blob: 64b7b12a5ed228032ff5dc0e037418f582536cdf [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnere96fda32003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000029#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000032#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000035#include <algorithm>
Chris Lattnerdac58ad2006-01-22 23:32:06 +000036#include <iostream>
Chris Lattnerd7456022004-01-09 06:02:20 +000037using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000038
Chris Lattner4fd56002002-05-08 22:19:27 +000039namespace {
Chris Lattnera92f6962002-10-01 22:38:41 +000040 Statistic<> NumLinear ("reassociate","Number of insts linearized");
41 Statistic<> NumChanged("reassociate","Number of insts reassociated");
42 Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Chris Lattner109d34d2005-05-08 18:59:37 +000043 Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Chris Lattnere5022fe2006-03-04 09:31:13 +000044 Statistic<> NumFactor ("reassociate","Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000045
Chris Lattnerc0649ac2005-05-07 21:59:39 +000046 struct ValueEntry {
47 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000054}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000055
Chris Lattnere5022fe2006-03-04 09:31:13 +000056/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59 Module *M = I->getParent()->getParent()->getParent();
60 std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61 << *Ops[0].Op->getType();
62 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
63 WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
64 << "," << Ops[i].Rank;
65}
66
67namespace {
Chris Lattner4fd56002002-05-08 22:19:27 +000068 class Reassociate : public FunctionPass {
Chris Lattner0c0edf82002-07-25 06:17:51 +000069 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattnerfb5be092003-08-13 16:16:26 +000070 std::map<Value*, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000071 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000072 public:
Chris Lattner7e708292002-06-25 16:13:24 +000073 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000074
75 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000076 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000077 }
78 private:
Chris Lattner7e708292002-06-25 16:13:24 +000079 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000080 unsigned getRank(Value *V);
Chris Lattner895b3922006-03-14 07:11:11 +000081 void ReassociateExpression(BinaryOperator *I);
Chris Lattnere9efecb2006-03-14 16:04:29 +000082 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
83 unsigned Idx = 0);
Chris Lattnere5022fe2006-03-04 09:31:13 +000084 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000085 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
86 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000087 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000088 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +000089
90 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +000091 };
Chris Lattnerf6293092002-07-23 18:06:35 +000092
Chris Lattner7f8897f2006-08-27 22:42:52 +000093 RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattner4fd56002002-05-08 22:19:27 +000094}
95
Brian Gaeked0fde302003-11-11 22:41:34 +000096// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +000097FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +000098
Chris Lattnere5022fe2006-03-04 09:31:13 +000099void Reassociate::RemoveDeadBinaryOp(Value *V) {
100 BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
101 if (!BOp || !BOp->use_empty()) return;
102
103 Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
104 RemoveDeadBinaryOp(LHS);
105 RemoveDeadBinaryOp(RHS);
106}
107
Chris Lattner9c723192005-05-08 20:57:04 +0000108
109static bool isUnmovableInstruction(Instruction *I) {
110 if (I->getOpcode() == Instruction::PHI ||
111 I->getOpcode() == Instruction::Alloca ||
112 I->getOpcode() == Instruction::Load ||
113 I->getOpcode() == Instruction::Malloc ||
114 I->getOpcode() == Instruction::Invoke ||
115 I->getOpcode() == Instruction::Call ||
116 I->getOpcode() == Instruction::Div ||
117 I->getOpcode() == Instruction::Rem)
118 return true;
119 return false;
120}
121
Chris Lattner7e708292002-06-25 16:13:24 +0000122void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000123 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000124
125 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000126 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerfb5be092003-08-13 16:16:26 +0000127 ValueRankMap[I] = ++i;
128
Chris Lattner7e708292002-06-25 16:13:24 +0000129 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000130 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000131 E = RPOT.end(); I != E; ++I) {
132 BasicBlock *BB = *I;
133 unsigned BBRank = RankMap[BB] = ++i << 16;
134
135 // Walk the basic block, adding precomputed ranks for any instructions that
136 // we cannot move. This ensures that the ranks for these instructions are
137 // all different in the block.
