blob: 2213c65f343b613dd93f02702fc79627d239da88 [file] [log] [blame]
Lang Hames87e3bca2009-05-06 02:36:21 +00001//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "virtregrewriter"
11#include "VirtRegRewriter.h"
12#include "llvm/Support/Compiler.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000013#include "llvm/Support/ErrorHandling.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000014#include "llvm/ADT/DepthFirstIterator.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/ADT/STLExtras.h"
17#include <algorithm>
18using namespace llvm;
19
20STATISTIC(NumDSE , "Number of dead stores elided");
21STATISTIC(NumDSS , "Number of dead spill slots removed");
22STATISTIC(NumCommutes, "Number of instructions commuted");
23STATISTIC(NumDRM , "Number of re-materializable defs elided");
24STATISTIC(NumStores , "Number of stores added");
25STATISTIC(NumPSpills , "Number of physical register spills");
26STATISTIC(NumOmitted , "Number of reloads omited");
27STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
28STATISTIC(NumCopified, "Number of available reloads turned into copies");
29STATISTIC(NumReMats , "Number of re-materialization");
30STATISTIC(NumLoads , "Number of loads added");
31STATISTIC(NumReused , "Number of values reused");
32STATISTIC(NumDCE , "Number of copies elided");
33STATISTIC(NumSUnfold , "Number of stores unfolded");
34STATISTIC(NumModRefUnfold, "Number of modref unfolded");
35
36namespace {
Lang Hamesac276402009-06-04 18:45:36 +000037 enum RewriterName { local, trivial };
Lang Hames87e3bca2009-05-06 02:36:21 +000038}
39
40static cl::opt<RewriterName>
41RewriterOpt("rewriter",
42 cl::desc("Rewriter to use: (default: local)"),
43 cl::Prefix,
Lang Hamesac276402009-06-04 18:45:36 +000044 cl::values(clEnumVal(local, "local rewriter"),
Lang Hamesf41538d2009-06-02 16:53:25 +000045 clEnumVal(trivial, "trivial rewriter"),
Lang Hames87e3bca2009-05-06 02:36:21 +000046 clEnumValEnd),
47 cl::init(local));
48
49VirtRegRewriter::~VirtRegRewriter() {}
50
Lang Hames87e3bca2009-05-06 02:36:21 +000051
Lang Hames87e3bca2009-05-06 02:36:21 +000052
Lang Hamesf41538d2009-06-02 16:53:25 +000053/// This class is intended for use with the new spilling framework only. It
54/// rewrites vreg def/uses to use the assigned preg, but does not insert any
55/// spill code.
56struct VISIBILITY_HIDDEN TrivialRewriter : public VirtRegRewriter {
57
58 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
59 LiveIntervals* LIs) {
60 DOUT << "********** REWRITE MACHINE CODE **********\n";
61 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
62 MachineRegisterInfo *mri = &MF.getRegInfo();
63
64 bool changed = false;
65
66 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
67 liItr != liEnd; ++liItr) {
68
69 if (TargetRegisterInfo::isVirtualRegister(liItr->first)) {
70 if (VRM.hasPhys(liItr->first)) {
71 unsigned preg = VRM.getPhys(liItr->first);
72 mri->replaceRegWith(liItr->first, preg);
73 mri->setPhysRegUsed(preg);
74 changed = true;
75 }
76 }
77 else {
78 if (!liItr->second->empty()) {
79 mri->setPhysRegUsed(liItr->first);
80 }
81 }
82 }
83
84 return changed;
85 }
86
87};
88
Lang Hames87e3bca2009-05-06 02:36:21 +000089// ************************************************************************ //
90
91/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
92/// from top down, keep track of which spill slots or remat are available in
93/// each register.
94///
95/// Note that not all physregs are created equal here. In particular, some
96/// physregs are reloads that we are allowed to clobber or ignore at any time.
97/// Other physregs are values that the register allocated program is using
98/// that we cannot CHANGE, but we can read if we like. We keep track of this
99/// on a per-stack-slot / remat id basis as the low bit in the value of the
100/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
101/// this bit and addAvailable sets it if.
102class VISIBILITY_HIDDEN AvailableSpills {
103 const TargetRegisterInfo *TRI;
104 const TargetInstrInfo *TII;
105
106 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
107 // or remat'ed virtual register values that are still available, due to
108 // being loaded or stored to, but not invalidated yet.
109 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
110
111 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
112 // indicating which stack slot values are currently held by a physreg. This
113 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
114 // physreg is modified.
