blob: 3f810cdf5a25820342c0a7b5ed3acab4fd8c2eb7 [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Reid Spencer47a53ac2006-08-18 09:01:07 +000014// This transformation makes the following changes to each loop with an
Chris Lattner40bf8b42004-04-02 20:24:31 +000015// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
Dan Gohmanea73f3c2009-06-14 22:38:41 +000020// 3. The canonical induction variable is guaranteed to be in a wide enough
21// type so that IV expressions need not be (directly) zero-extended or
22// sign-extended.
23// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
Chris Lattner40bf8b42004-04-02 20:24:31 +000024//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27// 1. The exit condition for the loop is canonicalized to compare the
28// induction value against the exit value. This turns loops like:
29// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30// 2. Any use outside of the loop of an expression derived from the indvar
31// is changed to compute the derived value outside of the loop, eliminating
32// the dependence on the exit value of the induction variable. If the only
33// purpose of the loop is to compute the exit value of some derived
34// expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
Dan Gohmanc2c4cbf2009-05-19 20:38:47 +000037// desired loop transformations have been performed.
Chris Lattner6148c022001-12-03 17:28:42 +000038//
39//===----------------------------------------------------------------------===//
40
Chris Lattner0e5f4992006-12-19 21:40:18 +000041#define DEBUG_TYPE "indvars"
Chris Lattner022103b2002-05-07 20:03:00 +000042#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000043#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000044#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000045#include "llvm/Instructions.h"
Devang Patel7b9f6b12010-03-15 22:23:03 +000046#include "llvm/IntrinsicInst.h"
Owen Andersond672ecb2009-07-03 00:17:18 +000047#include "llvm/LLVMContext.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000048#include "llvm/Type.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000049#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
Nate Begeman36f891b2005-07-30 00:12:19 +000051#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswell47df12d2003-12-18 17:19:19 +000052#include "llvm/Analysis/LoopInfo.h"
Devang Patel5ee99972007-03-07 06:39:01 +000053#include "llvm/Analysis/LoopPass.h"
Chris Lattner455889a2002-02-12 22:39:50 +000054#include "llvm/Support/CFG.h"
Andrew Trick56caa092011-06-28 03:01:46 +000055#include "llvm/Support/CommandLine.h"
Chris Lattneree4f13a2007-01-07 01:14:12 +000056#include "llvm/Support/Debug.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000057#include "llvm/Support/raw_ostream.h"
John Criswell47df12d2003-12-18 17:19:19 +000058#include "llvm/Transforms/Utils/Local.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000059#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Andrew Trick37da4082011-05-04 02:10:13 +000060#include "llvm/Target/TargetData.h"
Andrew Trick037d1c02011-07-06 20:50:43 +000061#include "llvm/ADT/DenseMap.h"
Reid Spencera54b7cb2007-01-12 07:05:14 +000062#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000063#include "llvm/ADT/Statistic.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000064#include "llvm/ADT/STLExtras.h"
John Criswell47df12d2003-12-18 17:19:19 +000065using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000066
Andrew Trick2fabd462011-06-21 03:22:38 +000067STATISTIC(NumRemoved , "Number of aux indvars removed");
68STATISTIC(NumWidened , "Number of indvars widened");
69STATISTIC(NumInserted , "Number of canonical indvars added");
70STATISTIC(NumReplaced , "Number of exit values replaced");
71STATISTIC(NumLFTR , "Number of loop exit tests replaced");
72STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
74STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
75STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
Andrew Trick037d1c02011-07-06 20:50:43 +000076STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattner3324e712003-12-22 03:58:44 +000077
Andrew Trick56caa092011-06-28 03:01:46 +000078static cl::opt<bool> DisableIVRewrite(
79 "disable-iv-rewrite", cl::Hidden,
80 cl::desc("Disable canonical induction variable rewriting"));
Andrew Trick37da4082011-05-04 02:10:13 +000081
Andrew Trickfc933c02011-07-18 20:32:31 +000082// Temporary flag for use with -disable-iv-rewrite to force a canonical IV for
83// LFTR purposes.
84static cl::opt<bool> ForceLFTR(
85 "force-lftr", cl::Hidden,
86 cl::desc("Enable forced linear function test replacement"));
87
Chris Lattner0e5f4992006-12-19 21:40:18 +000088namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000089 class IndVarSimplify : public LoopPass {
Dan Gohman81db61a2009-05-12 02:17:14 +000090 IVUsers *IU;
Chris Lattner40bf8b42004-04-02 20:24:31 +000091 LoopInfo *LI;
92 ScalarEvolution *SE;
Dan Gohmande53dc02009-06-27 05:16:57 +000093 DominatorTree *DT;
Andrew Trick37da4082011-05-04 02:10:13 +000094 TargetData *TD;
Andrew Trick2fabd462011-06-21 03:22:38 +000095
Andrew Trickb12a7542011-03-17 23:51:11 +000096 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner15cad752003-12-23 07:47:09 +000097 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +000098 public:
Devang Patel794fd752007-05-01 21:15:47 +000099
Dan Gohman5668cf72009-07-15 01:26:32 +0000100 static char ID; // Pass identification, replacement for typeid
Andrew Trick2fabd462011-06-21 03:22:38 +0000101 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
Andrew Trick15832f62011-06-28 02:49:20 +0000102 Changed(false) {
Owen Anderson081c34b2010-10-19 17:21:58 +0000103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
104 }
Devang Patel794fd752007-05-01 21:15:47 +0000105
Dan Gohman5668cf72009-07-15 01:26:32 +0000106 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman60f8a632009-02-17 20:49:49 +0000107
Dan Gohman5668cf72009-07-15 01:26:32 +0000108 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
109 AU.addRequired<DominatorTree>();
110 AU.addRequired<LoopInfo>();
111 AU.addRequired<ScalarEvolution>();
112 AU.addRequiredID(LoopSimplifyID);
113 AU.addRequiredID(LCSSAID);
Andrew Trick56caa092011-06-28 03:01:46 +0000114 if (!DisableIVRewrite)
115 AU.addRequired<IVUsers>();
Dan Gohman5668cf72009-07-15 01:26:32 +0000116 AU.addPreserved<ScalarEvolution>();
117 AU.addPreservedID(LoopSimplifyID);
118 AU.addPreservedID(LCSSAID);
Andrew Trick2fabd462011-06-21 03:22:38 +0000119 if (!DisableIVRewrite)
120 AU.addPreserved<IVUsers>();
Dan Gohman5668cf72009-07-15 01:26:32 +0000121 AU.setPreservesCFG();
122 }
Chris Lattner15cad752003-12-23 07:47:09 +0000123
Chris Lattner40bf8b42004-04-02 20:24:31 +0000124 private:
Andrew Trick037d1c02011-07-06 20:50:43 +0000125 virtual void releaseMemory() {
Andrew Trick037d1c02011-07-06 20:50:43 +0000126 DeadInsts.clear();
127 }
128
Andrew Trickb12a7542011-03-17 23:51:11 +0000129 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel5ee99972007-03-07 06:39:01 +0000130
Andrew Trick1a54bb22011-07-12 00:08:50 +0000131 void HandleFloatingPointIV(Loop *L, PHINode *PH);
132 void RewriteNonIntegerIVs(Loop *L);
133
134 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135
Andrew Trickf85092c2011-05-20 18:25:42 +0000136 void SimplifyIVUsers(SCEVExpander &Rewriter);
Andrew Trick2fabd462011-06-21 03:22:38 +0000137 void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
138
139 bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
Andrew Trickaeee4612011-05-12 00:04:28 +0000140 void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
141 void EliminateIVRemainder(BinaryOperator *Rem,
142 Value *IVOperand,
Andrew Trick4417e532011-06-21 15:43:52 +0000143 bool IsSigned);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000144
Andrew Trick037d1c02011-07-06 20:50:43 +0000145 void SimplifyCongruentIVs(Loop *L);
146
Dan Gohman454d26d2010-02-22 04:11:59 +0000147 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
Devang Pateld22a8492008-09-09 21:41:07 +0000148
Andrew Trickfc933c02011-07-18 20:32:31 +0000149 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohman81db61a2009-05-12 02:17:14 +0000151
Andrew Trick1a54bb22011-07-12 00:08:50 +0000152 void SinkUnusedInvariants(Loop *L);
Chris Lattner3324e712003-12-22 03:58:44 +0000153 };
Chris Lattner5e761402002-09-10 05:24:05 +0000154}
Chris Lattner394437f2001-12-04 04:32:29 +0000155
Dan Gohman844731a2008-05-13 00:00:25 +0000156char IndVarSimplify::ID = 0;
Owen Anderson2ab36d32010-10-12 19:48:12 +0000157INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000158 "Induction Variable Simplification", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000159INITIALIZE_PASS_DEPENDENCY(DominatorTree)
160INITIALIZE_PASS_DEPENDENCY(LoopInfo)
161INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
162INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
163INITIALIZE_PASS_DEPENDENCY(LCSSA)
164INITIALIZE_PASS_DEPENDENCY(IVUsers)
165INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick37da4082011-05-04 02:10:13 +0000166 "Induction Variable Simplification", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000167
Daniel Dunbar394f0442008-10-22 23:32:42 +0000168Pass *llvm::createIndVarSimplifyPass() {
Chris Lattner3324e712003-12-22 03:58:44 +0000169 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000170}
171
Andrew Trickb12a7542011-03-17 23:51:11 +0000172/// isValidRewrite - Return true if the SCEV expansion generated by the
173/// rewriter can replace the original value. SCEV guarantees that it
174/// produces the same value, but the way it is produced may be illegal IR.
175/// Ideally, this function will only be called for verification.
176bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
177 // If an SCEV expression subsumed multiple pointers, its expansion could
178 // reassociate the GEP changing the base pointer. This is illegal because the
179 // final address produced by a GEP chain must be inbounds relative to its
180 // underlying object. Otherwise basic alias analysis, among other things,
181 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
182 // producing an expression involving multiple pointers. Until then, we must
183 // bail out here.
184 //
185 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
186 // because it understands lcssa phis while SCEV does not.
187 Value *FromPtr = FromVal;
188 Value *ToPtr = ToVal;
189 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
190 FromPtr = GEP->getPointerOperand();
191 }
192 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
193 ToPtr = GEP->getPointerOperand();
194 }
195 if (FromPtr != FromVal || ToPtr != ToVal) {
196 // Quickly check the common case
197 if (FromPtr == ToPtr)
198 return true;
199
200 // SCEV may have rewritten an expression that produces the GEP's pointer
201 // operand. That's ok as long as the pointer operand has the same base
202 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
203 // base of a recurrence. This handles the case in which SCEV expansion
204 // converts a pointer type recurrence into a nonrecurrent pointer base
205 // indexed by an integer recurrence.
206 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
207 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
208 if (FromBase == ToBase)
209 return true;
210
211 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
212 << *FromBase << " != " << *ToBase << "\n");
213
214 return false;
215 }
216 return true;
217}
218
Andrew Trick86c98142011-07-20 05:32:06 +0000219/// Determine the insertion point for this user. By default, insert immediately
220/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
221/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
222/// common dominator for the incoming blocks.
223static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
224 DominatorTree *DT) {
225 PHINode *PHI = dyn_cast<PHINode>(User);
226 if (!PHI)
227 return User;
228
229 Instruction *InsertPt = 0;
230 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
231 if (PHI->getIncomingValue(i) != Def)
232 continue;
233
234 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
235 if (!InsertPt) {
236 InsertPt = InsertBB->getTerminator();
237 continue;
238 }
239 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
240 InsertPt = InsertBB->getTerminator();
241 }
242 assert(InsertPt && "Missing phi operand");
Jay Foad626f52d2011-07-20 08:15:21 +0000243 assert((!isa<Instruction>(Def) ||
244 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick86c98142011-07-20 05:32:06 +0000245 "def does not dominate all uses");
246 return InsertPt;
247}
248
Andrew Trick1a54bb22011-07-12 00:08:50 +0000249//===----------------------------------------------------------------------===//
250// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
251//===----------------------------------------------------------------------===//
Andrew Trick4dfdf242011-05-03 22:24:10 +0000252
Andrew Trick1a54bb22011-07-12 00:08:50 +0000253/// ConvertToSInt - Convert APF to an integer, if possible.