138 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
139 if (isUnmovableInstruction(I))
140 ValueRankMap[I] = ++BBRank;
141 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000142}
143
144unsigned Reassociate::getRank(Value *V) {
Chris Lattnerfb5be092003-08-13 16:16:26 +0000145 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
146
Chris Lattner08b43922005-05-07 04:08:02 +0000147 Instruction *I = dyn_cast<Instruction>(V);
148 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattner4fd56002002-05-08 22:19:27 +0000149
Chris Lattner08b43922005-05-07 04:08:02 +0000150 unsigned &CachedRank = ValueRankMap[I];
151 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000152
Chris Lattner08b43922005-05-07 04:08:02 +0000153 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
154 // we can reassociate expressions for code motion! Since we do not recurse
155 // for PHI nodes, we cannot have infinite recursion here, because there
156 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000157 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
158 for (unsigned i = 0, e = I->getNumOperands();
159 i != e && Rank != MaxRank; ++i)
160 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000161
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000162 // If this is a not or neg instruction, do not count it for rank. This
163 // assures us that X and ~X will have the same rank.
164 if (!I->getType()->isIntegral() ||
165 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
166 ++Rank;
167
Chris Lattner9c723192005-05-08 20:57:04 +0000168 //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
169 //<< Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000170
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000171 return CachedRank = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000172}
173
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000174/// isReassociableOp - Return true if V is an instruction of the specified
175/// opcode and if it only has one use.
176static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000177 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000178 cast<Instruction>(V)->getOpcode() == Opcode)
179 return cast<BinaryOperator>(V);
180 return 0;
181}
Chris Lattner4fd56002002-05-08 22:19:27 +0000182
Chris Lattnerf33151a2005-05-08 21:28:52 +0000183/// LowerNegateToMultiply - Replace 0-X with X*-1.
184///
185static Instruction *LowerNegateToMultiply(Instruction *Neg) {
186 Constant *Cst;
187 if (Neg->getType()->isFloatingPoint())
188 Cst = ConstantFP::get(Neg->getType(), -1);
189 else
190 Cst = ConstantInt::getAllOnesValue(Neg->getType());
191
192 std::string NegName = Neg->getName(); Neg->setName("");
193 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
194 Neg);
195 Neg->replaceAllUsesWith(Res);
196 Neg->eraseFromParent();
197 return Res;
198}
199
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000200// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
201// Note that if D is also part of the expression tree that we recurse to
202// linearize it as well. Besides that case, this does not recurse into A,B, or
203// C.
204void Reassociate::LinearizeExpr(BinaryOperator *I) {
205 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
206 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000207 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000208 isReassociableOp(RHS, I->getOpcode()) &&
209 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000210
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000211 DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
Chris Lattner4fd56002002-05-08 22:19:27 +0000212
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000213 // Move the RHS instruction to live immediately before I, avoiding breaking
214 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000215 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000216
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000217 // Move operands around to do the linearization.
218 I->setOperand(1, RHS->getOperand(0));
219 RHS->setOperand(0, LHS);
220 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000221
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000222 ++NumLinear;
223 MadeChange = true;
224 DEBUG(std::cerr << "Linearized: " << *I);
225
226 // If D is part of this expression tree, tail recurse.
227 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
228 LinearizeExpr(I);
229}
230
231
232/// LinearizeExprTree - Given an associative binary expression tree, traverse
233/// all of the uses putting it into canonical form. This forces a left-linear
234/// form of the the expression (((a+b)+c)+d), and collects information about the
235/// rank of the non-tree operands.
236///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000237/// NOTE: These intentionally destroys the expression tree operands (turning
238/// them into undef values) to reduce #uses of the values. This means that the
239/// caller MUST use something like RewriteExprTree to put the values back in.
240///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000241void Reassociate::LinearizeExprTree(BinaryOperator *I,
242 std::vector<ValueEntry> &Ops) {
243 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
244 unsigned Opcode = I->getOpcode();
245
246 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
247 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
248 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
249
Chris Lattnerf33151a2005-05-08 21:28:52 +0000250 // If this is a multiply expression tree and it contains internal negations,
251 // transform them into multiplies by -1 so they can be reassociated.
252 if (I->getOpcode() == Instruction::Mul) {
253 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
254 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
255 LHSBO = isReassociableOp(LHS, Opcode);
256 }
257 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
258 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
259 RHSBO = isReassociableOp(RHS, Opcode);
260 }
261 }
262
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000263 if (!LHSBO) {
264 if (!RHSBO) {
265 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
266 // such, just remember these operands and their rank.
