 continue;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000540
Chris Lattner9f3d7382007-03-04 03:43:23 +0000541 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmancafb8132009-02-17 19:13:57 +0000542 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattner9f3d7382007-03-04 03:43:23 +0000543 continue; // The Block is in a subloop, skip it.
544
545 // Check that InVal is defined in the loop.
546 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman92329c72009-12-18 01:24:09 +0000547 if (!L->contains(Inst))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000548 continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000549
Chris Lattner9f3d7382007-03-04 03:43:23 +0000550 // Okay, this instruction has a user outside of the current loop
551 // and varies predictably *inside* the loop. Evaluate the value it
552 // contains when the loop exits, if possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000553 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +0000554 if (!SE->isLoopInvariant(ExitValue, L))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000555 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000556
Dan Gohman667d7872009-06-26 22:53:46 +0000557 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000558
David Greenef67ef312010-01-05 01:27:06 +0000559 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +0000560 << " LoopVal = " << *Inst << "\n");
Chris Lattner9f3d7382007-03-04 03:43:23 +0000561
Andrew Trickb12a7542011-03-17 23:51:11 +0000562 if (!isValidRewrite(Inst, ExitVal)) {
563 DeadInsts.push_back(ExitVal);
564 continue;
565 }
566 Changed = true;
567 ++NumReplaced;
568
Chris Lattner9f3d7382007-03-04 03:43:23 +0000569 PN->setIncomingValue(i, ExitVal);
Dan Gohmancafb8132009-02-17 19:13:57 +0000570
Dan Gohman81db61a2009-05-12 02:17:14 +0000571 // If this instruction is dead now, delete it.
572 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000573
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000574 if (NumPreds == 1) {
575 // Completely replace a single-pred PHI. This is safe, because the
576 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
577 // node anymore.
Chris Lattner9f3d7382007-03-04 03:43:23 +0000578 PN->replaceAllUsesWith(ExitVal);
Dan Gohman81db61a2009-05-12 02:17:14 +0000579 RecursivelyDeleteTriviallyDeadInstructions(PN);
Chris Lattnerc9838f22007-03-03 22:48:48 +0000580 }
581 }
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000582 if (NumPreds != 1) {
Dan Gohman667d7872009-06-26 22:53:46 +0000583 // Clone the PHI and delete the original one. This lets IVUsers and
584 // any other maps purge the original user from their records.
Devang Patel50b6e332009-10-27 22:16:29 +0000585 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohman667d7872009-06-26 22:53:46 +0000586 NewPN->takeName(PN);
587 NewPN->insertBefore(PN);
588 PN->replaceAllUsesWith(NewPN);
589 PN->eraseFromParent();
590 }
Chris Lattnerc9838f22007-03-03 22:48:48 +0000591 }
592 }
Dan Gohman472fdf72010-03-20 03:53:53 +0000593
594 // The insertion point instruction may have been deleted; clear it out
595 // so that the rewriter doesn't trip over it later.
596 Rewriter.clearInsertPoint();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000597}
598
Andrew Trick1a54bb22011-07-12 00:08:50 +0000599//===----------------------------------------------------------------------===//
600// Rewrite IV users based on a canonical IV.
Andrew Trickf21bdf42011-09-12 18:28:44 +0000601// Only for use with -enable-iv-rewrite.
Andrew Trick1a54bb22011-07-12 00:08:50 +0000602//===----------------------------------------------------------------------===//
Dale Johannesenc671d892009-04-15 23:31:51 +0000603
Andrew Trick39d78022011-09-09 17:35:10 +0000604/// FIXME: It is an extremely bad idea to indvar substitute anything more
605/// complex than affine induction variables. Doing so will put expensive
606/// polynomial evaluations inside of the loop, and the str reduction pass
607/// currently can only reduce affine polynomials. For now just disable
608/// indvar subst on anything more complex than an affine addrec, unless
609/// it can be expanded to a trivial value.
Andrew Trick1a54bb22011-07-12 00:08:50 +0000610static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
611 // Loop-invariant values are safe.
612 if (SE->isLoopInvariant(S, L)) return true;
613
614 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
615 // to transform them into efficient code.
616 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
617 return AR->isAffine();
618
619 // An add is safe it all its operands are safe.
Andrew Trick39d78022011-09-09 17:35:10 +0000620 if (const SCEVCommutativeExpr *Commutative
621 = dyn_cast<SCEVCommutativeExpr>(S)) {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000622 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
623 E = Commutative->op_end(); I != E; ++I)
624 if (!isSafe(*I, L, SE)) return false;
625 return true;
626 }
627
628 // A cast is safe if its operand is.
629 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
630 return isSafe(C->getOperand(), L, SE);
631
632 // A udiv is safe if its operands are.
633 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
634 return isSafe(UD->getLHS(), L, SE) &&
635 isSafe(UD->getRHS(), L, SE);
636
637 // SCEVUnknown is always safe.
638 if (isa<SCEVUnknown>(S))
639 return true;
640
641 // Nothing else is safe.
642 return false;
643}
644
645void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
646 // Rewrite all induction variable expressions in terms of the canonical
647 // induction variable.
648 //
649 // If there were induction variables of other sizes or offsets, manually
650 // add the offsets to the primary induction variable and cast, avoiding
651 // the need for the code evaluation methods to insert induction variables
652 // of different sizes.
653 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
654 Value *Op = UI->getOperandValToReplace();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000655 Type *UseTy = Op->getType();
Andrew Trick1a54bb22011-07-12 00:08:50 +0000656 Instruction *User = UI->getUser();
657
658 // Compute the final addrec to expand into code.
659 const SCEV *AR = IU->getReplacementExpr(*UI);
660
661 // Evaluate the expression out of the loop, if possible.
662 if (!L->contains(UI->getUser())) {
663 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
664 if (SE->isLoopInvariant(ExitVal, L))
665 AR = ExitVal;
666 }
667
668 // FIXME: It is an extremely bad idea to indvar substitute anything more
669 // complex than affine induction variables. Doing so will put expensive
670 // polynomial evaluations inside of the loop, and the str reduction pass
671 // currently can only reduce affine polynomials. For now just disable
672 // indvar subst on anything more complex than an affine addrec, unless
673 // it can be expanded to a trivial value.
674 if (!isSafe(AR, L, SE))
675 continue;
676
677 // Determine the insertion point for this user. By default, insert
678 // immediately before the user. The SCEVExpander class will automatically
679 // hoist loop invariants out of the loop. For PHI nodes, there may be
680 // multiple uses, so compute the nearest common dominator for the
681 // incoming blocks.
Andrew Trick86c98142011-07-20 05:32:06 +0000682 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
Andrew Trick1a54bb22011-07-12 00:08:50 +0000683
684 // Now expand it into actual Instructions and patch it into place.
685 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
686
687 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
688 << " into = " << *NewVal << "\n");
689
690 if (!isValidRewrite(Op, NewVal)) {
691 DeadInsts.push_back(NewVal);
692 continue;
693 }
694 // Inform ScalarEvolution that this value is changing. The change doesn't
695 // affect its value, but it does potentially affect which use lists the
696 // value will be on after the replacement, which affects ScalarEvolution's
697 // ability to walk use lists and drop dangling pointers when a value is
698 // deleted.
699 SE->forgetValue(User);
700
701 // Patch the new value into place.
702 if (Op->hasName())
703 NewVal->takeName(Op);
704 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
705 NewValI->setDebugLoc(User->getDebugLoc());
706 User->replaceUsesOfWith(Op, NewVal);
707 UI->setOperandValToReplace(NewVal);
708
709 ++NumRemoved;
710 Changed = true;
711
712 // The old value may be dead now.
713 DeadInsts.push_back(Op);
714 }
715}
716
717//===----------------------------------------------------------------------===//
718// IV Widening - Extend the width of an IV to cover its widest uses.
