blob: 1b5ab7a4ae6ae8dd6b85f401aca193c1169a367d [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattnereca195e2003-05-08 19:44:13 +000020#include "llvm/Intrinsics.h"
Chris Lattner341a9372002-10-29 17:43:55 +000021#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000022#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000023#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000025#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000026#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000027#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000028#include "llvm/Target/MRegisterInfo.h"
29#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000030
Chris Lattner333b2fa2002-12-13 10:09:43 +000031/// BMI - A special BuildMI variant that takes an iterator to insert the
Chris Lattner8bdd1292003-04-25 21:58:54 +000032/// instruction at as well as a basic block. This is the version for when you
33/// have a destination register in mind.
Brian Gaeke71794c02002-12-13 11:22:48 +000034inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000035 MachineBasicBlock::iterator &I,
36 MachineOpCode Opcode,
37 unsigned NumOperands,
38 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000039 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000040 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000041 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000042 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
43}
44
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000045/// BMI - A special BuildMI variant that takes an iterator to insert the
46/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000047inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000048 MachineBasicBlock::iterator &I,
49 MachineOpCode Opcode,
50 unsigned NumOperands) {
Chris Lattner8bdd1292003-04-25 21:58:54 +000051 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000052 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000053 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000054 return MachineInstrBuilder(MI);
55}
56
Chris Lattner333b2fa2002-12-13 10:09:43 +000057
Chris Lattner72614082002-10-25 22:55:53 +000058namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000059 struct ISel : public FunctionPass, InstVisitor<ISel> {
60 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000061 MachineFunction *F; // The function we are compiling into
62 MachineBasicBlock *BB; // The current MBB we are compiling
63 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner72614082002-10-25 22:55:53 +000064
Chris Lattner72614082002-10-25 22:55:53 +000065 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
66
Chris Lattner333b2fa2002-12-13 10:09:43 +000067 // MBBMap - Mapping between LLVM BB -> Machine BB
68 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
69
Chris Lattner3e130a22003-01-13 00:32:26 +000070 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000071
72 /// runOnFunction - Top level implementation of instruction selection for
73 /// the entire function.
74 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000075 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000076 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000077
Chris Lattner065faeb2002-12-28 20:24:02 +000078 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000079 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
80 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
81
Chris Lattner14aa7fe2002-12-16 22:54:46 +000082 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +000083
Chris Lattnerdbd73722003-05-06 21:32:22 +000084 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +000085 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000086
Chris Lattner333b2fa2002-12-13 10:09:43 +000087 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000088 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000089
90 // Select the PHI nodes
91 SelectPHINodes();
92
Chris Lattner72614082002-10-25 22:55:53 +000093 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000094 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000095 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000096 return false; // We never modify the LLVM itself.
97 }
98
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000099 virtual const char *getPassName() const {
100 return "X86 Simple Instruction Selection";
101 }
102
Chris Lattner72614082002-10-25 22:55:53 +0000103 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000104 /// block. This simply creates a new MachineBasicBlock to emit code into
105 /// and adds it to the current MachineFunction. Subsequent visit* for
106 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000107 ///
108 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000109 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000110 }
111
Chris Lattner065faeb2002-12-28 20:24:02 +0000112 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
113 /// from the stack into virtual registers.
114 ///
115 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000116
117 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
118 /// because we have to generate our sources into the source basic blocks,
119 /// not the current one.
120 ///
121 void SelectPHINodes();
122
Chris Lattner72614082002-10-25 22:55:53 +0000123 // Visitation methods for various instructions. These methods simply emit
124 // fixed X86 code for each instruction.
125 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000126
127 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000128 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000129 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000130
131 struct ValueRecord {
132 unsigned Reg;
133 const Type *Ty;
134 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
135 };
136 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
137 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000138 void visitCallInst(CallInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000139 void visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000140
141 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000142 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000143 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
144 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000145 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000146 unsigned DestReg, const Type *DestTy,
147 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000148 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000149
Chris Lattnerf01729e2002-11-02 20:54:46 +0000150 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
151 void visitRem(BinaryOperator &B) { visitDivRem(B); }
152 void visitDivRem(BinaryOperator &B);
153
Chris Lattnere2954c82002-11-02 20:04:26 +0000154 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000155 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
156 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
157 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000158
Chris Lattner6d40c192003-01-16 16:43:00 +0000159 // Comparison operators...
160 void visitSetCondInst(SetCondInst &I);
161 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000162
163 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000164 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
165 MachineBasicBlock::iterator &MBBI,
166 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000167 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000168 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000169 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000170 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000171 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000172 void visitMallocInst(MallocInst &I);
173 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000174
Chris Lattnere2954c82002-11-02 20:04:26 +0000175 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000176 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000177 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000178 void visitCastInst(CastInst &I);
Chris Lattnereca195e2003-05-08 19:44:13 +0000179 void visitVarArgInst(VarArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000180
181 void visitInstruction(Instruction &I) {
182 std::cerr << "Cannot instruction select: " << I;
183 abort();
184 }
185
Brian Gaeke95780cc2002-12-13 07:56:18 +0000186 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000187 ///
188 void promote32(unsigned targetReg, const ValueRecord &VR);
189
190 /// EmitByteSwap - Byteswap SrcReg into DestReg.
191 ///
192 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000193
Chris Lattner3e130a22003-01-13 00:32:26 +0000194 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
195 /// constant expression GEP support.
196 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000197 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000198 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000199 User::op_iterator IdxEnd, unsigned TargetReg);
200
Chris Lattner548f61d2003-04-23 17:22:12 +0000201 /// emitCastOperation - Common code shared between visitCastInst and
202 /// constant expression cast support.
203 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator&IP,
204 Value *Src, const Type *DestTy, unsigned TargetReg);
205
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000206 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
207 /// and constant expression support.
208 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
209 MachineBasicBlock::iterator &IP,
210 Value *Op0, Value *Op1,
211 unsigned OperatorClass, unsigned TargetReg);
212
Chris Lattnerc5291f52002-10-27 21:16:59 +0000213 /// copyConstantToRegister - Output the instructions required to put the
214 /// specified constant into the specified register.
215 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000216 void copyConstantToRegister(MachineBasicBlock *MBB,
217 MachineBasicBlock::iterator &MBBI,
218 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000219
Chris Lattner3e130a22003-01-13 00:32:26 +0000220 /// makeAnotherReg - This method returns the next register number we haven't
221 /// yet used.
222 ///
223 /// Long values are handled somewhat specially. They are always allocated
224 /// as pairs of 32 bit integer values. The register number returned is the
225 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
226 /// of the long value.
227 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000228 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000229 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
230 const TargetRegisterClass *RC =
231 TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
232 // Create the lower part
233 F->getSSARegMap()->createVirtualRegister(RC);
234 // Create the upper part.
235 return F->getSSARegMap()->createVirtualRegister(RC)-1;
236 }
237
Chris Lattnerc0812d82002-12-13 06:56:29 +0000238 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner94af4142002-12-25 05:13:53 +0000239 const TargetRegisterClass *RC =
240 TM.getRegisterInfo()->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000241 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000242 }
243
Chris Lattner72614082002-10-25 22:55:53 +0000244 /// getReg - This method turns an LLVM value into a register number. This
245 /// is guaranteed to produce the same register number for a particular value
246 /// every time it is queried.
247 ///
248 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000249 unsigned getReg(Value *V) {
250 // Just append to the end of the current bb.