115 std::multimap<unsigned, int> PhysRegsAvailable;
116
117 void disallowClobberPhysRegOnly(unsigned PhysReg);
118
119 void ClobberPhysRegOnly(unsigned PhysReg);
120public:
121 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
122 : TRI(tri), TII(tii) {
123 }
124
125 /// clear - Reset the state.
126 void clear() {
127 SpillSlotsOrReMatsAvailable.clear();
128 PhysRegsAvailable.clear();
129 }
130
131 const TargetRegisterInfo *getRegInfo() const { return TRI; }
132
133 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
134 /// available in a physical register, return that PhysReg, otherwise
135 /// return 0.
136 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
137 std::map<int, unsigned>::const_iterator I =
138 SpillSlotsOrReMatsAvailable.find(Slot);
139 if (I != SpillSlotsOrReMatsAvailable.end()) {
140 return I->second >> 1; // Remove the CanClobber bit.
141 }
142 return 0;
143 }
144
145 /// addAvailable - Mark that the specified stack slot / remat is available
146 /// in the specified physreg. If CanClobber is true, the physreg can be
147 /// modified at any time without changing the semantics of the program.
148 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
149 // If this stack slot is thought to be available in some other physreg,
150 // remove its record.
151 ModifyStackSlotOrReMat(SlotOrReMat);
152
153 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
154 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
155 (unsigned)CanClobber;
156
157 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
158 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
159 else
160 DOUT << "Remembering SS#" << SlotOrReMat;
161 DOUT << " in physreg " << TRI->getName(Reg) << "\n";
162 }
163
164 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
165 /// the value of the specified stackslot register if it desires. The
166 /// specified stack slot must be available in a physreg for this query to
167 /// make sense.
168 bool canClobberPhysRegForSS(int SlotOrReMat) const {
169 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
170 "Value not available!");
171 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
172 }
173
174 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
175 /// physical register where values for some stack slot(s) might be
176 /// available.
177 bool canClobberPhysReg(unsigned PhysReg) const {
178 std::multimap<unsigned, int>::const_iterator I =
179 PhysRegsAvailable.lower_bound(PhysReg);
180 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
181 int SlotOrReMat = I->second;
182 I++;
183 if (!canClobberPhysRegForSS(SlotOrReMat))
184 return false;
185 }
186 return true;
187 }
188
189 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
190 /// stackslot register. The register is still available but is no longer
191 /// allowed to be modifed.
192 void disallowClobberPhysReg(unsigned PhysReg);
193
194 /// ClobberPhysReg - This is called when the specified physreg changes
195 /// value. We use this to invalidate any info about stuff that lives in
196 /// it and any of its aliases.
197 void ClobberPhysReg(unsigned PhysReg);
198
199 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
200 /// slot changes. This removes information about which register the
201 /// previous value for this slot lives in (as the previous value is dead
202 /// now).
203 void ModifyStackSlotOrReMat(int SlotOrReMat);
204
205 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
206 /// into the specified MBB. Add available physical registers as potential
207 /// live-in's. If they are reused in the MBB, they will be added to the
208 /// live-in set to make register scavenger and post-allocation scheduler.
209 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
210 std::vector<MachineOperand*> &KillOps);
211};
212
213// ************************************************************************ //
214
215// ReusedOp - For each reused operand, we keep track of a bit of information,
216// in case we need to rollback upon processing a new operand. See comments
217// below.
218struct ReusedOp {
219 // The MachineInstr operand that reused an available value.
220 unsigned Operand;
221
222 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
223 unsigned StackSlotOrReMat;
224
225 // PhysRegReused - The physical register the value was available in.
226 unsigned PhysRegReused;
227
228 // AssignedPhysReg - The physreg that was assigned for use by the reload.
229 unsigned AssignedPhysReg;
230
231 // VirtReg - The virtual register itself.
232 unsigned VirtReg;
233
234 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
235 unsigned vreg)
236 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
237 AssignedPhysReg(apr), VirtReg(vreg) {}
238};
239
240/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
241/// is reused instead of reloaded.
242class VISIBILITY_HIDDEN ReuseInfo {
243 MachineInstr &MI;
244 std::vector<ReusedOp> Reuses;
245 BitVector PhysRegsClobbered;
246public:
247 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
248 PhysRegsClobbered.resize(tri->getNumRegs());
249 }
250
251 bool hasReuses() const {
252 return !Reuses.empty();
253 }
254
255 /// addReuse - If we choose to reuse a virtual register that is already
256 /// available instead of reloading it, remember that we did so.
