Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1 | //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// This transformation implements the well known scalar replacement of |
| 11 | /// aggregates transformation. It tries to identify promotable elements of an |
| 12 | /// aggregate alloca, and promote them to registers. It will also try to |
| 13 | /// convert uses of an element (or set of elements) of an alloca into a vector |
| 14 | /// or bitfield-style integer scalar if appropriate. |
| 15 | /// |
| 16 | /// It works to do this with minimal slicing of the alloca so that regions |
| 17 | /// which are merely transferred in and out of external memory remain unchanged |
| 18 | /// and are not decomposed to scalar code. |
| 19 | /// |
| 20 | /// Because this also performs alloca promotion, it can be thought of as also |
| 21 | /// serving the purpose of SSA formation. The algorithm iterates on the |
| 22 | /// function until all opportunities for promotion have been realized. |
| 23 | /// |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #define DEBUG_TYPE "sroa" |
| 27 | #include "llvm/Transforms/Scalar.h" |
| 28 | #include "llvm/Constants.h" |
| 29 | #include "llvm/DIBuilder.h" |
| 30 | #include "llvm/DebugInfo.h" |
| 31 | #include "llvm/DerivedTypes.h" |
| 32 | #include "llvm/Function.h" |
| 33 | #include "llvm/GlobalVariable.h" |
| 34 | #include "llvm/IRBuilder.h" |
| 35 | #include "llvm/Instructions.h" |
| 36 | #include "llvm/IntrinsicInst.h" |
| 37 | #include "llvm/LLVMContext.h" |
| 38 | #include "llvm/Module.h" |
| 39 | #include "llvm/Operator.h" |
| 40 | #include "llvm/Pass.h" |
| 41 | #include "llvm/ADT/SetVector.h" |
| 42 | #include "llvm/ADT/SmallVector.h" |
| 43 | #include "llvm/ADT/Statistic.h" |
| 44 | #include "llvm/ADT/STLExtras.h" |
| 45 | #include "llvm/ADT/TinyPtrVector.h" |
| 46 | #include "llvm/Analysis/Dominators.h" |
| 47 | #include "llvm/Analysis/Loads.h" |
| 48 | #include "llvm/Analysis/ValueTracking.h" |
| 49 | #include "llvm/Support/CallSite.h" |
| 50 | #include "llvm/Support/Debug.h" |
| 51 | #include "llvm/Support/ErrorHandling.h" |
| 52 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 53 | #include "llvm/Support/InstVisitor.h" |
| 54 | #include "llvm/Support/MathExtras.h" |
| 55 | #include "llvm/Support/ValueHandle.h" |
| 56 | #include "llvm/Support/raw_ostream.h" |
| 57 | #include "llvm/Target/TargetData.h" |
| 58 | #include "llvm/Transforms/Utils/Local.h" |
| 59 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 60 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 61 | using namespace llvm; |
| 62 | |
| 63 | STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); |
| 64 | STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); |
| 65 | STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); |
| 66 | STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); |
| 67 | STATISTIC(NumDeleted, "Number of instructions deleted"); |
| 68 | STATISTIC(NumVectorized, "Number of vectorized aggregates"); |
| 69 | |
| 70 | namespace { |
| 71 | /// \brief Alloca partitioning representation. |
| 72 | /// |
| 73 | /// This class represents a partitioning of an alloca into slices, and |
| 74 | /// information about the nature of uses of each slice of the alloca. The goal |
| 75 | /// is that this information is sufficient to decide if and how to split the |
| 76 | /// alloca apart and replace slices with scalars. It is also intended that this |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 77 | /// structure can capture the relevant information needed both to decide about |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 78 | /// and to enact these transformations. |
| 79 | class AllocaPartitioning { |
| 80 | public: |
| 81 | /// \brief A common base class for representing a half-open byte range. |
| 82 | struct ByteRange { |
| 83 | /// \brief The beginning offset of the range. |
| 84 | uint64_t BeginOffset; |
| 85 | |
| 86 | /// \brief The ending offset, not included in the range. |
| 87 | uint64_t EndOffset; |
| 88 | |
| 89 | ByteRange() : BeginOffset(), EndOffset() {} |
| 90 | ByteRange(uint64_t BeginOffset, uint64_t EndOffset) |
| 91 | : BeginOffset(BeginOffset), EndOffset(EndOffset) {} |
| 92 | |
| 93 | /// \brief Support for ordering ranges. |
| 94 | /// |
| 95 | /// This provides an ordering over ranges such that start offsets are |
| 96 | /// always increasing, and within equal start offsets, the end offsets are |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 97 | /// decreasing. Thus the spanning range comes first in a cluster with the |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 98 | /// same start position. |
| 99 | bool operator<(const ByteRange &RHS) const { |
| 100 | if (BeginOffset < RHS.BeginOffset) return true; |
| 101 | if (BeginOffset > RHS.BeginOffset) return false; |
| 102 | if (EndOffset > RHS.EndOffset) return true; |
| 103 | return false; |
| 104 | } |
| 105 | |
| 106 | /// \brief Support comparison with a single offset to allow binary searches. |
| 107 | bool operator<(uint64_t RHSOffset) const { |
| 108 | return BeginOffset < RHSOffset; |
| 109 | } |
| 110 | |
| 111 | bool operator==(const ByteRange &RHS) const { |
| 112 | return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset; |
| 113 | } |
| 114 | bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); } |
| 115 | }; |
| 116 | |
| 117 | /// \brief A partition of an alloca. |
| 118 | /// |
| 119 | /// This structure represents a contiguous partition of the alloca. These are |
| 120 | /// formed by examining the uses of the alloca. During formation, they may |
| 121 | /// overlap but once an AllocaPartitioning is built, the Partitions within it |
| 122 | /// are all disjoint. |
| 123 | struct Partition : public ByteRange { |
| 124 | /// \brief Whether this partition is splittable into smaller partitions. |
| 125 | /// |
| 126 | /// We flag partitions as splittable when they are formed entirely due to |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 127 | /// accesses by trivially splittable operations such as memset and memcpy. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 128 | /// |
| 129 | /// FIXME: At some point we should consider loads and stores of FCAs to be |
| 130 | /// splittable and eagerly split them into scalar values. |
| 131 | bool IsSplittable; |
| 132 | |
| 133 | Partition() : ByteRange(), IsSplittable() {} |
| 134 | Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable) |
| 135 | : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {} |
| 136 | }; |
| 137 | |
| 138 | /// \brief A particular use of a partition of the alloca. |
| 139 | /// |
| 140 | /// This structure is used to associate uses of a partition with it. They |
| 141 | /// mark the range of bytes which are referenced by a particular instruction, |
| 142 | /// and includes a handle to the user itself and the pointer value in use. |
| 143 | /// The bounds of these uses are determined by intersecting the bounds of the |
| 144 | /// memory use itself with a particular partition. As a consequence there is |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 145 | /// intentionally overlap between various uses of the same partition. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 146 | struct PartitionUse : public ByteRange { |
| 147 | /// \brief The user of this range of the alloca. |
| 148 | AssertingVH<Instruction> User; |
| 149 | |
| 150 | /// \brief The particular pointer value derived from this alloca in use. |
| 151 | AssertingVH<Instruction> Ptr; |
| 152 | |
| 153 | PartitionUse() : ByteRange(), User(), Ptr() {} |
| 154 | PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, |
| 155 | Instruction *User, Instruction *Ptr) |
| 156 | : ByteRange(BeginOffset, EndOffset), User(User), Ptr(Ptr) {} |
| 157 | }; |
| 158 | |
| 159 | /// \brief Construct a partitioning of a particular alloca. |
| 160 | /// |
| 161 | /// Construction does most of the work for partitioning the alloca. This |
| 162 | /// performs the necessary walks of users and builds a partitioning from it. |
| 163 | AllocaPartitioning(const TargetData &TD, AllocaInst &AI); |
| 164 | |
| 165 | /// \brief Test whether a pointer to the allocation escapes our analysis. |
| 166 | /// |
| 167 | /// If this is true, the partitioning is never fully built and should be |
| 168 | /// ignored. |
| 169 | bool isEscaped() const { return PointerEscapingInstr; } |
| 170 | |
| 171 | /// \brief Support for iterating over the partitions. |
| 172 | /// @{ |
| 173 | typedef SmallVectorImpl<Partition>::iterator iterator; |
| 174 | iterator begin() { return Partitions.begin(); } |
| 175 | iterator end() { return Partitions.end(); } |
| 176 | |
| 177 | typedef SmallVectorImpl<Partition>::const_iterator const_iterator; |
| 178 | const_iterator begin() const { return Partitions.begin(); } |
| 179 | const_iterator end() const { return Partitions.end(); } |
| 180 | /// @} |
| 181 | |
| 182 | /// \brief Support for iterating over and manipulating a particular |
| 183 | /// partition's uses. |
| 184 | /// |
| 185 | /// The iteration support provided for uses is more limited, but also |
| 186 | /// includes some manipulation routines to support rewriting the uses of |
| 187 | /// partitions during SROA. |
| 188 | /// @{ |
| 189 | typedef SmallVectorImpl<PartitionUse>::iterator use_iterator; |
| 190 | use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); } |
| 191 | use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); } |
| 192 | use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); } |
| 193 | use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); } |
| 194 | void use_insert(unsigned Idx, use_iterator UI, const PartitionUse &U) { |
| 195 | Uses[Idx].insert(UI, U); |
| 196 | } |
| 197 | void use_insert(const_iterator I, use_iterator UI, const PartitionUse &U) { |
| 198 | Uses[I - begin()].insert(UI, U); |
| 199 | } |
| 200 | void use_erase(unsigned Idx, use_iterator UI) { Uses[Idx].erase(UI); } |
| 201 | void use_erase(const_iterator I, use_iterator UI) { |
| 202 | Uses[I - begin()].erase(UI); |
| 203 | } |
| 204 | |
| 205 | typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator; |
| 206 | const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); } |
| 207 | const_use_iterator use_begin(const_iterator I) const { |
| 208 | return Uses[I - begin()].begin(); |
| 209 | } |
| 210 | const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); } |
| 211 | const_use_iterator use_end(const_iterator I) const { |
| 212 | return Uses[I - begin()].end(); |
| 213 | } |
| 214 | /// @} |
| 215 | |
| 216 | /// \brief Allow iterating the dead users for this alloca. |
| 217 | /// |
| 218 | /// These are instructions which will never actually use the alloca as they |
| 219 | /// are outside the allocated range. They are safe to replace with undef and |
| 220 | /// delete. |
| 221 | /// @{ |
| 222 | typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator; |
| 223 | dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } |
| 224 | dead_user_iterator dead_user_end() const { return DeadUsers.end(); } |
| 225 | /// @} |
| 226 | |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 227 | /// \brief Allow iterating the dead expressions referring to this alloca. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 228 | /// |
| 229 | /// These are operands which have cannot actually be used to refer to the |
| 230 | /// alloca as they are outside its range and the user doesn't correct for |
| 231 | /// that. These mostly consist of PHI node inputs and the like which we just |
| 232 | /// need to replace with undef. |
| 233 | /// @{ |
| 234 | typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator; |
| 235 | dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } |
| 236 | dead_op_iterator dead_op_end() const { return DeadOperands.end(); } |
| 237 | /// @} |
| 238 | |
| 239 | /// \brief MemTransferInst auxiliary data. |
| 240 | /// This struct provides some auxiliary data about memory transfer |
| 241 | /// intrinsics such as memcpy and memmove. These intrinsics can use two |
| 242 | /// different ranges within the same alloca, and provide other challenges to |
| 243 | /// correctly represent. We stash extra data to help us untangle this |
| 244 | /// after the partitioning is complete. |
| 245 | struct MemTransferOffsets { |
| 246 | uint64_t DestBegin, DestEnd; |
| 247 | uint64_t SourceBegin, SourceEnd; |
| 248 | bool IsSplittable; |
| 249 | }; |
| 250 | MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const { |
| 251 | return MemTransferInstData.lookup(&II); |
| 252 | } |
| 253 | |
| 254 | /// \brief Map from a PHI or select operand back to a partition. |
| 255 | /// |
| 256 | /// When manipulating PHI nodes or selects, they can use more than one |
| 257 | /// partition of an alloca. We store a special mapping to allow finding the |
| 258 | /// partition referenced by each of these operands, if any. |
| 259 | iterator findPartitionForPHIOrSelectOperand(Instruction &I, Value *Op) { |
| 260 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 261 | std::pair<unsigned, unsigned> >::const_iterator MapIt |
| 262 | = PHIOrSelectOpMap.find(std::make_pair(&I, Op)); |
| 263 | if (MapIt == PHIOrSelectOpMap.end()) |
| 264 | return end(); |
| 265 | |
| 266 | return begin() + MapIt->second.first; |
| 267 | } |
| 268 | |
| 269 | /// \brief Map from a PHI or select operand back to the specific use of |
| 270 | /// a partition. |
| 271 | /// |
| 272 | /// Similar to mapping these operands back to the partitions, this maps |
| 273 | /// directly to the use structure of that partition. |
| 274 | use_iterator findPartitionUseForPHIOrSelectOperand(Instruction &I, |
| 275 | Value *Op) { |
| 276 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 277 | std::pair<unsigned, unsigned> >::const_iterator MapIt |
| 278 | = PHIOrSelectOpMap.find(std::make_pair(&I, Op)); |
| 279 | assert(MapIt != PHIOrSelectOpMap.end()); |
| 280 | return Uses[MapIt->second.first].begin() + MapIt->second.second; |
| 281 | } |
| 282 | |
| 283 | /// \brief Compute a common type among the uses of a particular partition. |
| 284 | /// |
| 285 | /// This routines walks all of the uses of a particular partition and tries |
| 286 | /// to find a common type between them. Untyped operations such as memset and |
| 287 | /// memcpy are ignored. |
| 288 | Type *getCommonType(iterator I) const; |
| 289 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 290 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 291 | void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; |