254static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
255 bool isExact = false;
256 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000257 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000258 // See if we can convert this to an int64_t
259 uint64_t UIntVal;
260 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
261 &isExact) != APFloat::opOK || !isExact)
Andrew Trick4dfdf242011-05-03 22:24:10 +0000262 return false;
Andrew Trick1a54bb22011-07-12 00:08:50 +0000263 IntVal = UIntVal;
Andrew Trick4dfdf242011-05-03 22:24:10 +0000264 return true;
265}
266
Andrew Trick1a54bb22011-07-12 00:08:50 +0000267/// HandleFloatingPointIV - If the loop has floating induction variable
268/// then insert corresponding integer induction variable if possible.
269/// For example,
270/// for(double i = 0; i < 10000; ++i)
271/// bar(i)
272/// is converted into
273/// for(int i = 0; i < 10000; ++i)
274/// bar((double)i);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000275///
Andrew Trick1a54bb22011-07-12 00:08:50 +0000276void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
277 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
278 unsigned BackEdge = IncomingEdge^1;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000279
Andrew Trick1a54bb22011-07-12 00:08:50 +0000280 // Check incoming value.
281 ConstantFP *InitValueVal =
282 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000283
Andrew Trick1a54bb22011-07-12 00:08:50 +0000284 int64_t InitValue;
285 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
286 return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000287
Andrew Trick1a54bb22011-07-12 00:08:50 +0000288 // Check IV increment. Reject this PN if increment operation is not
289 // an add or increment value can not be represented by an integer.
290 BinaryOperator *Incr =
291 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
292 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000293
Andrew Trick1a54bb22011-07-12 00:08:50 +0000294 // If this is not an add of the PHI with a constantfp, or if the constant fp
295 // is not an integer, bail out.
296 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
297 int64_t IncValue;
298 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
299 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
300 return;
301
302 // Check Incr uses. One user is PN and the other user is an exit condition
303 // used by the conditional terminator.
304 Value::use_iterator IncrUse = Incr->use_begin();
305 Instruction *U1 = cast<Instruction>(*IncrUse++);
306 if (IncrUse == Incr->use_end()) return;
307 Instruction *U2 = cast<Instruction>(*IncrUse++);
308 if (IncrUse != Incr->use_end()) return;
309
310 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
311 // only used by a branch, we can't transform it.
312 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
313 if (!Compare)
314 Compare = dyn_cast<FCmpInst>(U2);
315 if (Compare == 0 || !Compare->hasOneUse() ||
316 !isa<BranchInst>(Compare->use_back()))
317 return;
318
319 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
320
321 // We need to verify that the branch actually controls the iteration count
322 // of the loop. If not, the new IV can overflow and no one will notice.
323 // The branch block must be in the loop and one of the successors must be out
324 // of the loop.
325 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
326 if (!L->contains(TheBr->getParent()) ||
327 (L->contains(TheBr->getSuccessor(0)) &&
328 L->contains(TheBr->getSuccessor(1))))
329 return;
330
331
332 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
333 // transform it.
334 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
335 int64_t ExitValue;
336 if (ExitValueVal == 0 ||
337 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
338 return;
339
340 // Find new predicate for integer comparison.
341 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
342 switch (Compare->getPredicate()) {
343 default: return; // Unknown comparison.
344 case CmpInst::FCMP_OEQ:
345 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
346 case CmpInst::FCMP_ONE:
347 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
348 case CmpInst::FCMP_OGT:
349 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
350 case CmpInst::FCMP_OGE:
351 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
352 case CmpInst::FCMP_OLT:
353 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
354 case CmpInst::FCMP_OLE:
355 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000356 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000357
Andrew Trick1a54bb22011-07-12 00:08:50 +0000358 // We convert the floating point induction variable to a signed i32 value if
359 // we can. This is only safe if the comparison will not overflow in a way
360 // that won't be trapped by the integer equivalent operations. Check for this
361 // now.
362 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohmanca9b7032010-04-12 21:13:43 +0000363
Andrew Trick1a54bb22011-07-12 00:08:50 +0000364 // The start/stride/exit values must all fit in signed i32.
365 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
366 return;
367
368 // If not actually striding (add x, 0.0), avoid touching the code.
369 if (IncValue == 0)
370 return;
371
372 // Positive and negative strides have different safety conditions.
373 if (IncValue > 0) {
374 // If we have a positive stride, we require the init to be less than the
375 // exit value and an equality or less than comparison.
376 if (InitValue >= ExitValue ||
377 NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
378 return;
379
380 uint32_t Range = uint32_t(ExitValue-InitValue);
381 if (NewPred == CmpInst::ICMP_SLE) {
382 // Normalize SLE -> SLT, check for infinite loop.
383 if (++Range == 0) return; // Range overflows.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000384 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000385
Andrew Trick1a54bb22011-07-12 00:08:50 +0000386 unsigned Leftover = Range % uint32_t(IncValue);
387
388 // If this is an equality comparison, we require that the strided value
389 // exactly land on the exit value, otherwise the IV condition will wrap
390 // around and do things the fp IV wouldn't.
391 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
392 Leftover != 0)
393 return;
394
395 // If the stride would wrap around the i32 before exiting, we can't
396 // transform the IV.
397 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
398 return;
399
Chris Lattnerd2440572004-04-15 20:26:22 +0000400 } else {
Andrew Trick1a54bb22011-07-12 00:08:50 +0000401 // If we have a negative stride, we require the init to be greater than the
402 // exit value and an equality or greater than comparison.
403 if (InitValue >= ExitValue ||
404 NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
405 return;
406
407 uint32_t Range = uint32_t(InitValue-ExitValue);
408 if (NewPred == CmpInst::ICMP_SGE) {
409 // Normalize SGE -> SGT, check for infinite loop.
410 if (++Range == 0) return; // Range overflows.
411 }
412
413 unsigned Leftover = Range % uint32_t(-IncValue);
414
415 // If this is an equality comparison, we require that the strided value
416 // exactly land on the exit value, otherwise the IV condition will wrap
417 // around and do things the fp IV wouldn't.
418 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
419 Leftover != 0)
420 return;
421
422 // If the stride would wrap around the i32 before exiting, we can't
423 // transform the IV.
424 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
425 return;
Chris Lattnerd2440572004-04-15 20:26:22 +0000426 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000427
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000428 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000429
Andrew Trick1a54bb22011-07-12 00:08:50 +0000430 // Insert new integer induction variable.
431 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
432 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
433 PN->getIncomingBlock(IncomingEdge));
Chris Lattner40bf8b42004-04-02 20:24:31 +0000434
Andrew Trick1a54bb22011-07-12 00:08:50 +0000435 Value *NewAdd =
436 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
437 Incr->getName()+".int", Incr);
438 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmanc2390b12009-02-12 22:19:27 +0000439
Andrew Trick1a54bb22011-07-12 00:08:50 +0000440 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
441 ConstantInt::get(Int32Ty, ExitValue),
442 Compare->getName());
Dan Gohman81db61a2009-05-12 02:17:14 +0000443
Andrew Trick1a54bb22011-07-12 00:08:50 +0000444 // In the following deletions, PN may become dead and may be deleted.
445 // Use a WeakVH to observe whether this happens.
446 WeakVH WeakPH = PN;
447
448 // Delete the old floating point exit comparison. The branch starts using the
449 // new comparison.
450 NewCompare->takeName(Compare);
451 Compare->replaceAllUsesWith(NewCompare);
452 RecursivelyDeleteTriviallyDeadInstructions(Compare);
453
454 // Delete the old floating point increment.
455 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
456 RecursivelyDeleteTriviallyDeadInstructions(Incr);
457
458 // If the FP induction variable still has uses, this is because something else
459 // in the loop uses its value. In order to canonicalize the induction
460 // variable, we chose to eliminate the IV and rewrite it in terms of an
461 // int->fp cast.
462 //
463 // We give preference to sitofp over uitofp because it is faster on most
464 // platforms.
465 if (WeakPH) {
466 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
467 PN->getParent()->getFirstNonPHI());
468 PN->replaceAllUsesWith(Conv);
469 RecursivelyDeleteTriviallyDeadInstructions(PN);
470 }
471
472 // Add a new IVUsers entry for the newly-created integer PHI.
473 if (IU)
474 IU->AddUsersIfInteresting(NewPHI);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000475}
476
Andrew Trick1a54bb22011-07-12 00:08:50 +0000477void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
478 // First step. Check to see if there are any floating-point recurrences.
479 // If there are, change them into integer recurrences, permitting analysis by
480 // the SCEV routines.
481 //
482 BasicBlock *Header = L->getHeader();
483
484 SmallVector<WeakVH, 8> PHIs;
485 for (BasicBlock::iterator I = Header->begin();
486 PHINode *PN = dyn_cast<PHINode>(I); ++I)
487 PHIs.push_back(PN);
488
489 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491 HandleFloatingPointIV(L, PN);
492
493 // If the loop previously had floating-point IV, ScalarEvolution
494 // may not have been able to compute a trip count. Now that we've done some
495 // re-writing, the trip count may be computable.
496 if (Changed)
497 SE->forgetLoop(L);
498}
499
500//===----------------------------------------------------------------------===//
501// RewriteLoopExitValues - Optimize IV users outside the loop.
502// As a side effect, reduces the amount of IV processing within the loop.
503//===----------------------------------------------------------------------===//
504
Chris Lattner40bf8b42004-04-02 20:24:31 +0000505/// RewriteLoopExitValues - Check to see if this loop has a computable
506/// loop-invariant execution count. If so, this means that we can compute the
507/// final value of any expressions that are recurrent in the loop, and
508/// substitute the exit values from the loop into any instructions outside of
509/// the loop that use the final values of the current expressions.
Dan Gohman81db61a2009-05-12 02:17:14 +0000510///
511/// This is mostly redundant with the regular IndVarSimplify activities that
512/// happen later, except that it's more powerful in some cases, because it's
513/// able to brute-force evaluate arbitrary instructions as long as they have
514/// constant operands at the beginning of the loop.
Chris Lattnerf1859892011-01-09 02:16:18 +0000515void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohman81db61a2009-05-12 02:17:14 +0000516 // Verify the input to the pass in already in LCSSA form.
Dan Gohmanbbf81d82010-03-10 19:38:49 +0000517 assert(L->isLCSSAForm(*DT));
Dan Gohman81db61a2009-05-12 02:17:14 +0000518
Devang Patelb7211a22007-08-21 00:31:24 +0000519 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000520 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanfd939082005-04-21 23:48:37 +0000521
Chris Lattner9f3d7382007-03-04 03:43:23 +0000522 // Find all values that are computed inside the loop, but used outside of it.
523 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
524 // the exit blocks of the loop to find them.
525 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
526 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmancafb8132009-02-17 19:13:57 +0000527
Chris Lattner9f3d7382007-03-04 03:43:23 +0000528 // If there are no PHI nodes in this exit block, then no values defined
529 // inside the loop are used on this path, skip it.
530 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
531 if (!PN) continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000532
Chris Lattner9f3d7382007-03-04 03:43:23 +0000533 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmancafb8132009-02-17 19:13:57 +0000534
Chris Lattner9f3d7382007-03-04 03:43:23 +0000535 // Iterate over all of the PHI nodes.
536 BasicBlock::iterator BBI = ExitBB->begin();
537 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin3790fb02009-05-24 19:36:09 +0000538 if (PN->use_empty())
539 continue; // dead use, don't replace it
Dan Gohman814f2b22010-02-18 21:34:02 +0000540
541 // SCEV only supports integer expressions for now.