719//===----------------------------------------------------------------------===//
720
Andrew Trickf85092c2011-05-20 18:25:42 +0000721namespace {
722 // Collect information about induction variables that are used by sign/zero
723 // extend operations. This information is recorded by CollectExtend and
724 // provides the input to WidenIV.
725 struct WideIVInfo {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000726 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trick4b4bb712011-08-10 03:46:27 +0000727 bool IsSigned; // Was an sext user seen before a zext?
Andrew Trickf85092c2011-05-20 18:25:42 +0000728
729 WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
730 };
Andrew Trick4b4bb712011-08-10 03:46:27 +0000731
732 class WideIVVisitor : public IVVisitor {
733 ScalarEvolution *SE;
734 const TargetData *TD;
735
736 public:
737 WideIVInfo WI;
738
739 WideIVVisitor(ScalarEvolution *SCEV, const TargetData *TData) :
740 SE(SCEV), TD(TData) {}
741
742 // Implement the interface used by simplifyUsersOfIV.
743 virtual void visitCast(CastInst *Cast);
744 };
Andrew Trickf85092c2011-05-20 18:25:42 +0000745}
746
Andrew Trick4b4bb712011-08-10 03:46:27 +0000747/// visitCast - Update information about the induction variable that is
Andrew Trickf85092c2011-05-20 18:25:42 +0000748/// extended by this sign or zero extend operation. This is used to determine
749/// the final width of the IV before actually widening it.
Andrew Trick4b4bb712011-08-10 03:46:27 +0000750void WideIVVisitor::visitCast(CastInst *Cast) {
751 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
752 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
753 return;
754
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000755 Type *Ty = Cast->getType();
Andrew Trickf85092c2011-05-20 18:25:42 +0000756 uint64_t Width = SE->getTypeSizeInBits(Ty);
757 if (TD && !TD->isLegalInteger(Width))
758 return;
759
Andrew Trick2fabd462011-06-21 03:22:38 +0000760 if (!WI.WidestNativeType) {
761 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
762 WI.IsSigned = IsSigned;
Andrew Trickf85092c2011-05-20 18:25:42 +0000763 return;
764 }
765
766 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick2fabd462011-06-21 03:22:38 +0000767 if (WI.IsSigned != IsSigned)
Andrew Trickf85092c2011-05-20 18:25:42 +0000768 return;
769
Andrew Trick2fabd462011-06-21 03:22:38 +0000770 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
771 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf85092c2011-05-20 18:25:42 +0000772}
773
774namespace {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000775
776/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
777/// WideIV that computes the same value as the Narrow IV def. This avoids
778/// caching Use* pointers.
779struct NarrowIVDefUse {
780 Instruction *NarrowDef;
781 Instruction *NarrowUse;
782 Instruction *WideDef;
783
784 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
785
786 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
787 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
788};
789
Andrew Trickf85092c2011-05-20 18:25:42 +0000790/// WidenIV - The goal of this transform is to remove sign and zero extends
791/// without creating any new induction variables. To do this, it creates a new
792/// phi of the wider type and redirects all users, either removing extends or
793/// inserting truncs whenever we stop propagating the type.
794///
795class WidenIV {
Andrew Trick2fabd462011-06-21 03:22:38 +0000796 // Parameters
Andrew Trickf85092c2011-05-20 18:25:42 +0000797 PHINode *OrigPhi;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000798 Type *WideType;
Andrew Trickf85092c2011-05-20 18:25:42 +0000799 bool IsSigned;
800
Andrew Trick2fabd462011-06-21 03:22:38 +0000801 // Context
802 LoopInfo *LI;
803 Loop *L;
Andrew Trickf85092c2011-05-20 18:25:42 +0000804 ScalarEvolution *SE;
Andrew Trick2fabd462011-06-21 03:22:38 +0000805 DominatorTree *DT;
Andrew Trickf85092c2011-05-20 18:25:42 +0000806
Andrew Trick2fabd462011-06-21 03:22:38 +0000807 // Result
Andrew Trickf85092c2011-05-20 18:25:42 +0000808 PHINode *WidePhi;
809 Instruction *WideInc;
810 const SCEV *WideIncExpr;
Andrew Trick2fabd462011-06-21 03:22:38 +0000811 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf85092c2011-05-20 18:25:42 +0000812
Andrew Trick2fabd462011-06-21 03:22:38 +0000813 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000814 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf85092c2011-05-20 18:25:42 +0000815
816public:
Andrew Trick2fabd462011-06-21 03:22:38 +0000817 WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
818 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000819 SmallVectorImpl<WeakVH> &DI) :
Andrew Trickf85092c2011-05-20 18:25:42 +0000820 OrigPhi(PN),
Andrew Trick2fabd462011-06-21 03:22:38 +0000821 WideType(WI.WidestNativeType),
822 IsSigned(WI.IsSigned),
Andrew Trickf85092c2011-05-20 18:25:42 +0000823 LI(LInfo),
824 L(LI->getLoopFor(OrigPhi->getParent())),
825 SE(SEv),
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000826 DT(DTree),
Andrew Trickf85092c2011-05-20 18:25:42 +0000827 WidePhi(0),
828 WideInc(0),
Andrew Trick2fabd462011-06-21 03:22:38 +0000829 WideIncExpr(0),
830 DeadInsts(DI) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000831 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
832 }
833
Andrew Trick2fabd462011-06-21 03:22:38 +0000834 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf85092c2011-05-20 18:25:42 +0000835
836protected:
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000837 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf85092c2011-05-20 18:25:42 +0000838
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000839 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
840
Andrew Trick20151da2011-09-10 01:24:17 +0000841 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
842
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000843 Instruction *WidenIVUse(NarrowIVDefUse DU);
Andrew Trick4b029152011-07-02 02:34:25 +0000844
845 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf85092c2011-05-20 18:25:42 +0000846};
847} // anonymous namespace
848
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000849static Value *getExtend( Value *NarrowOper, Type *WideType,
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000850 bool IsSigned, IRBuilder<> &Builder) {
851 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
852 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf85092c2011-05-20 18:25:42 +0000853}
854
855/// CloneIVUser - Instantiate a wide operation to replace a narrow
856/// operation. This only needs to handle operations that can evaluation to
857/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000858Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
859 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf85092c2011-05-20 18:25:42 +0000860 switch (Opcode) {
861 default:
862 return 0;
863 case Instruction::Add:
864 case Instruction::Mul:
865 case Instruction::UDiv:
866 case Instruction::Sub:
867 case Instruction::And:
868 case Instruction::Or:
869 case Instruction::Xor:
870 case Instruction::Shl:
871 case Instruction::LShr:
872 case Instruction::AShr:
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000873 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf85092c2011-05-20 18:25:42 +0000874
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000875 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000876
877 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
878 // anything about the narrow operand yet so must insert a [sz]ext. It is
879 // probably loop invariant and will be folded or hoisted. If it actually
880 // comes from a widened IV, it should be removed during a future call to
881 // WidenIVUse.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000882 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
883 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
884 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
885 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000886
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000887 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000888 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000889 LHS, RHS,
Andrew Trickf85092c2011-05-20 18:25:42 +0000890 NarrowBO->getName());
Andrew Trickf85092c2011-05-20 18:25:42 +0000891 Builder.Insert(WideBO);
Andrew Trick6e0ce242011-06-30 19:02:17 +0000892 if (const OverflowingBinaryOperator *OBO =
893 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
894 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
895 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
896 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000897 return WideBO;
Andrew Trickf85092c2011-05-20 18:25:42 +0000898 }
899 llvm_unreachable(0);
900}
901
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000902/// HoistStep - Attempt to hoist an IV increment above a potential use.
903///
904/// To successfully hoist, two criteria must be met:
905/// - IncV operands dominate InsertPos and
906/// - InsertPos dominates IncV
907///
908/// Meeting the second condition means that we don't need to check all of IncV's
909/// existing uses (it's moving up in the domtree).
910///
911/// This does not yet recursively hoist the operands, although that would
912/// not be difficult.