251 MachineBasicBlock::iterator It = BB->end();
252 return getReg(V, BB, It);
253 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000254 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000255 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000256 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000257 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000258 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000259 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000260 }
Chris Lattner72614082002-10-25 22:55:53 +0000261
Chris Lattner6f8fd252002-10-27 21:23:43 +0000262 // If this operand is a constant, emit the code to copy the constant into
263 // the register here...
264 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000265 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000266 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000267 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000268 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
269 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000270 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000271 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000272 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000273
Chris Lattner72614082002-10-25 22:55:53 +0000274 return Reg;
275 }
Chris Lattner72614082002-10-25 22:55:53 +0000276 };
277}
278
Chris Lattner43189d12002-11-17 20:07:45 +0000279/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
280/// Representation.
281///
282enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000283 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000284};
285
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000286/// getClass - Turn a primitive type into a "class" number which is based on the
287/// size of the type, and whether or not it is floating point.
288///
Chris Lattner43189d12002-11-17 20:07:45 +0000289static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000290 switch (Ty->getPrimitiveID()) {
291 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000292 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000293 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000294 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000295 case Type::IntTyID:
296 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000297 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000298
Chris Lattner94af4142002-12-25 05:13:53 +0000299 case Type::FloatTyID:
300 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000301
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000302 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000303 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000304 default:
305 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000306 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000307 }
308}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000309
Chris Lattner6b993cc2002-12-15 08:02:15 +0000310// getClassB - Just like getClass, but treat boolean values as bytes.
311static inline TypeClass getClassB(const Type *Ty) {
312 if (Ty == Type::BoolTy) return cByte;
313 return getClass(Ty);
314}
315
Chris Lattner06925362002-11-17 21:56:38 +0000316
Chris Lattnerc5291f52002-10-27 21:16:59 +0000317/// copyConstantToRegister - Output the instructions required to put the
318/// specified constant into the specified register.
319///
Chris Lattner8a307e82002-12-16 19:32:50 +0000320void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator &IP,
322 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000323 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000324 unsigned Class = 0;
325 switch (CE->getOpcode()) {
326 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000327 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000328 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000329 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000330 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000331 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000332 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000333
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000334 case Instruction::Xor: ++Class; // FALL THROUGH
335 case Instruction::Or: ++Class; // FALL THROUGH
336 case Instruction::And: ++Class; // FALL THROUGH
337 case Instruction::Sub: ++Class; // FALL THROUGH
338 case Instruction::Add:
339 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
340 Class, R);
341 return;
342
343 default:
344 std::cerr << "Offending expr: " << C << "\n";
345 assert(0 && "Constant expressions not yet handled!\n");
346 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000347 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000348
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000349 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000350 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000351
352 if (Class == cLong) {
353 // Copy the value into the register pair.
354 uint64_t Val;
355 if (C->getType()->isSigned())
356 Val = cast<ConstantSInt>(C)->getValue();
357 else
358 Val = cast<ConstantUInt>(C)->getValue();
359
360 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
361 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
362 return;
363 }
364
Chris Lattner94af4142002-12-25 05:13:53 +0000365 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000366
367 static const unsigned IntegralOpcodeTab[] = {
368 X86::MOVir8, X86::MOVir16, X86::MOVir32
369 };
370
Chris Lattner6b993cc2002-12-15 08:02:15 +0000371 if (C->getType() == Type::BoolTy) {
372 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
373 } else if (C->getType()->isSigned()) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000374 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner3e130a22003-01-13 00:32:26 +0000375 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000376 } else {
377 ConstantUInt *CUI = cast<ConstantUInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000378 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000379 }
Chris Lattner94af4142002-12-25 05:13:53 +0000380 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
381 double Value = CFP->getValue();
382 if (Value == +0.0)
383 BMI(MBB, IP, X86::FLD0, 0, R);
384 else if (Value == +1.0)
385 BMI(MBB, IP, X86::FLD1, 0, R);
386 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000387 // Otherwise we need to spill the constant to memory...
388 MachineConstantPool *CP = F->getConstantPool();
389 unsigned CPI = CP->getConstantPoolIndex(CFP);
390 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000391 }
392
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000393 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000394 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000395 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000396 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000397 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000398 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000399 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000400 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000401 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000402 }
403}
404
Chris Lattner065faeb2002-12-28 20:24:02 +0000405/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
406/// the stack into virtual registers.
407///
408void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
409 // Emit instructions to load the arguments... On entry to a function on the
410 // X86, the stack frame looks like this:
411 //
412 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000413 // [ESP + 4] -- first argument (leftmost lexically)
414 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000415 // ...
416 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000417 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000418 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000419
420 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
421 unsigned Reg = getReg(*I);
422
Chris Lattner065faeb2002-12-28 20:24:02 +0000423 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000424 switch (getClassB(I->getType())) {
425 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000426 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000427 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
428 break;
429 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000430 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000431 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
432 break;
433 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000434 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000435 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
436 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000437 case cLong:
438 FI = MFI->CreateFixedObject(8, ArgOffset);
439 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
440 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
441 ArgOffset += 4; // longs require 4 additional bytes
442 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000443 case cFP:
444 unsigned Opcode;
445 if (I->getType() == Type::FloatTy) {
446 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000447 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000448 } else {
449 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000450 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000451 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000452 }
453 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
454 break;
455 default:
456 assert(0 && "Unhandled argument type!");
457 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000458 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000459 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000460
461 // If the function takes variable number of arguments, add a frame offset for
462 // the start of the first vararg value... this is used to expand
463 // llvm.va_start.
464 if (Fn.getFunctionType()->isVarArg())
465 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000466}
467
468
Chris Lattner333b2fa2002-12-13 10:09:43 +0000469/// SelectPHINodes - Insert machine code to generate phis. This is tricky
470/// because we have to generate our sources into the source basic blocks, not
471/// the current one.
472///
473void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000474 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000475 const Function &LF = *F->getFunction(); // The LLVM function...
476 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
477 const BasicBlock *BB = I;
478 MachineBasicBlock *MBB = MBBMap[I];
479
480 // Loop over all of the PHI nodes in the LLVM basic block...
481 unsigned NumPHIs = 0;
482 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattner548f61d2003-04-23 17:22:12 +0000483 PHINode *PN = (PHINode*)dyn_cast<PHINode>(I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000484
Chris Lattner333b2fa2002-12-13 10:09:43 +0000485 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000486 unsigned PHIReg = getReg(*PN);
487 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
488 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
489
490 MachineInstr *LongPhiMI = 0;
491 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
492 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
493 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
494 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000495
496 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
497 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
498
499 // Get the incoming value into a virtual register. If it is not already
500 // available in a virtual register, insert the computation code into
501 // PredMBB
Chris Lattner92053632002-12-13 11:52:34 +0000502 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000503 MachineBasicBlock::iterator PI = PredMBB->end();
504 while (PI != PredMBB->begin() &&
Chris Lattner3501fea2003-01-14 22:00:31 +0000505 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
Chris Lattner3e130a22003-01-13 00:32:26 +0000506 --PI;
507 unsigned ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
508 PhiMI->addRegOperand(ValReg);
509 PhiMI->addMachineBasicBlockOperand(PredMBB);
510 if (LongPhiMI) {
511 LongPhiMI->addRegOperand(ValReg+1);
512 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
513 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000514 }
515 }
516 }
517}
518
Chris Lattner6d40c192003-01-16 16:43:00 +0000519// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
520// the conditional branch instruction which is the only user of the cc
521// instruction. This is the case if the conditional branch is the only user of
522// the setcc, and if the setcc is in the same basic block as the conditional
523// branch. We also don't handle long arguments below, so we reject them here as
524// well.