542 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
543 continue;
544
Dale Johannesen45a2d7d2010-02-19 07:14:22 +0000545 // It's necessary to tell ScalarEvolution about this explicitly so that
546 // it can walk the def-use list and forget all SCEVs, as it may not be
547 // watching the PHI itself. Once the new exit value is in place, there
548 // may not be a def-use connection between the loop and every instruction
549 // which got a SCEVAddRecExpr for that loop.
550 SE->forgetValue(PN);
551
Chris Lattner9f3d7382007-03-04 03:43:23 +0000552 // Iterate over all of the values in all the PHI nodes.
553 for (unsigned i = 0; i != NumPreds; ++i) {
554 // If the value being merged in is not integer or is not defined
555 // in the loop, skip it.
556 Value *InVal = PN->getIncomingValue(i);
Dan Gohman814f2b22010-02-18 21:34:02 +0000557 if (!isa<Instruction>(InVal))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000558 continue;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000559
Chris Lattner9f3d7382007-03-04 03:43:23 +0000560 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmancafb8132009-02-17 19:13:57 +0000561 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattner9f3d7382007-03-04 03:43:23 +0000562 continue; // The Block is in a subloop, skip it.
563
564 // Check that InVal is defined in the loop.
565 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman92329c72009-12-18 01:24:09 +0000566 if (!L->contains(Inst))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000567 continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000568
Chris Lattner9f3d7382007-03-04 03:43:23 +0000569 // Okay, this instruction has a user outside of the current loop
570 // and varies predictably *inside* the loop. Evaluate the value it
571 // contains when the loop exits, if possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000572 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Dan Gohman17ead4f2010-11-17 21:23:15 +0000573 if (!SE->isLoopInvariant(ExitValue, L))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000574 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000575
Dan Gohman667d7872009-06-26 22:53:46 +0000576 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000577
David Greenef67ef312010-01-05 01:27:06 +0000578 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerbdff5482009-08-23 04:37:46 +0000579 << " LoopVal = " << *Inst << "\n");
Chris Lattner9f3d7382007-03-04 03:43:23 +0000580
Andrew Trickb12a7542011-03-17 23:51:11 +0000581 if (!isValidRewrite(Inst, ExitVal)) {
582 DeadInsts.push_back(ExitVal);
583 continue;
584 }
585 Changed = true;
586 ++NumReplaced;
587
Chris Lattner9f3d7382007-03-04 03:43:23 +0000588 PN->setIncomingValue(i, ExitVal);
Dan Gohmancafb8132009-02-17 19:13:57 +0000589
Dan Gohman81db61a2009-05-12 02:17:14 +0000590 // If this instruction is dead now, delete it.
591 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000592
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000593 if (NumPreds == 1) {
594 // Completely replace a single-pred PHI. This is safe, because the
595 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
596 // node anymore.
Chris Lattner9f3d7382007-03-04 03:43:23 +0000597 PN->replaceAllUsesWith(ExitVal);
Dan Gohman81db61a2009-05-12 02:17:14 +0000598 RecursivelyDeleteTriviallyDeadInstructions(PN);
Chris Lattnerc9838f22007-03-03 22:48:48 +0000599 }
600 }
Dan Gohman65d1e2b2009-07-14 01:09:02 +0000601 if (NumPreds != 1) {
Dan Gohman667d7872009-06-26 22:53:46 +0000602 // Clone the PHI and delete the original one. This lets IVUsers and
603 // any other maps purge the original user from their records.
Devang Patel50b6e332009-10-27 22:16:29 +0000604 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohman667d7872009-06-26 22:53:46 +0000605 NewPN->takeName(PN);
606 NewPN->insertBefore(PN);
607 PN->replaceAllUsesWith(NewPN);
608 PN->eraseFromParent();
609 }
Chris Lattnerc9838f22007-03-03 22:48:48 +0000610 }
611 }
Dan Gohman472fdf72010-03-20 03:53:53 +0000612
613 // The insertion point instruction may have been deleted; clear it out
614 // so that the rewriter doesn't trip over it later.
615 Rewriter.clearInsertPoint();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000616}
617
Andrew Trick1a54bb22011-07-12 00:08:50 +0000618//===----------------------------------------------------------------------===//
619// Rewrite IV users based on a canonical IV.
620// To be replaced by -disable-iv-rewrite.
621//===----------------------------------------------------------------------===//
Dale Johannesenc671d892009-04-15 23:31:51 +0000622
Andrew Trick2fabd462011-06-21 03:22:38 +0000623/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
624/// loop. IVUsers is treated as a worklist. Each successive simplification may
625/// push more users which may themselves be candidates for simplification.
626///
627/// This is the old approach to IV simplification to be replaced by
628/// SimplifyIVUsersNoRewrite.
629///
630void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
631 // Each round of simplification involves a round of eliminating operations
632 // followed by a round of widening IVs. A single IVUsers worklist is used
633 // across all rounds. The inner loop advances the user. If widening exposes
634 // more uses, then another pass through the outer loop is triggered.
635 for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
636 Instruction *UseInst = I->getUser();
637 Value *IVOperand = I->getOperandValToReplace();
638
639 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
640 EliminateIVComparison(ICmp, IVOperand);
641 continue;
642 }
643 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
644 bool IsSigned = Rem->getOpcode() == Instruction::SRem;
645 if (IsSigned || Rem->getOpcode() == Instruction::URem) {
Andrew Trick4417e532011-06-21 15:43:52 +0000646 EliminateIVRemainder(Rem, IVOperand, IsSigned);
Andrew Trick2fabd462011-06-21 03:22:38 +0000647 continue;
648 }
649 }
650 }
651}
652
Andrew Trick1a54bb22011-07-12 00:08:50 +0000653// FIXME: It is an extremely bad idea to indvar substitute anything more
654// complex than affine induction variables. Doing so will put expensive
655// polynomial evaluations inside of the loop, and the str reduction pass
656// currently can only reduce affine polynomials. For now just disable
657// indvar subst on anything more complex than an affine addrec, unless
658// it can be expanded to a trivial value.
659static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
660 // Loop-invariant values are safe.
661 if (SE->isLoopInvariant(S, L)) return true;
662
663 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
664 // to transform them into efficient code.
665 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
666 return AR->isAffine();
667
668 // An add is safe it all its operands are safe.
669 if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
670 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
671 E = Commutative->op_end(); I != E; ++I)
672 if (!isSafe(*I, L, SE)) return false;
673 return true;
674 }
675
676 // A cast is safe if its operand is.
677 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
678 return isSafe(C->getOperand(), L, SE);
679
680 // A udiv is safe if its operands are.
681 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
682 return isSafe(UD->getLHS(), L, SE) &&
683 isSafe(UD->getRHS(), L, SE);
684
685 // SCEVUnknown is always safe.
686 if (isa<SCEVUnknown>(S))
687 return true;
688
689 // Nothing else is safe.
690 return false;
691}
692
693void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
694 // Rewrite all induction variable expressions in terms of the canonical
695 // induction variable.
696 //
697 // If there were induction variables of other sizes or offsets, manually
698 // add the offsets to the primary induction variable and cast, avoiding
699 // the need for the code evaluation methods to insert induction variables
700 // of different sizes.
701 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
702 Value *Op = UI->getOperandValToReplace();
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000703 Type *UseTy = Op->getType();
Andrew Trick1a54bb22011-07-12 00:08:50 +0000704 Instruction *User = UI->getUser();
705
706 // Compute the final addrec to expand into code.
707 const SCEV *AR = IU->getReplacementExpr(*UI);
708
709 // Evaluate the expression out of the loop, if possible.
710 if (!L->contains(UI->getUser())) {
711 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
712 if (SE->isLoopInvariant(ExitVal, L))
713 AR = ExitVal;
714 }
715
716 // FIXME: It is an extremely bad idea to indvar substitute anything more
717 // complex than affine induction variables. Doing so will put expensive
718 // polynomial evaluations inside of the loop, and the str reduction pass
719 // currently can only reduce affine polynomials. For now just disable
720 // indvar subst on anything more complex than an affine addrec, unless
721 // it can be expanded to a trivial value.
722 if (!isSafe(AR, L, SE))
723 continue;
724
725 // Determine the insertion point for this user. By default, insert
726 // immediately before the user. The SCEVExpander class will automatically
727 // hoist loop invariants out of the loop. For PHI nodes, there may be
728 // multiple uses, so compute the nearest common dominator for the
729 // incoming blocks.
Andrew Trick86c98142011-07-20 05:32:06 +0000730 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
Andrew Trick1a54bb22011-07-12 00:08:50 +0000731
732 // Now expand it into actual Instructions and patch it into place.
733 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
734
735 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
736 << " into = " << *NewVal << "\n");
737
738 if (!isValidRewrite(Op, NewVal)) {
739 DeadInsts.push_back(NewVal);
740 continue;
741 }
742 // Inform ScalarEvolution that this value is changing. The change doesn't
743 // affect its value, but it does potentially affect which use lists the
744 // value will be on after the replacement, which affects ScalarEvolution's
745 // ability to walk use lists and drop dangling pointers when a value is
746 // deleted.
747 SE->forgetValue(User);
748
749 // Patch the new value into place.
750 if (Op->hasName())
751 NewVal->takeName(Op);
752 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
753 NewValI->setDebugLoc(User->getDebugLoc());
754 User->replaceUsesOfWith(Op, NewVal);
755 UI->setOperandValToReplace(NewVal);
756
757 ++NumRemoved;
758 Changed = true;
759
760 // The old value may be dead now.
761 DeadInsts.push_back(Op);
762 }
763}
764
765//===----------------------------------------------------------------------===//
766// IV Widening - Extend the width of an IV to cover its widest uses.
767//===----------------------------------------------------------------------===//
768
Andrew Trickf85092c2011-05-20 18:25:42 +0000769namespace {
770 // Collect information about induction variables that are used by sign/zero
771 // extend operations. This information is recorded by CollectExtend and
772 // provides the input to WidenIV.
773 struct WideIVInfo {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000774 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trickf85092c2011-05-20 18:25:42 +0000775 bool IsSigned; // Was an sext user seen before a zext?
776
777 WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
778 };
Andrew Trickf85092c2011-05-20 18:25:42 +0000779}
780
781/// CollectExtend - Update information about the induction variable that is
782/// extended by this sign or zero extend operation. This is used to determine
783/// the final width of the IV before actually widening it.
Andrew Trick2fabd462011-06-21 03:22:38 +0000784static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
785 ScalarEvolution *SE, const TargetData *TD) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000786 Type *Ty = Cast->getType();
Andrew Trickf85092c2011-05-20 18:25:42 +0000787 uint64_t Width = SE->getTypeSizeInBits(Ty);
788 if (TD && !TD->isLegalInteger(Width))
789 return;
790
Andrew Trick2fabd462011-06-21 03:22:38 +0000791 if (!WI.WidestNativeType) {
792 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
793 WI.IsSigned = IsSigned;
Andrew Trickf85092c2011-05-20 18:25:42 +0000794 return;
795 }
796
797 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick2fabd462011-06-21 03:22:38 +0000798 if (WI.IsSigned != IsSigned)
Andrew Trickf85092c2011-05-20 18:25:42 +0000799 return;
800
Andrew Trick2fabd462011-06-21 03:22:38 +0000801 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
802 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf85092c2011-05-20 18:25:42 +0000803}
804
805namespace {
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000806
807/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
808/// WideIV that computes the same value as the Narrow IV def. This avoids
809/// caching Use* pointers.