| 292 | void printUsers(raw_ostream &OS, const_iterator I, |
| 293 | StringRef Indent = " ") const; |
| 294 | void print(raw_ostream &OS) const; |
NAKAMURA Takumi | ad9f5b8 | 2012-09-14 10:06:10 +0000 | [diff] [blame] | 295 | void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; |
| 296 | void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 297 | #endif |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 298 | |
| 299 | private: |
| 300 | template <typename DerivedT, typename RetT = void> class BuilderBase; |
| 301 | class PartitionBuilder; |
| 302 | friend class AllocaPartitioning::PartitionBuilder; |
| 303 | class UseBuilder; |
| 304 | friend class AllocaPartitioning::UseBuilder; |
| 305 | |
| 306 | /// \brief Handle to alloca instruction to simplify method interfaces. |
| 307 | AllocaInst &AI; |
| 308 | |
| 309 | /// \brief The instruction responsible for this alloca having no partitioning. |
| 310 | /// |
| 311 | /// When an instruction (potentially) escapes the pointer to the alloca, we |
| 312 | /// store a pointer to that here and abort trying to partition the alloca. |
| 313 | /// This will be null if the alloca is partitioned successfully. |
| 314 | Instruction *PointerEscapingInstr; |
| 315 | |
| 316 | /// \brief The partitions of the alloca. |
| 317 | /// |
| 318 | /// We store a vector of the partitions over the alloca here. This vector is |
| 319 | /// sorted by increasing begin offset, and then by decreasing end offset. See |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 320 | /// the Partition inner class for more details. Initially (during |
| 321 | /// construction) there are overlaps, but we form a disjoint sequence of |
| 322 | /// partitions while finishing construction and a fully constructed object is |
| 323 | /// expected to always have this as a disjoint space. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 324 | SmallVector<Partition, 8> Partitions; |
| 325 | |
| 326 | /// \brief The uses of the partitions. |
| 327 | /// |
| 328 | /// This is essentially a mapping from each partition to a list of uses of |
| 329 | /// that partition. The mapping is done with a Uses vector that has the exact |
| 330 | /// same number of entries as the partition vector. Each entry is itself |
| 331 | /// a vector of the uses. |
| 332 | SmallVector<SmallVector<PartitionUse, 2>, 8> Uses; |
| 333 | |
| 334 | /// \brief Instructions which will become dead if we rewrite the alloca. |
| 335 | /// |
| 336 | /// Note that these are not separated by partition. This is because we expect |
| 337 | /// a partitioned alloca to be completely rewritten or not rewritten at all. |
| 338 | /// If rewritten, all these instructions can simply be removed and replaced |
| 339 | /// with undef as they come from outside of the allocated space. |
| 340 | SmallVector<Instruction *, 8> DeadUsers; |
| 341 | |
| 342 | /// \brief Operands which will become dead if we rewrite the alloca. |
| 343 | /// |
| 344 | /// These are operands that in their particular use can be replaced with |
| 345 | /// undef when we rewrite the alloca. These show up in out-of-bounds inputs |
| 346 | /// to PHI nodes and the like. They aren't entirely dead (there might be |
| 347 | /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
| 348 | /// want to swap this particular input for undef to simplify the use lists of |
| 349 | /// the alloca. |
| 350 | SmallVector<Use *, 8> DeadOperands; |
| 351 | |
| 352 | /// \brief The underlying storage for auxiliary memcpy and memset info. |
| 353 | SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData; |
| 354 | |
| 355 | /// \brief A side datastructure used when building up the partitions and uses. |
| 356 | /// |
| 357 | /// This mapping is only really used during the initial building of the |
| 358 | /// partitioning so that we can retain information about PHI and select nodes |
| 359 | /// processed. |
| 360 | SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes; |
| 361 | |
| 362 | /// \brief Auxiliary information for particular PHI or select operands. |
| 363 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 364 | std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap; |
| 365 | |
| 366 | /// \brief A utility routine called from the constructor. |
| 367 | /// |
| 368 | /// This does what it says on the tin. It is the key of the alloca partition |
| 369 | /// splitting and merging. After it is called we have the desired disjoint |
| 370 | /// collection of partitions. |
| 371 | void splitAndMergePartitions(); |
| 372 | }; |
| 373 | } |
| 374 | |
| 375 | template <typename DerivedT, typename RetT> |
| 376 | class AllocaPartitioning::BuilderBase |
| 377 | : public InstVisitor<DerivedT, RetT> { |
| 378 | public: |
| 379 | BuilderBase(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
| 380 | : TD(TD), |
| 381 | AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())), |
| 382 | P(P) { |
| 383 | enqueueUsers(AI, 0); |
| 384 | } |
| 385 | |
| 386 | protected: |
| 387 | const TargetData &TD; |
| 388 | const uint64_t AllocSize; |
| 389 | AllocaPartitioning &P; |
| 390 | |
| 391 | struct OffsetUse { |
| 392 | Use *U; |
| 393 | uint64_t Offset; |
| 394 | }; |
| 395 | SmallVector<OffsetUse, 8> Queue; |
| 396 | |
| 397 | // The active offset and use while visiting. |
| 398 | Use *U; |
| 399 | uint64_t Offset; |
| 400 | |
| 401 | void enqueueUsers(Instruction &I, uint64_t UserOffset) { |
| 402 | SmallPtrSet<User *, 8> UserSet; |
| 403 | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); |
| 404 | UI != UE; ++UI) { |
| 405 | if (!UserSet.insert(*UI)) |
| 406 | continue; |
| 407 | |
| 408 | OffsetUse OU = { &UI.getUse(), UserOffset }; |
| 409 | Queue.push_back(OU); |
| 410 | } |
| 411 | } |
| 412 | |
| 413 | bool computeConstantGEPOffset(GetElementPtrInst &GEPI, uint64_t &GEPOffset) { |
| 414 | GEPOffset = Offset; |
| 415 | for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI); |
| 416 | GTI != GTE; ++GTI) { |
| 417 | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| 418 | if (!OpC) |
| 419 | return false; |
| 420 | if (OpC->isZero()) |
| 421 | continue; |
| 422 | |
| 423 | // Handle a struct index, which adds its field offset to the pointer. |
| 424 | if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 425 | unsigned ElementIdx = OpC->getZExtValue(); |
| 426 | const StructLayout *SL = TD.getStructLayout(STy); |
| 427 | GEPOffset += SL->getElementOffset(ElementIdx); |
| 428 | continue; |
| 429 | } |
| 430 | |
| 431 | GEPOffset |
| 432 | += OpC->getZExtValue() * TD.getTypeAllocSize(GTI.getIndexedType()); |
| 433 | } |
| 434 | return true; |
| 435 | } |
| 436 | |
| 437 | Value *foldSelectInst(SelectInst &SI) { |
| 438 | // If the condition being selected on is a constant or the same value is |
| 439 | // being selected between, fold the select. Yes this does (rarely) happen |
| 440 | // early on. |
| 441 | if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) |
| 442 | return SI.getOperand(1+CI->isZero()); |
| 443 | if (SI.getOperand(1) == SI.getOperand(2)) { |
| 444 | assert(*U == SI.getOperand(1)); |
| 445 | return SI.getOperand(1); |
| 446 | } |
| 447 | return 0; |
| 448 | } |
| 449 | }; |
| 450 | |
| 451 | /// \brief Builder for the alloca partitioning. |
| 452 | /// |
| 453 | /// This class builds an alloca partitioning by recursively visiting the uses |
| 454 | /// of an alloca and splitting the partitions for each load and store at each |
| 455 | /// offset. |
| 456 | class AllocaPartitioning::PartitionBuilder |
| 457 | : public BuilderBase<PartitionBuilder, bool> { |
| 458 | friend class InstVisitor<PartitionBuilder, bool>; |
| 459 | |
| 460 | SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap; |
| 461 | |
| 462 | public: |
| 463 | PartitionBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
Chandler Carruth | 2a9bf25 | 2012-09-14 09:30:33 +0000 | [diff] [blame] | 464 | : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {} |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 465 | |
| 466 | /// \brief Run the builder over the allocation. |
| 467 | bool operator()() { |
| 468 | // Note that we have to re-evaluate size on each trip through the loop as |
| 469 | // the queue grows at the tail. |
| 470 | for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { |
| 471 | U = Queue[Idx].U; |
| 472 | Offset = Queue[Idx].Offset; |
| 473 | if (!visit(cast<Instruction>(U->getUser()))) |
| 474 | return false; |
| 475 | } |
| 476 | return true; |
| 477 | } |
| 478 | |
| 479 | private: |
| 480 | bool markAsEscaping(Instruction &I) { |
| 481 | P.PointerEscapingInstr = &I; |
| 482 | return false; |
| 483 | } |
| 484 | |
| 485 | void insertUse(Instruction &I, uint64_t Size, bool IsSplittable = false) { |
| 486 | uint64_t BeginOffset = Offset, EndOffset = Offset + Size; |
| 487 | |
| 488 | // Completely skip uses which start outside of the allocation. |
| 489 | if (BeginOffset >= AllocSize) { |
| 490 | DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset |
| 491 | << " which starts past the end of the " << AllocSize |
| 492 | << " byte alloca:\n" |
| 493 | << " alloca: " << P.AI << "\n" |
| 494 | << " use: " << I << "\n"); |
| 495 | return; |
| 496 | } |
| 497 | |
| 498 | // Clamp the size to the allocation. |
| 499 | if (EndOffset > AllocSize) { |
| 500 | DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset |
| 501 | << " to remain within the " << AllocSize << " byte alloca:\n" |
| 502 | << " alloca: " << P.AI << "\n" |
| 503 | << " use: " << I << "\n"); |
| 504 | EndOffset = AllocSize; |
| 505 | } |
| 506 | |
| 507 | // See if we can just add a user onto the last slot currently occupied. |
| 508 | if (!P.Partitions.empty() && |
| 509 | P.Partitions.back().BeginOffset == BeginOffset && |
| 510 | P.Partitions.back().EndOffset == EndOffset) { |
| 511 | P.Partitions.back().IsSplittable &= IsSplittable; |
| 512 | return; |
| 513 | } |
| 514 | |
| 515 | Partition New(BeginOffset, EndOffset, IsSplittable); |
| 516 | P.Partitions.push_back(New); |
| 517 | } |
| 518 | |
| 519 | bool handleLoadOrStore(Type *Ty, Instruction &I) { |
| 520 | uint64_t Size = TD.getTypeStoreSize(Ty); |
| 521 | |
| 522 | // If this memory access can be shown to *statically* extend outside the |
| 523 | // bounds of of the allocation, it's behavior is undefined, so simply |
| 524 | // ignore it. Note that this is more strict than the generic clamping |
| 525 | // behavior of insertUse. We also try to handle cases which might run the |
| 526 | // risk of overflow. |
| 527 | // FIXME: We should instead consider the pointer to have escaped if this |
| 528 | // function is being instrumented for addressing bugs or race conditions. |
| 529 | if (Offset >= AllocSize || Size > AllocSize || Offset + Size > AllocSize) { |
| 530 | DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte " |
| 531 | << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset |
| 532 | << " which extends past the end of the " << AllocSize |
| 533 | << " byte alloca:\n" |
| 534 | << " alloca: " << P.AI << "\n" |
| 535 | << " use: " << I << "\n"); |
| 536 | return true; |
| 537 | } |
| 538 | |
| 539 | insertUse(I, Size); |
| 540 | return true; |
| 541 | } |
| 542 | |
| 543 | bool visitBitCastInst(BitCastInst &BC) { |
| 544 | enqueueUsers(BC, Offset); |
| 545 | return true; |
| 546 | } |
| 547 | |
| 548 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 549 | uint64_t GEPOffset; |
| 550 | if (!computeConstantGEPOffset(GEPI, GEPOffset)) |
| 551 | return markAsEscaping(GEPI); |
| 552 | |
| 553 | enqueueUsers(GEPI, GEPOffset); |
| 554 | return true; |
| 555 | } |
| 556 | |
| 557 | bool visitLoadInst(LoadInst &LI) { |
| 558 | return handleLoadOrStore(LI.getType(), LI); |
| 559 | } |
| 560 | |
| 561 | bool visitStoreInst(StoreInst &SI) { |
| 562 | if (SI.getOperand(0) == *U) |
| 563 | return markAsEscaping(SI); |
| 564 | |
| 565 | return handleLoadOrStore(SI.getOperand(0)->getType(), SI); |
| 566 | } |
| 567 | |
| 568 | |
| 569 | bool visitMemSetInst(MemSetInst &II) { |
Chandler Carruth | b3dd9a1 | 2012-09-14 10:26:34 +0000 | [diff] [blame^] | 570 | assert(II.getRawDest() == *U && "Pointer use is not the destination?"); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 571 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| 572 | insertUse(II, Length ? Length->getZExtValue() : AllocSize - Offset, Length); |
| 573 | return true; |
| 574 | } |
| 575 | |
| 576 | bool visitMemTransferInst(MemTransferInst &II) { |
| 577 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| 578 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 579 | if (!Size) |
| 580 | // Zero-length mem transfer intrinsics can be ignored entirely. |
| 581 | return true; |
| 582 | |
| 583 | MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; |
| 584 | |
| 585 | // Only intrinsics with a constant length can be split. |
| 586 | Offsets.IsSplittable = Length; |
| 587 | |
| 588 | if (*U != II.getRawDest()) { |
| 589 | assert(*U == II.getRawSource()); |
| 590 | Offsets.SourceBegin = Offset; |
| 591 | Offsets.SourceEnd = Offset + Size; |
| 592 | } else { |
| 593 | Offsets.DestBegin = Offset; |
| 594 | Offsets.DestEnd = Offset + Size; |
| 595 | } |
| 596 | |
| 597 | insertUse(II, Size, Offsets.IsSplittable); |
| 598 | unsigned NewIdx = P.Partitions.size() - 1; |
| 599 | |
| 600 | SmallDenseMap<Instruction *, unsigned>::const_iterator PMI; |
| 601 | bool Inserted = false; |
| 602 | llvm::tie(PMI, Inserted) |
| 603 | = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)); |
| 604 | if (!Inserted && Offsets.IsSplittable) { |
| 605 | // We've found a memory transfer intrinsic which refers to the alloca as |
| 606 | // both a source and dest. We refuse to split these to simplify splitting |
| 607 | // logic. If possible, SROA will still split them into separate allocas |
| 608 | // and then re-analyze. |
| 609 | Offsets.IsSplittable = false; |
| 610 | P.Partitions[PMI->second].IsSplittable = false; |
| 611 | P.Partitions[NewIdx].IsSplittable = false; |
| 612 | } |
| 613 | |
| 614 | return true; |
| 615 | } |
| 616 | |
| 617 | // Disable SRoA for any intrinsics except for lifetime invariants. |
| 618 | bool visitIntrinsicInst(IntrinsicInst &II) { |
| 619 | if (II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 620 | II.getIntrinsicID() == Intrinsic::lifetime_end) { |
| 621 | ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| 622 | uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue()); |
| 623 | insertUse(II, Size, true); |
| 624 | return true; |
| 625 | } |
| 626 | |
| 627 | return markAsEscaping(II); |