525//
526static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
527 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
528 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
529 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
530 const Type *Ty = SCI->getOperand(0)->getType();
531 if (Ty != Type::LongTy && Ty != Type::ULongTy)
532 return SCI;
533 }
534 return 0;
535}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000536
Chris Lattner6d40c192003-01-16 16:43:00 +0000537// Return a fixed numbering for setcc instructions which does not depend on the
538// order of the opcodes.
539//
540static unsigned getSetCCNumber(unsigned Opcode) {
541 switch(Opcode) {
542 default: assert(0 && "Unknown setcc instruction!");
543 case Instruction::SetEQ: return 0;
544 case Instruction::SetNE: return 1;
545 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000546 case Instruction::SetGE: return 3;
547 case Instruction::SetGT: return 4;
548 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000549 }
550}
Chris Lattner06925362002-11-17 21:56:38 +0000551
Chris Lattner6d40c192003-01-16 16:43:00 +0000552// LLVM -> X86 signed X86 unsigned
553// ----- ---------- ------------
554// seteq -> sete sete
555// setne -> setne setne
556// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000557// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000558// setgt -> setg seta
559// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000560static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000561 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
562 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000563};
564
565bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
566
Brian Gaeke1749d632002-11-07 17:59:21 +0000567 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000568 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000569 bool isSigned = CompTy->isSigned();
Chris Lattner6d40c192003-01-16 16:43:00 +0000570 unsigned reg1 = getReg(Op0);
571 unsigned reg2 = getReg(Op1);
Chris Lattner05093a52002-11-21 15:52:38 +0000572
Chris Lattner3e130a22003-01-13 00:32:26 +0000573 unsigned Class = getClassB(CompTy);
574 switch (Class) {
575 default: assert(0 && "Unknown type class!");
576 // Emit: cmp <var1>, <var2> (do the comparison). We can
577 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
578 // 32-bit.
579 case cByte:
580 BuildMI(BB, X86::CMPrr8, 2).addReg(reg1).addReg(reg2);
581 break;
582 case cShort:
583 BuildMI(BB, X86::CMPrr16, 2).addReg(reg1).addReg(reg2);
584 break;
585 case cInt:
586 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
587 break;
588 case cFP:
589 BuildMI(BB, X86::FpUCOM, 2).addReg(reg1).addReg(reg2);
590 BuildMI(BB, X86::FNSTSWr8, 0);
591 BuildMI(BB, X86::SAHF, 1);
592 isSigned = false; // Compare with unsigned operators
593 break;
594
595 case cLong:
596 if (OpNum < 2) { // seteq, setne
597 unsigned LoTmp = makeAnotherReg(Type::IntTy);
598 unsigned HiTmp = makeAnotherReg(Type::IntTy);
599 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
600 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(reg1).addReg(reg2);
601 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(reg1+1).addReg(reg2+1);
602 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
603 break; // Allow the sete or setne to be generated from flags set by OR
604 } else {
605 // Emit a sequence of code which compares the high and low parts once
606 // each, then uses a conditional move to handle the overflow case. For
607 // example, a setlt for long would generate code like this:
608 //
609 // AL = lo(op1) < lo(op2) // Signedness depends on operands
610 // BL = hi(op1) < hi(op2) // Always unsigned comparison
611 // dest = hi(op1) == hi(op2) ? AL : BL;
612 //
613
Chris Lattner6d40c192003-01-16 16:43:00 +0000614 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000615 // classes! Until then, hardcode registers so that we can deal with their
616 // aliases (because we don't have conditional byte moves).
617 //
618 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
Chris Lattner6d40c192003-01-16 16:43:00 +0000619 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000620 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1+1).addReg(reg2+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000621 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000622 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000623 // NOTE: visitSetCondInst knows that the value is dumped into the BL
624 // register at this point for long values...
625 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000626 }
627 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000628 return isSigned;
629}
Chris Lattner3e130a22003-01-13 00:32:26 +0000630
Chris Lattner6d40c192003-01-16 16:43:00 +0000631
632/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
633/// register, then move it to wherever the result should be.
634///
635void ISel::visitSetCondInst(SetCondInst &I) {
636 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
637
638 unsigned OpNum = getSetCCNumber(I.getOpcode());
639 unsigned DestReg = getReg(I);
640 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
641 I.getOperand(1));
642
643 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
644 // Handle normal comparisons with a setcc instruction...
645 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
646 } else {
647 // Handle long comparisons by copying the value which is already in BL into
648 // the register we want...
649 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
650 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000651}
Chris Lattner51b49a92002-11-02 19:45:49 +0000652
Brian Gaekec2505982002-11-30 11:57:28 +0000653/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
654/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000655void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
656 bool isUnsigned = VR.Ty->isUnsigned();
657 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000658 case cByte:
659 // Extend value into target register (8->32)
660 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000661 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000662 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000663 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000664 break;
665 case cShort:
666 // Extend value into target register (16->32)
667 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000668 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000669 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000670 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000671 break;
672 case cInt:
673 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000674 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000675 break;
676 default:
677 assert(0 && "Unpromotable operand class in promote32");
678 }
Brian Gaekec2505982002-11-30 11:57:28 +0000679}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000680
Chris Lattner72614082002-10-25 22:55:53 +0000681/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
682/// we have the following possibilities:
683///
684/// ret void: No return value, simply emit a 'ret' instruction
685/// ret sbyte, ubyte : Extend value into EAX and return
686/// ret short, ushort: Extend value into EAX and return
687/// ret int, uint : Move value into EAX and return
688/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000689/// ret long, ulong : Move value into EAX/EDX and return
690/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000691///
Chris Lattner3e130a22003-01-13 00:32:26 +0000692void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000693 if (I.getNumOperands() == 0) {
694 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
695 return;
696 }
697
698 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000699 unsigned RetReg = getReg(RetVal);
700 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000701 case cByte: // integral return values: extend or move into EAX and return
702 case cShort:
703 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000704 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattnerdbd73722003-05-06 21:32:22 +0000705 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000706 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000707 break;
708 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000709 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000710 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000711 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +0000712 break;
713 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000714 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
715 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +0000716 // Declare that EAX & EDX are live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +0000717 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX).addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000718 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000719 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000720 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000721 }
Chris Lattner43189d12002-11-17 20:07:45 +0000722 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000723 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000724}
725
Chris Lattner55f6fab2003-01-16 18:07:23 +0000726// getBlockAfter - Return the basic block which occurs lexically after the
727// specified one.
728static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
729 Function::iterator I = BB; ++I; // Get iterator to next block
730 return I != BB->getParent()->end() ? &*I : 0;
731}
732
Chris Lattner51b49a92002-11-02 19:45:49 +0000733/// visitBranchInst - Handle conditional and unconditional branches here. Note
734/// that since code layout is frozen at this point, that if we are trying to
735/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000736/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000737///
Chris Lattner94af4142002-12-25 05:13:53 +0000738void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000739 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
740
741 if (!BI.isConditional()) { // Unconditional branch?
742 if (BI.getSuccessor(0) != NextBB)
743 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000744 return;
745 }
746
747 // See if we can fold the setcc into the branch itself...
748 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
749 if (SCI == 0) {
750 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
751 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000752 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000753 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000754 if (BI.getSuccessor(1) == NextBB) {
755 if (BI.getSuccessor(0) != NextBB)
756 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
757 } else {
758 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
759
760 if (BI.getSuccessor(0) != NextBB)
761 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
762 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000763 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000764 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000765
766 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
767 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
768 SCI->getOperand(1));
769
770 // LLVM -> X86 signed X86 unsigned
771 // ----- ---------- ------------
772 // seteq -> je je
773 // setne -> jne jne
774 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000775 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000776 // setgt -> jg ja
777 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000778 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000779 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
780 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000781 };
782
Chris Lattner55f6fab2003-01-16 18:07:23 +0000783 if (BI.getSuccessor(0) != NextBB) {
784 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
785 if (BI.getSuccessor(1) != NextBB)
786 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
787 } else {
788 // Change to the inverse condition...