913static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
914 const DominatorTree *DT)
915{
916 if (DT->dominates(IncV, InsertPos))
917 return true;
918
919 if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
920 return false;
921
922 if (IncV->mayHaveSideEffects())
923 return false;
924
925 // Attempt to hoist IncV
926 for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
927 OI != OE; ++OI) {
928 Instruction *OInst = dyn_cast<Instruction>(OI);
929 if (OInst && !DT->dominates(OInst, InsertPos))
930 return false;
931 }
932 IncV->moveBefore(InsertPos);
933 return true;
934}
935
Andrew Trick20151da2011-09-10 01:24:17 +0000936/// No-wrap operations can transfer sign extension of their result to their
937/// operands. Generate the SCEV value for the widened operation without
938/// actually modifying the IR yet. If the expression after extending the
939/// operands is an AddRec for this loop, return it.
940const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
941 // Handle the common case of add<nsw/nuw>
942 if (DU.NarrowUse->getOpcode() != Instruction::Add)
943 return 0;
944
945 // One operand (NarrowDef) has already been extended to WideDef. Now determine
946 // if extending the other will lead to a recurrence.
947 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
948 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
949
950 const SCEV *ExtendOperExpr = 0;
951 const OverflowingBinaryOperator *OBO =
952 cast<OverflowingBinaryOperator>(DU.NarrowUse);
953 if (IsSigned && OBO->hasNoSignedWrap())
954 ExtendOperExpr = SE->getSignExtendExpr(
955 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
956 else if(!IsSigned && OBO->hasNoUnsignedWrap())
957 ExtendOperExpr = SE->getZeroExtendExpr(
958 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
959 else
960 return 0;
961
962 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
963 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr,
964 IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW));
965
966 if (!AddRec || AddRec->getLoop() != L)
967 return 0;
968 return AddRec;
969}
970
Andrew Trick39d78022011-09-09 17:35:10 +0000971/// GetWideRecurrence - Is this instruction potentially interesting from
972/// IVUsers' perspective after widening it's type? In other words, can the
973/// extend be safely hoisted out of the loop with SCEV reducing the value to a
974/// recurrence on the same loop. If so, return the sign or zero extended
975/// recurrence. Otherwise return NULL.
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000976const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
977 if (!SE->isSCEVable(NarrowUse->getType()))
978 return 0;
979
980 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
981 if (SE->getTypeSizeInBits(NarrowExpr->getType())
982 >= SE->getTypeSizeInBits(WideType)) {
983 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
984 // index. So don't follow this use.
985 return 0;
986 }
987
988 const SCEV *WideExpr = IsSigned ?
989 SE->getSignExtendExpr(NarrowExpr, WideType) :
990 SE->getZeroExtendExpr(NarrowExpr, WideType);
991 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
992 if (!AddRec || AddRec->getLoop() != L)
993 return 0;
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000994 return AddRec;
995}
996
Andrew Trickf85092c2011-05-20 18:25:42 +0000997/// WidenIVUse - Determine whether an individual user of the narrow IV can be
998/// widened. If so, return the wide clone of the user.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000999Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
Andrew Trickcc359d92011-06-29 23:03:57 +00001000
Andrew Trick4b029152011-07-02 02:34:25 +00001001 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001002 if (isa<PHINode>(DU.NarrowUse) &&
1003 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf85092c2011-05-20 18:25:42 +00001004 return 0;
1005
Andrew Trickf85092c2011-05-20 18:25:42 +00001006 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001007 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1008 Value *NewDef = DU.WideDef;
1009 if (DU.NarrowUse->getType() != WideType) {
1010 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001011 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1012 if (CastWidth < IVWidth) {
1013 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001014 IRBuilder<> Builder(DU.NarrowUse);
1015 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001016 }
1017 else {
1018 // A wider extend was hidden behind a narrower one. This may induce
1019 // another round of IV widening in which the intermediate IV becomes
1020 // dead. It should be very rare.
1021 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001022 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1023 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1024 NewDef = DU.NarrowUse;
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001025 }
1026 }
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001027 if (NewDef != DU.NarrowUse) {
1028 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1029 << " replaced by " << *DU.WideDef << "\n");
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001030 ++NumElimExt;
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001031 DU.NarrowUse->replaceAllUsesWith(NewDef);
1032 DeadInsts.push_back(DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001033 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001034 // Now that the extend is gone, we want to expose it's uses for potential
1035 // further simplification. We don't need to directly inform SimplifyIVUsers
1036 // of the new users, because their parent IV will be processed later as a
1037 // new loop phi. If we preserved IVUsers analysis, we would also want to
1038 // push the uses of WideDef here.
Andrew Trickf85092c2011-05-20 18:25:42 +00001039
1040 // No further widening is needed. The deceased [sz]ext had done it for us.
1041 return 0;
1042 }
Andrew Trick4b029152011-07-02 02:34:25 +00001043
1044 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001045 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +00001046 if (!WideAddRec) {
Andrew Trick20151da2011-09-10 01:24:17 +00001047 WideAddRec = GetExtendedOperandRecurrence(DU);
1048 }
1049 if (!WideAddRec) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001050 // This user does not evaluate to a recurence after widening, so don't
1051 // follow it. Instead insert a Trunc to kill off the original use,
1052 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick86c98142011-07-20 05:32:06 +00001053 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001054 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1055 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf85092c2011-05-20 18:25:42 +00001056 return 0;
1057 }
Andrew Trickfc933c02011-07-18 20:32:31 +00001058 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick4b029152011-07-02 02:34:25 +00001059 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001060 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick4b029152011-07-02 02:34:25 +00001061 "SCEV is not expected to evaluate a block terminator");
Andrew Trickcc359d92011-06-29 23:03:57 +00001062
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001063 // Reuse the IV increment that SCEVExpander created as long as it dominates
1064 // NarrowUse.
Andrew Trickf85092c2011-05-20 18:25:42 +00001065 Instruction *WideUse = 0;
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001066 if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001067 WideUse = WideInc;
1068 }
1069 else {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001070 WideUse = CloneIVUser(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +00001071 if (!WideUse)
1072 return 0;
1073 }
Andrew Trick4b029152011-07-02 02:34:25 +00001074 // Evaluation of WideAddRec ensured that the narrow expression could be
1075 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf85092c2011-05-20 18:25:42 +00001076 // evaluates to the same expression as the extended narrow use, but doesn't
1077 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick2fabd462011-06-21 03:22:38 +00001078 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf85092c2011-05-20 18:25:42 +00001079 if (WideAddRec != SE->getSCEV(WideUse)) {
1080 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1081 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1082 DeadInsts.push_back(WideUse);
1083 return 0;
1084 }
1085
1086 // Returning WideUse pushes it on the worklist.
1087 return WideUse;
1088}
1089
Andrew Trick4b029152011-07-02 02:34:25 +00001090/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1091///
1092void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1093 for (Value::use_iterator UI = NarrowDef->use_begin(),
1094 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001095 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick4b029152011-07-02 02:34:25 +00001096
1097 // Handle data flow merges and bizarre phi cycles.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001098 if (!Widened.insert(NarrowUse))
Andrew Trick4b029152011-07-02 02:34:25 +00001099 continue;
1100
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001101 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick4b029152011-07-02 02:34:25 +00001102 }
1103}
1104
Andrew Trickf85092c2011-05-20 18:25:42 +00001105/// CreateWideIV - Process a single induction variable. First use the
1106/// SCEVExpander to create a wide induction variable that evaluates to the same
1107/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick2fabd462011-06-21 03:22:38 +00001108/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf85092c2011-05-20 18:25:42 +00001109/// interesting IV users, the narrow IV will be isolated for removal by
1110/// DeleteDeadPHIs.
1111///
1112/// It would be simpler to delete uses as they are processed, but we must avoid
1113/// invalidating SCEV expressions.
1114///
Andrew Trick2fabd462011-06-21 03:22:38 +00001115PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001116 // Is this phi an induction variable?