257 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
258 unsigned PhysRegReused, unsigned AssignedPhysReg,
259 unsigned VirtReg) {
260 // If the reload is to the assigned register anyway, no undo will be
261 // required.
262 if (PhysRegReused == AssignedPhysReg) return;
263
264 // Otherwise, remember this.
265 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
266 AssignedPhysReg, VirtReg));
267 }
268
269 void markClobbered(unsigned PhysReg) {
270 PhysRegsClobbered.set(PhysReg);
271 }
272
273 bool isClobbered(unsigned PhysReg) const {
274 return PhysRegsClobbered.test(PhysReg);
275 }
276
277 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
278 /// is some other operand that is using the specified register, either pick
279 /// a new register to use, or evict the previous reload and use this reg.
280 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
281 AvailableSpills &Spills,
282 std::vector<MachineInstr*> &MaybeDeadStores,
283 SmallSet<unsigned, 8> &Rejected,
284 BitVector &RegKills,
285 std::vector<MachineOperand*> &KillOps,
286 VirtRegMap &VRM);
287
288 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
289 /// 'Rejected' set to remember which registers have been considered and
290 /// rejected for the reload. This avoids infinite looping in case like
291 /// this:
292 /// t1 := op t2, t3
293 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
294 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
295 /// t1 <- desires r1
296 /// sees r1 is taken by t2, tries t2's reload register r0
297 /// sees r0 is taken by t3, tries t3's reload register r1
298 /// sees r1 is taken by t2, tries t2's reload register r0 ...
299 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
300 AvailableSpills &Spills,
301 std::vector<MachineInstr*> &MaybeDeadStores,
302 BitVector &RegKills,
303 std::vector<MachineOperand*> &KillOps,
304 VirtRegMap &VRM) {
305 SmallSet<unsigned, 8> Rejected;
306 return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
307 RegKills, KillOps, VRM);
308 }
309};
310
311
312// ****************** //
313// Utility Functions //
314// ****************** //
315
Lang Hames87e3bca2009-05-06 02:36:21 +0000316/// findSinglePredSuccessor - Return via reference a vector of machine basic
317/// blocks each of which is a successor of the specified BB and has no other
318/// predecessor.
319static void findSinglePredSuccessor(MachineBasicBlock *MBB,
320 SmallVectorImpl<MachineBasicBlock *> &Succs) {
321 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
322 SE = MBB->succ_end(); SI != SE; ++SI) {
323 MachineBasicBlock *SuccMBB = *SI;
324 if (SuccMBB->pred_size() == 1)
325 Succs.push_back(SuccMBB);
326 }
327}
328
Evan Cheng427a6b62009-05-15 06:48:19 +0000329/// InvalidateKill - Invalidate register kill information for a specific
330/// register. This also unsets the kills marker on the last kill operand.
331static void InvalidateKill(unsigned Reg,
332 const TargetRegisterInfo* TRI,
333 BitVector &RegKills,
334 std::vector<MachineOperand*> &KillOps) {
335 if (RegKills[Reg]) {
336 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000337 // KillOps[Reg] might be a def of a super-register.
338 unsigned KReg = KillOps[Reg]->getReg();
339 KillOps[KReg] = NULL;
340 RegKills.reset(KReg);
341 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
Evan Cheng427a6b62009-05-15 06:48:19 +0000342 if (RegKills[*SR]) {
343 KillOps[*SR]->setIsKill(false);
344 KillOps[*SR] = NULL;
345 RegKills.reset(*SR);
346 }
347 }
348 }
349}
350
Lang Hames87e3bca2009-05-06 02:36:21 +0000351/// InvalidateKills - MI is going to be deleted. If any of its operands are
352/// marked kill, then invalidate the information.
Evan Cheng427a6b62009-05-15 06:48:19 +0000353static void InvalidateKills(MachineInstr &MI,
354 const TargetRegisterInfo* TRI,
355 BitVector &RegKills,
Lang Hames87e3bca2009-05-06 02:36:21 +0000356 std::vector<MachineOperand*> &KillOps,
357 SmallVector<unsigned, 2> *KillRegs = NULL) {
358 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
359 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000360 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000361 continue;
362 unsigned Reg = MO.getReg();
363 if (TargetRegisterInfo::isVirtualRegister(Reg))
364 continue;
365 if (KillRegs)
366 KillRegs->push_back(Reg);
367 assert(Reg < KillOps.size());
368 if (KillOps[Reg] == &MO) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000369 KillOps[Reg] = NULL;
Evan Cheng427a6b62009-05-15 06:48:19 +0000370 RegKills.reset(Reg);
371 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
372 if (RegKills[*SR]) {
373 KillOps[*SR] = NULL;
374 RegKills.reset(*SR);
375 }
376 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000377 }
378 }
379}
380
381/// InvalidateRegDef - If the def operand of the specified def MI is now dead
382/// (since it's spill instruction is removed), mark it isDead. Also checks if
383/// the def MI has other definition operands that are not dead. Returns it by
384/// reference.