810struct NarrowIVDefUse {
811 Instruction *NarrowDef;
812 Instruction *NarrowUse;
813 Instruction *WideDef;
814
815 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
816
817 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
818 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
819};
820
Andrew Trickf85092c2011-05-20 18:25:42 +0000821/// WidenIV - The goal of this transform is to remove sign and zero extends
822/// without creating any new induction variables. To do this, it creates a new
823/// phi of the wider type and redirects all users, either removing extends or
824/// inserting truncs whenever we stop propagating the type.
825///
826class WidenIV {
Andrew Trick2fabd462011-06-21 03:22:38 +0000827 // Parameters
Andrew Trickf85092c2011-05-20 18:25:42 +0000828 PHINode *OrigPhi;
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000829 Type *WideType;
Andrew Trickf85092c2011-05-20 18:25:42 +0000830 bool IsSigned;
831
Andrew Trick2fabd462011-06-21 03:22:38 +0000832 // Context
833 LoopInfo *LI;
834 Loop *L;
Andrew Trickf85092c2011-05-20 18:25:42 +0000835 ScalarEvolution *SE;
Andrew Trick2fabd462011-06-21 03:22:38 +0000836 DominatorTree *DT;
Andrew Trickf85092c2011-05-20 18:25:42 +0000837
Andrew Trick2fabd462011-06-21 03:22:38 +0000838 // Result
Andrew Trickf85092c2011-05-20 18:25:42 +0000839 PHINode *WidePhi;
840 Instruction *WideInc;
841 const SCEV *WideIncExpr;
Andrew Trick2fabd462011-06-21 03:22:38 +0000842 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf85092c2011-05-20 18:25:42 +0000843
Andrew Trick2fabd462011-06-21 03:22:38 +0000844 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000845 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf85092c2011-05-20 18:25:42 +0000846
847public:
Andrew Trick2fabd462011-06-21 03:22:38 +0000848 WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
849 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000850 SmallVectorImpl<WeakVH> &DI) :
Andrew Trickf85092c2011-05-20 18:25:42 +0000851 OrigPhi(PN),
Andrew Trick2fabd462011-06-21 03:22:38 +0000852 WideType(WI.WidestNativeType),
853 IsSigned(WI.IsSigned),
Andrew Trickf85092c2011-05-20 18:25:42 +0000854 LI(LInfo),
855 L(LI->getLoopFor(OrigPhi->getParent())),
856 SE(SEv),
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000857 DT(DTree),
Andrew Trickf85092c2011-05-20 18:25:42 +0000858 WidePhi(0),
859 WideInc(0),
Andrew Trick2fabd462011-06-21 03:22:38 +0000860 WideIncExpr(0),
861 DeadInsts(DI) {
Andrew Trickf85092c2011-05-20 18:25:42 +0000862 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
863 }
864
Andrew Trick2fabd462011-06-21 03:22:38 +0000865 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf85092c2011-05-20 18:25:42 +0000866
867protected:
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000868 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf85092c2011-05-20 18:25:42 +0000869
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000870 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
871
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000872 Instruction *WidenIVUse(NarrowIVDefUse DU);
Andrew Trick4b029152011-07-02 02:34:25 +0000873
874 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf85092c2011-05-20 18:25:42 +0000875};
876} // anonymous namespace
877
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000878static Value *getExtend( Value *NarrowOper, Type *WideType,
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000879 bool IsSigned, IRBuilder<> &Builder) {
880 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
881 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf85092c2011-05-20 18:25:42 +0000882}
883
884/// CloneIVUser - Instantiate a wide operation to replace a narrow
885/// operation. This only needs to handle operations that can evaluation to
886/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000887Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
888 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf85092c2011-05-20 18:25:42 +0000889 switch (Opcode) {
890 default:
891 return 0;
892 case Instruction::Add:
893 case Instruction::Mul:
894 case Instruction::UDiv:
895 case Instruction::Sub:
896 case Instruction::And:
897 case Instruction::Or:
898 case Instruction::Xor:
899 case Instruction::Shl:
900 case Instruction::LShr:
901 case Instruction::AShr:
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000902 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf85092c2011-05-20 18:25:42 +0000903
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000904 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000905
906 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
907 // anything about the narrow operand yet so must insert a [sz]ext. It is
908 // probably loop invariant and will be folded or hoisted. If it actually
909 // comes from a widened IV, it should be removed during a future call to
910 // WidenIVUse.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000911 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
912 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
913 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
914 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000915
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000916 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +0000917 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000918 LHS, RHS,
Andrew Trickf85092c2011-05-20 18:25:42 +0000919 NarrowBO->getName());
Andrew Trickf85092c2011-05-20 18:25:42 +0000920 Builder.Insert(WideBO);
Andrew Trick6e0ce242011-06-30 19:02:17 +0000921 if (const OverflowingBinaryOperator *OBO =
922 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
923 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
924 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
925 }
Andrew Trick03d3d3b2011-05-25 04:42:22 +0000926 return WideBO;
Andrew Trickf85092c2011-05-20 18:25:42 +0000927 }
928 llvm_unreachable(0);
929}
930
Andrew Trickfcdc9a42011-05-26 00:46:11 +0000931/// HoistStep - Attempt to hoist an IV increment above a potential use.
932///
933/// To successfully hoist, two criteria must be met:
934/// - IncV operands dominate InsertPos and
935/// - InsertPos dominates IncV
936///
937/// Meeting the second condition means that we don't need to check all of IncV's
938/// existing uses (it's moving up in the domtree).
939///
940/// This does not yet recursively hoist the operands, although that would
941/// not be difficult.
942static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
943 const DominatorTree *DT)
944{
945 if (DT->dominates(IncV, InsertPos))
946 return true;
947
948 if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
949 return false;
950
951 if (IncV->mayHaveSideEffects())
952 return false;
953
954 // Attempt to hoist IncV
955 for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
956 OI != OE; ++OI) {
957 Instruction *OInst = dyn_cast<Instruction>(OI);
958 if (OInst && !DT->dominates(OInst, InsertPos))
959 return false;
960 }
961 IncV->moveBefore(InsertPos);
962 return true;
963}
964
Andrew Tricke0dc2fa2011-07-05 18:19:39 +0000965// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
966// perspective after widening it's type? In other words, can the extend be
967// safely hoisted out of the loop with SCEV reducing the value to a recurrence
968// on the same loop. If so, return the sign or zero extended
969// recurrence. Otherwise return NULL.
970const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
971 if (!SE->isSCEVable(NarrowUse->getType()))
972 return 0;
973
974 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
975 if (SE->getTypeSizeInBits(NarrowExpr->getType())
976 >= SE->getTypeSizeInBits(WideType)) {
977 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
978 // index. So don't follow this use.
979 return 0;
980 }
981
982 const SCEV *WideExpr = IsSigned ?
983 SE->getSignExtendExpr(NarrowExpr, WideType) :
984 SE->getZeroExtendExpr(NarrowExpr, WideType);
985 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
986 if (!AddRec || AddRec->getLoop() != L)
987 return 0;
988
989 return AddRec;
990}
991
Andrew Trickf85092c2011-05-20 18:25:42 +0000992/// WidenIVUse - Determine whether an individual user of the narrow IV can be
993/// widened. If so, return the wide clone of the user.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000994Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
Andrew Trickcc359d92011-06-29 23:03:57 +0000995
Andrew Trick4b029152011-07-02 02:34:25 +0000996 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick13bcf2e2011-07-20 04:39:24 +0000997 if (isa<PHINode>(DU.NarrowUse) &&
998 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf85092c2011-05-20 18:25:42 +0000999 return 0;
1000
Andrew Trickf85092c2011-05-20 18:25:42 +00001001 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001002 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1003 Value *NewDef = DU.WideDef;
1004 if (DU.NarrowUse->getType() != WideType) {
1005 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001006 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1007 if (CastWidth < IVWidth) {
1008 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001009 IRBuilder<> Builder(DU.NarrowUse);
1010 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001011 }
1012 else {
1013 // A wider extend was hidden behind a narrower one. This may induce
1014 // another round of IV widening in which the intermediate IV becomes
1015 // dead. It should be very rare.
1016 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001017 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1018 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1019 NewDef = DU.NarrowUse;
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001020 }
1021 }
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001022 if (NewDef != DU.NarrowUse) {
1023 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1024 << " replaced by " << *DU.WideDef << "\n");
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001025 ++NumElimExt;
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001026 DU.NarrowUse->replaceAllUsesWith(NewDef);
1027 DeadInsts.push_back(DU.NarrowUse);
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001028 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001029 // Now that the extend is gone, we want to expose it's uses for potential
1030 // further simplification. We don't need to directly inform SimplifyIVUsers
1031 // of the new users, because their parent IV will be processed later as a
1032 // new loop phi. If we preserved IVUsers analysis, we would also want to
1033 // push the uses of WideDef here.
Andrew Trickf85092c2011-05-20 18:25:42 +00001034
1035 // No further widening is needed. The deceased [sz]ext had done it for us.
1036 return 0;
1037 }
Andrew Trick4b029152011-07-02 02:34:25 +00001038
1039 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001040 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf85092c2011-05-20 18:25:42 +00001041 if (!WideAddRec) {
1042 // This user does not evaluate to a recurence after widening, so don't
1043 // follow it. Instead insert a Trunc to kill off the original use,
1044 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick86c98142011-07-20 05:32:06 +00001045 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001046 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1047 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf85092c2011-05-20 18:25:42 +00001048 return 0;
1049 }
Andrew Trickfc933c02011-07-18 20:32:31 +00001050 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick4b029152011-07-02 02:34:25 +00001051 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001052 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick4b029152011-07-02 02:34:25 +00001053 "SCEV is not expected to evaluate a block terminator");
Andrew Trickcc359d92011-06-29 23:03:57 +00001054
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001055 // Reuse the IV increment that SCEVExpander created as long as it dominates
1056 // NarrowUse.
Andrew Trickf85092c2011-05-20 18:25:42 +00001057 Instruction *WideUse = 0;
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001058 if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001059 WideUse = WideInc;
1060 }
1061 else {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001062 WideUse = CloneIVUser(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +00001063 if (!WideUse)
1064 return 0;
1065 }
Andrew Trick4b029152011-07-02 02:34:25 +00001066 // Evaluation of WideAddRec ensured that the narrow expression could be
1067 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf85092c2011-05-20 18:25:42 +00001068 // evaluates to the same expression as the extended narrow use, but doesn't
1069 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick2fabd462011-06-21 03:22:38 +00001070 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf85092c2011-05-20 18:25:42 +00001071 if (WideAddRec != SE->getSCEV(WideUse)) {
1072 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1073 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1074 DeadInsts.push_back(WideUse);
1075 return 0;
1076 }
1077
1078 // Returning WideUse pushes it on the worklist.
1079 return WideUse;
1080}
1081
Andrew Trick4b029152011-07-02 02:34:25 +00001082/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1083///
1084void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1085 for (Value::use_iterator UI = NarrowDef->use_begin(),
1086 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001087 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick4b029152011-07-02 02:34:25 +00001088
1089 // Handle data flow merges and bizarre phi cycles.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001090 if (!Widened.insert(NarrowUse))
Andrew Trick4b029152011-07-02 02:34:25 +00001091 continue;
1092
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001093 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick4b029152011-07-02 02:34:25 +00001094 }
1095}
1096
Andrew Trickf85092c2011-05-20 18:25:42 +00001097/// CreateWideIV - Process a single induction variable. First use the
1098/// SCEVExpander to create a wide induction variable that evaluates to the same
1099/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick2fabd462011-06-21 03:22:38 +00001100/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf85092c2011-05-20 18:25:42 +00001101/// interesting IV users, the narrow IV will be isolated for removal by
1102/// DeleteDeadPHIs.
1103///
1104/// It would be simpler to delete uses as they are processed, but we must avoid
1105/// invalidating SCEV expressions.
1106///
Andrew Trick2fabd462011-06-21 03:22:38 +00001107PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf85092c2011-05-20 18:25:42 +00001108 // Is this phi an induction variable?