1117 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1118 if (!AddRec)
Andrew Trick2fabd462011-06-21 03:22:38 +00001119 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001120
1121 // Widen the induction variable expression.
1122 const SCEV *WideIVExpr = IsSigned ?
1123 SE->getSignExtendExpr(AddRec, WideType) :
1124 SE->getZeroExtendExpr(AddRec, WideType);
1125
1126 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1127 "Expect the new IV expression to preserve its type");
1128
1129 // Can the IV be extended outside the loop without overflow?
1130 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1131 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick2fabd462011-06-21 03:22:38 +00001132 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001133
Andrew Trick2fabd462011-06-21 03:22:38 +00001134 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf85092c2011-05-20 18:25:42 +00001135 // materialized by a loop header phi, the expression cannot have any post-loop
1136 // operands, so they must dominate the loop header.
1137 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1138 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1139 && "Loop header phi recurrence inputs do not dominate the loop");
1140
1141 // The rewriter provides a value for the desired IV expression. This may
1142 // either find an existing phi or materialize a new one. Either way, we
1143 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1144 // of the phi-SCC dominates the loop entry.
1145 Instruction *InsertPt = L->getHeader()->begin();
1146 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1147
1148 // Remembering the WideIV increment generated by SCEVExpander allows
1149 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1150 // employ a general reuse mechanism because the call above is the only call to
1151 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001152 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1153 WideInc =
1154 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1155 WideIncExpr = SE->getSCEV(WideInc);
1156 }
Andrew Trickf85092c2011-05-20 18:25:42 +00001157
1158 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1159 ++NumWidened;
1160
1161 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick4b029152011-07-02 02:34:25 +00001162 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf85092c2011-05-20 18:25:42 +00001163
Andrew Trick4b029152011-07-02 02:34:25 +00001164 Widened.insert(OrigPhi);
1165 pushNarrowIVUsers(OrigPhi, WidePhi);
1166
Andrew Trickf85092c2011-05-20 18:25:42 +00001167 while (!NarrowIVUsers.empty()) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001168 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf85092c2011-05-20 18:25:42 +00001169
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001170 // Process a def-use edge. This may replace the use, so don't hold a
1171 // use_iterator across it.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001172 Instruction *WideUse = WidenIVUse(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +00001173
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001174 // Follow all def-use edges from the previous narrow use.
Andrew Trick4b029152011-07-02 02:34:25 +00001175 if (WideUse)
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001176 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick4b029152011-07-02 02:34:25 +00001177
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001178 // WidenIVUse may have removed the def-use edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001179 if (DU.NarrowDef->use_empty())
1180 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf85092c2011-05-20 18:25:42 +00001181 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001182 return WidePhi;
Andrew Trickf85092c2011-05-20 18:25:42 +00001183}
1184
Andrew Trick1a54bb22011-07-12 00:08:50 +00001185//===----------------------------------------------------------------------===//
1186// Simplification of IV users based on SCEV evaluation.
1187//===----------------------------------------------------------------------===//
1188
Andrew Trickaeee4612011-05-12 00:04:28 +00001189
Andrew Trick4b4bb712011-08-10 03:46:27 +00001190/// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1191/// users. Each successive simplification may push more users which may
Andrew Trick2fabd462011-06-21 03:22:38 +00001192/// themselves be candidates for simplification.
1193///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001194/// Sign/Zero extend elimination is interleaved with IV simplification.
Andrew Trick2fabd462011-06-21 03:22:38 +00001195///
Andrew Trick4b4bb712011-08-10 03:46:27 +00001196void IndVarSimplify::SimplifyAndExtend(Loop *L,
1197 SCEVExpander &Rewriter,
1198 LPPassManager &LPM) {
Andrew Trick15832f62011-06-28 02:49:20 +00001199 std::map<PHINode *, WideIVInfo> WideIVMap;
1200
Andrew Trick2fabd462011-06-21 03:22:38 +00001201 SmallVector<PHINode*, 8> LoopPhis;
1202 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1203 LoopPhis.push_back(cast<PHINode>(I));
1204 }
Andrew Trick15832f62011-06-28 02:49:20 +00001205 // Each round of simplification iterates through the SimplifyIVUsers worklist
1206 // for all current phis, then determines whether any IVs can be
1207 // widened. Widening adds new phis to LoopPhis, inducing another round of
1208 // simplification on the wide IVs.
Andrew Trick2fabd462011-06-21 03:22:38 +00001209 while (!LoopPhis.empty()) {
Andrew Trick15832f62011-06-28 02:49:20 +00001210 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick99a92f62011-06-28 16:45:04 +00001211 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick15832f62011-06-28 02:49:20 +00001212 // extension. The first time SCEV attempts to normalize sign/zero extension,
1213 // the result becomes final. So for the most predictable results, we delay
1214 // evaluation of sign/zero extend evaluation until needed, and avoid running
Andrew Trick4b4bb712011-08-10 03:46:27 +00001215 // other SCEV based analysis prior to SimplifyAndExtend.
Andrew Trick15832f62011-06-28 02:49:20 +00001216 do {
1217 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick2fabd462011-06-21 03:22:38 +00001218
Andrew Trick15832f62011-06-28 02:49:20 +00001219 // Information about sign/zero extensions of CurrIV.
Andrew Trick4b4bb712011-08-10 03:46:27 +00001220 WideIVVisitor WIV(SE, TD);
Andrew Trick2fabd462011-06-21 03:22:38 +00001221
Andrew Trickbddb7f82011-08-10 04:22:26 +00001222 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
Andrew Trick2fabd462011-06-21 03:22:38 +00001223
Andrew Trick4b4bb712011-08-10 03:46:27 +00001224 if (WIV.WI.WidestNativeType) {
1225 WideIVMap[CurrIV] = WIV.WI;
Andrew Trick2fabd462011-06-21 03:22:38 +00001226 }
Andrew Trick15832f62011-06-28 02:49:20 +00001227 } while(!LoopPhis.empty());
1228
1229 for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1230 E = WideIVMap.end(); I != E; ++I) {
1231 WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
Andrew Trick2fabd462011-06-21 03:22:38 +00001232 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1233 Changed = true;
1234 LoopPhis.push_back(WidePhi);
1235 }
1236 }
Andrew Trick15832f62011-06-28 02:49:20 +00001237 WideIVMap.clear();
Andrew Trick2fabd462011-06-21 03:22:38 +00001238 }
1239}
1240
Andrew Trick037d1c02011-07-06 20:50:43 +00001241/// SimplifyCongruentIVs - Check for congruent phis in this loop header and
Andrew Trick4b4bb712011-08-10 03:46:27 +00001242/// replace them with their chosen representative.
Andrew Trick037d1c02011-07-06 20:50:43 +00001243///
1244void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
Andrew Trick6f684b02011-07-16 01:06:48 +00001245 DenseMap<const SCEV *, PHINode *> ExprToIVMap;
Andrew Trick037d1c02011-07-06 20:50:43 +00001246 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1247 PHINode *Phi = cast<PHINode>(I);
Andrew Trick1a54bb22011-07-12 00:08:50 +00001248 if (!SE->isSCEVable(Phi->getType()))
1249 continue;
1250
Andrew Trick037d1c02011-07-06 20:50:43 +00001251 const SCEV *S = SE->getSCEV(Phi);
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001252 std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1253 ExprToIVMap.insert(std::make_pair(S, Phi));
1254 if (Tmp.second)
Andrew Trick037d1c02011-07-06 20:50:43 +00001255 continue;
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001256 PHINode *OrigPhi = Tmp.first->second;
Andrew Trickf22d9572011-07-20 02:08:58 +00001257
1258 // If one phi derives from the other via GEPs, types may differ.
1259 if (OrigPhi->getType() != Phi->getType())
1260 continue;
1261
Andrew Trick037d1c02011-07-06 20:50:43 +00001262 // Replacing the congruent phi is sufficient because acyclic redundancy
1263 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1264 // that a phi is congruent, it's almost certain to be the head of an IV
1265 // user cycle that is isomorphic with the original phi. So it's worth
1266 // eagerly cleaning up the common case of a single IV increment.