| 628 | } |
| 629 | |
| 630 | Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
| 631 | // We consider any PHI or select that results in a direct load or store of |
| 632 | // the same offset to be a viable use for partitioning purposes. These uses |
| 633 | // are considered unsplittable and the size is the maximum loaded or stored |
| 634 | // size. |
| 635 | SmallPtrSet<Instruction *, 4> Visited; |
| 636 | SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
| 637 | Visited.insert(Root); |
| 638 | Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); |
| 639 | do { |
| 640 | Instruction *I, *UsedI; |
| 641 | llvm::tie(UsedI, I) = Uses.pop_back_val(); |
| 642 | |
| 643 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| 644 | Size = std::max(Size, TD.getTypeStoreSize(LI->getType())); |
| 645 | continue; |
| 646 | } |
| 647 | if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| 648 | Value *Op = SI->getOperand(0); |
| 649 | if (Op == UsedI) |
| 650 | return SI; |
| 651 | Size = std::max(Size, TD.getTypeStoreSize(Op->getType())); |
| 652 | continue; |
| 653 | } |
| 654 | |
| 655 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| 656 | if (!GEP->hasAllZeroIndices()) |
| 657 | return GEP; |
| 658 | } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && |
| 659 | !isa<SelectInst>(I)) { |
| 660 | return I; |
| 661 | } |
| 662 | |
| 663 | for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; |
| 664 | ++UI) |
| 665 | if (Visited.insert(cast<Instruction>(*UI))) |
| 666 | Uses.push_back(std::make_pair(I, cast<Instruction>(*UI))); |
| 667 | } while (!Uses.empty()); |
| 668 | |
| 669 | return 0; |
| 670 | } |
| 671 | |
| 672 | bool visitPHINode(PHINode &PN) { |
| 673 | // See if we already have computed info on this node. |
| 674 | std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN]; |
| 675 | if (PHIInfo.first) { |
| 676 | PHIInfo.second = true; |
| 677 | insertUse(PN, PHIInfo.first); |
| 678 | return true; |
| 679 | } |
| 680 | |
| 681 | // Check for an unsafe use of the PHI node. |
| 682 | if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first)) |
| 683 | return markAsEscaping(*EscapingI); |
| 684 | |
| 685 | insertUse(PN, PHIInfo.first); |
| 686 | return true; |
| 687 | } |
| 688 | |
| 689 | bool visitSelectInst(SelectInst &SI) { |
| 690 | if (Value *Result = foldSelectInst(SI)) { |
| 691 | if (Result == *U) |
| 692 | // If the result of the constant fold will be the pointer, recurse |
| 693 | // through the select as if we had RAUW'ed it. |
| 694 | enqueueUsers(SI, Offset); |
| 695 | |
| 696 | return true; |
| 697 | } |
| 698 | |
| 699 | // See if we already have computed info on this node. |
| 700 | std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI]; |
| 701 | if (SelectInfo.first) { |
| 702 | SelectInfo.second = true; |
| 703 | insertUse(SI, SelectInfo.first); |
| 704 | return true; |
| 705 | } |
| 706 | |
| 707 | // Check for an unsafe use of the PHI node. |
| 708 | if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first)) |
| 709 | return markAsEscaping(*EscapingI); |
| 710 | |
| 711 | insertUse(SI, SelectInfo.first); |
| 712 | return true; |
| 713 | } |
| 714 | |
| 715 | /// \brief Disable SROA entirely if there are unhandled users of the alloca. |
| 716 | bool visitInstruction(Instruction &I) { return markAsEscaping(I); } |
| 717 | }; |
| 718 | |
| 719 | |
| 720 | /// \brief Use adder for the alloca partitioning. |
| 721 | /// |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 722 | /// This class adds the uses of an alloca to all of the partitions which they |
| 723 | /// use. For splittable partitions, this can end up doing essentially a linear |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 724 | /// walk of the partitions, but the number of steps remains bounded by the |
| 725 | /// total result instruction size: |
| 726 | /// - The number of partitions is a result of the number unsplittable |
| 727 | /// instructions using the alloca. |
| 728 | /// - The number of users of each partition is at worst the total number of |
| 729 | /// splittable instructions using the alloca. |
| 730 | /// Thus we will produce N * M instructions in the end, where N are the number |
| 731 | /// of unsplittable uses and M are the number of splittable. This visitor does |
| 732 | /// the exact same number of updates to the partitioning. |
| 733 | /// |
| 734 | /// In the more common case, this visitor will leverage the fact that the |
| 735 | /// partition space is pre-sorted, and do a logarithmic search for the |
| 736 | /// partition needed, making the total visit a classical ((N + M) * log(N)) |
| 737 | /// complexity operation. |
| 738 | class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> { |
| 739 | friend class InstVisitor<UseBuilder>; |
| 740 | |
| 741 | /// \brief Set to de-duplicate dead instructions found in the use walk. |
| 742 | SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
| 743 | |
| 744 | public: |
| 745 | UseBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
Chandler Carruth | 2a9bf25 | 2012-09-14 09:30:33 +0000 | [diff] [blame] | 746 | : BuilderBase<UseBuilder>(TD, AI, P) {} |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 747 | |
| 748 | /// \brief Run the builder over the allocation. |
| 749 | void operator()() { |
| 750 | // Note that we have to re-evaluate size on each trip through the loop as |
| 751 | // the queue grows at the tail. |
| 752 | for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { |
| 753 | U = Queue[Idx].U; |
| 754 | Offset = Queue[Idx].Offset; |
| 755 | this->visit(cast<Instruction>(U->getUser())); |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | private: |
| 760 | void markAsDead(Instruction &I) { |
| 761 | if (VisitedDeadInsts.insert(&I)) |
| 762 | P.DeadUsers.push_back(&I); |
| 763 | } |
| 764 | |
| 765 | void insertUse(uint64_t Size, Instruction &User) { |
| 766 | uint64_t BeginOffset = Offset, EndOffset = Offset + Size; |
| 767 | |
| 768 | // If the use extends outside of the allocation, record it as a dead use |
| 769 | // for elimination later. |
| 770 | if (BeginOffset >= AllocSize || Size == 0) |
| 771 | return markAsDead(User); |
| 772 | |
| 773 | // Bound the use by the size of the allocation. |
| 774 | if (EndOffset > AllocSize) |
| 775 | EndOffset = AllocSize; |
| 776 | |
| 777 | // NB: This only works if we have zero overlapping partitions. |
| 778 | iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset); |
| 779 | if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset) |
| 780 | B = llvm::prior(B); |
| 781 | for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset; |
| 782 | ++I) { |
| 783 | PartitionUse NewUse(std::max(I->BeginOffset, BeginOffset), |
| 784 | std::min(I->EndOffset, EndOffset), |
| 785 | &User, cast<Instruction>(*U)); |
| 786 | P.Uses[I - P.begin()].push_back(NewUse); |
| 787 | if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser())) |
| 788 | P.PHIOrSelectOpMap[std::make_pair(&User, U->get())] |
| 789 | = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | void handleLoadOrStore(Type *Ty, Instruction &I) { |
| 794 | uint64_t Size = TD.getTypeStoreSize(Ty); |
| 795 | |
| 796 | // If this memory access can be shown to *statically* extend outside the |
| 797 | // bounds of of the allocation, it's behavior is undefined, so simply |
| 798 | // ignore it. Note that this is more strict than the generic clamping |
| 799 | // behavior of insertUse. |
| 800 | if (Offset >= AllocSize || Size > AllocSize || Offset + Size > AllocSize) |
| 801 | return markAsDead(I); |
| 802 | |
| 803 | insertUse(Size, I); |
| 804 | } |
| 805 | |
| 806 | void visitBitCastInst(BitCastInst &BC) { |
| 807 | if (BC.use_empty()) |
| 808 | return markAsDead(BC); |
| 809 | |
| 810 | enqueueUsers(BC, Offset); |
| 811 | } |
| 812 | |
| 813 | void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 814 | if (GEPI.use_empty()) |
| 815 | return markAsDead(GEPI); |
| 816 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 817 | uint64_t GEPOffset; |
| 818 | if (!computeConstantGEPOffset(GEPI, GEPOffset)) |
| 819 | llvm_unreachable("Unable to compute constant offset for use"); |
| 820 | |
| 821 | enqueueUsers(GEPI, GEPOffset); |
| 822 | } |
| 823 | |
| 824 | void visitLoadInst(LoadInst &LI) { |
| 825 | handleLoadOrStore(LI.getType(), LI); |
| 826 | } |
| 827 | |
| 828 | void visitStoreInst(StoreInst &SI) { |
| 829 | handleLoadOrStore(SI.getOperand(0)->getType(), SI); |
| 830 | } |
| 831 | |
| 832 | void visitMemSetInst(MemSetInst &II) { |
| 833 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| 834 | insertUse(Length ? Length->getZExtValue() : AllocSize - Offset, II); |
| 835 | } |
| 836 | |
| 837 | void visitMemTransferInst(MemTransferInst &II) { |
| 838 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| 839 | insertUse(Length ? Length->getZExtValue() : AllocSize - Offset, II); |
| 840 | } |
| 841 | |
| 842 | void visitIntrinsicInst(IntrinsicInst &II) { |
| 843 | assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 844 | II.getIntrinsicID() == Intrinsic::lifetime_end); |
| 845 | |
| 846 | ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| 847 | insertUse(std::min(AllocSize - Offset, Length->getLimitedValue()), II); |
| 848 | } |
| 849 | |
| 850 | void insertPHIOrSelect(Instruction &User) { |
| 851 | uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first; |
| 852 | |
| 853 | // For PHI and select operands outside the alloca, we can't nuke the entire |
| 854 | // phi or select -- the other side might still be relevant, so we special |
| 855 | // case them here and use a separate structure to track the operands |
| 856 | // themselves which should be replaced with undef. |
| 857 | if (Offset >= AllocSize) { |
| 858 | P.DeadOperands.push_back(U); |
| 859 | return; |
| 860 | } |
| 861 | |
| 862 | insertUse(Size, User); |
| 863 | } |
| 864 | void visitPHINode(PHINode &PN) { |
| 865 | if (PN.use_empty()) |
| 866 | return markAsDead(PN); |
| 867 | |
| 868 | insertPHIOrSelect(PN); |
| 869 | } |
| 870 | void visitSelectInst(SelectInst &SI) { |
| 871 | if (SI.use_empty()) |
| 872 | return markAsDead(SI); |
| 873 | |
| 874 | if (Value *Result = foldSelectInst(SI)) { |
| 875 | if (Result == *U) |
| 876 | // If the result of the constant fold will be the pointer, recurse |
| 877 | // through the select as if we had RAUW'ed it. |
| 878 | enqueueUsers(SI, Offset); |
| 879 | |
| 880 | return; |
| 881 | } |
| 882 | |
| 883 | insertPHIOrSelect(SI); |
| 884 | } |
| 885 | |
| 886 | /// \brief Unreachable, we've already visited the alloca once. |
| 887 | void visitInstruction(Instruction &I) { |
| 888 | llvm_unreachable("Unhandled instruction in use builder."); |
| 889 | } |
| 890 | }; |
| 891 | |
| 892 | void AllocaPartitioning::splitAndMergePartitions() { |
| 893 | size_t NumDeadPartitions = 0; |
| 894 | |
| 895 | // Track the range of splittable partitions that we pass when accumulating |
| 896 | // overlapping unsplittable partitions. |
| 897 | uint64_t SplitEndOffset = 0ull; |
| 898 | |
| 899 | Partition New(0ull, 0ull, false); |
| 900 | |
| 901 | for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) { |
| 902 | ++j; |
| 903 | |
| 904 | if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) { |
| 905 | assert(New.BeginOffset == New.EndOffset); |
| 906 | New = Partitions[i]; |
| 907 | } else { |
| 908 | assert(New.IsSplittable); |
| 909 | New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset); |
| 910 | } |
| 911 | assert(New.BeginOffset != New.EndOffset); |
| 912 | |
| 913 | // Scan the overlapping partitions. |
| 914 | while (j != e && New.EndOffset > Partitions[j].BeginOffset) { |
| 915 | // If the new partition we are forming is splittable, stop at the first |
| 916 | // unsplittable partition. |
| 917 | if (New.IsSplittable && !Partitions[j].IsSplittable) |
| 918 | break; |
| 919 | |
| 920 | // Grow the new partition to include any equally splittable range. 'j' is |
| 921 | // always equally splittable when New is splittable, but when New is not |
| 922 | // splittable, we may subsume some (or part of some) splitable partition |
| 923 | // without growing the new one. |
| 924 | if (New.IsSplittable == Partitions[j].IsSplittable) { |
| 925 | New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset); |
| 926 | } else { |
| 927 | assert(!New.IsSplittable); |
| 928 | assert(Partitions[j].IsSplittable); |
| 929 | SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset); |
| 930 | } |
| 931 | |
| 932 | Partitions[j].BeginOffset = Partitions[j].EndOffset = UINT64_MAX; |
| 933 | ++NumDeadPartitions; |
| 934 | ++j; |
| 935 | } |
| 936 | |
| 937 | // If the new partition is splittable, chop off the end as soon as the |
| 938 | // unsplittable subsequent partition starts and ensure we eventually cover |
| 939 | // the splittable area. |
| 940 | if (j != e && New.IsSplittable) { |
| 941 | SplitEndOffset = std::max(SplitEndOffset, New.EndOffset); |
| 942 | New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| 943 | } |
| 944 | |
| 945 | // Add the new partition if it differs from the original one and is |
| 946 | // non-empty. We can end up with an empty partition here if it was |
| 947 | // splittable but there is an unsplittable one that starts at the same |
| 948 | // offset. |
| 949 | if (New != Partitions[i]) { |
| 950 | if (New.BeginOffset != New.EndOffset) |
| 951 | Partitions.push_back(New); |
| 952 | // Mark the old one for removal. |
| 953 | Partitions[i].BeginOffset = Partitions[i].EndOffset = UINT64_MAX; |
| 954 | ++NumDeadPartitions; |
| 955 | } |
| 956 | |
| 957 | New.BeginOffset = New.EndOffset; |
| 958 | if (!New.IsSplittable) { |
| 959 | New.EndOffset = std::max(New.EndOffset, SplitEndOffset); |
| 960 | if (j != e && !Partitions[j].IsSplittable) |
| 961 | New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| 962 | New.IsSplittable = true; |
| 963 | // If there is a trailing splittable partition which won't be fused into |
| 964 | // the next splittable partition go ahead and add it onto the partitions |
| 965 | // list. |
| 966 | if (New.BeginOffset < New.EndOffset && |
| 967 | (j == e || !Partitions[j].IsSplittable || |
| 968 | New.EndOffset < Partitions[j].BeginOffset)) { |
| 969 | Partitions.push_back(New); |
| 970 | New.BeginOffset = New.EndOffset = 0ull; |
| 971 | } |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | // Re-sort the partitions now that they have been split and merged into |
| 976 | // disjoint set of partitions. Also remove any of the dead partitions we've |
| 977 | // replaced in the process. |