1109 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1110 if (!AddRec)
Andrew Trick2fabd462011-06-21 03:22:38 +00001111 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001112
1113 // Widen the induction variable expression.
1114 const SCEV *WideIVExpr = IsSigned ?
1115 SE->getSignExtendExpr(AddRec, WideType) :
1116 SE->getZeroExtendExpr(AddRec, WideType);
1117
1118 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1119 "Expect the new IV expression to preserve its type");
1120
1121 // Can the IV be extended outside the loop without overflow?
1122 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1123 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick2fabd462011-06-21 03:22:38 +00001124 return NULL;
Andrew Trickf85092c2011-05-20 18:25:42 +00001125
Andrew Trick2fabd462011-06-21 03:22:38 +00001126 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf85092c2011-05-20 18:25:42 +00001127 // materialized by a loop header phi, the expression cannot have any post-loop
1128 // operands, so they must dominate the loop header.
1129 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1130 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1131 && "Loop header phi recurrence inputs do not dominate the loop");
1132
1133 // The rewriter provides a value for the desired IV expression. This may
1134 // either find an existing phi or materialize a new one. Either way, we
1135 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1136 // of the phi-SCC dominates the loop entry.
1137 Instruction *InsertPt = L->getHeader()->begin();
1138 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1139
1140 // Remembering the WideIV increment generated by SCEVExpander allows
1141 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1142 // employ a general reuse mechanism because the call above is the only call to
1143 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001144 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1145 WideInc =
1146 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1147 WideIncExpr = SE->getSCEV(WideInc);
1148 }
Andrew Trickf85092c2011-05-20 18:25:42 +00001149
1150 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1151 ++NumWidened;
1152
1153 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick4b029152011-07-02 02:34:25 +00001154 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf85092c2011-05-20 18:25:42 +00001155
Andrew Trick4b029152011-07-02 02:34:25 +00001156 Widened.insert(OrigPhi);
1157 pushNarrowIVUsers(OrigPhi, WidePhi);
1158
Andrew Trickf85092c2011-05-20 18:25:42 +00001159 while (!NarrowIVUsers.empty()) {
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001160 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf85092c2011-05-20 18:25:42 +00001161
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001162 // Process a def-use edge. This may replace the use, so don't hold a
1163 // use_iterator across it.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001164 Instruction *WideUse = WidenIVUse(DU);
Andrew Trickf85092c2011-05-20 18:25:42 +00001165
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001166 // Follow all def-use edges from the previous narrow use.
Andrew Trick4b029152011-07-02 02:34:25 +00001167 if (WideUse)
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001168 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick4b029152011-07-02 02:34:25 +00001169
Andrew Trickfcdc9a42011-05-26 00:46:11 +00001170 // WidenIVUse may have removed the def-use edge.
Andrew Trick13bcf2e2011-07-20 04:39:24 +00001171 if (DU.NarrowDef->use_empty())
1172 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf85092c2011-05-20 18:25:42 +00001173 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001174 return WidePhi;
Andrew Trickf85092c2011-05-20 18:25:42 +00001175}
1176
Andrew Trick1a54bb22011-07-12 00:08:50 +00001177//===----------------------------------------------------------------------===//
1178// Simplification of IV users based on SCEV evaluation.
1179//===----------------------------------------------------------------------===//
1180
Andrew Trickaeee4612011-05-12 00:04:28 +00001181void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
1182 unsigned IVOperIdx = 0;
1183 ICmpInst::Predicate Pred = ICmp->getPredicate();
1184 if (IVOperand != ICmp->getOperand(0)) {
1185 // Swapped
1186 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
1187 IVOperIdx = 1;
1188 Pred = ICmpInst::getSwappedPredicate(Pred);
Dan Gohmana590b792010-04-13 01:46:36 +00001189 }
Andrew Trickaeee4612011-05-12 00:04:28 +00001190
1191 // Get the SCEVs for the ICmp operands.
1192 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
1193 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
1194
1195 // Simplify unnecessary loops away.
1196 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
1197 S = SE->getSCEVAtScope(S, ICmpLoop);
1198 X = SE->getSCEVAtScope(X, ICmpLoop);
1199
1200 // If the condition is always true or always false, replace it with
1201 // a constant value.
1202 if (SE->isKnownPredicate(Pred, S, X))
1203 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
1204 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
1205 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
1206 else
1207 return;
1208
1209 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001210 ++NumElimCmp;
Andrew Trick074397d2011-05-20 03:37:48 +00001211 Changed = true;
Andrew Trickaeee4612011-05-12 00:04:28 +00001212 DeadInsts.push_back(ICmp);
1213}
1214
1215void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
1216 Value *IVOperand,
Andrew Trick4417e532011-06-21 15:43:52 +00001217 bool IsSigned) {
Andrew Trickaeee4612011-05-12 00:04:28 +00001218 // We're only interested in the case where we know something about
1219 // the numerator.
1220 if (IVOperand != Rem->getOperand(0))
1221 return;
1222
1223 // Get the SCEVs for the ICmp operands.
1224 const SCEV *S = SE->getSCEV(Rem->getOperand(0));
1225 const SCEV *X = SE->getSCEV(Rem->getOperand(1));
1226
1227 // Simplify unnecessary loops away.
1228 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
1229 S = SE->getSCEVAtScope(S, ICmpLoop);
1230 X = SE->getSCEVAtScope(X, ICmpLoop);
1231
1232 // i % n --> i if i is in [0,n).
Andrew Trick074397d2011-05-20 03:37:48 +00001233 if ((!IsSigned || SE->isKnownNonNegative(S)) &&
1234 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
Andrew Trickaeee4612011-05-12 00:04:28 +00001235 S, X))
1236 Rem->replaceAllUsesWith(Rem->getOperand(0));
1237 else {
1238 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
1239 const SCEV *LessOne =
1240 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
Andrew Trick074397d2011-05-20 03:37:48 +00001241 if (IsSigned && !SE->isKnownNonNegative(LessOne))
Andrew Trickaeee4612011-05-12 00:04:28 +00001242 return;
1243
Andrew Trick074397d2011-05-20 03:37:48 +00001244 if (!SE->isKnownPredicate(IsSigned ?
Andrew Trickaeee4612011-05-12 00:04:28 +00001245 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1246 LessOne, X))
1247 return;
1248
1249 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1250 Rem->getOperand(0), Rem->getOperand(1),
1251 "tmp");
1252 SelectInst *Sel =
1253 SelectInst::Create(ICmp,
1254 ConstantInt::get(Rem->getType(), 0),
1255 Rem->getOperand(0), "tmp", Rem);
1256 Rem->replaceAllUsesWith(Sel);
1257 }
1258
1259 // Inform IVUsers about the new users.
Andrew Trick2fabd462011-06-21 03:22:38 +00001260 if (IU) {
1261 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
Andrew Trick4417e532011-06-21 15:43:52 +00001262 IU->AddUsersIfInteresting(I);
Andrew Trick2fabd462011-06-21 03:22:38 +00001263 }
Andrew Trickaeee4612011-05-12 00:04:28 +00001264 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
Andrew Trick03d3d3b2011-05-25 04:42:22 +00001265 ++NumElimRem;
Andrew Trick074397d2011-05-20 03:37:48 +00001266 Changed = true;
Andrew Trickaeee4612011-05-12 00:04:28 +00001267 DeadInsts.push_back(Rem);
Dan Gohmana590b792010-04-13 01:46:36 +00001268}
1269
Andrew Trick2fabd462011-06-21 03:22:38 +00001270/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1271/// no observable side-effect given the range of IV values.
1272bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1273 Instruction *IVOperand) {
1274 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1275 EliminateIVComparison(ICmp, IVOperand);
1276 return true;
1277 }
1278 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1279 bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1280 if (IsSigned || Rem->getOpcode() == Instruction::URem) {
Andrew Trick4417e532011-06-21 15:43:52 +00001281 EliminateIVRemainder(Rem, IVOperand, IsSigned);
Andrew Trick2fabd462011-06-21 03:22:38 +00001282 return true;
1283 }
1284 }
1285
1286 // Eliminate any operation that SCEV can prove is an identity function.
1287 if (!SE->isSCEVable(UseInst->getType()) ||
Andrew Trick11745d42011-06-29 03:13:40 +00001288 (UseInst->getType() != IVOperand->getType()) ||
Andrew Trick2fabd462011-06-21 03:22:38 +00001289 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1290 return false;
1291
Andrew Trick2fabd462011-06-21 03:22:38 +00001292 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
Andrew Trick60ac7192011-06-30 01:27:23 +00001293
1294 UseInst->replaceAllUsesWith(IVOperand);
Andrew Trick2fabd462011-06-21 03:22:38 +00001295 ++NumElimIdentity;
1296 Changed = true;
1297 DeadInsts.push_back(UseInst);
1298 return true;
1299}
1300
1301/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1302///
Andrew Trick15832f62011-06-28 02:49:20 +00001303static void pushIVUsers(
1304 Instruction *Def,
1305 SmallPtrSet<Instruction*,16> &Simplified,
1306 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
Andrew Trick2fabd462011-06-21 03:22:38 +00001307
1308 for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1309 UI != E; ++UI) {
1310 Instruction *User = cast<Instruction>(*UI);
1311
1312 // Avoid infinite or exponential worklist processing.
1313 // Also ensure unique worklist users.
Andrew Trick60ac7192011-06-30 01:27:23 +00001314 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1315 // self edges first.
1316 if (User != Def && Simplified.insert(User))
Andrew Trick2fabd462011-06-21 03:22:38 +00001317 SimpleIVUsers.push_back(std::make_pair(User, Def));
1318 }
1319}
1320
1321/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1322/// expression in terms of that IV.
1323///
1324/// This is similar to IVUsers' isInsteresting() but processes each instruction
1325/// non-recursively when the operand is already known to be a simpleIVUser.
1326///
Andrew Trick1a54bb22011-07-12 00:08:50 +00001327static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
Andrew Trick2fabd462011-06-21 03:22:38 +00001328 if (!SE->isSCEVable(I->getType()))
1329 return false;
1330
1331 // Get the symbolic expression for this instruction.
1332 const SCEV *S = SE->getSCEV(I);
1333
1334 // Only consider affine recurrences.
1335 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1336 if (AR && AR->getLoop() == L)
1337 return true;
1338
1339 return false;
1340}
1341
1342/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1343/// of IV users. Each successive simplification may push more users which may
1344/// themselves be candidates for simplification.
1345///
1346/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1347/// simplifies instructions in-place during analysis. Rather than rewriting
1348/// induction variables bottom-up from their users, it transforms a chain of
1349/// IVUsers top-down, updating the IR only when it encouters a clear
1350/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1351/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1352/// extend elimination.
1353///
1354/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1355///
1356void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
Andrew Trick15832f62011-06-28 02:49:20 +00001357 std::map<PHINode *, WideIVInfo> WideIVMap;
1358
Andrew Trick2fabd462011-06-21 03:22:38 +00001359 SmallVector<PHINode*, 8> LoopPhis;
1360 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1361 LoopPhis.push_back(cast<PHINode>(I));
1362 }
Andrew Trick15832f62011-06-28 02:49:20 +00001363 // Each round of simplification iterates through the SimplifyIVUsers worklist
1364 // for all current phis, then determines whether any IVs can be
1365 // widened. Widening adds new phis to LoopPhis, inducing another round of
1366 // simplification on the wide IVs.
Andrew Trick2fabd462011-06-21 03:22:38 +00001367 while (!LoopPhis.empty()) {
Andrew Trick15832f62011-06-28 02:49:20 +00001368 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick99a92f62011-06-28 16:45:04 +00001369 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick15832f62011-06-28 02:49:20 +00001370 // extension. The first time SCEV attempts to normalize sign/zero extension,
1371 // the result becomes final. So for the most predictable results, we delay
1372 // evaluation of sign/zero extend evaluation until needed, and avoid running
1373 // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1374 do {
1375 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick2fabd462011-06-21 03:22:38 +00001376
Andrew Trick15832f62011-06-28 02:49:20 +00001377 // Information about sign/zero extensions of CurrIV.