1267 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1268 Instruction *OrigInc =
1269 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1270 Instruction *IsomorphicInc =
1271 cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1272 if (OrigInc != IsomorphicInc &&
Andrew Trickf22d9572011-07-20 02:08:58 +00001273 OrigInc->getType() == IsomorphicInc->getType() &&
Andrew Trick037d1c02011-07-06 20:50:43 +00001274 SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1275 HoistStep(OrigInc, IsomorphicInc, DT)) {
1276 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1277 << *IsomorphicInc << '\n');
1278 IsomorphicInc->replaceAllUsesWith(OrigInc);
1279 DeadInsts.push_back(IsomorphicInc);
1280 }
1281 }
1282 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1283 ++NumElimIV;
1284 Phi->replaceAllUsesWith(OrigPhi);
1285 DeadInsts.push_back(Phi);
1286 }
1287}
1288
Andrew Trick1a54bb22011-07-12 00:08:50 +00001289//===----------------------------------------------------------------------===//
1290// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1291//===----------------------------------------------------------------------===//
1292
Andrew Trick39d78022011-09-09 17:35:10 +00001293/// Check for expressions that ScalarEvolution generates to compute
1294/// BackedgeTakenInfo. If these expressions have not been reduced, then
1295/// expanding them may incur additional cost (albeit in the loop preheader).
Andrew Trick5241b792011-07-18 18:21:35 +00001296static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1297 ScalarEvolution *SE) {
1298 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1299 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1300 // precise expression, rather than a UDiv from the user's code. If we can't
1301 // find a UDiv in the code with some simple searching, assume the former and
1302 // forego rewriting the loop.
1303 if (isa<SCEVUDivExpr>(S)) {
1304 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1305 if (!OrigCond) return true;
1306 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1307 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1308 if (R != S) {
1309 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1310 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1311 if (L != S)
1312 return true;
1313 }
1314 }
1315
Andrew Trickf21bdf42011-09-12 18:28:44 +00001316 if (EnableIVRewrite)
Andrew Trick5241b792011-07-18 18:21:35 +00001317 return false;
1318
1319 // Recurse past add expressions, which commonly occur in the
1320 // BackedgeTakenCount. They may already exist in program code, and if not,
1321 // they are not too expensive rematerialize.
1322 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1323 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1324 I != E; ++I) {
1325 if (isHighCostExpansion(*I, BI, SE))
1326 return true;
1327 }
1328 return false;
1329 }
1330
1331 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1332 // the exit condition.
1333 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1334 return true;
1335
1336 // If we haven't recognized an expensive SCEV patter, assume its an expression
1337 // produced by program code.
1338 return false;
1339}
1340
Andrew Trick1a54bb22011-07-12 00:08:50 +00001341/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1342/// count expression can be safely and cheaply expanded into an instruction
1343/// sequence that can be used by LinearFunctionTestReplace.
1344static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1345 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1346 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1347 BackedgeTakenCount->isZero())
1348 return false;
1349
1350 if (!L->getExitingBlock())
1351 return false;
1352
1353 // Can't rewrite non-branch yet.
1354 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1355 if (!BI)
1356 return false;
1357
Andrew Trick5241b792011-07-18 18:21:35 +00001358 if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1359 return false;
1360
Andrew Trick1a54bb22011-07-12 00:08:50 +00001361 return true;
1362}
1363
1364/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1365/// through Truncs.
1366///
Andrew Trickfc933c02011-07-18 20:32:31 +00001367/// TODO: Unnecessary when ForceLFTR is removed.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001368static Type *getBackedgeIVType(Loop *L) {
Andrew Trick1a54bb22011-07-12 00:08:50 +00001369 if (!L->getExitingBlock())
1370 return 0;
1371
1372 // Can't rewrite non-branch yet.
1373 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1374 if (!BI)
1375 return 0;
1376
1377 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1378 if (!Cond)
1379 return 0;
1380
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001381 Type *Ty = 0;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001382 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1383 OI != OE; ++OI) {
1384 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1385 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1386 if (!Trunc)
1387 continue;
1388
1389 return Trunc->getSrcTy();
1390 }
1391 return Ty;
1392}
1393
Andrew Trickfc933c02011-07-18 20:32:31 +00001394/// isLoopInvariant - Perform a quick domtree based check for loop invariance
1395/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1396/// gratuitous for this purpose.
1397static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1398 Instruction *Inst = dyn_cast<Instruction>(V);
1399 if (!Inst)
1400 return true;
1401
1402 return DT->properlyDominates(Inst->getParent(), L->getHeader());
1403}
1404
1405/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1406/// invariant value to the phi.
1407static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1408 Instruction *IncI = dyn_cast<Instruction>(IncV);
1409 if (!IncI)
1410 return 0;
1411
1412 switch (IncI->getOpcode()) {
1413 case Instruction::Add:
1414 case Instruction::Sub:
1415 break;
1416 case Instruction::GetElementPtr:
1417 // An IV counter must preserve its type.
1418 if (IncI->getNumOperands() == 2)
1419 break;
1420 default:
1421 return 0;
1422 }
1423
1424 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1425 if (Phi && Phi->getParent() == L->getHeader()) {
1426 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1427 return Phi;
1428 return 0;
1429 }
1430 if (IncI->getOpcode() == Instruction::GetElementPtr)
1431 return 0;
1432
1433 // Allow add/sub to be commuted.
1434 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1435 if (Phi && Phi->getParent() == L->getHeader()) {
1436 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1437 return Phi;
1438 }
1439 return 0;
1440}
1441
1442/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1443/// that the current exit test is already sufficiently canonical.
1444static bool needsLFTR(Loop *L, DominatorTree *DT) {
1445 assert(L->getExitingBlock() && "expected loop exit");
1446
1447 BasicBlock *LatchBlock = L->getLoopLatch();
1448 // Don't bother with LFTR if the loop is not properly simplified.
1449 if (!LatchBlock)
1450 return false;
1451
1452 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1453 assert(BI && "expected exit branch");
1454
1455 // Do LFTR to simplify the exit condition to an ICMP.
1456 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1457 if (!Cond)
1458 return true;
1459
1460 // Do LFTR to simplify the exit ICMP to EQ/NE
1461 ICmpInst::Predicate Pred = Cond->getPredicate();
1462 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1463 return true;
1464
1465 // Look for a loop invariant RHS
1466 Value *LHS = Cond->getOperand(0);
1467 Value *RHS = Cond->getOperand(1);
1468 if (!isLoopInvariant(RHS, L, DT)) {
1469 if (!isLoopInvariant(LHS, L, DT))
1470 return true;
1471 std::swap(LHS, RHS);
1472 }
1473 // Look for a simple IV counter LHS
1474 PHINode *Phi = dyn_cast<PHINode>(LHS);
1475 if (!Phi)
1476 Phi = getLoopPhiForCounter(LHS, L, DT);
1477
1478 if (!Phi)
1479 return true;
1480
1481 // Do LFTR if the exit condition's IV is *not* a simple counter.
1482 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1483 return Phi != getLoopPhiForCounter(IncV, L, DT);
1484}
1485
1486/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1487/// be rewritten) loop exit test.
1488static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1489 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1490 Value *IncV = Phi->getIncomingValue(LatchIdx);
1491
1492 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1493 UI != UE; ++UI) {
1494 if (*UI != Cond && *UI != IncV) return false;
1495 }
1496
1497 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1498 UI != UE; ++UI) {
1499 if (*UI != Cond && *UI != Phi) return false;
1500 }
1501 return true;
1502}
1503
1504/// FindLoopCounter - Find an affine IV in canonical form.
1505///
1506/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1507///
1508/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1509/// This is difficult in general for SCEV because of potential overflow. But we
1510/// could at least handle constant BECounts.