| 978 | std::sort(Partitions.begin(), Partitions.end()); |
| 979 | if (NumDeadPartitions) { |
| 980 | assert(Partitions.back().BeginOffset == UINT64_MAX); |
| 981 | assert(Partitions.back().EndOffset == UINT64_MAX); |
| 982 | assert((ptrdiff_t)NumDeadPartitions == |
| 983 | std::count(Partitions.begin(), Partitions.end(), Partitions.back())); |
| 984 | } |
| 985 | Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end()); |
| 986 | } |
| 987 | |
| 988 | AllocaPartitioning::AllocaPartitioning(const TargetData &TD, AllocaInst &AI) |
| 989 | : AI(AI), PointerEscapingInstr(0) { |
| 990 | PartitionBuilder PB(TD, AI, *this); |
| 991 | if (!PB()) |
| 992 | return; |
| 993 | |
| 994 | if (Partitions.size() > 1) { |
| 995 | // Sort the uses. This arranges for the offsets to be in ascending order, |
| 996 | // and the sizes to be in descending order. |
| 997 | std::sort(Partitions.begin(), Partitions.end()); |
| 998 | |
| 999 | // Intersect splittability for all partitions with equal offsets and sizes. |
| 1000 | // Then remove all but the first so that we have a sequence of non-equal but |
| 1001 | // potentially overlapping partitions. |
| 1002 | for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E; |
| 1003 | I = J) { |
| 1004 | ++J; |
| 1005 | while (J != E && *I == *J) { |
| 1006 | I->IsSplittable &= J->IsSplittable; |
| 1007 | ++J; |
| 1008 | } |
| 1009 | } |
| 1010 | Partitions.erase(std::unique(Partitions.begin(), Partitions.end()), |
| 1011 | Partitions.end()); |
| 1012 | |
| 1013 | // Split splittable and merge unsplittable partitions into a disjoint set |
| 1014 | // of partitions over the used space of the allocation. |
| 1015 | splitAndMergePartitions(); |
| 1016 | } |
| 1017 | |
| 1018 | // Now build up the user lists for each of these disjoint partitions by |
| 1019 | // re-walking the recursive users of the alloca. |
| 1020 | Uses.resize(Partitions.size()); |
| 1021 | UseBuilder UB(TD, AI, *this); |
| 1022 | UB(); |
| 1023 | for (iterator I = Partitions.begin(), E = Partitions.end(); I != E; ++I) |
| 1024 | std::stable_sort(use_begin(I), use_end(I)); |
| 1025 | } |
| 1026 | |
| 1027 | Type *AllocaPartitioning::getCommonType(iterator I) const { |
| 1028 | Type *Ty = 0; |
| 1029 | for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { |
| 1030 | if (isa<MemIntrinsic>(*UI->User)) |
| 1031 | continue; |
| 1032 | if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset) |
| 1033 | break; |
| 1034 | |
| 1035 | Type *UserTy = 0; |
| 1036 | if (LoadInst *LI = dyn_cast<LoadInst>(&*UI->User)) { |
| 1037 | UserTy = LI->getType(); |
| 1038 | } else if (StoreInst *SI = dyn_cast<StoreInst>(&*UI->User)) { |
| 1039 | UserTy = SI->getValueOperand()->getType(); |
| 1040 | } else if (SelectInst *SI = dyn_cast<SelectInst>(&*UI->User)) { |
| 1041 | if (PointerType *PtrTy = dyn_cast<PointerType>(SI->getType())) |
| 1042 | UserTy = PtrTy->getElementType(); |
| 1043 | } else if (PHINode *PN = dyn_cast<PHINode>(&*UI->User)) { |
| 1044 | if (PointerType *PtrTy = dyn_cast<PointerType>(PN->getType())) |
| 1045 | UserTy = PtrTy->getElementType(); |
| 1046 | } |
| 1047 | |
| 1048 | if (Ty && Ty != UserTy) |
| 1049 | return 0; |
| 1050 | |
| 1051 | Ty = UserTy; |
| 1052 | } |
| 1053 | return Ty; |
| 1054 | } |
| 1055 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 1056 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1057 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1058 | void AllocaPartitioning::print(raw_ostream &OS, const_iterator I, |
| 1059 | StringRef Indent) const { |
| 1060 | OS << Indent << "partition #" << (I - begin()) |
| 1061 | << " [" << I->BeginOffset << "," << I->EndOffset << ")" |
| 1062 | << (I->IsSplittable ? " (splittable)" : "") |
| 1063 | << (Uses[I - begin()].empty() ? " (zero uses)" : "") |
| 1064 | << "\n"; |
| 1065 | } |
| 1066 | |
| 1067 | void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I, |
| 1068 | StringRef Indent) const { |
| 1069 | for (const_use_iterator UI = use_begin(I), UE = use_end(I); |
| 1070 | UI != UE; ++UI) { |
| 1071 | OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") " |
| 1072 | << "used by: " << *UI->User << "\n"; |
| 1073 | if (MemTransferInst *II = dyn_cast<MemTransferInst>(&*UI->User)) { |
| 1074 | const MemTransferOffsets &MTO = MemTransferInstData.lookup(II); |
| 1075 | bool IsDest; |
| 1076 | if (!MTO.IsSplittable) |
| 1077 | IsDest = UI->BeginOffset == MTO.DestBegin; |
| 1078 | else |
| 1079 | IsDest = MTO.DestBegin != 0u; |
| 1080 | OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": " |
| 1081 | << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin) |
| 1082 | << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n"; |
| 1083 | } |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | void AllocaPartitioning::print(raw_ostream &OS) const { |
| 1088 | if (PointerEscapingInstr) { |
| 1089 | OS << "No partitioning for alloca: " << AI << "\n" |
| 1090 | << " A pointer to this alloca escaped by:\n" |
| 1091 | << " " << *PointerEscapingInstr << "\n"; |
| 1092 | return; |
| 1093 | } |
| 1094 | |
| 1095 | OS << "Partitioning of alloca: " << AI << "\n"; |
| 1096 | unsigned Num = 0; |
| 1097 | for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) { |
| 1098 | print(OS, I); |
| 1099 | printUsers(OS, I); |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); } |
| 1104 | void AllocaPartitioning::dump() const { print(dbgs()); } |
| 1105 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 1106 | #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1107 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1108 | |
| 1109 | namespace { |
| 1110 | /// \brief An optimization pass providing Scalar Replacement of Aggregates. |
| 1111 | /// |
| 1112 | /// This pass takes allocations which can be completely analyzed (that is, they |
| 1113 | /// don't escape) and tries to turn them into scalar SSA values. There are |
| 1114 | /// a few steps to this process. |
| 1115 | /// |
| 1116 | /// 1) It takes allocations of aggregates and analyzes the ways in which they |
| 1117 | /// are used to try to split them into smaller allocations, ideally of |
| 1118 | /// a single scalar data type. It will split up memcpy and memset accesses |
| 1119 | /// as necessary and try to isolate invidual scalar accesses. |
| 1120 | /// 2) It will transform accesses into forms which are suitable for SSA value |
| 1121 | /// promotion. This can be replacing a memset with a scalar store of an |
| 1122 | /// integer value, or it can involve speculating operations on a PHI or |
| 1123 | /// select to be a PHI or select of the results. |
| 1124 | /// 3) Finally, this will try to detect a pattern of accesses which map cleanly |
| 1125 | /// onto insert and extract operations on a vector value, and convert them to |
| 1126 | /// this form. By doing so, it will enable promotion of vector aggregates to |
| 1127 | /// SSA vector values. |
| 1128 | class SROA : public FunctionPass { |
| 1129 | LLVMContext *C; |
| 1130 | const TargetData *TD; |
| 1131 | DominatorTree *DT; |
| 1132 | |
| 1133 | /// \brief Worklist of alloca instructions to simplify. |
| 1134 | /// |
| 1135 | /// Each alloca in the function is added to this. Each new alloca formed gets |
| 1136 | /// added to it as well to recursively simplify unless that alloca can be |
| 1137 | /// directly promoted. Finally, each time we rewrite a use of an alloca other |
| 1138 | /// the one being actively rewritten, we add it back onto the list if not |
| 1139 | /// already present to ensure it is re-visited. |
| 1140 | SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist; |
| 1141 | |
| 1142 | /// \brief A collection of instructions to delete. |
| 1143 | /// We try to batch deletions to simplify code and make things a bit more |
| 1144 | /// efficient. |
| 1145 | SmallVector<Instruction *, 8> DeadInsts; |
| 1146 | |
| 1147 | /// \brief A set to prevent repeatedly marking an instruction split into many |
| 1148 | /// uses as dead. Only used to guard insertion into DeadInsts. |
| 1149 | SmallPtrSet<Instruction *, 4> DeadSplitInsts; |
| 1150 | |
| 1151 | /// \brief A set of deleted alloca instructions. |
| 1152 | /// |
| 1153 | /// These pointers are *no longer valid* as they have been deleted. They are |
| 1154 | /// used to remove deleted allocas from the list of promotable allocas. |
| 1155 | SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
| 1156 | |
| 1157 | /// \brief A collection of alloca instructions we can directly promote. |
| 1158 | std::vector<AllocaInst *> PromotableAllocas; |
| 1159 | |
| 1160 | public: |
| 1161 | SROA() : FunctionPass(ID), C(0), TD(0), DT(0) { |
| 1162 | initializeSROAPass(*PassRegistry::getPassRegistry()); |
| 1163 | } |
| 1164 | bool runOnFunction(Function &F); |
| 1165 | void getAnalysisUsage(AnalysisUsage &AU) const; |
| 1166 | |
| 1167 | const char *getPassName() const { return "SROA"; } |
| 1168 | static char ID; |
| 1169 | |
| 1170 | private: |
| 1171 | friend class AllocaPartitionRewriter; |
| 1172 | friend class AllocaPartitionVectorRewriter; |
| 1173 | |
| 1174 | bool rewriteAllocaPartition(AllocaInst &AI, |
| 1175 | AllocaPartitioning &P, |
| 1176 | AllocaPartitioning::iterator PI); |
| 1177 | bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P); |
| 1178 | bool runOnAlloca(AllocaInst &AI); |
| 1179 | void deleteDeadInstructions(); |
| 1180 | }; |
| 1181 | } |
| 1182 | |
| 1183 | char SROA::ID = 0; |
| 1184 | |
| 1185 | FunctionPass *llvm::createSROAPass() { |
| 1186 | return new SROA(); |
| 1187 | } |
| 1188 | |
| 1189 | INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| 1190 | false, false) |
| 1191 | INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| 1192 | INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| 1193 | false, false) |
| 1194 | |
| 1195 | /// \brief Accumulate the constant offsets in a GEP into a single APInt offset. |
| 1196 | /// |
| 1197 | /// If the provided GEP is all-constant, the total byte offset formed by the |
| 1198 | /// GEP is computed and Offset is set to it. If the GEP has any non-constant |
| 1199 | /// operands, the function returns false and the value of Offset is unmodified. |
| 1200 | static bool accumulateGEPOffsets(const TargetData &TD, GEPOperator &GEP, |
| 1201 | APInt &Offset) { |
| 1202 | APInt GEPOffset(Offset.getBitWidth(), 0); |
| 1203 | for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); |
| 1204 | GTI != GTE; ++GTI) { |
| 1205 | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| 1206 | if (!OpC) |
| 1207 | return false; |
| 1208 | if (OpC->isZero()) continue; |
| 1209 | |
| 1210 | // Handle a struct index, which adds its field offset to the pointer. |
| 1211 | if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 1212 | unsigned ElementIdx = OpC->getZExtValue(); |
| 1213 | const StructLayout *SL = TD.getStructLayout(STy); |
| 1214 | GEPOffset += APInt(Offset.getBitWidth(), |
| 1215 | SL->getElementOffset(ElementIdx)); |
| 1216 | continue; |
| 1217 | } |
| 1218 | |
| 1219 | APInt TypeSize(Offset.getBitWidth(), |
| 1220 | TD.getTypeAllocSize(GTI.getIndexedType())); |
| 1221 | if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) { |
| 1222 | assert((VTy->getScalarSizeInBits() % 8) == 0 && |
| 1223 | "vector element size is not a multiple of 8, cannot GEP over it"); |
| 1224 | TypeSize = VTy->getScalarSizeInBits() / 8; |
| 1225 | } |
| 1226 | |
| 1227 | GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize; |
| 1228 | } |
| 1229 | Offset = GEPOffset; |
| 1230 | return true; |
| 1231 | } |
| 1232 | |
| 1233 | /// \brief Build a GEP out of a base pointer and indices. |
| 1234 | /// |
| 1235 | /// This will return the BasePtr if that is valid, or build a new GEP |
| 1236 | /// instruction using the IRBuilder if GEP-ing is needed. |
| 1237 | static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr, |
| 1238 | SmallVectorImpl<Value *> &Indices, |
| 1239 | const Twine &Prefix) { |
| 1240 | if (Indices.empty()) |
| 1241 | return BasePtr; |
| 1242 | |
| 1243 | // A single zero index is a no-op, so check for this and avoid building a GEP |
| 1244 | // in that case. |
| 1245 | if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) |
| 1246 | return BasePtr; |
| 1247 | |
| 1248 | return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx"); |
| 1249 | } |
| 1250 | |
| 1251 | /// \brief Get a natural GEP off of the BasePtr walking through Ty toward |
| 1252 | /// TargetTy without changing the offset of the pointer. |
| 1253 | /// |
| 1254 | /// This routine assumes we've already established a properly offset GEP with |
| 1255 | /// Indices, and arrived at the Ty type. The goal is to continue to GEP with |
| 1256 | /// zero-indices down through type layers until we find one the same as |
| 1257 | /// TargetTy. If we can't find one with the same type, we at least try to use |
| 1258 | /// one with the same size. If none of that works, we just produce the GEP as |
| 1259 | /// indicated by Indices to have the correct offset. |
| 1260 | static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const TargetData &TD, |
| 1261 | Value *BasePtr, Type *Ty, Type *TargetTy, |
| 1262 | SmallVectorImpl<Value *> &Indices, |
| 1263 | const Twine &Prefix) { |
| 1264 | if (Ty == TargetTy) |
| 1265 | return buildGEP(IRB, BasePtr, Indices, Prefix); |
| 1266 | |
| 1267 | // See if we can descend into a struct and locate a field with the correct |
| 1268 | // type. |
| 1269 | unsigned NumLayers = 0; |
| 1270 | Type *ElementTy = Ty; |
| 1271 | do { |
| 1272 | if (ElementTy->isPointerTy()) |
| 1273 | break; |
| 1274 | if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) { |
| 1275 | ElementTy = SeqTy->getElementType(); |
| 1276 | Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0))); |
| 1277 | } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { |
| 1278 | ElementTy = *STy->element_begin(); |
| 1279 | Indices.push_back(IRB.getInt32(0)); |
| 1280 | } else { |
| 1281 | break; |
| 1282 | } |
| 1283 | ++NumLayers; |
| 1284 | } while (ElementTy != TargetTy); |
| 1285 | if (ElementTy != TargetTy) |
| 1286 | Indices.erase(Indices.end() - NumLayers, Indices.end()); |
| 1287 | |
| 1288 | return buildGEP(IRB, BasePtr, Indices, Prefix); |
| 1289 | } |
| 1290 | |
| 1291 | /// \brief Recursively compute indices for a natural GEP. |
| 1292 | /// |
| 1293 | /// This is the recursive step for getNaturalGEPWithOffset that walks down the |
| 1294 | /// element types adding appropriate indices for the GEP. |
| 1295 | static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const TargetData &TD, |