1378 WideIVInfo WI;
Andrew Trick2fabd462011-06-21 03:22:38 +00001379
Andrew Trick15832f62011-06-28 02:49:20 +00001380 // Instructions processed by SimplifyIVUsers for CurrIV.
1381 SmallPtrSet<Instruction*,16> Simplified;
Andrew Trick2fabd462011-06-21 03:22:38 +00001382
Andrew Trick037d1c02011-07-06 20:50:43 +00001383 // Use-def pairs if IV users waiting to be processed for CurrIV.
Andrew Trick15832f62011-06-28 02:49:20 +00001384 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
Andrew Trick2fabd462011-06-21 03:22:38 +00001385
Andrew Trick60ac7192011-06-30 01:27:23 +00001386 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1387 // called multiple times for the same LoopPhi. This is the proper thing to
1388 // do for loop header phis that use each other.
Andrew Trick15832f62011-06-28 02:49:20 +00001389 pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1390
1391 while (!SimpleIVUsers.empty()) {
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001392 std::pair<Instruction*, Instruction*> Use =SimpleIVUsers.pop_back_val();
Andrew Trick6e0ce242011-06-30 19:02:17 +00001393 // Bypass back edges to avoid extra work.
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001394 if (Use.first == CurrIV) continue;
Andrew Trick15832f62011-06-28 02:49:20 +00001395
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001396 if (EliminateIVUser(Use.first, Use.second)) {
1397 pushIVUsers(Use.second, Simplified, SimpleIVUsers);
Andrew Trick15832f62011-06-28 02:49:20 +00001398 continue;
Andrew Trick2fabd462011-06-21 03:22:38 +00001399 }
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001400 if (CastInst *Cast = dyn_cast<CastInst>(Use.first)) {
Andrew Trick15832f62011-06-28 02:49:20 +00001401 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1402 if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1403 CollectExtend(Cast, IsSigned, WI, SE, TD);
1404 }
1405 continue;
1406 }
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001407 if (isSimpleIVUser(Use.first, L, SE)) {
1408 pushIVUsers(Use.first, Simplified, SimpleIVUsers);
Andrew Trick15832f62011-06-28 02:49:20 +00001409 }
Andrew Trick2fabd462011-06-21 03:22:38 +00001410 }
Andrew Trick15832f62011-06-28 02:49:20 +00001411 if (WI.WidestNativeType) {
1412 WideIVMap[CurrIV] = WI;
Andrew Trick2fabd462011-06-21 03:22:38 +00001413 }
Andrew Trick15832f62011-06-28 02:49:20 +00001414 } while(!LoopPhis.empty());
1415
1416 for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1417 E = WideIVMap.end(); I != E; ++I) {
1418 WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
Andrew Trick2fabd462011-06-21 03:22:38 +00001419 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1420 Changed = true;
1421 LoopPhis.push_back(WidePhi);
1422 }
1423 }
Andrew Trick15832f62011-06-28 02:49:20 +00001424 WideIVMap.clear();
Andrew Trick2fabd462011-06-21 03:22:38 +00001425 }
1426}
1427
Andrew Trick037d1c02011-07-06 20:50:43 +00001428/// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1429/// populate ExprToIVMap for use later.
1430///
1431void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
Andrew Trick6f684b02011-07-16 01:06:48 +00001432 DenseMap<const SCEV *, PHINode *> ExprToIVMap;
Andrew Trick037d1c02011-07-06 20:50:43 +00001433 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1434 PHINode *Phi = cast<PHINode>(I);
Andrew Trick1a54bb22011-07-12 00:08:50 +00001435 if (!SE->isSCEVable(Phi->getType()))
1436 continue;
1437
Andrew Trick037d1c02011-07-06 20:50:43 +00001438 const SCEV *S = SE->getSCEV(Phi);
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001439 std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1440 ExprToIVMap.insert(std::make_pair(S, Phi));
1441 if (Tmp.second)
Andrew Trick037d1c02011-07-06 20:50:43 +00001442 continue;
Chris Lattnerc30a38f2011-07-21 06:21:31 +00001443 PHINode *OrigPhi = Tmp.first->second;
Andrew Trickf22d9572011-07-20 02:08:58 +00001444
1445 // If one phi derives from the other via GEPs, types may differ.
1446 if (OrigPhi->getType() != Phi->getType())
1447 continue;
1448
Andrew Trick037d1c02011-07-06 20:50:43 +00001449 // Replacing the congruent phi is sufficient because acyclic redundancy
1450 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1451 // that a phi is congruent, it's almost certain to be the head of an IV
1452 // user cycle that is isomorphic with the original phi. So it's worth
1453 // eagerly cleaning up the common case of a single IV increment.
1454 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1455 Instruction *OrigInc =
1456 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1457 Instruction *IsomorphicInc =
1458 cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1459 if (OrigInc != IsomorphicInc &&
Andrew Trickf22d9572011-07-20 02:08:58 +00001460 OrigInc->getType() == IsomorphicInc->getType() &&
Andrew Trick037d1c02011-07-06 20:50:43 +00001461 SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1462 HoistStep(OrigInc, IsomorphicInc, DT)) {
1463 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1464 << *IsomorphicInc << '\n');
1465 IsomorphicInc->replaceAllUsesWith(OrigInc);
1466 DeadInsts.push_back(IsomorphicInc);
1467 }
1468 }
1469 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1470 ++NumElimIV;
1471 Phi->replaceAllUsesWith(OrigPhi);
1472 DeadInsts.push_back(Phi);
1473 }
1474}
1475
Andrew Trick1a54bb22011-07-12 00:08:50 +00001476//===----------------------------------------------------------------------===//
1477// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1478//===----------------------------------------------------------------------===//
1479
Andrew Trick5241b792011-07-18 18:21:35 +00001480// Check for expressions that ScalarEvolution generates to compute
1481// BackedgeTakenInfo. If these expressions have not been reduced, then expanding
1482// them may incur additional cost (albeit in the loop preheader).
1483static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1484 ScalarEvolution *SE) {
1485 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1486 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1487 // precise expression, rather than a UDiv from the user's code. If we can't
1488 // find a UDiv in the code with some simple searching, assume the former and
1489 // forego rewriting the loop.
1490 if (isa<SCEVUDivExpr>(S)) {
1491 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1492 if (!OrigCond) return true;
1493 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1494 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1495 if (R != S) {
1496 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1497 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1498 if (L != S)
1499 return true;
1500 }
1501 }
1502
Andrew Trickfc933c02011-07-18 20:32:31 +00001503 if (!DisableIVRewrite || ForceLFTR)
Andrew Trick5241b792011-07-18 18:21:35 +00001504 return false;
1505
1506 // Recurse past add expressions, which commonly occur in the
1507 // BackedgeTakenCount. They may already exist in program code, and if not,
1508 // they are not too expensive rematerialize.
1509 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1510 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1511 I != E; ++I) {
1512 if (isHighCostExpansion(*I, BI, SE))
1513 return true;
1514 }
1515 return false;
1516 }
1517
1518 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1519 // the exit condition.
1520 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1521 return true;
1522
1523 // If we haven't recognized an expensive SCEV patter, assume its an expression
1524 // produced by program code.
1525 return false;
1526}
1527
Andrew Trick1a54bb22011-07-12 00:08:50 +00001528/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1529/// count expression can be safely and cheaply expanded into an instruction
1530/// sequence that can be used by LinearFunctionTestReplace.
1531static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1532 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1533 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1534 BackedgeTakenCount->isZero())
1535 return false;
1536
1537 if (!L->getExitingBlock())
1538 return false;
1539
1540 // Can't rewrite non-branch yet.
1541 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1542 if (!BI)
1543 return false;
1544
Andrew Trick5241b792011-07-18 18:21:35 +00001545 if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1546 return false;
1547
Andrew Trick1a54bb22011-07-12 00:08:50 +00001548 return true;
1549}
1550
1551/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1552/// through Truncs.
1553///
Andrew Trickfc933c02011-07-18 20:32:31 +00001554/// TODO: Unnecessary when ForceLFTR is removed.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001555static Type *getBackedgeIVType(Loop *L) {
Andrew Trick1a54bb22011-07-12 00:08:50 +00001556 if (!L->getExitingBlock())
1557 return 0;
1558
1559 // Can't rewrite non-branch yet.
1560 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1561 if (!BI)
1562 return 0;
1563
1564 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1565 if (!Cond)
1566 return 0;
1567
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001568 Type *Ty = 0;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001569 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1570 OI != OE; ++OI) {
1571 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1572 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1573 if (!Trunc)
1574 continue;
1575
1576 return Trunc->getSrcTy();
1577 }
1578 return Ty;
1579}
1580
Andrew Trickfc933c02011-07-18 20:32:31 +00001581/// isLoopInvariant - Perform a quick domtree based check for loop invariance
1582/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1583/// gratuitous for this purpose.
1584static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1585 Instruction *Inst = dyn_cast<Instruction>(V);
1586 if (!Inst)
1587 return true;
1588
1589 return DT->properlyDominates(Inst->getParent(), L->getHeader());
1590}
1591
1592/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1593/// invariant value to the phi.
1594static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1595 Instruction *IncI = dyn_cast<Instruction>(IncV);
1596 if (!IncI)
1597 return 0;
1598
1599 switch (IncI->getOpcode()) {
1600 case Instruction::Add:
1601 case Instruction::Sub:
1602 break;
1603 case Instruction::GetElementPtr:
1604 // An IV counter must preserve its type.
1605 if (IncI->getNumOperands() == 2)
1606 break;
1607 default:
1608 return 0;
1609 }
1610
1611 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1612 if (Phi && Phi->getParent() == L->getHeader()) {
1613 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1614 return Phi;
1615 return 0;
1616 }
1617 if (IncI->getOpcode() == Instruction::GetElementPtr)
1618 return 0;
1619
1620 // Allow add/sub to be commuted.
1621 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1622 if (Phi && Phi->getParent() == L->getHeader()) {
1623 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1624 return Phi;
1625 }
1626 return 0;
1627}
1628
1629/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1630/// that the current exit test is already sufficiently canonical.
1631static bool needsLFTR(Loop *L, DominatorTree *DT) {
1632 assert(L->getExitingBlock() && "expected loop exit");
1633
1634 BasicBlock *LatchBlock = L->getLoopLatch();
1635 // Don't bother with LFTR if the loop is not properly simplified.
1636 if (!LatchBlock)
1637 return false;
1638
1639 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1640 assert(BI && "expected exit branch");
1641
1642 // Do LFTR to simplify the exit condition to an ICMP.
1643 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1644 if (!Cond)
1645 return true;
1646
1647 // Do LFTR to simplify the exit ICMP to EQ/NE
1648 ICmpInst::Predicate Pred = Cond->getPredicate();
1649 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1650 return true;
1651
1652 // Look for a loop invariant RHS
1653 Value *LHS = Cond->getOperand(0);
1654 Value *RHS = Cond->getOperand(1);
1655 if (!isLoopInvariant(RHS, L, DT)) {
1656 if (!isLoopInvariant(LHS, L, DT))
1657 return true;
1658 std::swap(LHS, RHS);
1659 }
1660 // Look for a simple IV counter LHS
1661 PHINode *Phi = dyn_cast<PHINode>(LHS);
1662 if (!Phi)
1663 Phi = getLoopPhiForCounter(LHS, L, DT);
1664
1665 if (!Phi)
1666 return true;
1667
1668 // Do LFTR if the exit condition's IV is *not* a simple counter.
1669 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1670 return Phi != getLoopPhiForCounter(IncV, L, DT);
1671}
1672
1673/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1674/// be rewritten) loop exit test.