789 if (BI.getSuccessor(1) != NextBB) {
790 OpNum ^= 1;
791 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
792 }
793 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000794}
795
Chris Lattner3e130a22003-01-13 00:32:26 +0000796
797/// doCall - This emits an abstract call instruction, setting up the arguments
798/// and the return value as appropriate. For the actual function call itself,
799/// it inserts the specified CallMI instruction into the stream.
800///
801void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
802 const std::vector<ValueRecord> &Args) {
803
Chris Lattner065faeb2002-12-28 20:24:02 +0000804 // Count how many bytes are to be pushed on the stack...
805 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000806
Chris Lattner3e130a22003-01-13 00:32:26 +0000807 if (!Args.empty()) {
808 for (unsigned i = 0, e = Args.size(); i != e; ++i)
809 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000810 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000811 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000812 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000813 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000814 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000815 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000816 break;
817 default: assert(0 && "Unknown class!");
818 }
819
820 // Adjust the stack pointer for the new arguments...
821 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
822
823 // Arguments go on the stack in reverse order, as specified by the ABI.
824 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000825 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
826 unsigned ArgReg = Args[i].Reg;
827 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000828 case cByte:
829 case cShort: {
830 // Promote arg to 32 bits wide into a temporary register...
831 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000832 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000833 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
834 X86::ESP, ArgOffset).addReg(R);
835 break;
836 }
837 case cInt:
838 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000839 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000840 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000841 case cLong:
842 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
843 X86::ESP, ArgOffset).addReg(ArgReg);
844 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
845 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
846 ArgOffset += 4; // 8 byte entry, not 4.
847 break;
848
Chris Lattner065faeb2002-12-28 20:24:02 +0000849 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000850 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000851 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000852 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000853 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000854 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
855 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
856 X86::ESP, ArgOffset).addReg(ArgReg);
857 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000858 }
859 break;
860
Chris Lattner3e130a22003-01-13 00:32:26 +0000861 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000862 }
863 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000864 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000865 } else {
866 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000867 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000868
Chris Lattner3e130a22003-01-13 00:32:26 +0000869 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000870
Chris Lattner065faeb2002-12-28 20:24:02 +0000871 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000872
873 // If there is a return value, scavenge the result from the location the call
874 // leaves it in...
875 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000876 if (Ret.Ty != Type::VoidTy) {
877 unsigned DestClass = getClassB(Ret.Ty);
878 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000879 case cByte:
880 case cShort:
881 case cInt: {
882 // Integral results are in %eax, or the appropriate portion
883 // thereof.
884 static const unsigned regRegMove[] = {
885 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
886 };
887 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000888 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000889 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000890 }
Chris Lattner94af4142002-12-25 05:13:53 +0000891 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000892 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000893 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000894 case cLong: // Long values are left in EDX:EAX
895 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
896 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
897 break;
898 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000899 }
Chris Lattnera3243642002-12-04 23:45:28 +0000900 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000901}
Chris Lattner2df035b2002-11-02 19:27:56 +0000902
Chris Lattner3e130a22003-01-13 00:32:26 +0000903
904/// visitCallInst - Push args on stack and do a procedure call instruction.
905void ISel::visitCallInst(CallInst &CI) {
906 MachineInstr *TheCall;
907 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +0000908 // Is it an intrinsic function call?
909 if (LLVMIntrinsic::ID ID = (LLVMIntrinsic::ID)F->getIntrinsicID()) {
910 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
911 return;
912 }
913
Chris Lattner3e130a22003-01-13 00:32:26 +0000914 // Emit a CALL instruction with PC-relative displacement.
915 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
916 } else { // Emit an indirect call...
917 unsigned Reg = getReg(CI.getCalledValue());
918 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
919 }
920
921 std::vector<ValueRecord> Args;
922 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
923 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
924 CI.getOperand(i)->getType()));
925
926 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
927 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
928}
929
Chris Lattnereca195e2003-05-08 19:44:13 +0000930void ISel::visitIntrinsicCall(LLVMIntrinsic::ID ID, CallInst &CI) {
931 unsigned TmpReg1, TmpReg2;
932 switch (ID) {
933 case LLVMIntrinsic::va_start:
934 // Get the address of the first vararg value...
935 TmpReg1 = makeAnotherReg(Type::UIntTy);
936 addFrameReference(BuildMI(BB, X86::LEAr32, 5, TmpReg1), VarArgsFrameIndex);
937 TmpReg2 = getReg(CI.getOperand(1));
938 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
939 return;
940
941 case LLVMIntrinsic::va_end: return; // Noop on X86
942 case LLVMIntrinsic::va_copy:
943 TmpReg1 = getReg(CI.getOperand(2)); // Get existing va_list
944 TmpReg2 = getReg(CI.getOperand(1)); // Get va_list* to store into
945 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), TmpReg2).addReg(TmpReg1);
946 return;
947
948 default: assert(0 && "Unknown intrinsic for X86!");
949 }
950}
951
952
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000953/// visitSimpleBinary - Implement simple binary operators for integral types...
954/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
955/// Xor.
956void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
957 unsigned DestReg = getReg(B);
958 MachineBasicBlock::iterator MI = BB->end();
959 emitSimpleBinaryOperation(BB, MI, B.getOperand(0), B.getOperand(1),
960 OperatorClass, DestReg);
961}
Chris Lattner3e130a22003-01-13 00:32:26 +0000962
Chris Lattner68aad932002-11-02 20:13:22 +0000963/// visitSimpleBinary - Implement simple binary operators for integral types...
964/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
965/// 4 for Xor.
966///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000967/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
968/// and constant expression support.
969void ISel::emitSimpleBinaryOperation(MachineBasicBlock *BB,
970 MachineBasicBlock::iterator &IP,
971 Value *Op0, Value *Op1,
972 unsigned OperatorClass,unsigned TargetReg){
973 unsigned Class = getClassB(Op0->getType());
Chris Lattnere2954c82002-11-02 20:04:26 +0000974
975 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000976 // Arithmetic operators
Chris Lattner94af4142002-12-25 05:13:53 +0000977 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
978 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
Chris Lattner68aad932002-11-02 20:13:22 +0000979
980 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000981 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
982 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
983 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
984 };
Chris Lattner3e130a22003-01-13 00:32:26 +0000985
986 bool isLong = false;
987 if (Class == cLong) {
988 isLong = true;
989 Class = cInt; // Bottom 32 bits are handled just like ints
990 }
Chris Lattnere2954c82002-11-02 20:04:26 +0000991
992 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner94af4142002-12-25 05:13:53 +0000993 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000994 unsigned Op0r = getReg(Op0, BB, IP);
995 unsigned Op1r = getReg(Op1, BB, IP);
996 BMI(BB, IP, Opcode, 2, TargetReg).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000997
998 if (isLong) { // Handle the upper 32 bits of long values...
999 static const unsigned TopTab[] = {
1000 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
1001 };
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001002 BMI(BB, IP, TopTab[OperatorClass], 2,
1003 TargetReg+1).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001004 }
Chris Lattnere2954c82002-11-02 20:04:26 +00001005}
1006
Chris Lattner3e130a22003-01-13 00:32:26 +00001007/// doMultiply - Emit appropriate instructions to multiply together the
1008/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1009/// result should be given as DestTy.