267 Ops.push_back(ValueEntry(getRank(LHS), LHS));
268 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000269
270 // Clear the leaves out.
271 I->setOperand(0, UndefValue::get(I->getType()));
272 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000273 return;
274 } else {
275 // Turn X+(Y+Z) -> (Y+Z)+X
276 std::swap(LHSBO, RHSBO);
277 std::swap(LHS, RHS);
278 bool Success = !I->swapOperands();
279 assert(Success && "swapOperands failed");
280 MadeChange = true;
281 }
282 } else if (RHSBO) {
283 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
284 // part of the expression tree.
285 LinearizeExpr(I);
286 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
287 RHS = I->getOperand(1);
288 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000289 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000290
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000291 // Okay, now we know that the LHS is a nested expression and that the RHS is
292 // not. Perform reassociation.
293 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000294
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000295 // Move LHS right before I to make sure that the tree expression dominates all
296 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000297 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000298
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000299 // Linearize the expression tree on the LHS.
300 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000301
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000302 // Remember the RHS operand and its rank.
303 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000304
305 // Clear the RHS leaf out.
306 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000307}
308
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000309// RewriteExprTree - Now that the operands for this expression tree are
310// linearized and optimized, emit them in-order. This function is written to be
311// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000312void Reassociate::RewriteExprTree(BinaryOperator *I,
313 std::vector<ValueEntry> &Ops,
314 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000315 if (i+2 == Ops.size()) {
316 if (I->getOperand(0) != Ops[i].Op ||
317 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000318 Value *OldLHS = I->getOperand(0);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000319 DEBUG(std::cerr << "RA: " << *I);
320 I->setOperand(0, Ops[i].Op);
321 I->setOperand(1, Ops[i+1].Op);
322 DEBUG(std::cerr << "TO: " << *I);
323 MadeChange = true;
324 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000325
326 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
327 // delete the extra, now dead, nodes.
328 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000329 }
330 return;
331 }
332 assert(i+2 < Ops.size() && "Ops index out of range!");
333
334 if (I->getOperand(1) != Ops[i].Op) {
335 DEBUG(std::cerr << "RA: " << *I);
336 I->setOperand(1, Ops[i].Op);
337 DEBUG(std::cerr << "TO: " << *I);
338 MadeChange = true;
339 ++NumChanged;
340 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000341
342 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
343 assert(LHS->getOpcode() == I->getOpcode() &&
344 "Improper expression tree!");
345
346 // Compactify the tree instructions together with each other to guarantee
347 // that the expression tree is dominated by all of Ops.
348 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000349 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000350}
351
352
Chris Lattner4fd56002002-05-08 22:19:27 +0000353
Chris Lattnera36e6c82002-05-16 04:37:07 +0000354// NegateValue - Insert instructions before the instruction pointed to by BI,
355// that computes the negative version of the value specified. The negative
356// version of the value is returned, and BI is left pointing at the instruction
357// that should be processed next by the reassociation pass.
358//
Chris Lattner08b43922005-05-07 04:08:02 +0000359static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattnera36e6c82002-05-16 04:37:07 +0000360 // We are trying to expose opportunity for reassociation. One of the things
361 // that we want to do to achieve this is to push a negation as deep into an
362 // expression chain as possible, to expose the add instructions. In practice,
363 // this means that we turn this:
364 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
365 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
366 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman5560c9d2003-08-18 14:43:39 +0000367 // we introduce tons of unnecessary negation instructions...
Chris Lattnera36e6c82002-05-16 04:37:07 +0000368 //
369 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000370 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000371 // Push the negates through the add.
372 I->setOperand(0, NegateValue(I->getOperand(0), BI));
373 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000374
Chris Lattner2cd85da2005-09-02 06:38:04 +0000375 // We must move the add instruction here, because the neg instructions do
376 // not dominate the old add instruction in general. By moving it, we are
377 // assured that the neg instructions we just inserted dominate the
378 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000379 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000380 I->moveBefore(BI);
381 I->setName(I->getName()+".neg");
382 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000383 }
384
385 // Insert a 'neg' instruction that subtracts the value from zero to get the
386 // negation.