1511static PHINode *
1512FindLoopCounter(Loop *L, const SCEV *BECount,
1513 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1514 // I'm not sure how BECount could be a pointer type, but we definitely don't
1515 // want to LFTR that.
1516 if (BECount->getType()->isPointerTy())
1517 return 0;
1518
1519 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1520
1521 Value *Cond =
1522 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1523
1524 // Loop over all of the PHI nodes, looking for a simple counter.
1525 PHINode *BestPhi = 0;
1526 const SCEV *BestInit = 0;
1527 BasicBlock *LatchBlock = L->getLoopLatch();
1528 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1529
1530 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1531 PHINode *Phi = cast<PHINode>(I);
1532 if (!SE->isSCEVable(Phi->getType()))
1533 continue;
1534
1535 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1536 if (!AR || AR->getLoop() != L || !AR->isAffine())
1537 continue;
1538
1539 // AR may be a pointer type, while BECount is an integer type.
1540 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1541 // AR may not be a narrower type, or we may never exit.
1542 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1543 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1544 continue;
1545
1546 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1547 if (!Step || !Step->isOne())
1548 continue;
1549
1550 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1551 Value *IncV = Phi->getIncomingValue(LatchIdx);
1552 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1553 continue;
1554
1555 const SCEV *Init = AR->getStart();
1556
1557 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1558 // Don't force a live loop counter if another IV can be used.
1559 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1560 continue;
1561
1562 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1563 // also prefers integer to pointer IVs.
1564 if (BestInit->isZero() != Init->isZero()) {
1565 if (BestInit->isZero())
1566 continue;
1567 }
1568 // If two IVs both count from zero or both count from nonzero then the
1569 // narrower is likely a dead phi that has been widened. Use the wider phi
1570 // to allow the other to be eliminated.
1571 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1572 continue;
1573 }
1574 BestPhi = Phi;
1575 BestInit = Init;
1576 }
1577 return BestPhi;
1578}
1579
Andrew Trick1a54bb22011-07-12 00:08:50 +00001580/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1581/// loop to be a canonical != comparison against the incremented loop induction
1582/// variable. This pass is able to rewrite the exit tests of any loop where the
1583/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1584/// is actually a much broader range than just linear tests.
Andrew Trickfc933c02011-07-18 20:32:31 +00001585Value *IndVarSimplify::
Andrew Trick1a54bb22011-07-12 00:08:50 +00001586LinearFunctionTestReplace(Loop *L,
1587 const SCEV *BackedgeTakenCount,
1588 PHINode *IndVar,
1589 SCEVExpander &Rewriter) {
1590 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1591 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1592
Andrew Trickf21bdf42011-09-12 18:28:44 +00001593 // LFTR can ignore IV overflow and truncate to the width of
Andrew Trickfc933c02011-07-18 20:32:31 +00001594 // BECount. This avoids materializing the add(zext(add)) expression.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001595 Type *CntTy = !EnableIVRewrite ?
Andrew Trickfc933c02011-07-18 20:32:31 +00001596 BackedgeTakenCount->getType() : IndVar->getType();
1597
1598 const SCEV *IVLimit = BackedgeTakenCount;
1599
Andrew Trick1a54bb22011-07-12 00:08:50 +00001600 // If the exiting block is not the same as the backedge block, we must compare
1601 // against the preincremented value, otherwise we prefer to compare against
1602 // the post-incremented value.
1603 Value *CmpIndVar;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001604 if (L->getExitingBlock() == L->getLoopLatch()) {
1605 // Add one to the "backedge-taken" count to get the trip count.
1606 // If this addition may overflow, we have to be more pessimistic and
1607 // cast the induction variable before doing the add.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001608 const SCEV *N =
Andrew Trickfc933c02011-07-18 20:32:31 +00001609 SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1610 if (CntTy == IVLimit->getType())
1611 IVLimit = N;
1612 else {
1613 const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1614 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1615 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1616 // No overflow. Cast the sum.
1617 IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1618 } else {
1619 // Potential overflow. Cast before doing the add.
1620 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1621 IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1622 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001623 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001624 // The BackedgeTaken expression contains the number of times that the
1625 // backedge branches to the loop header. This is one less than the
1626 // number of times the loop executes, so use the incremented indvar.
1627 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1628 } else {
1629 // We have to use the preincremented value...
Andrew Trickfc933c02011-07-18 20:32:31 +00001630 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
Andrew Trick1a54bb22011-07-12 00:08:50 +00001631 CmpIndVar = IndVar;
1632 }
1633
Andrew Trickfc933c02011-07-18 20:32:31 +00001634 // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1635 // So for, non-zero start compute the IVLimit here.
1636 bool isPtrIV = false;
1637 Type *CmpTy = CntTy;
1638 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1639 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1640 if (!AR->getStart()->isZero()) {
1641 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1642 const SCEV *IVInit = AR->getStart();
1643
1644 // For pointer types, sign extend BECount in order to materialize a GEP.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001645 // Note that for without EnableIVRewrite, we never run SCEVExpander on a
Andrew Trickfc933c02011-07-18 20:32:31 +00001646 // pointer type, because we must preserve the existing GEPs. Instead we
1647 // directly generate a GEP later.
1648 if (IVInit->getType()->isPointerTy()) {
1649 isPtrIV = true;
1650 CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1651 IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1652 }
1653 // For integer types, truncate the IV before computing IVInit + BECount.
1654 else {
1655 if (SE->getTypeSizeInBits(IVInit->getType())
1656 > SE->getTypeSizeInBits(CmpTy))
1657 IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1658
1659 IVLimit = SE->getAddExpr(IVInit, IVLimit);
1660 }
1661 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001662 // Expand the code for the iteration count.
Andrew Trickfc933c02011-07-18 20:32:31 +00001663 IRBuilder<> Builder(BI);
1664
1665 assert(SE->isLoopInvariant(IVLimit, L) &&
Andrew Trick1a54bb22011-07-12 00:08:50 +00001666 "Computed iteration count is not loop invariant!");
Andrew Trickfc933c02011-07-18 20:32:31 +00001667 Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1668
1669 // Create a gep for IVInit + IVLimit from on an existing pointer base.
1670 assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1671 "IndVar type must match IVInit type");
1672 if (isPtrIV) {
1673 Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1674 assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
Andrew Trick41e0d4e2011-07-18 21:15:03 +00001675 assert(SE->getSizeOfExpr(
1676 cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1677 && "unit stride pointer IV must be i8*");
Andrew Trickfc933c02011-07-18 20:32:31 +00001678
1679 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1680 ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1681 Builder.SetInsertPoint(BI);
1682 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001683
1684 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trickfc933c02011-07-18 20:32:31 +00001685 ICmpInst::Predicate P;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001686 if (L->contains(BI->getSuccessor(0)))
Andrew Trickfc933c02011-07-18 20:32:31 +00001687 P = ICmpInst::ICMP_NE;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001688 else
Andrew Trickfc933c02011-07-18 20:32:31 +00001689 P = ICmpInst::ICMP_EQ;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001690
1691 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1692 << " LHS:" << *CmpIndVar << '\n'
1693 << " op:\t"
Andrew Trickfc933c02011-07-18 20:32:31 +00001694 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1695 << " RHS:\t" << *ExitCnt << "\n"
1696 << " Expr:\t" << *IVLimit << "\n");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001697
Andrew Trickfc933c02011-07-18 20:32:31 +00001698 if (SE->getTypeSizeInBits(CmpIndVar->getType())
1699 > SE->getTypeSizeInBits(CmpTy)) {
1700 CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1701 }
1702
1703 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001704 Value *OrigCond = BI->getCondition();
1705 // It's tempting to use replaceAllUsesWith here to fully replace the old
1706 // comparison, but that's not immediately safe, since users of the old
1707 // comparison may not be dominated by the new comparison. Instead, just
1708 // update the branch to use the new comparison; in the common case this
1709 // will make old comparison dead.