1675static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1676 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1677 Value *IncV = Phi->getIncomingValue(LatchIdx);
1678
1679 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1680 UI != UE; ++UI) {
1681 if (*UI != Cond && *UI != IncV) return false;
1682 }
1683
1684 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1685 UI != UE; ++UI) {
1686 if (*UI != Cond && *UI != Phi) return false;
1687 }
1688 return true;
1689}
1690
1691/// FindLoopCounter - Find an affine IV in canonical form.
1692///
1693/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1694///
1695/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1696/// This is difficult in general for SCEV because of potential overflow. But we
1697/// could at least handle constant BECounts.
1698static PHINode *
1699FindLoopCounter(Loop *L, const SCEV *BECount,
1700 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1701 // I'm not sure how BECount could be a pointer type, but we definitely don't
1702 // want to LFTR that.
1703 if (BECount->getType()->isPointerTy())
1704 return 0;
1705
1706 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1707
1708 Value *Cond =
1709 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1710
1711 // Loop over all of the PHI nodes, looking for a simple counter.
1712 PHINode *BestPhi = 0;
1713 const SCEV *BestInit = 0;
1714 BasicBlock *LatchBlock = L->getLoopLatch();
1715 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1716
1717 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1718 PHINode *Phi = cast<PHINode>(I);
1719 if (!SE->isSCEVable(Phi->getType()))
1720 continue;
1721
1722 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1723 if (!AR || AR->getLoop() != L || !AR->isAffine())
1724 continue;
1725
1726 // AR may be a pointer type, while BECount is an integer type.
1727 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1728 // AR may not be a narrower type, or we may never exit.
1729 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1730 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1731 continue;
1732
1733 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1734 if (!Step || !Step->isOne())
1735 continue;
1736
1737 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1738 Value *IncV = Phi->getIncomingValue(LatchIdx);
1739 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1740 continue;
1741
1742 const SCEV *Init = AR->getStart();
1743
1744 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1745 // Don't force a live loop counter if another IV can be used.
1746 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1747 continue;
1748
1749 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1750 // also prefers integer to pointer IVs.
1751 if (BestInit->isZero() != Init->isZero()) {
1752 if (BestInit->isZero())
1753 continue;
1754 }
1755 // If two IVs both count from zero or both count from nonzero then the
1756 // narrower is likely a dead phi that has been widened. Use the wider phi
1757 // to allow the other to be eliminated.
1758 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1759 continue;
1760 }
1761 BestPhi = Phi;
1762 BestInit = Init;
1763 }
1764 return BestPhi;
1765}
1766
Andrew Trick1a54bb22011-07-12 00:08:50 +00001767/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1768/// loop to be a canonical != comparison against the incremented loop induction
1769/// variable. This pass is able to rewrite the exit tests of any loop where the
1770/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1771/// is actually a much broader range than just linear tests.
Andrew Trickfc933c02011-07-18 20:32:31 +00001772Value *IndVarSimplify::
Andrew Trick1a54bb22011-07-12 00:08:50 +00001773LinearFunctionTestReplace(Loop *L,
1774 const SCEV *BackedgeTakenCount,
1775 PHINode *IndVar,
1776 SCEVExpander &Rewriter) {
1777 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1778 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1779
Andrew Trickfc933c02011-07-18 20:32:31 +00001780 // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this
1781 // mode, LFTR can ignore IV overflow and truncate to the width of
1782 // BECount. This avoids materializing the add(zext(add)) expression.
1783 Type *CntTy = DisableIVRewrite ?
1784 BackedgeTakenCount->getType() : IndVar->getType();
1785
1786 const SCEV *IVLimit = BackedgeTakenCount;
1787
Andrew Trick1a54bb22011-07-12 00:08:50 +00001788 // If the exiting block is not the same as the backedge block, we must compare
1789 // against the preincremented value, otherwise we prefer to compare against
1790 // the post-incremented value.
1791 Value *CmpIndVar;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001792 if (L->getExitingBlock() == L->getLoopLatch()) {
1793 // Add one to the "backedge-taken" count to get the trip count.
1794 // If this addition may overflow, we have to be more pessimistic and
1795 // cast the induction variable before doing the add.
Andrew Trick1a54bb22011-07-12 00:08:50 +00001796 const SCEV *N =
Andrew Trickfc933c02011-07-18 20:32:31 +00001797 SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1798 if (CntTy == IVLimit->getType())
1799 IVLimit = N;
1800 else {
1801 const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1802 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1803 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1804 // No overflow. Cast the sum.
1805 IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1806 } else {
1807 // Potential overflow. Cast before doing the add.
1808 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1809 IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1810 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001811 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001812 // The BackedgeTaken expression contains the number of times that the
1813 // backedge branches to the loop header. This is one less than the
1814 // number of times the loop executes, so use the incremented indvar.
1815 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1816 } else {
1817 // We have to use the preincremented value...
Andrew Trickfc933c02011-07-18 20:32:31 +00001818 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
Andrew Trick1a54bb22011-07-12 00:08:50 +00001819 CmpIndVar = IndVar;
1820 }
1821
Andrew Trickfc933c02011-07-18 20:32:31 +00001822 // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1823 // So for, non-zero start compute the IVLimit here.
1824 bool isPtrIV = false;
1825 Type *CmpTy = CntTy;
1826 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1827 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1828 if (!AR->getStart()->isZero()) {
1829 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1830 const SCEV *IVInit = AR->getStart();
1831
1832 // For pointer types, sign extend BECount in order to materialize a GEP.
1833 // Note that for DisableIVRewrite, we never run SCEVExpander on a
1834 // pointer type, because we must preserve the existing GEPs. Instead we
1835 // directly generate a GEP later.
1836 if (IVInit->getType()->isPointerTy()) {
1837 isPtrIV = true;
1838 CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1839 IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1840 }
1841 // For integer types, truncate the IV before computing IVInit + BECount.
1842 else {
1843 if (SE->getTypeSizeInBits(IVInit->getType())
1844 > SE->getTypeSizeInBits(CmpTy))
1845 IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1846
1847 IVLimit = SE->getAddExpr(IVInit, IVLimit);
1848 }
1849 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001850 // Expand the code for the iteration count.
Andrew Trickfc933c02011-07-18 20:32:31 +00001851 IRBuilder<> Builder(BI);
1852
1853 assert(SE->isLoopInvariant(IVLimit, L) &&
Andrew Trick1a54bb22011-07-12 00:08:50 +00001854 "Computed iteration count is not loop invariant!");
Andrew Trickfc933c02011-07-18 20:32:31 +00001855 Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1856
1857 // Create a gep for IVInit + IVLimit from on an existing pointer base.
1858 assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1859 "IndVar type must match IVInit type");
1860 if (isPtrIV) {
1861 Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1862 assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
Andrew Trick41e0d4e2011-07-18 21:15:03 +00001863 assert(SE->getSizeOfExpr(
1864 cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1865 && "unit stride pointer IV must be i8*");
Andrew Trickfc933c02011-07-18 20:32:31 +00001866
1867 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1868 ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1869 Builder.SetInsertPoint(BI);
1870 }
Andrew Trick1a54bb22011-07-12 00:08:50 +00001871
1872 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trickfc933c02011-07-18 20:32:31 +00001873 ICmpInst::Predicate P;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001874 if (L->contains(BI->getSuccessor(0)))
Andrew Trickfc933c02011-07-18 20:32:31 +00001875 P = ICmpInst::ICMP_NE;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001876 else
Andrew Trickfc933c02011-07-18 20:32:31 +00001877 P = ICmpInst::ICMP_EQ;
Andrew Trick1a54bb22011-07-12 00:08:50 +00001878
1879 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1880 << " LHS:" << *CmpIndVar << '\n'
1881 << " op:\t"
Andrew Trickfc933c02011-07-18 20:32:31 +00001882 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1883 << " RHS:\t" << *ExitCnt << "\n"
1884 << " Expr:\t" << *IVLimit << "\n");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001885
Andrew Trickfc933c02011-07-18 20:32:31 +00001886 if (SE->getTypeSizeInBits(CmpIndVar->getType())
1887 > SE->getTypeSizeInBits(CmpTy)) {
1888 CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1889 }
1890
1891 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trick1a54bb22011-07-12 00:08:50 +00001892 Value *OrigCond = BI->getCondition();
1893 // It's tempting to use replaceAllUsesWith here to fully replace the old
1894 // comparison, but that's not immediately safe, since users of the old
1895 // comparison may not be dominated by the new comparison. Instead, just
1896 // update the branch to use the new comparison; in the common case this
1897 // will make old comparison dead.
1898 BI->setCondition(Cond);
1899 DeadInsts.push_back(OrigCond);
1900
1901 ++NumLFTR;
1902 Changed = true;
1903 return Cond;
1904}
1905
1906//===----------------------------------------------------------------------===//
1907// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1908//===----------------------------------------------------------------------===//
1909
1910/// If there's a single exit block, sink any loop-invariant values that
1911/// were defined in the preheader but not used inside the loop into the
1912/// exit block to reduce register pressure in the loop.
1913void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1914 BasicBlock *ExitBlock = L->getExitBlock();
1915 if (!ExitBlock) return;
1916
1917 BasicBlock *Preheader = L->getLoopPreheader();
1918 if (!Preheader) return;
1919
1920 Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1921 BasicBlock::iterator I = Preheader->getTerminator();
1922 while (I != Preheader->begin()) {
1923 --I;
1924 // New instructions were inserted at the end of the preheader.
1925 if (isa<PHINode>(I))
1926 break;
1927
1928 // Don't move instructions which might have side effects, since the side
1929 // effects need to complete before instructions inside the loop. Also don't
1930 // move instructions which might read memory, since the loop may modify
1931 // memory. Note that it's okay if the instruction might have undefined
1932 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1933 // block.
1934 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1935 continue;
1936
1937 // Skip debug info intrinsics.
1938 if (isa<DbgInfoIntrinsic>(I))
1939 continue;
1940
1941 // Don't sink static AllocaInsts out of the entry block, which would
1942 // turn them into dynamic allocas!
1943 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1944 if (AI->isStaticAlloca())
1945 continue;
1946
1947 // Determine if there is a use in or before the loop (direct or
1948 // otherwise).
1949 bool UsedInLoop = false;
1950 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1951 UI != UE; ++UI) {
1952 User *U = *UI;
1953 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1954 if (PHINode *P = dyn_cast<PHINode>(U)) {
1955 unsigned i =
1956 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1957 UseBB = P->getIncomingBlock(i);
1958 }
1959 if (UseBB == Preheader || L->contains(UseBB)) {
1960 UsedInLoop = true;
1961 break;
1962 }
1963 }
1964
1965 // If there is, the def must remain in the preheader.
1966 if (UsedInLoop)
1967 continue;
1968
1969 // Otherwise, sink it to the exit block.
1970 Instruction *ToMove = I;
1971 bool Done = false;
1972
1973 if (I != Preheader->begin()) {
1974 // Skip debug info intrinsics.
1975 do {
1976 --I;
1977 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1978
1979 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1980 Done = true;
1981 } else {
1982 Done = true;
1983 }
1984
1985 ToMove->moveBefore(InsertPt);
1986 if (Done) break;
1987 InsertPt = ToMove;
1988 }
1989}
1990
1991//===----------------------------------------------------------------------===//
1992// IndVarSimplify driver. Manage several subpasses of IV simplification.
1993//===----------------------------------------------------------------------===//
1994
Dan Gohmanc2390b12009-02-12 22:19:27 +00001995bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmana5283822010-06-18 01:35:11 +00001996 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1997 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1998 // canonicalization can be a pessimization without LSR to "clean up"
1999 // afterwards.
2000 // - We depend on having a preheader; in particular,
2001 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
2002 // and we're in trouble if we can't find the induction variable even when
2003 // we've manually inserted one.