387 //
Chris Lattner08b43922005-05-07 04:08:02 +0000388 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
389}
390
Chris Lattner08b43922005-05-07 04:08:02 +0000391/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
392/// only used by an add, transform this into (X+(0-Y)) to promote better
393/// reassociation.
394static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattner08b43922005-05-07 04:08:02 +0000395 // Don't bother to break this up unless either the LHS is an associable add or
396 // if this is only used by one.
397 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
398 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
399 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
400 return 0;
401
402 // Convert a subtract into an add and a neg instruction... so that sub
403 // instructions can be commuted with other add instructions...
404 //
405 // Calculate the negative value of Operand 1 of the sub instruction...
406 // and set it as the RHS of the add instruction we just made...
407 //
408 std::string Name = Sub->getName();
409 Sub->setName("");
410 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
411 Instruction *New =
412 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
413
414 // Everyone now refers to the add instruction.
415 Sub->replaceAllUsesWith(New);
416 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000417
Chris Lattner08b43922005-05-07 04:08:02 +0000418 DEBUG(std::cerr << "Negated: " << *New);
419 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000420}
421
Chris Lattner0975ed52005-05-07 04:24:13 +0000422/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
423/// by one, change this into a multiply by a constant to assist with further
424/// reassociation.
425static Instruction *ConvertShiftToMul(Instruction *Shl) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000426 // If an operand of this shift is a reassociable multiply, or if the shift
427 // is used by a reassociable multiply or add, turn into a multiply.
428 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
429 (Shl->hasOneUse() &&
430 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
431 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
432 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
433 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
434
435 std::string Name = Shl->getName(); Shl->setName("");
436 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
437 Name, Shl);
438 Shl->replaceAllUsesWith(Mul);
439 Shl->eraseFromParent();
440 return Mul;
441 }
442 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000443}
444
Chris Lattner109d34d2005-05-08 18:59:37 +0000445// Scan backwards and forwards among values with the same rank as element i to
446// see if X exists. If X does not exist, return i.
447static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
448 Value *X) {
449 unsigned XRank = Ops[i].Rank;
450 unsigned e = Ops.size();
451 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
452 if (Ops[j].Op == X)
453 return j;
454 // Scan backwards
455 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
456 if (Ops[j].Op == X)
457 return j;
458 return i;
459}
460
Chris Lattnere5022fe2006-03-04 09:31:13 +0000461/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
462/// and returning the result. Insert the tree before I.
463static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
464 if (Ops.size() == 1) return Ops.back();
465
466 Value *V1 = Ops.back();
467 Ops.pop_back();
468 Value *V2 = EmitAddTreeOfValues(I, Ops);
469 return BinaryOperator::createAdd(V2, V1, "tmp", I);
470}
471
472/// RemoveFactorFromExpression - If V is an expression tree that is a
473/// multiplication sequence, and if this sequence contains a multiply by Factor,
474/// remove Factor from the tree and return the new tree.
475Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
476 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
477 if (!BO) return 0;
478
479 std::vector<ValueEntry> Factors;
480 LinearizeExprTree(BO, Factors);
481
482 bool FoundFactor = false;
483 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
484 if (Factors[i].Op == Factor) {
485 FoundFactor = true;
486 Factors.erase(Factors.begin()+i);
487 break;
488 }
Chris Lattnere9efecb2006-03-14 16:04:29 +0000489 if (!FoundFactor) {
490 // Make sure to restore the operands to the expression tree.
491 RewriteExprTree(BO, Factors);
492 return 0;
493 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000494
495 if (Factors.size() == 1) return Factors[0].Op;
496
Chris Lattnere9efecb2006-03-14 16:04:29 +0000497 RewriteExprTree(BO, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000498 return BO;
499}
500
Chris Lattnere9efecb2006-03-14 16:04:29 +0000501/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
502/// add its operands as factors, otherwise add V to the list of factors.