385static bool InvalidateRegDef(MachineBasicBlock::iterator I,
386 MachineInstr &NewDef, unsigned Reg,
387 bool &HasLiveDef) {
388 // Due to remat, it's possible this reg isn't being reused. That is,
389 // the def of this reg (by prev MI) is now dead.
390 MachineInstr *DefMI = I;
391 MachineOperand *DefOp = NULL;
392 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
393 MachineOperand &MO = DefMI->getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000394 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
395 continue;
396 if (MO.getReg() == Reg)
397 DefOp = &MO;
398 else if (!MO.isDead())
399 HasLiveDef = true;
Lang Hames87e3bca2009-05-06 02:36:21 +0000400 }
401 if (!DefOp)
402 return false;
403
404 bool FoundUse = false, Done = false;
405 MachineBasicBlock::iterator E = &NewDef;
406 ++I; ++E;
407 for (; !Done && I != E; ++I) {
408 MachineInstr *NMI = I;
409 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
410 MachineOperand &MO = NMI->getOperand(j);
411 if (!MO.isReg() || MO.getReg() != Reg)
412 continue;
413 if (MO.isUse())
414 FoundUse = true;
415 Done = true; // Stop after scanning all the operands of this MI.
416 }
417 }
418 if (!FoundUse) {
419 // Def is dead!
420 DefOp->setIsDead();
421 return true;
422 }
423 return false;
424}
425
426/// UpdateKills - Track and update kill info. If a MI reads a register that is
427/// marked kill, then it must be due to register reuse. Transfer the kill info
428/// over.
Evan Cheng427a6b62009-05-15 06:48:19 +0000429static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
430 BitVector &RegKills,
431 std::vector<MachineOperand*> &KillOps) {
Lang Hames87e3bca2009-05-06 02:36:21 +0000432 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
433 MachineOperand &MO = MI.getOperand(i);
Evan Cheng4784f1f2009-06-30 08:49:04 +0000434 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
Lang Hames87e3bca2009-05-06 02:36:21 +0000435 continue;
436 unsigned Reg = MO.getReg();
437 if (Reg == 0)
438 continue;
439
440 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
441 // That can't be right. Register is killed but not re-defined and it's
442 // being reused. Let's fix that.
443 KillOps[Reg]->setIsKill(false);
Evan Cheng2c48fe62009-06-03 09:00:27 +0000444 // KillOps[Reg] might be a def of a super-register.
445 unsigned KReg = KillOps[Reg]->getReg();
446 KillOps[KReg] = NULL;
447 RegKills.reset(KReg);
448
449 // Must be a def of a super-register. Its other sub-regsters are no
450 // longer killed as well.
451 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
452 KillOps[*SR] = NULL;
453 RegKills.reset(*SR);
454 }
455
Lang Hames87e3bca2009-05-06 02:36:21 +0000456 if (!MI.isRegTiedToDefOperand(i))
457 // Unless it's a two-address operand, this is the new kill.
458 MO.setIsKill();
459 }
460 if (MO.isKill()) {
461 RegKills.set(Reg);
462 KillOps[Reg] = &MO;
Evan Cheng427a6b62009-05-15 06:48:19 +0000463 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
464 RegKills.set(*SR);
465 KillOps[*SR] = &MO;
466 }
Lang Hames87e3bca2009-05-06 02:36:21 +0000467 }
468 }
469
470 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
471 const MachineOperand &MO = MI.getOperand(i);
472 if (!MO.isReg() || !MO.isDef())
473 continue;
474 unsigned Reg = MO.getReg();
475 RegKills.reset(Reg);
476 KillOps[Reg] = NULL;
477 // It also defines (or partially define) aliases.