| 1296 | Value *Ptr, Type *Ty, APInt &Offset, |
| 1297 | Type *TargetTy, |
| 1298 | SmallVectorImpl<Value *> &Indices, |
| 1299 | const Twine &Prefix) { |
| 1300 | if (Offset == 0) |
| 1301 | return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix); |
| 1302 | |
| 1303 | // We can't recurse through pointer types. |
| 1304 | if (Ty->isPointerTy()) |
| 1305 | return 0; |
| 1306 | |
| 1307 | if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { |
| 1308 | unsigned ElementSizeInBits = VecTy->getScalarSizeInBits(); |
| 1309 | if (ElementSizeInBits % 8) |
| 1310 | return 0; // GEPs over multiple of 8 size vector elements are invalid. |
| 1311 | APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); |
| 1312 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1313 | if (NumSkippedElements.ugt(VecTy->getNumElements())) |
| 1314 | return 0; |
| 1315 | Offset -= NumSkippedElements * ElementSize; |
| 1316 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1317 | return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(), |
| 1318 | Offset, TargetTy, Indices, Prefix); |
| 1319 | } |
| 1320 | |
| 1321 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| 1322 | Type *ElementTy = ArrTy->getElementType(); |
| 1323 | APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| 1324 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1325 | if (NumSkippedElements.ugt(ArrTy->getNumElements())) |
| 1326 | return 0; |
| 1327 | |
| 1328 | Offset -= NumSkippedElements * ElementSize; |
| 1329 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1330 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1331 | Indices, Prefix); |
| 1332 | } |
| 1333 | |
| 1334 | StructType *STy = dyn_cast<StructType>(Ty); |
| 1335 | if (!STy) |
| 1336 | return 0; |
| 1337 | |
| 1338 | const StructLayout *SL = TD.getStructLayout(STy); |
| 1339 | uint64_t StructOffset = Offset.getZExtValue(); |
| 1340 | if (StructOffset > SL->getSizeInBytes()) |
| 1341 | return 0; |
| 1342 | unsigned Index = SL->getElementContainingOffset(StructOffset); |
| 1343 | Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); |
| 1344 | Type *ElementTy = STy->getElementType(Index); |
| 1345 | if (Offset.uge(TD.getTypeAllocSize(ElementTy))) |
| 1346 | return 0; // The offset points into alignment padding. |
| 1347 | |
| 1348 | Indices.push_back(IRB.getInt32(Index)); |
| 1349 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1350 | Indices, Prefix); |
| 1351 | } |
| 1352 | |
| 1353 | /// \brief Get a natural GEP from a base pointer to a particular offset and |
| 1354 | /// resulting in a particular type. |
| 1355 | /// |
| 1356 | /// The goal is to produce a "natural" looking GEP that works with the existing |
| 1357 | /// composite types to arrive at the appropriate offset and element type for |
| 1358 | /// a pointer. TargetTy is the element type the returned GEP should point-to if |
| 1359 | /// possible. We recurse by decreasing Offset, adding the appropriate index to |
| 1360 | /// Indices, and setting Ty to the result subtype. |
| 1361 | /// |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 1362 | /// If no natural GEP can be constructed, this function returns null. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1363 | static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const TargetData &TD, |
| 1364 | Value *Ptr, APInt Offset, Type *TargetTy, |
| 1365 | SmallVectorImpl<Value *> &Indices, |
| 1366 | const Twine &Prefix) { |
| 1367 | PointerType *Ty = cast<PointerType>(Ptr->getType()); |
| 1368 | |
| 1369 | // Don't consider any GEPs through an i8* as natural unless the TargetTy is |
| 1370 | // an i8. |
| 1371 | if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) |
| 1372 | return 0; |
| 1373 | |
| 1374 | Type *ElementTy = Ty->getElementType(); |
| 1375 | APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| 1376 | if (ElementSize == 0) |
| 1377 | return 0; // Zero-length arrays can't help us build a natural GEP. |
| 1378 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1379 | |
| 1380 | Offset -= NumSkippedElements * ElementSize; |
| 1381 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1382 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1383 | Indices, Prefix); |
| 1384 | } |
| 1385 | |
| 1386 | /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the |
| 1387 | /// resulting pointer has PointerTy. |
| 1388 | /// |
| 1389 | /// This tries very hard to compute a "natural" GEP which arrives at the offset |
| 1390 | /// and produces the pointer type desired. Where it cannot, it will try to use |
| 1391 | /// the natural GEP to arrive at the offset and bitcast to the type. Where that |
| 1392 | /// fails, it will try to use an existing i8* and GEP to the byte offset and |
| 1393 | /// bitcast to the type. |
| 1394 | /// |
| 1395 | /// The strategy for finding the more natural GEPs is to peel off layers of the |
| 1396 | /// pointer, walking back through bit casts and GEPs, searching for a base |
| 1397 | /// pointer from which we can compute a natural GEP with the desired |
| 1398 | /// properities. The algorithm tries to fold as many constant indices into |
| 1399 | /// a single GEP as possible, thus making each GEP more independent of the |
| 1400 | /// surrounding code. |
| 1401 | static Value *getAdjustedPtr(IRBuilder<> &IRB, const TargetData &TD, |
| 1402 | Value *Ptr, APInt Offset, Type *PointerTy, |
| 1403 | const Twine &Prefix) { |
| 1404 | // Even though we don't look through PHI nodes, we could be called on an |
| 1405 | // instruction in an unreachable block, which may be on a cycle. |
| 1406 | SmallPtrSet<Value *, 4> Visited; |
| 1407 | Visited.insert(Ptr); |
| 1408 | SmallVector<Value *, 4> Indices; |
| 1409 | |
| 1410 | // We may end up computing an offset pointer that has the wrong type. If we |
| 1411 | // never are able to compute one directly that has the correct type, we'll |
| 1412 | // fall back to it, so keep it around here. |
| 1413 | Value *OffsetPtr = 0; |
| 1414 | |
| 1415 | // Remember any i8 pointer we come across to re-use if we need to do a raw |
| 1416 | // byte offset. |
| 1417 | Value *Int8Ptr = 0; |
| 1418 | APInt Int8PtrOffset(Offset.getBitWidth(), 0); |
| 1419 | |
| 1420 | Type *TargetTy = PointerTy->getPointerElementType(); |
| 1421 | |
| 1422 | do { |
| 1423 | // First fold any existing GEPs into the offset. |
| 1424 | while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| 1425 | APInt GEPOffset(Offset.getBitWidth(), 0); |
| 1426 | if (!accumulateGEPOffsets(TD, *GEP, GEPOffset)) |
| 1427 | break; |
| 1428 | Offset += GEPOffset; |
| 1429 | Ptr = GEP->getPointerOperand(); |
| 1430 | if (!Visited.insert(Ptr)) |
| 1431 | break; |
| 1432 | } |
| 1433 | |
| 1434 | // See if we can perform a natural GEP here. |
| 1435 | Indices.clear(); |
| 1436 | if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy, |
| 1437 | Indices, Prefix)) { |
| 1438 | if (P->getType() == PointerTy) { |
| 1439 | // Zap any offset pointer that we ended up computing in previous rounds. |
| 1440 | if (OffsetPtr && OffsetPtr->use_empty()) |
| 1441 | if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) |
| 1442 | I->eraseFromParent(); |
| 1443 | return P; |
| 1444 | } |
| 1445 | if (!OffsetPtr) { |
| 1446 | OffsetPtr = P; |
| 1447 | } |
| 1448 | } |
| 1449 | |
| 1450 | // Stash this pointer if we've found an i8*. |
| 1451 | if (Ptr->getType()->isIntegerTy(8)) { |
| 1452 | Int8Ptr = Ptr; |
| 1453 | Int8PtrOffset = Offset; |
| 1454 | } |
| 1455 | |
| 1456 | // Peel off a layer of the pointer and update the offset appropriately. |
| 1457 | if (Operator::getOpcode(Ptr) == Instruction::BitCast) { |
| 1458 | Ptr = cast<Operator>(Ptr)->getOperand(0); |
| 1459 | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { |
| 1460 | if (GA->mayBeOverridden()) |
| 1461 | break; |
| 1462 | Ptr = GA->getAliasee(); |
| 1463 | } else { |
| 1464 | break; |
| 1465 | } |
| 1466 | assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); |
| 1467 | } while (Visited.insert(Ptr)); |
| 1468 | |
| 1469 | if (!OffsetPtr) { |
| 1470 | if (!Int8Ptr) { |
| 1471 | Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), |
| 1472 | Prefix + ".raw_cast"); |
| 1473 | Int8PtrOffset = Offset; |
| 1474 | } |
| 1475 | |
| 1476 | OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : |
| 1477 | IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), |
| 1478 | Prefix + ".raw_idx"); |
| 1479 | } |
| 1480 | Ptr = OffsetPtr; |
| 1481 | |
| 1482 | // On the off chance we were targeting i8*, guard the bitcast here. |
| 1483 | if (Ptr->getType() != PointerTy) |
| 1484 | Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast"); |
| 1485 | |
| 1486 | return Ptr; |
| 1487 | } |
| 1488 | |
| 1489 | /// \brief Test whether the given alloca partition can be promoted to a vector. |
| 1490 | /// |
| 1491 | /// This is a quick test to check whether we can rewrite a particular alloca |
| 1492 | /// partition (and its newly formed alloca) into a vector alloca with only |
| 1493 | /// whole-vector loads and stores such that it could be promoted to a vector |
| 1494 | /// SSA value. We only can ensure this for a limited set of operations, and we |
| 1495 | /// don't want to do the rewrites unless we are confident that the result will |
| 1496 | /// be promotable, so we have an early test here. |
| 1497 | static bool isVectorPromotionViable(const TargetData &TD, |
| 1498 | Type *AllocaTy, |
| 1499 | AllocaPartitioning &P, |
| 1500 | uint64_t PartitionBeginOffset, |
| 1501 | uint64_t PartitionEndOffset, |
| 1502 | AllocaPartitioning::const_use_iterator I, |
| 1503 | AllocaPartitioning::const_use_iterator E) { |
| 1504 | VectorType *Ty = dyn_cast<VectorType>(AllocaTy); |
| 1505 | if (!Ty) |
| 1506 | return false; |
| 1507 | |
| 1508 | uint64_t VecSize = TD.getTypeSizeInBits(Ty); |
| 1509 | uint64_t ElementSize = Ty->getScalarSizeInBits(); |
| 1510 | |
| 1511 | // While the definition of LLVM vectors is bitpacked, we don't support sizes |
| 1512 | // that aren't byte sized. |
| 1513 | if (ElementSize % 8) |
| 1514 | return false; |
| 1515 | assert((VecSize % 8) == 0 && "vector size not a multiple of element size?"); |
| 1516 | VecSize /= 8; |
| 1517 | ElementSize /= 8; |
| 1518 | |
| 1519 | for (; I != E; ++I) { |
| 1520 | uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset; |
| 1521 | uint64_t BeginIndex = BeginOffset / ElementSize; |
| 1522 | if (BeginIndex * ElementSize != BeginOffset || |
| 1523 | BeginIndex >= Ty->getNumElements()) |
| 1524 | return false; |
| 1525 | uint64_t EndOffset = I->EndOffset - PartitionBeginOffset; |
| 1526 | uint64_t EndIndex = EndOffset / ElementSize; |
| 1527 | if (EndIndex * ElementSize != EndOffset || |
| 1528 | EndIndex > Ty->getNumElements()) |
| 1529 | return false; |
| 1530 | |
| 1531 | // FIXME: We should build shuffle vector instructions to handle |
| 1532 | // non-element-sized accesses. |
| 1533 | if ((EndOffset - BeginOffset) != ElementSize && |
| 1534 | (EndOffset - BeginOffset) != VecSize) |
| 1535 | return false; |
| 1536 | |
| 1537 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&*I->User)) { |
| 1538 | if (MI->isVolatile()) |
| 1539 | return false; |
| 1540 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(&*I->User)) { |
| 1541 | const AllocaPartitioning::MemTransferOffsets &MTO |
| 1542 | = P.getMemTransferOffsets(*MTI); |
| 1543 | if (!MTO.IsSplittable) |
| 1544 | return false; |
| 1545 | } |
| 1546 | } else if (I->Ptr->getType()->getPointerElementType()->isStructTy()) { |
| 1547 | // Disable vector promotion when there are loads or stores of an FCA. |
| 1548 | return false; |
| 1549 | } else if (!isa<LoadInst>(*I->User) && !isa<StoreInst>(*I->User)) { |
| 1550 | return false; |
| 1551 | } |
| 1552 | } |
| 1553 | return true; |
| 1554 | } |
| 1555 | |
| 1556 | namespace { |
| 1557 | /// \brief Visitor to rewrite instructions using a partition of an alloca to |
| 1558 | /// use a new alloca. |
| 1559 | /// |
| 1560 | /// Also implements the rewriting to vector-based accesses when the partition |
| 1561 | /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
| 1562 | /// lives here. |
| 1563 | class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter, |
| 1564 | bool> { |
| 1565 | // Befriend the base class so it can delegate to private visit methods. |
| 1566 | friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>; |
| 1567 | |
| 1568 | const TargetData &TD; |
| 1569 | AllocaPartitioning &P; |
| 1570 | SROA &Pass; |
| 1571 | AllocaInst &OldAI, &NewAI; |
| 1572 | const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
| 1573 | |
| 1574 | // If we are rewriting an alloca partition which can be written as pure |
| 1575 | // vector operations, we stash extra information here. When VecTy is |
| 1576 | // non-null, we have some strict guarantees about the rewriten alloca: |
| 1577 | // - The new alloca is exactly the size of the vector type here. |
| 1578 | // - The accesses all either map to the entire vector or to a single |
| 1579 | // element. |
| 1580 | // - The set of accessing instructions is only one of those handled above |
| 1581 | // in isVectorPromotionViable. Generally these are the same access kinds |
| 1582 | // which are promotable via mem2reg. |
| 1583 | VectorType *VecTy; |
| 1584 | Type *ElementTy; |
| 1585 | uint64_t ElementSize; |
| 1586 | |
| 1587 | // The offset of the partition user currently being rewritten. |
| 1588 | uint64_t BeginOffset, EndOffset; |
| 1589 | Instruction *OldPtr; |
| 1590 | |
| 1591 | // The name prefix to use when rewriting instructions for this alloca. |
| 1592 | std::string NamePrefix; |
| 1593 | |
| 1594 | public: |
| 1595 | AllocaPartitionRewriter(const TargetData &TD, AllocaPartitioning &P, |
| 1596 | AllocaPartitioning::iterator PI, |
| 1597 | SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, |
| 1598 | uint64_t NewBeginOffset, uint64_t NewEndOffset) |
| 1599 | : TD(TD), P(P), Pass(Pass), |
| 1600 | OldAI(OldAI), NewAI(NewAI), |
| 1601 | NewAllocaBeginOffset(NewBeginOffset), |
| 1602 | NewAllocaEndOffset(NewEndOffset), |
| 1603 | VecTy(), ElementTy(), ElementSize(), |
| 1604 | BeginOffset(), EndOffset() { |
| 1605 | } |
| 1606 | |
| 1607 | /// \brief Visit the users of the alloca partition and rewrite them. |
| 1608 | bool visitUsers(AllocaPartitioning::const_use_iterator I, |
| 1609 | AllocaPartitioning::const_use_iterator E) { |
| 1610 | if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P, |
| 1611 | NewAllocaBeginOffset, NewAllocaEndOffset, |
| 1612 | I, E)) { |
| 1613 | ++NumVectorized; |
| 1614 | VecTy = cast<VectorType>(NewAI.getAllocatedType()); |