1010///
1011/// FIXME: doMultiply should use one of the two address IMUL instructions!
1012///
Chris Lattner8a307e82002-12-16 19:32:50 +00001013void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00001014 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00001015 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001016 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001017 switch (Class) {
1018 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +00001019 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001020 return;
1021 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001022 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00001023 case cByte:
1024 case cShort:
1025 case cInt: // Small integerals, handled below...
1026 break;
1027 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001028
1029 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001030 static const unsigned MulOpcode[]={ X86::MULr8 , X86::MULr16 , X86::MULr32 };
Brian Gaeke20244b72002-12-12 15:33:40 +00001031 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
1032 unsigned Reg = Regs[Class];
1033
1034 // Emit a MOV to put the first operand into the appropriately-sized
1035 // subreg of EAX.
Chris Lattner3e130a22003-01-13 00:32:26 +00001036 BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg(op0Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001037
1038 // Emit the appropriate multiply instruction.
Chris Lattner3e130a22003-01-13 00:32:26 +00001039 BMI(MBB, MBBI, MulOpcode[Class], 1).addReg(op1Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001040
1041 // Emit another MOV to put the result into the destination register.
Chris Lattner3e130a22003-01-13 00:32:26 +00001042 BMI(MBB, MBBI, MovOpcode[Class], 1, DestReg).addReg(Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001043}
1044
Chris Lattnerca9671d2002-11-02 20:28:58 +00001045/// visitMul - Multiplies are not simple binary operators because they must deal
1046/// with the EAX register explicitly.
1047///
1048void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +00001049 unsigned Op0Reg = getReg(I.getOperand(0));
1050 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +00001051 unsigned DestReg = getReg(I);
1052
1053 // Simple scalar multiply?
1054 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
1055 MachineBasicBlock::iterator MBBI = BB->end();
1056 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
1057 } else {
1058 // Long value. We have to do things the hard way...
1059 // Multiply the two low parts... capturing carry into EDX
1060 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
1061 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
1062
1063 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1064 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
1065 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
1066
1067 MachineBasicBlock::iterator MBBI = BB->end();
1068 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1069 doMultiply(BB, MBBI, AHBLReg, Type::UIntTy, Op0Reg+1, Op1Reg); // AH*BL
1070
1071 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1072 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
1073 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1074
1075 MBBI = BB->end();
1076 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
1077 doMultiply(BB, MBBI, ALBHReg, Type::UIntTy, Op0Reg, Op1Reg+1); // AL*BH
1078
1079 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1080 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1081 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001082}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001083
Chris Lattner06925362002-11-17 21:56:38 +00001084
Chris Lattnerf01729e2002-11-02 20:54:46 +00001085/// visitDivRem - Handle division and remainder instructions... these
1086/// instruction both require the same instructions to be generated, they just
1087/// select the result from a different register. Note that both of these
1088/// instructions work differently for signed and unsigned operands.
1089///
1090void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001091 unsigned Class = getClass(I.getType());
1092 unsigned Op0Reg = getReg(I.getOperand(0));
1093 unsigned Op1Reg = getReg(I.getOperand(1));
1094 unsigned ResultReg = getReg(I);
1095
1096 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001097 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +00001098 if (I.getOpcode() == Instruction::Div)
1099 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001100 else { // Floating point remainder...
1101 MachineInstr *TheCall =
1102 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1103 std::vector<ValueRecord> Args;
1104 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1105 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1106 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1107 }
Chris Lattner94af4142002-12-25 05:13:53 +00001108 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001109 case cLong: {
1110 static const char *FnName[] =
1111 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1112
1113 unsigned NameIdx = I.getType()->isUnsigned()*2;
1114 NameIdx += I.getOpcode() == Instruction::Div;
1115 MachineInstr *TheCall =
1116 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1117
1118 std::vector<ValueRecord> Args;
1119 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1120 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1121 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1122 return;
1123 }
1124 case cByte: case cShort: case cInt:
1125 break; // Small integerals, handled below...
1126 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001127 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001128
1129 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1130 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +00001131 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001132 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1133 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1134
1135 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001136 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1137 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001138 };
1139
1140 bool isSigned = I.getType()->isSigned();
1141 unsigned Reg = Regs[Class];
1142 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001143
1144 // Put the first operand into one of the A registers...
1145 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1146
1147 if (isSigned) {
1148 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +00001149 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001150 } else {
1151 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1152 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1153 }
1154
Chris Lattner06925362002-11-17 21:56:38 +00001155 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +00001156 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001157
Chris Lattnerf01729e2002-11-02 20:54:46 +00001158 // Figure out which register we want to pick the result out of...
1159 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1160
Chris Lattnerf01729e2002-11-02 20:54:46 +00001161 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001162 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001163}
Chris Lattnere2954c82002-11-02 20:04:26 +00001164
Chris Lattner06925362002-11-17 21:56:38 +00001165
Brian Gaekea1719c92002-10-31 23:03:59 +00001166/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1167/// for constant immediate shift values, and for constant immediate
1168/// shift values equal to 1. Even the general case is sort of special,
1169/// because the shift amount has to be in CL, not just any old register.
1170///
Chris Lattner3e130a22003-01-13 00:32:26 +00001171void ISel::visitShiftInst(ShiftInst &I) {
1172 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001173 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001174 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001175 bool isSigned = I.getType()->isSigned();
1176 unsigned Class = getClass(I.getType());
1177
1178 static const unsigned ConstantOperand[][4] = {
1179 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1180 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1181 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1182 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1183 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001184
Chris Lattner3e130a22003-01-13 00:32:26 +00001185 static const unsigned NonConstantOperand[][4] = {
1186 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1187 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1188 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1189 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1190 };
Chris Lattner796df732002-11-02 00:44:25 +00001191
Chris Lattner3e130a22003-01-13 00:32:26 +00001192 // Longs, as usual, are handled specially...
1193 if (Class == cLong) {
1194 // If we have a constant shift, we can generate much more efficient code
1195 // than otherwise...
1196 //
1197 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1198 unsigned Amount = CUI->getValue();
1199 if (Amount < 32) {
1200 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1201 if (isLeftShift) {
1202 BuildMI(BB, Opc[3], 3,
1203 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1204 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1205 } else {
1206 BuildMI(BB, Opc[3], 3,
1207 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1208 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1209 }
1210 } else { // Shifting more than 32 bits
1211 Amount -= 32;
1212 if (isLeftShift) {
1213 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1214 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1215 } else {
1216 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1217 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1218 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1219 }
1220 }
1221 } else {
1222 visitInstruction(I); // FIXME: Implement long shift by non-constant
Brian Gaekea1719c92002-10-31 23:03:59 +00001223 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001224 return;
1225 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001226
Chris Lattner3e130a22003-01-13 00:32:26 +00001227 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1228 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1229 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001230
Chris Lattner3e130a22003-01-13 00:32:26 +00001231 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1232 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1233 } else { // The shift amount is non-constant.
1234 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001235
Chris Lattner3e130a22003-01-13 00:32:26 +00001236 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1237 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1238 }
1239}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001240
Chris Lattner3e130a22003-01-13 00:32:26 +00001241
1242/// doFPLoad - This method is used to load an FP value from memory using the
1243/// current endianness. NOTE: This method returns a partially constructed load
1244/// instruction which needs to have the memory source filled in still.
1245///
1246MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1247 MachineBasicBlock::iterator &MBBI,
1248 const Type *Ty, unsigned DestReg) {
1249 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1250 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1251
1252 if (TM.getTargetData().isLittleEndian()) // fast path...