1710 BI->setCondition(Cond);
1711 DeadInsts.push_back(OrigCond);
1712
1713 ++NumLFTR;
1714 Changed = true;
1715 return Cond;
1716}
1717
1718//===----------------------------------------------------------------------===//
1719// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1720//===----------------------------------------------------------------------===//
1721
1722/// If there's a single exit block, sink any loop-invariant values that
1723/// were defined in the preheader but not used inside the loop into the
1724/// exit block to reduce register pressure in the loop.
1725void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1726 BasicBlock *ExitBlock = L->getExitBlock();
1727 if (!ExitBlock) return;
1728
1729 BasicBlock *Preheader = L->getLoopPreheader();
1730 if (!Preheader) return;
1731
Bill Wendlingb05fdd62011-08-24 20:28:43 +00001732 Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
Andrew Trick1a54bb22011-07-12 00:08:50 +00001733 BasicBlock::iterator I = Preheader->getTerminator();
1734 while (I != Preheader->begin()) {
1735 --I;
1736 // New instructions were inserted at the end of the preheader.
1737 if (isa<PHINode>(I))
1738 break;
1739
1740 // Don't move instructions which might have side effects, since the side
1741 // effects need to complete before instructions inside the loop. Also don't
1742 // move instructions which might read memory, since the loop may modify
1743 // memory. Note that it's okay if the instruction might have undefined
1744 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1745 // block.
1746 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1747 continue;
1748
1749 // Skip debug info intrinsics.
1750 if (isa<DbgInfoIntrinsic>(I))
1751 continue;
1752
Bill Wendling2b188812011-08-26 20:40:15 +00001753 // Skip landingpad instructions.
1754 if (isa<LandingPadInst>(I))
1755 continue;
1756
Andrew Trick1a54bb22011-07-12 00:08:50 +00001757 // Don't sink static AllocaInsts out of the entry block, which would
1758 // turn them into dynamic allocas!
1759 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1760 if (AI->isStaticAlloca())
1761 continue;
1762
1763 // Determine if there is a use in or before the loop (direct or
1764 // otherwise).
1765 bool UsedInLoop = false;
1766 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1767 UI != UE; ++UI) {
1768 User *U = *UI;
1769 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1770 if (PHINode *P = dyn_cast<PHINode>(U)) {
1771 unsigned i =
1772 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1773 UseBB = P->getIncomingBlock(i);
1774 }
1775 if (UseBB == Preheader || L->contains(UseBB)) {
1776 UsedInLoop = true;
1777 break;
1778 }
1779 }
1780
1781 // If there is, the def must remain in the preheader.
1782 if (UsedInLoop)
1783 continue;
1784
1785 // Otherwise, sink it to the exit block.
1786 Instruction *ToMove = I;
1787 bool Done = false;
1788
1789 if (I != Preheader->begin()) {
1790 // Skip debug info intrinsics.
1791 do {
1792 --I;
1793 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1794
1795 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1796 Done = true;
1797 } else {
1798 Done = true;
1799 }
1800
1801 ToMove->moveBefore(InsertPt);
1802 if (Done) break;
1803 InsertPt = ToMove;
1804 }
1805}
1806
1807//===----------------------------------------------------------------------===//
1808// IndVarSimplify driver. Manage several subpasses of IV simplification.
1809//===----------------------------------------------------------------------===//
1810
Dan Gohmanc2390b12009-02-12 22:19:27 +00001811bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmana5283822010-06-18 01:35:11 +00001812 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1813 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1814 // canonicalization can be a pessimization without LSR to "clean up"
1815 // afterwards.
1816 // - We depend on having a preheader; in particular,
1817 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
1818 // and we're in trouble if we can't find the induction variable even when
1819 // we've manually inserted one.
1820 if (!L->isLoopSimplifyForm())
1821 return false;
1822
Andrew Trickf21bdf42011-09-12 18:28:44 +00001823 if (EnableIVRewrite)
Andrew Trick2fabd462011-06-21 03:22:38 +00001824 IU = &getAnalysis<IVUsers>();
Devang Patel5ee99972007-03-07 06:39:01 +00001825 LI = &getAnalysis<LoopInfo>();
1826 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmande53dc02009-06-27 05:16:57 +00001827 DT = &getAnalysis<DominatorTree>();
Andrew Trick37da4082011-05-04 02:10:13 +00001828 TD = getAnalysisIfAvailable<TargetData>();
1829
Andrew Trickb12a7542011-03-17 23:51:11 +00001830 DeadInsts.clear();
Devang Patel5ee99972007-03-07 06:39:01 +00001831 Changed = false;
Dan Gohman60f8a632009-02-17 20:49:49 +00001832
Dan Gohman2d1be872009-04-16 03:18:22 +00001833 // If there are any floating-point recurrences, attempt to
Dan Gohman60f8a632009-02-17 20:49:49 +00001834 // transform them to use integer recurrences.
1835 RewriteNonIntegerIVs(L);
1836
Dan Gohman0bba49c2009-07-07 17:06:11 +00001837 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner9caed542007-03-04 01:00:28 +00001838
Dan Gohman667d7872009-06-26 22:53:46 +00001839 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick5e7645b2011-06-28 05:07:32 +00001840 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trick156d4602011-06-27 23:17:44 +00001841
1842 // Eliminate redundant IV users.
Andrew Trick15832f62011-06-28 02:49:20 +00001843 //
1844 // Simplification works best when run before other consumers of SCEV. We
1845 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1846 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick99a92f62011-06-28 16:45:04 +00001847 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001848 if (!EnableIVRewrite) {
Andrew Trick37da4082011-05-04 02:10:13 +00001849 Rewriter.disableCanonicalMode();
Andrew Trick4b4bb712011-08-10 03:46:27 +00001850 SimplifyAndExtend(L, Rewriter, LPM);
Andrew Trick156d4602011-06-27 23:17:44 +00001851 }
Andrew Trick37da4082011-05-04 02:10:13 +00001852
Chris Lattner40bf8b42004-04-02 20:24:31 +00001853 // Check to see if this loop has a computable loop-invariant execution count.
1854 // If so, this means that we can compute the final value of any expressions
1855 // that are recurrent in the loop, and substitute the exit values from the
1856 // loop into any instructions outside of the loop that use the final values of
1857 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +00001858 //
Dan Gohman46bdfb02009-02-24 18:55:53 +00001859 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman454d26d2010-02-22 04:11:59 +00001860 RewriteLoopExitValues(L, Rewriter);
Chris Lattner6148c022001-12-03 17:28:42 +00001861
Andrew Trickf85092c2011-05-20 18:25:42 +00001862 // Eliminate redundant IV users.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001863 if (EnableIVRewrite)
Andrew Trickbddb7f82011-08-10 04:22:26 +00001864 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
Dan Gohmana590b792010-04-13 01:46:36 +00001865
Andrew Trick6f684b02011-07-16 01:06:48 +00001866 // Eliminate redundant IV cycles.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001867 if (!EnableIVRewrite)
Andrew Trick037d1c02011-07-06 20:50:43 +00001868 SimplifyCongruentIVs(L);
1869
Dan Gohman81db61a2009-05-12 02:17:14 +00001870 // Compute the type of the largest recurrence expression, and decide whether
1871 // a canonical induction variable should be inserted.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001872 Type *LargestType = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +00001873 bool NeedCannIV = false;
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001874 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
Andrew Trickf21bdf42011-09-12 18:28:44 +00001875 if (EnableIVRewrite && ExpandBECount) {
Dan Gohman81db61a2009-05-12 02:17:14 +00001876 // If we have a known trip count and a single exit block, we'll be
1877 // rewriting the loop exit test condition below, which requires a
1878 // canonical induction variable.