| 1615 | ElementTy = VecTy->getElementType(); |
| 1616 | assert((VecTy->getScalarSizeInBits() % 8) == 0 && |
| 1617 | "Only multiple-of-8 sized vector elements are viable"); |
| 1618 | ElementSize = VecTy->getScalarSizeInBits() / 8; |
| 1619 | } |
| 1620 | bool CanSROA = true; |
| 1621 | for (; I != E; ++I) { |
| 1622 | BeginOffset = I->BeginOffset; |
| 1623 | EndOffset = I->EndOffset; |
| 1624 | OldPtr = I->Ptr; |
| 1625 | NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str(); |
| 1626 | CanSROA &= visit(I->User); |
| 1627 | } |
| 1628 | if (VecTy) { |
| 1629 | assert(CanSROA); |
| 1630 | VecTy = 0; |
| 1631 | ElementTy = 0; |
| 1632 | ElementSize = 0; |
| 1633 | } |
| 1634 | return CanSROA; |
| 1635 | } |
| 1636 | |
| 1637 | private: |
| 1638 | // Every instruction which can end up as a user must have a rewrite rule. |
| 1639 | bool visitInstruction(Instruction &I) { |
| 1640 | DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); |
| 1641 | llvm_unreachable("No rewrite rule for this instruction!"); |
| 1642 | } |
| 1643 | |
| 1644 | Twine getName(const Twine &Suffix) { |
| 1645 | return NamePrefix + Suffix; |
| 1646 | } |
| 1647 | |
| 1648 | Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) { |
| 1649 | assert(BeginOffset >= NewAllocaBeginOffset); |
| 1650 | APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset); |
| 1651 | return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName("")); |
| 1652 | } |
| 1653 | |
| 1654 | ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) { |
| 1655 | assert(VecTy && "Can only call getIndex when rewriting a vector"); |
| 1656 | uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| 1657 | assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); |
| 1658 | uint32_t Index = RelOffset / ElementSize; |
| 1659 | assert(Index * ElementSize == RelOffset); |
| 1660 | return IRB.getInt32(Index); |
| 1661 | } |
| 1662 | |
| 1663 | void deleteIfTriviallyDead(Value *V) { |
| 1664 | Instruction *I = cast<Instruction>(V); |
| 1665 | if (isInstructionTriviallyDead(I)) |
| 1666 | Pass.DeadInsts.push_back(I); |
| 1667 | } |
| 1668 | |
| 1669 | Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) { |
| 1670 | if (V->getType()->isIntegerTy() && Ty->isPointerTy()) |
| 1671 | return IRB.CreateIntToPtr(V, Ty); |
| 1672 | if (V->getType()->isPointerTy() && Ty->isIntegerTy()) |
| 1673 | return IRB.CreatePtrToInt(V, Ty); |
| 1674 | |
| 1675 | return IRB.CreateBitCast(V, Ty); |
| 1676 | } |
| 1677 | |
| 1678 | bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) { |
| 1679 | Value *Result; |
| 1680 | if (LI.getType() == VecTy->getElementType() || |
| 1681 | BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { |
| 1682 | Result |
| 1683 | = IRB.CreateExtractElement(IRB.CreateLoad(&NewAI, getName(".load")), |
| 1684 | getIndex(IRB, BeginOffset), |
| 1685 | getName(".extract")); |
| 1686 | } else { |
| 1687 | Result = IRB.CreateLoad(&NewAI, getName(".load")); |
| 1688 | } |
| 1689 | if (Result->getType() != LI.getType()) |
| 1690 | Result = getValueCast(IRB, Result, LI.getType()); |
| 1691 | LI.replaceAllUsesWith(Result); |
| 1692 | Pass.DeadInsts.push_back(&LI); |
| 1693 | |
| 1694 | DEBUG(dbgs() << " to: " << *Result << "\n"); |
| 1695 | return true; |
| 1696 | } |
| 1697 | |
| 1698 | bool visitLoadInst(LoadInst &LI) { |
| 1699 | DEBUG(dbgs() << " original: " << LI << "\n"); |
| 1700 | Value *OldOp = LI.getOperand(0); |
| 1701 | assert(OldOp == OldPtr); |
| 1702 | IRBuilder<> IRB(&LI); |
| 1703 | |
| 1704 | if (VecTy) |
| 1705 | return rewriteVectorizedLoadInst(IRB, LI, OldOp); |
| 1706 | |
| 1707 | Value *NewPtr = getAdjustedAllocaPtr(IRB, |
| 1708 | LI.getPointerOperand()->getType()); |
| 1709 | LI.setOperand(0, NewPtr); |
| 1710 | DEBUG(dbgs() << " to: " << LI << "\n"); |
| 1711 | |
| 1712 | deleteIfTriviallyDead(OldOp); |
| 1713 | return NewPtr == &NewAI && !LI.isVolatile(); |
| 1714 | } |
| 1715 | |
| 1716 | bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI, |
| 1717 | Value *OldOp) { |
| 1718 | Value *V = SI.getValueOperand(); |
| 1719 | if (V->getType() == ElementTy || |
| 1720 | BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { |
| 1721 | if (V->getType() != ElementTy) |
| 1722 | V = getValueCast(IRB, V, ElementTy); |
| 1723 | V = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V, |
| 1724 | getIndex(IRB, BeginOffset), |
| 1725 | getName(".insert")); |
| 1726 | } else if (V->getType() != VecTy) { |
| 1727 | V = getValueCast(IRB, V, VecTy); |
| 1728 | } |
| 1729 | StoreInst *Store = IRB.CreateStore(V, &NewAI); |
| 1730 | Pass.DeadInsts.push_back(&SI); |
| 1731 | |
| 1732 | (void)Store; |
| 1733 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 1734 | return true; |
| 1735 | } |
| 1736 | |
| 1737 | bool visitStoreInst(StoreInst &SI) { |
| 1738 | DEBUG(dbgs() << " original: " << SI << "\n"); |
| 1739 | Value *OldOp = SI.getOperand(1); |
| 1740 | assert(OldOp == OldPtr); |
| 1741 | IRBuilder<> IRB(&SI); |
| 1742 | |
| 1743 | if (VecTy) |
| 1744 | return rewriteVectorizedStoreInst(IRB, SI, OldOp); |
| 1745 | |
| 1746 | Value *NewPtr = getAdjustedAllocaPtr(IRB, |
| 1747 | SI.getPointerOperand()->getType()); |
| 1748 | SI.setOperand(1, NewPtr); |
| 1749 | DEBUG(dbgs() << " to: " << SI << "\n"); |
| 1750 | |
| 1751 | deleteIfTriviallyDead(OldOp); |
| 1752 | return NewPtr == &NewAI && !SI.isVolatile(); |
| 1753 | } |
| 1754 | |
| 1755 | bool visitMemSetInst(MemSetInst &II) { |
| 1756 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 1757 | IRBuilder<> IRB(&II); |
| 1758 | assert(II.getRawDest() == OldPtr); |
| 1759 | |
| 1760 | // If the memset has a variable size, it cannot be split, just adjust the |
| 1761 | // pointer to the new alloca. |
| 1762 | if (!isa<Constant>(II.getLength())) { |
| 1763 | II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
| 1764 | deleteIfTriviallyDead(OldPtr); |
| 1765 | return false; |
| 1766 | } |
| 1767 | |
| 1768 | // Record this instruction for deletion. |
| 1769 | if (Pass.DeadSplitInsts.insert(&II)) |
| 1770 | Pass.DeadInsts.push_back(&II); |
| 1771 | |
| 1772 | Type *AllocaTy = NewAI.getAllocatedType(); |
| 1773 | Type *ScalarTy = AllocaTy->getScalarType(); |
| 1774 | |
| 1775 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 1776 | // a single value type, just emit a memset. |
| 1777 | if (!VecTy && (BeginOffset != NewAllocaBeginOffset || |
| 1778 | EndOffset != NewAllocaEndOffset || |
| 1779 | !AllocaTy->isSingleValueType() || |
| 1780 | !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) { |
| 1781 | Type *SizeTy = II.getLength()->getType(); |
| 1782 | Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
| 1783 | |
| 1784 | CallInst *New |
| 1785 | = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB, |
| 1786 | II.getRawDest()->getType()), |
| 1787 | II.getValue(), Size, II.getAlignment(), |
| 1788 | II.isVolatile()); |
| 1789 | (void)New; |
| 1790 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 1791 | return false; |
| 1792 | } |
| 1793 | |
| 1794 | // If we can represent this as a simple value, we have to build the actual |
| 1795 | // value to store, which requires expanding the byte present in memset to |
| 1796 | // a sensible representation for the alloca type. This is essentially |
| 1797 | // splatting the byte to a sufficiently wide integer, bitcasting to the |
| 1798 | // desired scalar type, and splatting it across any desired vector type. |
| 1799 | Value *V = II.getValue(); |
| 1800 | IntegerType *VTy = cast<IntegerType>(V->getType()); |
| 1801 | Type *IntTy = Type::getIntNTy(VTy->getContext(), |
| 1802 | TD.getTypeSizeInBits(ScalarTy)); |
| 1803 | if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth()) |
| 1804 | V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")), |
| 1805 | ConstantExpr::getUDiv( |
| 1806 | Constant::getAllOnesValue(IntTy), |
| 1807 | ConstantExpr::getZExt( |
| 1808 | Constant::getAllOnesValue(V->getType()), |
| 1809 | IntTy)), |
| 1810 | getName(".isplat")); |
| 1811 | if (V->getType() != ScalarTy) { |
| 1812 | if (ScalarTy->isPointerTy()) |
| 1813 | V = IRB.CreateIntToPtr(V, ScalarTy); |
| 1814 | else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy()) |
| 1815 | V = IRB.CreateBitCast(V, ScalarTy); |
| 1816 | else if (ScalarTy->isIntegerTy()) |
| 1817 | llvm_unreachable("Computed different integer types with equal widths"); |
| 1818 | else |
| 1819 | llvm_unreachable("Invalid scalar type"); |
| 1820 | } |
| 1821 | |
| 1822 | // If this is an element-wide memset of a vectorizable alloca, insert it. |
| 1823 | if (VecTy && (BeginOffset > NewAllocaBeginOffset || |
| 1824 | EndOffset < NewAllocaEndOffset)) { |
| 1825 | StoreInst *Store = IRB.CreateStore( |
| 1826 | IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V, |
| 1827 | getIndex(IRB, BeginOffset), |
| 1828 | getName(".insert")), |
| 1829 | &NewAI); |
| 1830 | (void)Store; |
| 1831 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 1832 | return true; |
| 1833 | } |
| 1834 | |
| 1835 | // Splat to a vector if needed. |
| 1836 | if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) { |
| 1837 | VectorType *SplatSourceTy = VectorType::get(V->getType(), 1); |
| 1838 | V = IRB.CreateShuffleVector( |
| 1839 | IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V, |
| 1840 | IRB.getInt32(0), getName(".vsplat.insert")), |
| 1841 | UndefValue::get(SplatSourceTy), |
| 1842 | ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)), |
| 1843 | getName(".vsplat.shuffle")); |
| 1844 | assert(V->getType() == VecTy); |
| 1845 | } |
| 1846 | |
| 1847 | Value *New = IRB.CreateStore(V, &NewAI, II.isVolatile()); |
| 1848 | (void)New; |
| 1849 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 1850 | return !II.isVolatile(); |
| 1851 | } |
| 1852 | |
| 1853 | bool visitMemTransferInst(MemTransferInst &II) { |
| 1854 | // Rewriting of memory transfer instructions can be a bit tricky. We break |
| 1855 | // them into two categories: split intrinsics and unsplit intrinsics. |
| 1856 | |
| 1857 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 1858 | IRBuilder<> IRB(&II); |
| 1859 | |
| 1860 | assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); |
| 1861 | bool IsDest = II.getRawDest() == OldPtr; |
| 1862 | |
| 1863 | const AllocaPartitioning::MemTransferOffsets &MTO |
| 1864 | = P.getMemTransferOffsets(II); |
| 1865 | |
| 1866 | // For unsplit intrinsics, we simply modify the source and destination |
| 1867 | // pointers in place. This isn't just an optimization, it is a matter of |
| 1868 | // correctness. With unsplit intrinsics we may be dealing with transfers |
| 1869 | // within a single alloca before SROA ran, or with transfers that have |
| 1870 | // a variable length. We may also be dealing with memmove instead of |
| 1871 | // memcpy, and so simply updating the pointers is the necessary for us to |
| 1872 | // update both source and dest of a single call. |
| 1873 | if (!MTO.IsSplittable) { |
| 1874 | Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); |
| 1875 | if (IsDest) |
| 1876 | II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
| 1877 | else |
| 1878 | II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType())); |
| 1879 | |
| 1880 | DEBUG(dbgs() << " to: " << II << "\n"); |
| 1881 | deleteIfTriviallyDead(OldOp); |
| 1882 | return false; |
| 1883 | } |
| 1884 | // For split transfer intrinsics we have an incredibly useful assurance: |
| 1885 | // the source and destination do not reside within the same alloca, and at |
| 1886 | // least one of them does not escape. This means that we can replace |
| 1887 | // memmove with memcpy, and we don't need to worry about all manner of |
| 1888 | // downsides to splitting and transforming the operations. |
| 1889 | |
| 1890 | // Compute the relative offset within the transfer. |
| 1891 | unsigned IntPtrWidth = TD.getPointerSizeInBits(); |
| 1892 | APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin |
| 1893 | : MTO.SourceBegin)); |
| 1894 | |
| 1895 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 1896 | // a single value type, just emit a memcpy. |
| 1897 | bool EmitMemCpy |
| 1898 | = !VecTy && (BeginOffset != NewAllocaBeginOffset || |
| 1899 | EndOffset != NewAllocaEndOffset || |
| 1900 | !NewAI.getAllocatedType()->isSingleValueType()); |
| 1901 | |
| 1902 | // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
| 1903 | // size hasn't been shrunk based on analysis of the viable range, this is |
| 1904 | // a no-op. |
| 1905 | if (EmitMemCpy && &OldAI == &NewAI) { |
| 1906 | uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin; |
| 1907 | uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd; |
| 1908 | // Ensure the start lines up. |
| 1909 | assert(BeginOffset == OrigBegin); |
| 1910 | |
| 1911 | // Rewrite the size as needed. |
| 1912 | if (EndOffset != OrigEnd) |
| 1913 | II.setLength(ConstantInt::get(II.getLength()->getType(), |
| 1914 | EndOffset - BeginOffset)); |
| 1915 | return false; |
| 1916 | } |
| 1917 | // Record this instruction for deletion. |
| 1918 | if (Pass.DeadSplitInsts.insert(&II)) |
| 1919 | Pass.DeadInsts.push_back(&II); |
| 1920 | |
| 1921 | bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset || |
| 1922 | EndOffset < NewAllocaEndOffset); |
| 1923 | |
| 1924 | Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() |
| 1925 | : II.getRawDest()->getType(); |
| 1926 | if (!EmitMemCpy) |
| 1927 | OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo() |
| 1928 | : NewAI.getType(); |
| 1929 | |
| 1930 | // Compute the other pointer, folding as much as possible to produce |
| 1931 | // a single, simple GEP in most cases. |
| 1932 | Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
| 1933 | OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy, |
| 1934 | getName("." + OtherPtr->getName())); |
| 1935 | |
| 1936 | // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| 1937 | // alloca that should be re-examined after rewriting this instruction. |
| 1938 | if (AllocaInst *AI |
| 1939 | = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) |
| 1940 | Pass.Worklist.insert(AI); |
| 1941 | |
| 1942 | if (EmitMemCpy) { |
| 1943 | Value *OurPtr |
| 1944 | = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType() |
| 1945 | : II.getRawSource()->getType()); |
| 1946 | Type *SizeTy = II.getLength()->getType(); |
| 1947 | Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
| 1948 | |
| 1949 | CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, |
| 1950 | IsDest ? OtherPtr : OurPtr, |
| 1951 | Size, II.getAlignment(), |
| 1952 | II.isVolatile()); |