1253 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1254
1255 // If we are big-endian, start by creating an LEA instruction to represent the
1256 // address of the memory location to load from...
1257 //
1258 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1259 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1260
1261 // Allocate a temporary stack slot to transform the value into...
1262 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1263
1264 // Perform the bswaps 32 bits at a time...
1265 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1266 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1267 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1268 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1269 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1270 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1271 FrameIdx, Offset).addReg(TmpReg2);
1272
1273 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1274 TmpReg1 = makeAnotherReg(Type::UIntTy);
1275 TmpReg2 = makeAnotherReg(Type::UIntTy);
1276
1277 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1278 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1279 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1280 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1281 }
1282
1283 // Now we can reload the final byteswapped result into the final destination.
1284 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1285 return Result;
1286}
1287
1288/// EmitByteSwap - Byteswap SrcReg into DestReg.
1289///
1290void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1291 // Emit the byte swap instruction...
1292 switch (Class) {
1293 case cByte:
Misha Brukmanbaf06072003-04-22 17:54:23 +00001294 // No byteswap necessary for 8 bit value...
Chris Lattner3e130a22003-01-13 00:32:26 +00001295 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1296 break;
1297 case cInt:
1298 // Use the 32 bit bswap instruction to do a 32 bit swap...
1299 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1300 break;
1301
1302 case cShort:
1303 // For 16 bit we have to use an xchg instruction, because there is no
Misha Brukmanbaf06072003-04-22 17:54:23 +00001304 // 16-bit bswap. XCHG is necessarily not in SSA form, so we force things
Chris Lattner3e130a22003-01-13 00:32:26 +00001305 // into AX to do the xchg.
1306 //
1307 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1308 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1309 .addReg(X86::AH, MOTy::UseAndDef);
1310 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1311 break;
1312 default: assert(0 && "Cannot byteswap this class!");
1313 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001314}
1315
Chris Lattner06925362002-11-17 21:56:38 +00001316
Chris Lattner6fc3c522002-11-17 21:11:55 +00001317/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001318/// instruction. The load and store instructions are the only place where we
1319/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001320///
1321void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001322 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1323 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001324 unsigned SrcAddrReg = getReg(I.getOperand(0));
1325 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001326
Chris Lattner6fc3c522002-11-17 21:11:55 +00001327 unsigned Class = getClass(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001328 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001329 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001330 MachineBasicBlock::iterator MBBI = BB->end();
1331 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001332 return;
1333 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001334 case cLong: case cInt: case cShort: case cByte:
1335 break; // Integers of various sizes handled below
1336 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001337 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001338
Chris Lattnere8f0d922002-12-24 00:03:11 +00001339 // We need to adjust the input pointer if we are emulating a big-endian
1340 // long-pointer target. On these systems, the pointer that we are interested
1341 // in is in the upper part of the eight byte memory image of the pointer. It
1342 // also happens to be byte-swapped, but this will be handled later.
1343 //
1344 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1345 unsigned R = makeAnotherReg(Type::UIntTy);
1346 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1347 SrcAddrReg = R;
1348 }
Chris Lattner94af4142002-12-25 05:13:53 +00001349
Chris Lattnere8f0d922002-12-24 00:03:11 +00001350 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001351 if (!isLittleEndian) // If big endian we need an intermediate stage
1352 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001353
Chris Lattner3e130a22003-01-13 00:32:26 +00001354 static const unsigned Opcode[] = {
1355 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1356 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001357 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1358
Chris Lattner3e130a22003-01-13 00:32:26 +00001359 // Handle long values now...
1360 if (Class == cLong) {
1361 if (isLittleEndian) {
1362 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1363 } else {
1364 EmitByteSwap(IReg+1, DestReg, cInt);
1365 unsigned TempReg = makeAnotherReg(Type::IntTy);
1366 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1367 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001368 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001369 return;
1370 }
1371
1372 if (!isLittleEndian)
1373 EmitByteSwap(IReg, DestReg, Class);
1374}
1375
1376
1377/// doFPStore - This method is used to store an FP value to memory using the
1378/// current endianness.
1379///
1380void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1381 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1382 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1383
1384 if (TM.getTargetData().isLittleEndian()) { // fast path...
1385 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1386 return;
1387 }
1388
1389 // Allocate a temporary stack slot to transform the value into...
1390 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1391 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1392 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1393
1394 // Store the value into a temporary stack slot...
1395 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1396
1397 // Perform the bswaps 32 bits at a time...
1398 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1399 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1400 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1401 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1402 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1403 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1404 DestAddrReg, Offset).addReg(TmpReg2);
1405
1406 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1407 TmpReg1 = makeAnotherReg(Type::UIntTy);
1408 TmpReg2 = makeAnotherReg(Type::UIntTy);
1409
1410 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1411 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1412 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1413 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001414 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001415}
1416
Chris Lattner06925362002-11-17 21:56:38 +00001417
Chris Lattner6fc3c522002-11-17 21:11:55 +00001418/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1419/// instruction.
1420///
1421void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001422 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1423 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001424 unsigned ValReg = getReg(I.getOperand(0));
1425 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001426
Chris Lattner94af4142002-12-25 05:13:53 +00001427 unsigned Class = getClass(I.getOperand(0)->getType());
1428 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001429 case cLong:
1430 if (isLittleEndian) {
1431 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1432 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1433 AddressReg, 4).addReg(ValReg+1);
1434 } else {
1435 unsigned T1 = makeAnotherReg(Type::IntTy);
1436 unsigned T2 = makeAnotherReg(Type::IntTy);
1437 EmitByteSwap(T1, ValReg , cInt);
1438 EmitByteSwap(T2, ValReg+1, cInt);
1439 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1440 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1441 }
Chris Lattner94af4142002-12-25 05:13:53 +00001442 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001443 case cFP:
1444 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1445 return;
1446 case cInt: case cShort: case cByte:
1447 break; // Integers of various sizes handled below
1448 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001449 }
1450
1451 if (!isLittleEndian && hasLongPointers &&
1452 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001453 unsigned R = makeAnotherReg(Type::UIntTy);
1454 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1455 AddressReg = R;
1456 }
1457
Chris Lattner94af4142002-12-25 05:13:53 +00001458 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001459 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1460 EmitByteSwap(R, ValReg, Class);
1461 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001462 }
1463
Chris Lattner94af4142002-12-25 05:13:53 +00001464 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001465 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1466}
1467
1468
Brian Gaekec11232a2002-11-26 10:43:30 +00001469/// visitCastInst - Here we have various kinds of copying with or without
1470/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001471void ISel::visitCastInst(CastInst &CI) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001472 unsigned DestReg = getReg(CI);
1473 MachineBasicBlock::iterator MI = BB->end();
1474 emitCastOperation(BB, MI, CI.getOperand(0), CI.getType(), DestReg);
1475}
1476
1477/// emitCastOperation - Common code shared between visitCastInst and
1478/// constant expression cast support.
1479void ISel::emitCastOperation(MachineBasicBlock *BB,
1480 MachineBasicBlock::iterator &IP,
1481 Value *Src, const Type *DestTy,
1482 unsigned DestReg) {
Chris Lattner3907d112003-04-23 17:57:48 +00001483 unsigned SrcReg = getReg(Src, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001484 const Type *SrcTy = Src->getType();
1485 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00001486 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001487
Chris Lattner3e130a22003-01-13 00:32:26 +00001488 // Implement casts to bool by using compare on the operand followed by set if
1489 // not zero on the result.