Andrew Trick4dfdf242011-05-03 22:24:10 +00001879 NeedCannIV = true;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001880 Type *Ty = BackedgeTakenCount->getType();
Andrew Trickf21bdf42011-09-12 18:28:44 +00001881 if (!EnableIVRewrite) {
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001882 // In this mode, SimplifyIVUsers may have already widened the IV used by
1883 // the backedge test and inserted a Trunc on the compare's operand. Get
1884 // the wider type to avoid creating a redundant narrow IV only used by the
1885 // loop test.
1886 LargestType = getBackedgeIVType(L);
1887 }
Andrew Trick4dfdf242011-05-03 22:24:10 +00001888 if (!LargestType ||
1889 SE->getTypeSizeInBits(Ty) >
1890 SE->getTypeSizeInBits(LargestType))
1891 LargestType = SE->getEffectiveSCEVType(Ty);
Chris Lattnerf50af082004-04-17 18:08:33 +00001892 }
Andrew Trickf21bdf42011-09-12 18:28:44 +00001893 if (EnableIVRewrite) {
Andrew Trick37da4082011-05-04 02:10:13 +00001894 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1895 NeedCannIV = true;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001896 Type *Ty =
Andrew Trick37da4082011-05-04 02:10:13 +00001897 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1898 if (!LargestType ||
1899 SE->getTypeSizeInBits(Ty) >
Dan Gohmanaf79fb52009-04-21 01:07:12 +00001900 SE->getTypeSizeInBits(LargestType))
Andrew Trick37da4082011-05-04 02:10:13 +00001901 LargestType = Ty;
1902 }
Chris Lattner6148c022001-12-03 17:28:42 +00001903 }
1904
Dan Gohmanf451cb82010-02-10 16:03:48 +00001905 // Now that we know the largest of the induction variable expressions
Dan Gohman81db61a2009-05-12 02:17:14 +00001906 // in this loop, insert a canonical induction variable of the largest size.
Dan Gohman43ef3fb2010-07-20 17:18:52 +00001907 PHINode *IndVar = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +00001908 if (NeedCannIV) {
Dan Gohman85669632010-02-25 06:57:05 +00001909 // Check to see if the loop already has any canonical-looking induction
1910 // variables. If any are present and wider than the planned canonical
1911 // induction variable, temporarily remove them, so that the Rewriter
1912 // doesn't attempt to reuse them.
1913 SmallVector<PHINode *, 2> OldCannIVs;
1914 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
Dan Gohman4d8414f2009-06-13 16:25:49 +00001915 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1916 SE->getTypeSizeInBits(LargestType))
1917 OldCannIV->removeFromParent();
1918 else
Dan Gohman85669632010-02-25 06:57:05 +00001919 break;
1920 OldCannIVs.push_back(OldCannIV);
Dan Gohman4d8414f2009-06-13 16:25:49 +00001921 }
1922
Dan Gohman667d7872009-06-26 22:53:46 +00001923 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
Dan Gohman4d8414f2009-06-13 16:25:49 +00001924
Dan Gohmanc2390b12009-02-12 22:19:27 +00001925 ++NumInserted;
1926 Changed = true;
David Greenef67ef312010-01-05 01:27:06 +00001927 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
Dan Gohman4d8414f2009-06-13 16:25:49 +00001928
1929 // Now that the official induction variable is established, reinsert
Dan Gohman85669632010-02-25 06:57:05 +00001930 // any old canonical-looking variables after it so that the IR remains
1931 // consistent. They will be deleted as part of the dead-PHI deletion at
Dan Gohman4d8414f2009-06-13 16:25:49 +00001932 // the end of the pass.
Dan Gohman85669632010-02-25 06:57:05 +00001933 while (!OldCannIVs.empty()) {
1934 PHINode *OldCannIV = OldCannIVs.pop_back_val();
Bill Wendlingb05fdd62011-08-24 20:28:43 +00001935 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
Dan Gohman85669632010-02-25 06:57:05 +00001936 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001937 }
Andrew Trickf21bdf42011-09-12 18:28:44 +00001938 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
Andrew Trickfc933c02011-07-18 20:32:31 +00001939 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1940 }
Dan Gohmanc2390b12009-02-12 22:19:27 +00001941 // If we have a trip count expression, rewrite the loop's exit condition
1942 // using it. We can currently only handle loops with a single exit.
Andrew Trickfc933c02011-07-18 20:32:31 +00001943 Value *NewICmp = 0;
1944 if (ExpandBECount && IndVar) {
Andrew Trick56147692011-07-16 01:18:53 +00001945 // Check preconditions for proper SCEVExpander operation. SCEV does not
1946 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1947 // pass that uses the SCEVExpander must do it. This does not work well for
1948 // loop passes because SCEVExpander makes assumptions about all loops, while
1949 // LoopPassManager only forces the current loop to be simplified.
1950 //
1951 // FIXME: SCEV expansion has no way to bail out, so the caller must
1952 // explicitly check any assumptions made by SCEV. Brittle.
1953 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1954 if (!AR || AR->getLoop()->getLoopPreheader())
1955 NewICmp =
1956 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
Chris Lattnerfcb81f52004-04-22 14:59:40 +00001957 }
Andrew Trickb12a7542011-03-17 23:51:11 +00001958 // Rewrite IV-derived expressions.
Andrew Trickf21bdf42011-09-12 18:28:44 +00001959 if (EnableIVRewrite)
Andrew Trick37da4082011-05-04 02:10:13 +00001960 RewriteIVExpressions(L, Rewriter);
Dan Gohmanc2390b12009-02-12 22:19:27 +00001961
Andrew Trickb12a7542011-03-17 23:51:11 +00001962 // Clear the rewriter cache, because values that are in the rewriter's cache
1963 // can be deleted in the loop below, causing the AssertingVH in the cache to
1964 // trigger.
1965 Rewriter.clear();
1966
1967 // Now that we're done iterating through lists, clean up any instructions
1968 // which are now dead.
1969 while (!DeadInsts.empty())
1970 if (Instruction *Inst =
1971 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1972 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1973
Dan Gohman667d7872009-06-26 22:53:46 +00001974 // The Rewriter may not be used from this point on.
Torok Edwin3d431382009-05-24 20:08:21 +00001975
Dan Gohman81db61a2009-05-12 02:17:14 +00001976 // Loop-invariant instructions in the preheader that aren't used in the
1977 // loop may be sunk below the loop to reduce register pressure.
Dan Gohman667d7872009-06-26 22:53:46 +00001978 SinkUnusedInvariants(L);
Dan Gohman81db61a2009-05-12 02:17:14 +00001979
1980 // For completeness, inform IVUsers of the IV use in the newly-created
1981 // loop exit test instruction.
Andrew Trickfc933c02011-07-18 20:32:31 +00001982 if (IU && NewICmp) {
1983 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
1984 if (NewICmpInst)
1985 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
1986 }
Dan Gohman81db61a2009-05-12 02:17:14 +00001987 // Clean up dead instructions.
Dan Gohman9fff2182010-01-05 16:31:45 +00001988 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohman81db61a2009-05-12 02:17:14 +00001989 // Check a post-condition.
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001990 assert(L->isLCSSAForm(*DT) &&
1991 "Indvars did not leave the loop in lcssa form!");
1992
1993 // Verify that LFTR, and any other change have not interfered with SCEV's
1994 // ability to compute trip count.
1995#ifndef NDEBUG
Andrew Trickf21bdf42011-09-12 18:28:44 +00001996 if (!EnableIVRewrite && VerifyIndvars &&
Andrew Trick75ebc0e2011-09-06 20:20:38 +00001997 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
Andrew Trickf6a0dba2011-07-18 18:44:20 +00001998 SE->forgetLoop(L);
1999 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2000 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2001 SE->getTypeSizeInBits(NewBECount->getType()))
2002 NewBECount = SE->getTruncateOrNoop(NewBECount,
2003 BackedgeTakenCount->getType());
2004 else
2005 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2006 NewBECount->getType());
2007 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2008 }
2009#endif
2010
Devang Patel5ee99972007-03-07 06:39:01 +00002011 return Changed;
Chris Lattner6148c022001-12-03 17:28:42 +00002012}