2004 if (!L->isLoopSimplifyForm())
2005 return false;
2006
Andrew Trick2fabd462011-06-21 03:22:38 +00002007 if (!DisableIVRewrite)
2008 IU = &getAnalysis<IVUsers>();
Devang Patel5ee99972007-03-07 06:39:01 +00002009 LI = &getAnalysis<LoopInfo>();
2010 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmande53dc02009-06-27 05:16:57 +00002011 DT = &getAnalysis<DominatorTree>();
Andrew Trick37da4082011-05-04 02:10:13 +00002012 TD = getAnalysisIfAvailable<TargetData>();
2013
Andrew Trickb12a7542011-03-17 23:51:11 +00002014 DeadInsts.clear();
Devang Patel5ee99972007-03-07 06:39:01 +00002015 Changed = false;
Dan Gohman60f8a632009-02-17 20:49:49 +00002016
Dan Gohman2d1be872009-04-16 03:18:22 +00002017 // If there are any floating-point recurrences, attempt to
Dan Gohman60f8a632009-02-17 20:49:49 +00002018 // transform them to use integer recurrences.
2019 RewriteNonIntegerIVs(L);
2020
Dan Gohman0bba49c2009-07-07 17:06:11 +00002021 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner9caed542007-03-04 01:00:28 +00002022
Dan Gohman667d7872009-06-26 22:53:46 +00002023 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick5e7645b2011-06-28 05:07:32 +00002024 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trick156d4602011-06-27 23:17:44 +00002025
2026 // Eliminate redundant IV users.
Andrew Trick15832f62011-06-28 02:49:20 +00002027 //
2028 // Simplification works best when run before other consumers of SCEV. We
2029 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2030 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick99a92f62011-06-28 16:45:04 +00002031 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trick156d4602011-06-27 23:17:44 +00002032 if (DisableIVRewrite) {
Andrew Trick37da4082011-05-04 02:10:13 +00002033 Rewriter.disableCanonicalMode();
Andrew Trick156d4602011-06-27 23:17:44 +00002034 SimplifyIVUsersNoRewrite(L, Rewriter);
2035 }
Andrew Trick37da4082011-05-04 02:10:13 +00002036
Chris Lattner40bf8b42004-04-02 20:24:31 +00002037 // Check to see if this loop has a computable loop-invariant execution count.
2038 // If so, this means that we can compute the final value of any expressions
2039 // that are recurrent in the loop, and substitute the exit values from the
2040 // loop into any instructions outside of the loop that use the final values of
2041 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +00002042 //
Dan Gohman46bdfb02009-02-24 18:55:53 +00002043 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman454d26d2010-02-22 04:11:59 +00002044 RewriteLoopExitValues(L, Rewriter);
Chris Lattner6148c022001-12-03 17:28:42 +00002045
Andrew Trickf85092c2011-05-20 18:25:42 +00002046 // Eliminate redundant IV users.
Andrew Trick156d4602011-06-27 23:17:44 +00002047 if (!DisableIVRewrite)
Andrew Trick2fabd462011-06-21 03:22:38 +00002048 SimplifyIVUsers(Rewriter);
Dan Gohmana590b792010-04-13 01:46:36 +00002049
Andrew Trick6f684b02011-07-16 01:06:48 +00002050 // Eliminate redundant IV cycles.
Andrew Trick037d1c02011-07-06 20:50:43 +00002051 if (DisableIVRewrite)
2052 SimplifyCongruentIVs(L);
2053
Dan Gohman81db61a2009-05-12 02:17:14 +00002054 // Compute the type of the largest recurrence expression, and decide whether
2055 // a canonical induction variable should be inserted.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002056 Type *LargestType = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +00002057 bool NeedCannIV = false;
Andrew Trickfc933c02011-07-18 20:32:31 +00002058 bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR;
Andrew Trick03d3d3b2011-05-25 04:42:22 +00002059 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
Andrew Trickfc933c02011-07-18 20:32:31 +00002060 if (ExpandBECount && !ReuseIVForExit) {
Dan Gohman81db61a2009-05-12 02:17:14 +00002061 // If we have a known trip count and a single exit block, we'll be
2062 // rewriting the loop exit test condition below, which requires a
2063 // canonical induction variable.
Andrew Trick4dfdf242011-05-03 22:24:10 +00002064 NeedCannIV = true;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002065 Type *Ty = BackedgeTakenCount->getType();
Andrew Trick03d3d3b2011-05-25 04:42:22 +00002066 if (DisableIVRewrite) {
2067 // In this mode, SimplifyIVUsers may have already widened the IV used by
2068 // the backedge test and inserted a Trunc on the compare's operand. Get
2069 // the wider type to avoid creating a redundant narrow IV only used by the
2070 // loop test.
2071 LargestType = getBackedgeIVType(L);
2072 }
Andrew Trick4dfdf242011-05-03 22:24:10 +00002073 if (!LargestType ||
2074 SE->getTypeSizeInBits(Ty) >
2075 SE->getTypeSizeInBits(LargestType))
2076 LargestType = SE->getEffectiveSCEVType(Ty);
Chris Lattnerf50af082004-04-17 18:08:33 +00002077 }
Andrew Trick37da4082011-05-04 02:10:13 +00002078 if (!DisableIVRewrite) {
2079 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
2080 NeedCannIV = true;
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002081 Type *Ty =
Andrew Trick37da4082011-05-04 02:10:13 +00002082 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
2083 if (!LargestType ||
2084 SE->getTypeSizeInBits(Ty) >
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002085 SE->getTypeSizeInBits(LargestType))
Andrew Trick37da4082011-05-04 02:10:13 +00002086 LargestType = Ty;
2087 }
Chris Lattner6148c022001-12-03 17:28:42 +00002088 }
2089
Dan Gohmanf451cb82010-02-10 16:03:48 +00002090 // Now that we know the largest of the induction variable expressions
Dan Gohman81db61a2009-05-12 02:17:14 +00002091 // in this loop, insert a canonical induction variable of the largest size.
Dan Gohman43ef3fb2010-07-20 17:18:52 +00002092 PHINode *IndVar = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +00002093 if (NeedCannIV) {
Dan Gohman85669632010-02-25 06:57:05 +00002094 // Check to see if the loop already has any canonical-looking induction
2095 // variables. If any are present and wider than the planned canonical
2096 // induction variable, temporarily remove them, so that the Rewriter
2097 // doesn't attempt to reuse them.
2098 SmallVector<PHINode *, 2> OldCannIVs;
2099 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
Dan Gohman4d8414f2009-06-13 16:25:49 +00002100 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
2101 SE->getTypeSizeInBits(LargestType))
2102 OldCannIV->removeFromParent();
2103 else
Dan Gohman85669632010-02-25 06:57:05 +00002104 break;
2105 OldCannIVs.push_back(OldCannIV);
Dan Gohman4d8414f2009-06-13 16:25:49 +00002106 }
2107
Dan Gohman667d7872009-06-26 22:53:46 +00002108 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
Dan Gohman4d8414f2009-06-13 16:25:49 +00002109
Dan Gohmanc2390b12009-02-12 22:19:27 +00002110 ++NumInserted;
2111 Changed = true;
David Greenef67ef312010-01-05 01:27:06 +00002112 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
Dan Gohman4d8414f2009-06-13 16:25:49 +00002113
2114 // Now that the official induction variable is established, reinsert
Dan Gohman85669632010-02-25 06:57:05 +00002115 // any old canonical-looking variables after it so that the IR remains
2116 // consistent. They will be deleted as part of the dead-PHI deletion at
Dan Gohman4d8414f2009-06-13 16:25:49 +00002117 // the end of the pass.
Dan Gohman85669632010-02-25 06:57:05 +00002118 while (!OldCannIVs.empty()) {
2119 PHINode *OldCannIV = OldCannIVs.pop_back_val();
2120 OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
2121 }
Dan Gohmand19534a2007-06-15 14:38:12 +00002122 }
Andrew Trickfc933c02011-07-18 20:32:31 +00002123 else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) {
2124 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
2125 }
Dan Gohmanc2390b12009-02-12 22:19:27 +00002126 // If we have a trip count expression, rewrite the loop's exit condition
2127 // using it. We can currently only handle loops with a single exit.
Andrew Trickfc933c02011-07-18 20:32:31 +00002128 Value *NewICmp = 0;
2129 if (ExpandBECount && IndVar) {
Andrew Trick56147692011-07-16 01:18:53 +00002130 // Check preconditions for proper SCEVExpander operation. SCEV does not
2131 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2132 // pass that uses the SCEVExpander must do it. This does not work well for
2133 // loop passes because SCEVExpander makes assumptions about all loops, while
2134 // LoopPassManager only forces the current loop to be simplified.
2135 //
2136 // FIXME: SCEV expansion has no way to bail out, so the caller must
2137 // explicitly check any assumptions made by SCEV. Brittle.
2138 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2139 if (!AR || AR->getLoop()->getLoopPreheader())
2140 NewICmp =
2141 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
Chris Lattnerfcb81f52004-04-22 14:59:40 +00002142 }
Andrew Trickb12a7542011-03-17 23:51:11 +00002143 // Rewrite IV-derived expressions.
Andrew Trick37da4082011-05-04 02:10:13 +00002144 if (!DisableIVRewrite)
2145 RewriteIVExpressions(L, Rewriter);
Dan Gohmanc2390b12009-02-12 22:19:27 +00002146
Andrew Trickb12a7542011-03-17 23:51:11 +00002147 // Clear the rewriter cache, because values that are in the rewriter's cache
2148 // can be deleted in the loop below, causing the AssertingVH in the cache to
2149 // trigger.
2150 Rewriter.clear();
2151
2152 // Now that we're done iterating through lists, clean up any instructions
2153 // which are now dead.
2154 while (!DeadInsts.empty())
2155 if (Instruction *Inst =
2156 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
2157 RecursivelyDeleteTriviallyDeadInstructions(Inst);
2158
Dan Gohman667d7872009-06-26 22:53:46 +00002159 // The Rewriter may not be used from this point on.
Torok Edwin3d431382009-05-24 20:08:21 +00002160
Dan Gohman81db61a2009-05-12 02:17:14 +00002161 // Loop-invariant instructions in the preheader that aren't used in the
2162 // loop may be sunk below the loop to reduce register pressure.
Dan Gohman667d7872009-06-26 22:53:46 +00002163 SinkUnusedInvariants(L);
Dan Gohman81db61a2009-05-12 02:17:14 +00002164
2165 // For completeness, inform IVUsers of the IV use in the newly-created
2166 // loop exit test instruction.
Andrew Trickfc933c02011-07-18 20:32:31 +00002167 if (IU && NewICmp) {
2168 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
2169 if (NewICmpInst)
2170 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
2171 }
Dan Gohman81db61a2009-05-12 02:17:14 +00002172 // Clean up dead instructions.
Dan Gohman9fff2182010-01-05 16:31:45 +00002173 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohman81db61a2009-05-12 02:17:14 +00002174 // Check a post-condition.
Andrew Trickf6a0dba2011-07-18 18:44:20 +00002175 assert(L->isLCSSAForm(*DT) &&
2176 "Indvars did not leave the loop in lcssa form!");
2177
2178 // Verify that LFTR, and any other change have not interfered with SCEV's
2179 // ability to compute trip count.
2180#ifndef NDEBUG
2181 if (DisableIVRewrite && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2182 SE->forgetLoop(L);
2183 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2184 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2185 SE->getTypeSizeInBits(NewBECount->getType()))
2186 NewBECount = SE->getTruncateOrNoop(NewBECount,
2187 BackedgeTakenCount->getType());
2188 else
2189 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2190 NewBECount->getType());
2191 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2192 }
2193#endif
2194
Devang Patel5ee99972007-03-07 06:39:01 +00002195 return Changed;
Chris Lattner6148c022001-12-03 17:28:42 +00002196}