| 1953 | (void)New; |
| 1954 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 1955 | return false; |
| 1956 | } |
| 1957 | |
| 1958 | Value *SrcPtr = OtherPtr; |
| 1959 | Value *DstPtr = &NewAI; |
| 1960 | if (!IsDest) |
| 1961 | std::swap(SrcPtr, DstPtr); |
| 1962 | |
| 1963 | Value *Src; |
| 1964 | if (IsVectorElement && !IsDest) { |
| 1965 | // We have to extract rather than load. |
| 1966 | Src = IRB.CreateExtractElement(IRB.CreateLoad(SrcPtr, |
| 1967 | getName(".copyload")), |
| 1968 | getIndex(IRB, BeginOffset), |
| 1969 | getName(".copyextract")); |
| 1970 | } else { |
| 1971 | Src = IRB.CreateLoad(SrcPtr, II.isVolatile(), getName(".copyload")); |
| 1972 | } |
| 1973 | |
| 1974 | if (IsVectorElement && IsDest) { |
| 1975 | // We have to insert into a loaded copy before storing. |
| 1976 | Src = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), |
| 1977 | Src, getIndex(IRB, BeginOffset), |
| 1978 | getName(".insert")); |
| 1979 | } |
| 1980 | |
| 1981 | Value *Store = IRB.CreateStore(Src, DstPtr, II.isVolatile()); |
| 1982 | (void)Store; |
| 1983 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 1984 | return !II.isVolatile(); |
| 1985 | } |
| 1986 | |
| 1987 | bool visitIntrinsicInst(IntrinsicInst &II) { |
| 1988 | assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 1989 | II.getIntrinsicID() == Intrinsic::lifetime_end); |
| 1990 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 1991 | IRBuilder<> IRB(&II); |
| 1992 | assert(II.getArgOperand(1) == OldPtr); |
| 1993 | |
| 1994 | // Record this instruction for deletion. |
| 1995 | if (Pass.DeadSplitInsts.insert(&II)) |
| 1996 | Pass.DeadInsts.push_back(&II); |
| 1997 | |
| 1998 | ConstantInt *Size |
| 1999 | = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), |
| 2000 | EndOffset - BeginOffset); |
| 2001 | Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType()); |
| 2002 | Value *New; |
| 2003 | if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
| 2004 | New = IRB.CreateLifetimeStart(Ptr, Size); |
| 2005 | else |
| 2006 | New = IRB.CreateLifetimeEnd(Ptr, Size); |
| 2007 | |
| 2008 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 2009 | return true; |
| 2010 | } |
| 2011 | |
| 2012 | /// PHI instructions that use an alloca and are subsequently loaded can be |
| 2013 | /// rewritten to load both input pointers in the pred blocks and then PHI the |
| 2014 | /// results, allowing the load of the alloca to be promoted. |
| 2015 | /// From this: |
| 2016 | /// %P2 = phi [i32* %Alloca, i32* %Other] |
| 2017 | /// %V = load i32* %P2 |
| 2018 | /// to: |
| 2019 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| 2020 | /// ... |
| 2021 | /// %V2 = load i32* %Other |
| 2022 | /// ... |
| 2023 | /// %V = phi [i32 %V1, i32 %V2] |
| 2024 | /// |
| 2025 | /// We can do this to a select if its only uses are loads and if the operand |
| 2026 | /// to the select can be loaded unconditionally. |
| 2027 | /// |
| 2028 | /// FIXME: This should be hoisted into a generic utility, likely in |
| 2029 | /// Transforms/Util/Local.h |
| 2030 | bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) { |
| 2031 | // For now, we can only do this promotion if the load is in the same block |
| 2032 | // as the PHI, and if there are no stores between the phi and load. |
| 2033 | // TODO: Allow recursive phi users. |
| 2034 | // TODO: Allow stores. |
| 2035 | BasicBlock *BB = PN.getParent(); |
| 2036 | unsigned MaxAlign = 0; |
| 2037 | for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); |
| 2038 | UI != UE; ++UI) { |
| 2039 | LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| 2040 | if (LI == 0 || !LI->isSimple()) return false; |
| 2041 | |
| 2042 | // For now we only allow loads in the same block as the PHI. This is |
| 2043 | // a common case that happens when instcombine merges two loads through |
| 2044 | // a PHI. |
| 2045 | if (LI->getParent() != BB) return false; |
| 2046 | |
| 2047 | // Ensure that there are no instructions between the PHI and the load that |
| 2048 | // could store. |
| 2049 | for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) |
| 2050 | if (BBI->mayWriteToMemory()) |
| 2051 | return false; |
| 2052 | |
| 2053 | MaxAlign = std::max(MaxAlign, LI->getAlignment()); |
| 2054 | Loads.push_back(LI); |
| 2055 | } |
| 2056 | |
| 2057 | // We can only transform this if it is safe to push the loads into the |
| 2058 | // predecessor blocks. The only thing to watch out for is that we can't put |
| 2059 | // a possibly trapping load in the predecessor if it is a critical edge. |
| 2060 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; |
| 2061 | ++Idx) { |
| 2062 | TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); |
| 2063 | Value *InVal = PN.getIncomingValue(Idx); |
| 2064 | |
| 2065 | // If the value is produced by the terminator of the predecessor (an |
| 2066 | // invoke) or it has side-effects, there is no valid place to put a load |
| 2067 | // in the predecessor. |
| 2068 | if (TI == InVal || TI->mayHaveSideEffects()) |
| 2069 | return false; |
| 2070 | |
| 2071 | // If the predecessor has a single successor, then the edge isn't |
| 2072 | // critical. |
| 2073 | if (TI->getNumSuccessors() == 1) |
| 2074 | continue; |
| 2075 | |
| 2076 | // If this pointer is always safe to load, or if we can prove that there |
| 2077 | // is already a load in the block, then we can move the load to the pred |
| 2078 | // block. |
| 2079 | if (InVal->isDereferenceablePointer() || |
| 2080 | isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD)) |
| 2081 | continue; |
| 2082 | |
| 2083 | return false; |
| 2084 | } |
| 2085 | |
| 2086 | return true; |
| 2087 | } |
| 2088 | |
| 2089 | bool visitPHINode(PHINode &PN) { |
| 2090 | DEBUG(dbgs() << " original: " << PN << "\n"); |
| 2091 | // We would like to compute a new pointer in only one place, but have it be |
| 2092 | // as local as possible to the PHI. To do that, we re-use the location of |
| 2093 | // the old pointer, which necessarily must be in the right position to |
| 2094 | // dominate the PHI. |
| 2095 | IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr)); |
| 2096 | |
| 2097 | SmallVector<LoadInst *, 4> Loads; |
| 2098 | if (!isSafePHIToSpeculate(PN, Loads)) { |
| 2099 | Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); |
| 2100 | // Replace the operands which were using the old pointer. |
| 2101 | User::op_iterator OI = PN.op_begin(), OE = PN.op_end(); |
| 2102 | for (; OI != OE; ++OI) |
| 2103 | if (*OI == OldPtr) |
| 2104 | *OI = NewPtr; |
| 2105 | |
| 2106 | DEBUG(dbgs() << " to: " << PN << "\n"); |
| 2107 | deleteIfTriviallyDead(OldPtr); |
| 2108 | return false; |
| 2109 | } |
| 2110 | assert(!Loads.empty()); |
| 2111 | |
| 2112 | Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); |
| 2113 | IRBuilder<> PHIBuilder(&PN); |
| 2114 | PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues()); |
| 2115 | NewPN->takeName(&PN); |
| 2116 | |
| 2117 | // Get the TBAA tag and alignment to use from one of the loads. It doesn't |
| 2118 | // matter which one we get and if any differ, it doesn't matter. |
| 2119 | LoadInst *SomeLoad = cast<LoadInst>(Loads.back()); |
| 2120 | MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); |
| 2121 | unsigned Align = SomeLoad->getAlignment(); |
| 2122 | Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); |
| 2123 | |
| 2124 | // Rewrite all loads of the PN to use the new PHI. |
| 2125 | do { |
| 2126 | LoadInst *LI = Loads.pop_back_val(); |
| 2127 | LI->replaceAllUsesWith(NewPN); |
| 2128 | Pass.DeadInsts.push_back(LI); |
| 2129 | } while (!Loads.empty()); |
| 2130 | |
| 2131 | // Inject loads into all of the pred blocks. |
| 2132 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| 2133 | BasicBlock *Pred = PN.getIncomingBlock(Idx); |
| 2134 | TerminatorInst *TI = Pred->getTerminator(); |
| 2135 | Value *InVal = PN.getIncomingValue(Idx); |
| 2136 | IRBuilder<> PredBuilder(TI); |
| 2137 | |
| 2138 | // Map the value to the new alloca pointer if this was the old alloca |
| 2139 | // pointer. |
| 2140 | bool ThisOperand = InVal == OldPtr; |
| 2141 | if (ThisOperand) |
| 2142 | InVal = NewPtr; |
| 2143 | |
| 2144 | LoadInst *Load |
| 2145 | = PredBuilder.CreateLoad(InVal, getName(".sroa.speculate." + |
| 2146 | Pred->getName())); |
| 2147 | ++NumLoadsSpeculated; |
| 2148 | Load->setAlignment(Align); |
| 2149 | if (TBAATag) |
| 2150 | Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| 2151 | NewPN->addIncoming(Load, Pred); |
| 2152 | |
| 2153 | if (ThisOperand) |
| 2154 | continue; |
| 2155 | Instruction *OtherPtr = dyn_cast<Instruction>(InVal); |
| 2156 | if (!OtherPtr) |
| 2157 | // No uses to rewrite. |
| 2158 | continue; |
| 2159 | |
| 2160 | // Try to lookup and rewrite any partition uses corresponding to this phi |
| 2161 | // input. |
| 2162 | AllocaPartitioning::iterator PI |
| 2163 | = P.findPartitionForPHIOrSelectOperand(PN, OtherPtr); |
| 2164 | if (PI != P.end()) { |
| 2165 | // If the other pointer is within the partitioning, replace the PHI in |
| 2166 | // its uses with the load we just speculated, or add another load for |
| 2167 | // it to rewrite if we've already replaced the PHI. |
| 2168 | AllocaPartitioning::use_iterator UI |
| 2169 | = P.findPartitionUseForPHIOrSelectOperand(PN, OtherPtr); |
| 2170 | if (isa<PHINode>(*UI->User)) |
| 2171 | UI->User = Load; |
| 2172 | else { |
| 2173 | AllocaPartitioning::PartitionUse OtherUse = *UI; |
| 2174 | OtherUse.User = Load; |
| 2175 | P.use_insert(PI, std::upper_bound(UI, P.use_end(PI), OtherUse), |
| 2176 | OtherUse); |
| 2177 | } |
| 2178 | } |
| 2179 | } |
| 2180 | DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); |
| 2181 | return NewPtr == &NewAI; |
| 2182 | } |
| 2183 | |
| 2184 | /// Select instructions that use an alloca and are subsequently loaded can be |
| 2185 | /// rewritten to load both input pointers and then select between the result, |
| 2186 | /// allowing the load of the alloca to be promoted. |
| 2187 | /// From this: |
| 2188 | /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other |
| 2189 | /// %V = load i32* %P2 |
| 2190 | /// to: |
| 2191 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| 2192 | /// %V2 = load i32* %Other |
| 2193 | /// %V = select i1 %cond, i32 %V1, i32 %V2 |
| 2194 | /// |
| 2195 | /// We can do this to a select if its only uses are loads and if the operand |
| 2196 | /// to the select can be loaded unconditionally. |
| 2197 | bool isSafeSelectToSpeculate(SelectInst &SI, |
| 2198 | SmallVectorImpl<LoadInst *> &Loads) { |
| 2199 | Value *TValue = SI.getTrueValue(); |
| 2200 | Value *FValue = SI.getFalseValue(); |
| 2201 | bool TDerefable = TValue->isDereferenceablePointer(); |
| 2202 | bool FDerefable = FValue->isDereferenceablePointer(); |
| 2203 | |
| 2204 | for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); |
| 2205 | UI != UE; ++UI) { |
| 2206 | LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| 2207 | if (LI == 0 || !LI->isSimple()) return false; |
| 2208 | |
| 2209 | // Both operands to the select need to be dereferencable, either |
| 2210 | // absolutely (e.g. allocas) or at this point because we can see other |
| 2211 | // accesses to it. |
| 2212 | if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI, |
| 2213 | LI->getAlignment(), &TD)) |
| 2214 | return false; |
| 2215 | if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI, |
| 2216 | LI->getAlignment(), &TD)) |
| 2217 | return false; |
| 2218 | Loads.push_back(LI); |
| 2219 | } |
| 2220 | |
| 2221 | return true; |
| 2222 | } |
| 2223 | |
| 2224 | bool visitSelectInst(SelectInst &SI) { |
| 2225 | DEBUG(dbgs() << " original: " << SI << "\n"); |
| 2226 | IRBuilder<> IRB(&SI); |
| 2227 | |
| 2228 | // Find the operand we need to rewrite here. |
| 2229 | bool IsTrueVal = SI.getTrueValue() == OldPtr; |
| 2230 | if (IsTrueVal) |
| 2231 | assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!"); |
| 2232 | else |
| 2233 | assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!"); |
| 2234 | Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType()); |
| 2235 | |
| 2236 | // If the select isn't safe to speculate, just use simple logic to emit it. |
| 2237 | SmallVector<LoadInst *, 4> Loads; |
| 2238 | if (!isSafeSelectToSpeculate(SI, Loads)) { |
| 2239 | SI.setOperand(IsTrueVal ? 1 : 2, NewPtr); |
| 2240 | DEBUG(dbgs() << " to: " << SI << "\n"); |
| 2241 | deleteIfTriviallyDead(OldPtr); |
| 2242 | return false; |
| 2243 | } |
| 2244 | |
| 2245 | Value *OtherPtr = IsTrueVal ? SI.getFalseValue() : SI.getTrueValue(); |
| 2246 | AllocaPartitioning::iterator PI |
| 2247 | = P.findPartitionForPHIOrSelectOperand(SI, OtherPtr); |
| 2248 | AllocaPartitioning::PartitionUse OtherUse; |
| 2249 | if (PI != P.end()) { |
| 2250 | // If the other pointer is within the partitioning, remove the select |
| 2251 | // from its uses. We'll add in the new loads below. |
| 2252 | AllocaPartitioning::use_iterator UI |
| 2253 | = P.findPartitionUseForPHIOrSelectOperand(SI, OtherPtr); |
| 2254 | OtherUse = *UI; |
| 2255 | P.use_erase(PI, UI); |
| 2256 | } |
| 2257 | |
| 2258 | Value *TV = IsTrueVal ? NewPtr : SI.getTrueValue(); |
| 2259 | Value *FV = IsTrueVal ? SI.getFalseValue() : NewPtr; |
| 2260 | // Replace the loads of the select with a select of two loads. |
| 2261 | while (!Loads.empty()) { |
| 2262 | LoadInst *LI = Loads.pop_back_val(); |
| 2263 | |
| 2264 | IRB.SetInsertPoint(LI); |
| 2265 | LoadInst *TL = |
| 2266 | IRB.CreateLoad(TV, getName("." + LI->getName() + ".true")); |
| 2267 | LoadInst *FL = |
| 2268 | IRB.CreateLoad(FV, getName("." + LI->getName() + ".false")); |
| 2269 | NumLoadsSpeculated += 2; |
| 2270 | if (PI != P.end()) { |
| 2271 | LoadInst *OtherLoad = IsTrueVal ? FL : TL; |
| 2272 | assert(OtherUse.Ptr == OtherLoad->getOperand(0)); |
| 2273 | OtherUse.User = OtherLoad; |
| 2274 | P.use_insert(PI, P.use_end(PI), OtherUse); |
| 2275 | } |
| 2276 | |
| 2277 | // Transfer alignment and TBAA info if present. |
| 2278 | TL->setAlignment(LI->getAlignment()); |
| 2279 | FL->setAlignment(LI->getAlignment()); |
| 2280 | if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { |
| 2281 | TL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| 2282 | FL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| 2283 | } |
| 2284 | |
| 2285 | Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL); |
| 2286 | V->takeName(LI); |
| 2287 | DEBUG(dbgs() << " speculated to: " << *V << "\n"); |
| 2288 | LI->replaceAllUsesWith(V); |
| 2289 | Pass.DeadInsts.push_back(LI); |
| 2290 | } |