503static void FindSingleUseMultiplyFactors(Value *V,
504 std::vector<Value*> &Factors) {
505 BinaryOperator *BO;
506 if ((!V->hasOneUse() && !V->use_empty()) ||
507 !(BO = dyn_cast<BinaryOperator>(V)) ||
508 BO->getOpcode() != Instruction::Mul) {
509 Factors.push_back(V);
510 return;
511 }
512
513 // Otherwise, add the LHS and RHS to the list of factors.
514 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
515 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
516}
517
518
Chris Lattnere5022fe2006-03-04 09:31:13 +0000519
520Value *Reassociate::OptimizeExpression(BinaryOperator *I,
521 std::vector<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000522 // Now that we have the linearized expression tree, try to optimize it.
523 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000524 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000525 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000526
Chris Lattnere5022fe2006-03-04 09:31:13 +0000527 unsigned Opcode = I->getOpcode();
528
Chris Lattner46900102005-05-08 00:19:31 +0000529 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
530 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
531 Ops.pop_back();
532 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000533 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000534 }
535
536 // Check for destructive annihilation due to a constant being used.
537 if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
538 switch (Opcode) {
539 default: break;
540 case Instruction::And:
541 if (CstVal->isNullValue()) { // ... & 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000542 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000543 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000544 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
545 Ops.pop_back();
546 }
547 break;
548 case Instruction::Mul:
549 if (CstVal->isNullValue()) { // ... * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000550 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000551 return CstVal;
Reid Spencerb83eb642006-10-20 07:07:24 +0000552 } else if (cast<ConstantInt>(CstVal)->getZExtValue() == 1) {
Chris Lattner46900102005-05-08 00:19:31 +0000553 Ops.pop_back(); // ... * 1 -> ...
554 }
555 break;
556 case Instruction::Or:
557 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000558 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000559 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000560 }
561 // FALLTHROUGH!
562 case Instruction::Add:
563 case Instruction::Xor:
564 if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
565 Ops.pop_back();
566 break;
567 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000568 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000569
570 // Handle destructive annihilation do to identities between elements in the
571 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000572 switch (Opcode) {
573 default: break;
574 case Instruction::And:
575 case Instruction::Or:
576 case Instruction::Xor:
577 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
578 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
579 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
580 // First, check for X and ~X in the operand list.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000581 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000582 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
583 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
584 unsigned FoundX = FindInOperandList(Ops, i, X);
585 if (FoundX != i) {
586 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000587 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000588 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000589 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000590 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000591 return ConstantIntegral::getAllOnesValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000592 }
593 }
594 }
595
596 // Next, check for duplicate pairs of values, which we assume are next to
597 // each other, due to our sorting criteria.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000598 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000599 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
600 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
601 // Drop duplicate values.
602 Ops.erase(Ops.begin()+i);
603 --i; --e;
604 IterateOptimization = true;
605 ++NumAnnihil;
606 } else {
607 assert(Opcode == Instruction::Xor);
Chris Lattnerac83b032005-08-24 17:55:32 +0000608 if (e == 2) {
Chris Lattnerac83b032005-08-24 17:55:32 +0000609 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000610 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattnerac83b032005-08-24 17:55:32 +0000611 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000612 // ... X^X -> ...
613 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattnerac83b032005-08-24 17:55:32 +0000614 i -= 1; e -= 2;
Chris Lattner109d34d2005-05-08 18:59:37 +0000615 IterateOptimization = true;
616 ++NumAnnihil;
617 }
618 }
619 }
620 break;
621
622 case Instruction::Add:
623 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattnere5022fe2006-03-04 09:31:13 +0000624 // can simplify the expression. X+-X == 0.
Chris Lattner109d34d2005-05-08 18:59:37 +0000625 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner368a3aa2005-09-02 05:23:22 +0000626 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000627 // Check for X and -X in the operand list.
628 if (BinaryOperator::isNeg(Ops[i].Op)) {
629 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
630 unsigned FoundX = FindInOperandList(Ops, i, X);
631 if (FoundX != i) {
632 // Remove X and -X from the operand list.
633 if (Ops.size() == 2) {
Chris Lattner109d34d2005-05-08 18:59:37 +0000634 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000635 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000636 } else {
637 Ops.erase(Ops.begin()+i);
Chris Lattner368a3aa2005-09-02 05:23:22 +0000638 if (i < FoundX)
639 --FoundX;
640 else
641 --i; // Need to back up an extra one.