1490 if (DestTy == Type::BoolTy) {
1491 if (SrcClass == cFP || SrcClass == cLong)
Chris Lattner548f61d2003-04-23 17:22:12 +00001492 abort(); // FIXME: implement cast (long & FP) to bool
Chris Lattner3e130a22003-01-13 00:32:26 +00001493
Chris Lattner548f61d2003-04-23 17:22:12 +00001494 BMI(BB, IP, X86::CMPri8, 2).addReg(SrcReg).addZImm(0);
1495 BMI(BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001496 return;
1497 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001498
1499 static const unsigned RegRegMove[] = {
1500 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1501 };
1502
1503 // Implement casts between values of the same type class (as determined by
1504 // getClass) by using a register-to-register move.
1505 if (SrcClass == DestClass) {
1506 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001507 BMI(BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001508 } else if (SrcClass == cFP) {
1509 if (SrcTy == Type::FloatTy) { // double -> float
1510 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattner548f61d2003-04-23 17:22:12 +00001511 BMI(BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001512 } else { // float -> double
1513 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1514 "Unknown cFP member!");
1515 // Truncate from double to float by storing to memory as short, then
1516 // reading it back.
1517 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1518 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Chris Lattner548f61d2003-04-23 17:22:12 +00001519 addFrameReference(BMI(BB, IP, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1520 addFrameReference(BMI(BB, IP, X86::FLDr32, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001521 }
1522 } else if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001523 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1524 BMI(BB, IP, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001525 } else {
Chris Lattner548f61d2003-04-23 17:22:12 +00001526 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00001527 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001528 return;
1529 }
1530
1531 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1532 // or zero extension, depending on whether the source type was signed.
1533 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1534 SrcClass < DestClass) {
1535 bool isLong = DestClass == cLong;
1536 if (isLong) DestClass = cInt;
1537
1538 static const unsigned Opc[][4] = {
1539 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1540 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1541 };
1542
1543 bool isUnsigned = SrcTy->isUnsigned();
Chris Lattner548f61d2003-04-23 17:22:12 +00001544 BMI(BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1545 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001546
1547 if (isLong) { // Handle upper 32 bits as appropriate...
1548 if (isUnsigned) // Zero out top bits...
Chris Lattner548f61d2003-04-23 17:22:12 +00001549 BMI(BB, IP, X86::MOVir32, 1, DestReg+1).addZImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001550 else // Sign extend bottom half...
Chris Lattner548f61d2003-04-23 17:22:12 +00001551 BMI(BB, IP, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001552 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001553 return;
1554 }
1555
1556 // Special case long -> int ...
1557 if (SrcClass == cLong && DestClass == cInt) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001558 BMI(BB, IP, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001559 return;
1560 }
1561
1562 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1563 // move out of AX or AL.
1564 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1565 && SrcClass > DestClass) {
1566 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattner548f61d2003-04-23 17:22:12 +00001567 BMI(BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1568 BMI(BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00001569 return;
1570 }
1571
1572 // Handle casts from integer to floating point now...
1573 if (DestClass == cFP) {
1574 // unsigned int -> load as 64 bit int.
1575 // unsigned long long -> more complex
1576 if (SrcTy->isUnsigned() && SrcTy != Type::UByteTy)
Chris Lattner548f61d2003-04-23 17:22:12 +00001577 abort(); // don't handle unsigned src yet!
Chris Lattner3e130a22003-01-13 00:32:26 +00001578
1579 // We don't have the facilities for directly loading byte sized data from
1580 // memory. Promote it to 16 bits.
1581 if (SrcClass == cByte) {
1582 unsigned TmpReg = makeAnotherReg(Type::ShortTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001583 BMI(BB, IP, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1584 1, TmpReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001585 SrcTy = Type::ShortTy; // Pretend the short is our input now!
1586 SrcClass = cShort;
1587 SrcReg = TmpReg;
1588 }
1589
1590 // Spill the integer to memory and reload it from there...
1591 int FrameIdx =
1592 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1593
1594 if (SrcClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001595 if (SrcTy == Type::ULongTy) abort(); // FIXME: Handle ulong -> FP
1596 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1597 addFrameReference(BMI(BB, IP, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001598 FrameIdx, 4).addReg(SrcReg+1);
1599 } else {
1600 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001601 addFrameReference(BMI(BB, IP, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001602 }
1603
1604 static const unsigned Op2[] =
1605 { 0, X86::FILDr16, X86::FILDr32, 0, X86::FILDr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001606 addFrameReference(BMI(BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001607 return;
1608 }
1609
1610 // Handle casts from floating point to integer now...
1611 if (SrcClass == cFP) {
1612 // Change the floating point control register to use "round towards zero"
1613 // mode when truncating to an integer value.
1614 //
1615 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Chris Lattner548f61d2003-04-23 17:22:12 +00001616 addFrameReference(BMI(BB, IP, X86::FNSTCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001617
1618 // Load the old value of the high byte of the control word...
1619 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Chris Lattner548f61d2003-04-23 17:22:12 +00001620 addFrameReference(BMI(BB, IP, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00001621
1622 // Set the high part to be round to zero...
Chris Lattner548f61d2003-04-23 17:22:12 +00001623 addFrameReference(BMI(BB, IP, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00001624
1625 // Reload the modified control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001626 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001627
1628 // Restore the memory image of control word to original value
Chris Lattner548f61d2003-04-23 17:22:12 +00001629 addFrameReference(BMI(BB, IP, X86::MOVrm8, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +00001630 CWFrameIdx, 1).addReg(HighPartOfCW);
1631
1632 // We don't have the facilities for directly storing byte sized data to
1633 // memory. Promote it to 16 bits. We also must promote unsigned values to
1634 // larger classes because we only have signed FP stores.
1635 unsigned StoreClass = DestClass;
1636 const Type *StoreTy = DestTy;
1637 if (StoreClass == cByte || DestTy->isUnsigned())
1638 switch (StoreClass) {
1639 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1640 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1641 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner548f61d2003-04-23 17:22:12 +00001642 case cLong: abort(); // FIXME: unsigned long long -> more complex
Chris Lattner3e130a22003-01-13 00:32:26 +00001643 default: assert(0 && "Unknown store class!");
1644 }
1645
1646 // Spill the integer to memory and reload it from there...
1647 int FrameIdx =
1648 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1649
1650 static const unsigned Op1[] =
1651 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001652 addFrameReference(BMI(BB, IP, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001653
1654 if (DestClass == cLong) {
Chris Lattner548f61d2003-04-23 17:22:12 +00001655 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg), FrameIdx);
1656 addFrameReference(BMI(BB, IP, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00001657 } else {
1658 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
Chris Lattner548f61d2003-04-23 17:22:12 +00001659 addFrameReference(BMI(BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001660 }
1661
1662 // Reload the original control word now...
Chris Lattner548f61d2003-04-23 17:22:12 +00001663 addFrameReference(BMI(BB, IP, X86::FLDCWm16, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00001664 return;
1665 }
1666
Brian Gaeked474e9c2002-12-06 10:49:33 +00001667 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattner548f61d2003-04-23 17:22:12 +00001668 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00001669}
Brian Gaekea1719c92002-10-31 23:03:59 +00001670
Chris Lattnereca195e2003-05-08 19:44:13 +00001671/// visitVarArgInst - Implement the va_arg instruction...
1672///
1673void ISel::visitVarArgInst(VarArgInst &I) {
1674 unsigned SrcReg = getReg(I.getOperand(0));
1675 unsigned DestReg = getReg(I);
1676
1677 // Load the va_list into a register...