| 2291 | if (PI != P.end()) |
| 2292 | std::stable_sort(P.use_begin(PI), P.use_end(PI)); |
| 2293 | |
| 2294 | deleteIfTriviallyDead(OldPtr); |
| 2295 | return NewPtr == &NewAI; |
| 2296 | } |
| 2297 | |
| 2298 | }; |
| 2299 | } |
| 2300 | |
| 2301 | /// \brief Try to find a partition of the aggregate type passed in for a given |
| 2302 | /// offset and size. |
| 2303 | /// |
| 2304 | /// This recurses through the aggregate type and tries to compute a subtype |
| 2305 | /// based on the offset and size. When the offset and size span a sub-section |
| 2306 | /// of an array, it will even compute a new array type for that sub-section. |
| 2307 | static Type *getTypePartition(const TargetData &TD, Type *Ty, |
| 2308 | uint64_t Offset, uint64_t Size) { |
| 2309 | if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size) |
| 2310 | return Ty; |
| 2311 | |
| 2312 | if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { |
| 2313 | // We can't partition pointers... |
| 2314 | if (SeqTy->isPointerTy()) |
| 2315 | return 0; |
| 2316 | |
| 2317 | Type *ElementTy = SeqTy->getElementType(); |
| 2318 | uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| 2319 | uint64_t NumSkippedElements = Offset / ElementSize; |
| 2320 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) |
| 2321 | if (NumSkippedElements >= ArrTy->getNumElements()) |
| 2322 | return 0; |
| 2323 | if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) |
| 2324 | if (NumSkippedElements >= VecTy->getNumElements()) |
| 2325 | return 0; |
| 2326 | Offset -= NumSkippedElements * ElementSize; |
| 2327 | |
| 2328 | // First check if we need to recurse. |
| 2329 | if (Offset > 0 || Size < ElementSize) { |
| 2330 | // Bail if the partition ends in a different array element. |
| 2331 | if ((Offset + Size) > ElementSize) |
| 2332 | return 0; |
| 2333 | // Recurse through the element type trying to peel off offset bytes. |
| 2334 | return getTypePartition(TD, ElementTy, Offset, Size); |
| 2335 | } |
| 2336 | assert(Offset == 0); |
| 2337 | |
| 2338 | if (Size == ElementSize) |
| 2339 | return ElementTy; |
| 2340 | assert(Size > ElementSize); |
| 2341 | uint64_t NumElements = Size / ElementSize; |
| 2342 | if (NumElements * ElementSize != Size) |
| 2343 | return 0; |
| 2344 | return ArrayType::get(ElementTy, NumElements); |
| 2345 | } |
| 2346 | |
| 2347 | StructType *STy = dyn_cast<StructType>(Ty); |
| 2348 | if (!STy) |
| 2349 | return 0; |
| 2350 | |
| 2351 | const StructLayout *SL = TD.getStructLayout(STy); |
| 2352 | if (Offset > SL->getSizeInBytes()) |
| 2353 | return 0; |
| 2354 | uint64_t EndOffset = Offset + Size; |
| 2355 | if (EndOffset > SL->getSizeInBytes()) |
| 2356 | return 0; |
| 2357 | |
| 2358 | unsigned Index = SL->getElementContainingOffset(Offset); |
| 2359 | if (SL->getElementOffset(Index) != Offset) |
| 2360 | return 0; // Inside of padding. |
| 2361 | Offset -= SL->getElementOffset(Index); |
| 2362 | |
| 2363 | Type *ElementTy = STy->getElementType(Index); |
| 2364 | uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| 2365 | if (Offset >= ElementSize) |
| 2366 | return 0; // The offset points into alignment padding. |
| 2367 | |
| 2368 | // See if any partition must be contained by the element. |
| 2369 | if (Offset > 0 || Size < ElementSize) { |
| 2370 | if ((Offset + Size) > ElementSize) |
| 2371 | return 0; |
| 2372 | // Bail if this is a poniter element, we can't recurse through them. |
| 2373 | if (ElementTy->isPointerTy()) |
| 2374 | return 0; |
| 2375 | return getTypePartition(TD, ElementTy, Offset, Size); |
| 2376 | } |
| 2377 | assert(Offset == 0); |
| 2378 | |
| 2379 | if (Size == ElementSize) |
| 2380 | return ElementTy; |
| 2381 | |
| 2382 | StructType::element_iterator EI = STy->element_begin() + Index, |
| 2383 | EE = STy->element_end(); |
| 2384 | if (EndOffset < SL->getSizeInBytes()) { |
| 2385 | unsigned EndIndex = SL->getElementContainingOffset(EndOffset); |
| 2386 | if (Index == EndIndex) |
| 2387 | return 0; // Within a single element and its padding. |
| 2388 | assert(Index < EndIndex); |
| 2389 | assert(Index + EndIndex <= STy->getNumElements()); |
| 2390 | EE = STy->element_begin() + EndIndex; |
| 2391 | } |
| 2392 | |
| 2393 | // Try to build up a sub-structure. |
| 2394 | SmallVector<Type *, 4> ElementTys; |
| 2395 | do { |
| 2396 | ElementTys.push_back(*EI++); |
| 2397 | } while (EI != EE); |
| 2398 | StructType *SubTy = StructType::get(STy->getContext(), ElementTys, |
| 2399 | STy->isPacked()); |
| 2400 | const StructLayout *SubSL = TD.getStructLayout(SubTy); |
| 2401 | if (Size == SubSL->getSizeInBytes()) |
| 2402 | return SubTy; |
| 2403 | |
| 2404 | // FIXME: We could potentially recurse down through the last element in the |
| 2405 | // sub-struct to find a natural end point. |
| 2406 | return 0; |
| 2407 | } |
| 2408 | |
| 2409 | /// \brief Rewrite an alloca partition's users. |
| 2410 | /// |
| 2411 | /// This routine drives both of the rewriting goals of the SROA pass. It tries |
| 2412 | /// to rewrite uses of an alloca partition to be conducive for SSA value |
| 2413 | /// promotion. If the partition needs a new, more refined alloca, this will |
| 2414 | /// build that new alloca, preserving as much type information as possible, and |
| 2415 | /// rewrite the uses of the old alloca to point at the new one and have the |
| 2416 | /// appropriate new offsets. It also evaluates how successful the rewrite was |
| 2417 | /// at enabling promotion and if it was successful queues the alloca to be |
| 2418 | /// promoted. |
| 2419 | bool SROA::rewriteAllocaPartition(AllocaInst &AI, |
| 2420 | AllocaPartitioning &P, |
| 2421 | AllocaPartitioning::iterator PI) { |
| 2422 | uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset; |
| 2423 | if (P.use_begin(PI) == P.use_end(PI)) |
| 2424 | return false; // No live uses left of this partition. |
| 2425 | |
| 2426 | // Try to compute a friendly type for this partition of the alloca. This |
| 2427 | // won't always succeed, in which case we fall back to a legal integer type |
| 2428 | // or an i8 array of an appropriate size. |
| 2429 | Type *AllocaTy = 0; |
| 2430 | if (Type *PartitionTy = P.getCommonType(PI)) |
| 2431 | if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize) |
| 2432 | AllocaTy = PartitionTy; |
| 2433 | if (!AllocaTy) |
| 2434 | if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(), |
| 2435 | PI->BeginOffset, AllocaSize)) |
| 2436 | AllocaTy = PartitionTy; |
| 2437 | if ((!AllocaTy || |
| 2438 | (AllocaTy->isArrayTy() && |
| 2439 | AllocaTy->getArrayElementType()->isIntegerTy())) && |
| 2440 | TD->isLegalInteger(AllocaSize * 8)) |
| 2441 | AllocaTy = Type::getIntNTy(*C, AllocaSize * 8); |
| 2442 | if (!AllocaTy) |
| 2443 | AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize); |
Chandler Carruth | b3dd9a1 | 2012-09-14 10:26:34 +0000 | [diff] [blame^] | 2444 | assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2445 | |
| 2446 | // Check for the case where we're going to rewrite to a new alloca of the |
| 2447 | // exact same type as the original, and with the same access offsets. In that |
| 2448 | // case, re-use the existing alloca, but still run through the rewriter to |
| 2449 | // performe phi and select speculation. |
| 2450 | AllocaInst *NewAI; |
| 2451 | if (AllocaTy == AI.getAllocatedType()) { |
| 2452 | assert(PI->BeginOffset == 0 && |
| 2453 | "Non-zero begin offset but same alloca type"); |
| 2454 | assert(PI == P.begin() && "Begin offset is zero on later partition"); |
| 2455 | NewAI = &AI; |
| 2456 | } else { |
| 2457 | // FIXME: The alignment here is overly conservative -- we could in many |
| 2458 | // cases get away with much weaker alignment constraints. |
| 2459 | NewAI = new AllocaInst(AllocaTy, 0, AI.getAlignment(), |
| 2460 | AI.getName() + ".sroa." + Twine(PI - P.begin()), |
| 2461 | &AI); |
| 2462 | ++NumNewAllocas; |
| 2463 | } |
| 2464 | |
| 2465 | DEBUG(dbgs() << "Rewriting alloca partition " |
| 2466 | << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: " |
| 2467 | << *NewAI << "\n"); |
| 2468 | |
| 2469 | AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI, |
| 2470 | PI->BeginOffset, PI->EndOffset); |
| 2471 | DEBUG(dbgs() << " rewriting "); |
| 2472 | DEBUG(P.print(dbgs(), PI, "")); |
| 2473 | if (Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI))) { |
| 2474 | DEBUG(dbgs() << " and queuing for promotion\n"); |
| 2475 | PromotableAllocas.push_back(NewAI); |
| 2476 | } else if (NewAI != &AI) { |
| 2477 | // If we can't promote the alloca, iterate on it to check for new |
| 2478 | // refinements exposed by splitting the current alloca. Don't iterate on an |
| 2479 | // alloca which didn't actually change and didn't get promoted. |
| 2480 | Worklist.insert(NewAI); |
| 2481 | } |
| 2482 | return true; |
| 2483 | } |
| 2484 | |
| 2485 | /// \brief Walks the partitioning of an alloca rewriting uses of each partition. |
| 2486 | bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) { |
| 2487 | bool Changed = false; |
| 2488 | for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE; |
| 2489 | ++PI) |
| 2490 | Changed |= rewriteAllocaPartition(AI, P, PI); |
| 2491 | |
| 2492 | return Changed; |
| 2493 | } |
| 2494 | |
| 2495 | /// \brief Analyze an alloca for SROA. |
| 2496 | /// |
| 2497 | /// This analyzes the alloca to ensure we can reason about it, builds |
| 2498 | /// a partitioning of the alloca, and then hands it off to be split and |
| 2499 | /// rewritten as needed. |
| 2500 | bool SROA::runOnAlloca(AllocaInst &AI) { |
| 2501 | DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); |
| 2502 | ++NumAllocasAnalyzed; |
| 2503 | |
| 2504 | // Special case dead allocas, as they're trivial. |
| 2505 | if (AI.use_empty()) { |
| 2506 | AI.eraseFromParent(); |
| 2507 | return true; |
| 2508 | } |
| 2509 | |
| 2510 | // Skip alloca forms that this analysis can't handle. |
| 2511 | if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || |
| 2512 | TD->getTypeAllocSize(AI.getAllocatedType()) == 0) |
| 2513 | return false; |
| 2514 | |
| 2515 | // First check if this is a non-aggregate type that we should simply promote. |
| 2516 | if (!AI.getAllocatedType()->isAggregateType() && isAllocaPromotable(&AI)) { |
| 2517 | DEBUG(dbgs() << " Trivially scalar type, queuing for promotion...\n"); |
| 2518 | PromotableAllocas.push_back(&AI); |
| 2519 | return false; |
| 2520 | } |
| 2521 | |
| 2522 | // Build the partition set using a recursive instruction-visiting builder. |
| 2523 | AllocaPartitioning P(*TD, AI); |
| 2524 | DEBUG(P.print(dbgs())); |
| 2525 | if (P.isEscaped()) |
| 2526 | return false; |
| 2527 | |
| 2528 | // No partitions to split. Leave the dead alloca for a later pass to clean up. |
| 2529 | if (P.begin() == P.end()) |
| 2530 | return false; |
| 2531 | |
| 2532 | // Delete all the dead users of this alloca before splitting and rewriting it. |
| 2533 | bool Changed = false; |
| 2534 | for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(), |
| 2535 | DE = P.dead_user_end(); |
| 2536 | DI != DE; ++DI) { |
| 2537 | Changed = true; |
| 2538 | (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); |
| 2539 | DeadInsts.push_back(*DI); |
| 2540 | } |
| 2541 | for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(), |
| 2542 | DE = P.dead_op_end(); |
| 2543 | DO != DE; ++DO) { |
| 2544 | Value *OldV = **DO; |
| 2545 | // Clobber the use with an undef value. |
| 2546 | **DO = UndefValue::get(OldV->getType()); |
| 2547 | if (Instruction *OldI = dyn_cast<Instruction>(OldV)) |
| 2548 | if (isInstructionTriviallyDead(OldI)) { |
| 2549 | Changed = true; |
| 2550 | DeadInsts.push_back(OldI); |
| 2551 | } |
| 2552 | } |
| 2553 | |
| 2554 | return splitAlloca(AI, P) || Changed; |
| 2555 | } |
| 2556 | |
| 2557 | void SROA::deleteDeadInstructions() { |
| 2558 | DeadSplitInsts.clear(); |
| 2559 | while (!DeadInsts.empty()) { |
| 2560 | Instruction *I = DeadInsts.pop_back_val(); |
| 2561 | DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); |
| 2562 | |
| 2563 | for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) |
| 2564 | if (Instruction *U = dyn_cast<Instruction>(*OI)) { |
| 2565 | // Zero out the operand and see if it becomes trivially dead. |
| 2566 | *OI = 0; |
| 2567 | if (isInstructionTriviallyDead(U)) |
| 2568 | DeadInsts.push_back(U); |
| 2569 | } |
| 2570 | |
| 2571 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| 2572 | DeletedAllocas.insert(AI); |
| 2573 | |
| 2574 | ++NumDeleted; |
| 2575 | I->eraseFromParent(); |
| 2576 | } |
| 2577 | } |
| 2578 | |
| 2579 | namespace { |
| 2580 | /// \brief A predicate to test whether an alloca belongs to a set. |
| 2581 | class IsAllocaInSet { |
| 2582 | typedef SmallPtrSet<AllocaInst *, 4> SetType; |
| 2583 | const SetType &Set; |
| 2584 | |
| 2585 | public: |
| 2586 | IsAllocaInSet(const SetType &Set) : Set(Set) {} |
| 2587 | bool operator()(AllocaInst *AI) { return Set.count(AI); } |
| 2588 | }; |
| 2589 | } |
| 2590 | |
| 2591 | bool SROA::runOnFunction(Function &F) { |
| 2592 | DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); |
| 2593 | C = &F.getContext(); |
| 2594 | TD = getAnalysisIfAvailable<TargetData>(); |
| 2595 | if (!TD) { |
| 2596 | DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); |
| 2597 | return false; |
| 2598 | } |
| 2599 | DT = &getAnalysis<DominatorTree>(); |
| 2600 | |
| 2601 | BasicBlock &EntryBB = F.getEntryBlock(); |
| 2602 | for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); |
| 2603 | I != E; ++I) |
| 2604 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| 2605 | Worklist.insert(AI); |
| 2606 | |
| 2607 | bool Changed = false; |
| 2608 | while (!Worklist.empty()) { |
| 2609 | Changed |= runOnAlloca(*Worklist.pop_back_val()); |
| 2610 | deleteDeadInstructions(); |
| 2611 | if (!DeletedAllocas.empty()) { |
| 2612 | PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), |
| 2613 | PromotableAllocas.end(), |
| 2614 | IsAllocaInSet(DeletedAllocas)), |
| 2615 | PromotableAllocas.end()); |
| 2616 | DeletedAllocas.clear(); |
| 2617 | } |
| 2618 | } |
| 2619 | |
| 2620 | if (!PromotableAllocas.empty()) { |
| 2621 | DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); |
| 2622 | PromoteMemToReg(PromotableAllocas, *DT); |
| 2623 | Changed = true; |
| 2624 | NumPromoted += PromotableAllocas.size(); |
| 2625 | PromotableAllocas.clear(); |
| 2626 | } |
| 2627 | |
| 2628 | return Changed; |
| 2629 | } |
| 2630 | |
| 2631 | void SROA::getAnalysisUsage(AnalysisUsage &AU) const { |
| 2632 | AU.addRequired<DominatorTree>(); |
| 2633 | AU.setPreservesCFG(); |
| 2634 | } |