Chris Lattner109d34d2005-05-08 18:59:37 +0000642 Ops.erase(Ops.begin()+FoundX);
643 IterateOptimization = true;
644 ++NumAnnihil;
Chris Lattner368a3aa2005-09-02 05:23:22 +0000645 --i; // Revisit element.
646 e -= 2; // Removed two elements.
Chris Lattner109d34d2005-05-08 18:59:37 +0000647 }
648 }
649 }
650 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000651
652
653 // Scan the operand list, checking to see if there are any common factors
654 // between operands. Consider something like A*A+A*B*C+D. We would like to
655 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
656 // To efficiently find this, we count the number of times a factor occurs
657 // for any ADD operands that are MULs.
658 std::map<Value*, unsigned> FactorOccurrences;
659 unsigned MaxOcc = 0;
660 Value *MaxOccVal = 0;
661 if (!I->getType()->isFloatingPoint()) {
662 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
663 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
Chris Lattnere9efecb2006-03-14 16:04:29 +0000664 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000665 // Compute all of the factors of this added value.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000666 std::vector<Value*> Factors;
667 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000668 assert(Factors.size() > 1 && "Bad linearize!");
669
670 // Add one to FactorOccurrences for each unique factor in this op.
671 if (Factors.size() == 2) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000672 unsigned Occ = ++FactorOccurrences[Factors[0]];
673 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
674 if (Factors[0] != Factors[1]) { // Don't double count A*A.
675 Occ = ++FactorOccurrences[Factors[1]];
676 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000677 }
678 } else {
679 std::set<Value*> Duplicates;
680 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
Chris Lattnere9efecb2006-03-14 16:04:29 +0000681 if (Duplicates.insert(Factors[i]).second) {
682 unsigned Occ = ++FactorOccurrences[Factors[i]];
683 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000684 }
685 }
686 }
687 }
688 }
689
690 // If any factor occurred more than one time, we can pull it out.
691 if (MaxOcc > 1) {
692 DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
693 << *MaxOccVal << "\n");
694
695 // Create a new instruction that uses the MaxOccVal twice. If we don't do
696 // this, we could otherwise run into situations where removing a factor
697 // from an expression will drop a use of maxocc, and this can cause
698 // RemoveFactorFromExpression on successive values to behave differently.
699 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
700 std::vector<Value*> NewMulOps;
701 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
702 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
703 NewMulOps.push_back(V);
704 Ops.erase(Ops.begin()+i);
705 --i; --e;
706 }
707 }
708
709 // No need for extra uses anymore.
710 delete DummyInst;
711
Chris Lattnere9efecb2006-03-14 16:04:29 +0000712 unsigned NumAddedValues = NewMulOps.size();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000713 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000714 Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000715
Chris Lattnere9efecb2006-03-14 16:04:29 +0000716 // Now that we have inserted V and its sole use, optimize it. This allows
717 // us to handle cases that require multiple factoring steps, such as this:
718 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
719 if (NumAddedValues > 1)
720 ReassociateExpression(cast<BinaryOperator>(V));
721
Chris Lattnere5022fe2006-03-04 09:31:13 +0000722 ++NumFactor;
723
724 if (Ops.size() == 0)
Chris Lattnere9efecb2006-03-14 16:04:29 +0000725 return V2;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000726
727 // Add the new value to the list of things being added.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000728 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
Chris Lattnere5022fe2006-03-04 09:31:13 +0000729
730 // Rewrite the tree so that there is now a use of V.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000731 RewriteExprTree(I, Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000732 return OptimizeExpression(I, Ops);
733 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000734 break;
735 //case Instruction::Mul:
736 }
737
Jeff Cohen00b168892005-07-27 06:12:32 +0000738 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000739 return OptimizeExpression(I, Ops);
740 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000741}
742
Chris Lattnera36e6c82002-05-16 04:37:07 +0000743
Chris Lattner08b43922005-05-07 04:08:02 +0000744/// ReassociateBB - Inspect all of the instructions in this basic block,
745/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000746void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000747 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
748 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000749 if (BI->getOpcode() == Instruction::Shl &&
750 isa<ConstantInt>(BI->getOperand(1)))
751 if (Instruction *NI = ConvertShiftToMul(BI)) {
752 MadeChange = true;
753 BI = NI;
754 }
755
Chris Lattner6f156852005-05-08 21:33:47 +0000756 // Reject cases where it is pointless to do this.