1678 unsigned VAList = makeAnotherReg(Type::UIntTy);
1679 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, VAList), SrcReg);
1680
1681 unsigned Size;
1682 switch (I.getType()->getPrimitiveID()) {
1683 default:
1684 std::cerr << I;
1685 assert(0 && "Error: bad type for va_arg instruction!");
1686 return;
1687 case Type::PointerTyID:
1688 case Type::UIntTyID:
1689 case Type::IntTyID:
1690 Size = 4;
1691 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1692 break;
1693 case Type::ULongTyID:
1694 case Type::LongTyID:
1695 Size = 8;
1696 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, DestReg), VAList);
1697 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), VAList, 4);
1698 break;
1699 case Type::DoubleTyID:
1700 Size = 8;
1701 addDirectMem(BuildMI(BB, X86::FLDr64, 4, DestReg), VAList);
1702 break;
1703 }
1704
1705 // Increment the VAList pointer...
1706 unsigned NextVAList = makeAnotherReg(Type::UIntTy);
1707 BuildMI(BB, X86::ADDri32, 2, NextVAList).addReg(VAList).addZImm(Size);
1708
1709 // Update the VAList in memory...
1710 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), SrcReg).addReg(NextVAList);
1711}
1712
1713
Chris Lattner8a307e82002-12-16 19:32:50 +00001714// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1715// returns zero when the input is not exactly a power of two.
1716static unsigned ExactLog2(unsigned Val) {
1717 if (Val == 0) return 0;
1718 unsigned Count = 0;
1719 while (Val != 1) {
1720 if (Val & 1) return 0;
1721 Val >>= 1;
1722 ++Count;
1723 }
1724 return Count+1;
1725}
1726
Chris Lattner3e130a22003-01-13 00:32:26 +00001727void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1728 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001729 MachineBasicBlock::iterator MI = BB->end();
1730 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001731 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001732}
1733
Brian Gaeke71794c02002-12-13 11:22:48 +00001734void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001735 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001736 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001737 User::op_iterator IdxEnd, unsigned TargetReg) {
1738 const TargetData &TD = TM.getTargetData();
1739 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001740 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001741
Brian Gaeke20244b72002-12-12 15:33:40 +00001742 // GEPs have zero or more indices; we must perform a struct access
1743 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001744 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1745 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001746 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001747 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001748 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001749 // It's a struct access. idx is the index into the structure,
1750 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001751 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1752 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001753 && "Funny-looking structure index in GEP");
1754 // Use the TargetData structure to pick out what the layout of
1755 // the structure is in memory. Since the structure index must
1756 // be constant, we can get its value and use it to find the
1757 // right byte offset from the StructLayout class's list of
1758 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001759 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001760 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1761 if (FieldOff) {
1762 NextReg = makeAnotherReg(Type::UIntTy);
1763 // Emit an ADD to add FieldOff to the basePtr.
1764 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1765 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001766 // The next type is the member of the structure selected by the
1767 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001768 Ty = StTy->getElementTypes()[idxValue];
1769 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001770 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001771
Brian Gaeke20244b72002-12-12 15:33:40 +00001772 // idx is the index into the array. Unlike with structure
1773 // indices, we may not know its actual value at code-generation
1774 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001775 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1776
Chris Lattner3e130a22003-01-13 00:32:26 +00001777 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001778 // must find the size of the pointed-to type (Not coincidentally, the next
1779 // type is the type of the elements in the array).
1780 Ty = SqTy->getElementType();
1781 unsigned elementSize = TD.getTypeSize(Ty);
1782
1783 // If idxReg is a constant, we don't need to perform the multiply!
1784 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001785 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001786 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001787 NextReg = makeAnotherReg(Type::UIntTy);
1788 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001789 }
1790 } else if (elementSize == 1) {
1791 // If the element size is 1, we don't have to multiply, just add
1792 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001793 NextReg = makeAnotherReg(Type::UIntTy);
1794 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001795 } else {
1796 unsigned idxReg = getReg(idx, MBB, IP);
1797 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1798 if (unsigned Shift = ExactLog2(elementSize)) {
1799 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001800 BMI(MBB, IP, X86::SHLir32, 2,
1801 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1802 } else {
1803 // Most general case, emit a multiply...
1804 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1805 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1806
1807 // Emit a MUL to multiply the register holding the index by
1808 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001809 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001810 }
1811 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001812 NextReg = makeAnotherReg(Type::UIntTy);
1813 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001814 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001815 }
1816 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00001817 // one, so we don't need to worry about BaseReg itself, anymore.
1818 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00001819 }
1820 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00001821 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00001822 // put the answer. A 32-bit move should do it, because we are in
1823 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00001824 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001825}
1826
1827
Chris Lattner065faeb2002-12-28 20:24:02 +00001828/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
1829/// frame manager, otherwise do it the hard way.
1830///
1831void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00001832 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00001833 const Type *Ty = I.getAllocatedType();
1834 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
1835
1836 // If this is a fixed size alloca in the entry block for the function,
1837 // statically stack allocate the space.
1838 //
1839 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
1840 if (I.getParent() == I.getParent()->getParent()->begin()) {
1841 TySize *= CUI->getValue(); // Get total allocated size...
1842 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
1843
1844 // Create a new stack object using the frame manager...
1845 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
1846 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
1847 return;
1848 }
1849 }
1850
1851 // Create a register to hold the temporary result of multiplying the type size
1852 // constant by the variable amount.
1853 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
1854 unsigned SrcReg1 = getReg(I.getArraySize());
1855 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
1856 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
1857
1858 // TotalSizeReg = mul <numelements>, <TypeSize>
1859 MachineBasicBlock::iterator MBBI = BB->end();
1860 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
1861
1862 // AddedSize = add <TotalSizeReg>, 15
1863 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
1864 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
1865
1866 // AlignedSize = and <AddedSize>, ~15
1867 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
1868 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
1869
Brian Gaekee48ec012002-12-13 06:46:31 +00001870 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00001871 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00001872
Brian Gaekee48ec012002-12-13 06:46:31 +00001873 // Put a pointer to the space into the result register, by copying
1874 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00001875 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
1876
Misha Brukman48196b32003-05-03 02:18:17 +00001877 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00001878 // object.
1879 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00001880}
Chris Lattner3e130a22003-01-13 00:32:26 +00001881
1882/// visitMallocInst - Malloc instructions are code generated into direct calls
1883/// to the library malloc.
1884///
1885void ISel::visitMallocInst(MallocInst &I) {
1886 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
1887 unsigned Arg;
1888
1889 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
1890 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
1891 } else {
1892 Arg = makeAnotherReg(Type::UIntTy);
1893 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
1894 unsigned Op1Reg = getReg(I.getOperand(0));
1895 MachineBasicBlock::iterator MBBI = BB->end();
1896 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
1897
1898
1899 }
1900
1901 std::vector<ValueRecord> Args;
1902 Args.push_back(ValueRecord(Arg, Type::UIntTy));
1903 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1904 1).addExternalSymbol("malloc", true);
1905 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
1906}
1907
1908
1909/// visitFreeInst - Free instructions are code gen'd to call the free libc
1910/// function.
1911///
1912void ISel::visitFreeInst(FreeInst &I) {
1913 std::vector<ValueRecord> Args;
1914 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
1915 I.getOperand(0)->getType()));
1916 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1917 1).addExternalSymbol("free", true);
1918 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
1919}
1920
Brian Gaeke20244b72002-12-12 15:33:40 +00001921
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001922/// createSimpleX86InstructionSelector - This pass converts an LLVM function
1923/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00001924/// generated code sucks but the implementation is nice and simple.
1925///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001926Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
1927 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00001928}