Chris Lattnerae74f552006-04-28 04:14:49 +0000757 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
758 isa<PackedType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000759 continue; // Floating point ops are not associative.
760
Chris Lattner08b43922005-05-07 04:08:02 +0000761 // If this is a subtract instruction which is not already in negate form,
762 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000763 if (BI->getOpcode() == Instruction::Sub) {
764 if (!BinaryOperator::isNeg(BI)) {
765 if (Instruction *NI = BreakUpSubtract(BI)) {
766 MadeChange = true;
767 BI = NI;
768 }
769 } else {
770 // Otherwise, this is a negation. See if the operand is a multiply tree
771 // and if this is not an inner node of a multiply tree.
772 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
773 (!BI->hasOneUse() ||
774 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
775 BI = LowerNegateToMultiply(BI);
776 MadeChange = true;
777 }
Chris Lattner08b43922005-05-07 04:08:02 +0000778 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000779 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000780
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000781 // If this instruction is a commutative binary operator, process it.
782 if (!BI->isAssociative()) continue;
783 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000784
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000785 // If this is an interior node of a reassociable tree, ignore it until we
786 // get to the root of the tree, to avoid N^2 analysis.
787 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
788 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000789
Chris Lattner7b4ad942005-09-02 07:07:58 +0000790 // If this is an add tree that is used by a sub instruction, ignore it
791 // until we process the subtract.
792 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
793 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
794 continue;
795
Chris Lattner895b3922006-03-14 07:11:11 +0000796 ReassociateExpression(I);
797 }
798}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000799
Chris Lattner895b3922006-03-14 07:11:11 +0000800void Reassociate::ReassociateExpression(BinaryOperator *I) {
801
802 // First, walk the expression tree, linearizing the tree, collecting
803 std::vector<ValueEntry> Ops;
804 LinearizeExprTree(I, Ops);
805
806 DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
807 std::cerr << "\n");
808
809 // Now that we have linearized the tree to a list and have gathered all of
810 // the operands and their ranks, sort the operands by their rank. Use a
811 // stable_sort so that values with equal ranks will have their relative
812 // positions maintained (and so the compiler is deterministic). Note that
813 // this sorts so that the highest ranking values end up at the beginning of
814 // the vector.
815 std::stable_sort(Ops.begin(), Ops.end());
816
817 // OptimizeExpression - Now that we have the expression tree in a convenient
818 // sorted form, optimize it globally if possible.
819 if (Value *V = OptimizeExpression(I, Ops)) {
820 // This expression tree simplified to something that isn't a tree,
821 // eliminate it.
822 DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
823 I->replaceAllUsesWith(V);
824 RemoveDeadBinaryOp(I);
825 return;
826 }
827
828 // We want to sink immediates as deeply as possible except in the case where
829 // this is a multiply tree used only by an add, and the immediate is a -1.
830 // In this case we reassociate to put the negation on the outside so that we
831 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
832 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
833 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
834 isa<ConstantInt>(Ops.back().Op) &&
835 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
836 Ops.insert(Ops.begin(), Ops.back());
837 Ops.pop_back();
838 }
839
840 DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
841 std::cerr << "\n");
842
843 if (Ops.size() == 1) {
844 // This expression tree simplified to something that isn't a tree,
845 // eliminate it.
846 I->replaceAllUsesWith(Ops[0].Op);
847 RemoveDeadBinaryOp(I);
848 } else {
849 // Now that we ordered and optimized the expressions, splat them back into
850 // the expression tree, removing any unneeded nodes.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000851 RewriteExprTree(I, Ops);
Chris Lattner4fd56002002-05-08 22:19:27 +0000852 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000853}
854
855
Chris Lattner7e708292002-06-25 16:13:24 +0000856bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +0000857 // Recalculate the rank map for F
858 BuildRankMap(F);
859
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000860 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +0000861 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000862 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +0000863
864 // We are done with the rank map...
865 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +0000866 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000867 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000868}
Brian Gaeked0fde302003-11-11 22:41:34 +0000869