Evan Cheng427a6b62009-05-15 06:48:19 +0000478 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
479 RegKills.reset(*SR);
480 KillOps[*SR] = NULL;
Lang Hames87e3bca2009-05-06 02:36:21 +0000481 }
482 }
483}
484
485/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
486///
487static void ReMaterialize(MachineBasicBlock &MBB,
488 MachineBasicBlock::iterator &MII,
489 unsigned DestReg, unsigned Reg,
490 const TargetInstrInfo *TII,
491 const TargetRegisterInfo *TRI,
492 VirtRegMap &VRM) {
Evan Cheng5f159922009-07-16 20:15:00 +0000493 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
Daniel Dunbar2df5e552009-07-16 23:02:46 +0000494#if 0
Daniel Dunbar24cd3c42009-07-16 22:08:25 +0000495#ifndef NDEBUG
Evan Cheng5f159922009-07-16 20:15:00 +0000496 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
497 assert(TID.getNumDefs() != 1 &&
498 "Don't know how to remat instructions that define > 1 values!");
499#endif
Daniel Dunbar2df5e552009-07-16 23:02:46 +0000500#endif
Evan Cheng5f159922009-07-16 20:15:00 +0000501 TII->reMaterialize(MBB, MII, DestReg,
502 ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI);
Lang Hames87e3bca2009-05-06 02:36:21 +0000503 MachineInstr *NewMI = prior(MII);
504 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
505 MachineOperand &MO = NewMI->getOperand(i);
506 if (!MO.isReg() || MO.getReg() == 0)
507 continue;
508 unsigned VirtReg = MO.getReg();
509 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
510 continue;
511 assert(MO.isUse());
512 unsigned SubIdx = MO.getSubReg();
513 unsigned Phys = VRM.getPhys(VirtReg);
514 assert(Phys);
515 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
516 MO.setReg(RReg);
517 MO.setSubReg(0);
518 }
519 ++NumReMats;
520}
521
522/// findSuperReg - Find the SubReg's super-register of given register class
523/// where its SubIdx sub-register is SubReg.
524static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
525 unsigned SubIdx, const TargetRegisterInfo *TRI) {
526 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
527 I != E; ++I) {
528 unsigned Reg = *I;
529 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
530 return Reg;
531 }
532 return 0;
533}
534
535// ******************************** //
536// Available Spills Implementation //
537// ******************************** //
538
539/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
540/// stackslot register. The register is still available but is no longer
541/// allowed to be modifed.
542void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
543 std::multimap<unsigned, int>::iterator I =
544 PhysRegsAvailable.lower_bound(PhysReg);
545 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
546 int SlotOrReMat = I->second;
547 I++;
548 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
549 "Bidirectional map mismatch!");
550 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
551 DOUT << "PhysReg " << TRI->getName(PhysReg)
552 << " copied, it is available for use but can no longer be modified\n";
553 }
554}
555
556/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
557/// stackslot register and its aliases. The register and its aliases may
558/// still available but is no longer allowed to be modifed.
559void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
560 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
561 disallowClobberPhysRegOnly(*AS);
562 disallowClobberPhysRegOnly(PhysReg);
563}
564
565/// ClobberPhysRegOnly - This is called when the specified physreg changes
566/// value. We use this to invalidate any info about stuff we thing lives in it.
567void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
568 std::multimap<unsigned, int>::iterator I =
569 PhysRegsAvailable.lower_bound(PhysReg);
570 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
571 int SlotOrReMat = I->second;
572 PhysRegsAvailable.erase(I++);
573 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
574 "Bidirectional map mismatch!");
575 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
576 DOUT << "PhysReg " << TRI->getName(PhysReg)
577 << " clobbered, invalidating ";
578 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
579 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
580 else
581 DOUT << "SS#" << SlotOrReMat << "\n";
582 }
583}
584
585/// ClobberPhysReg - This is called when the specified physreg changes
586/// value. We use this to invalidate any info about stuff we thing lives in
587/// it and any of its aliases.
588void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
589 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
590 ClobberPhysRegOnly(*AS);
591 ClobberPhysRegOnly(PhysReg);
592}
593
594/// AddAvailableRegsToLiveIn - Availability information is being kept coming
595/// into the specified MBB. Add available physical registers as potential
596/// live-in's. If they are reused in the MBB, they will be added to the
597/// live-in set to make register scavenger and post-allocation scheduler.
598void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
599 BitVector &RegKills,
600 std::vector<MachineOperand*> &KillOps) {
601 std::set<unsigned> NotAvailable;
602 for (std::multimap<unsigned, int>::iterator
603 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
604 I != E; ++I) {
605 unsigned Reg = I->first;
606 const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
607 // FIXME: A temporary workaround. We can't reuse available value if it's
608 // not safe to move the def of the virtual register's class. e.g.
609 // X86::RFP* register classes. Do not add it as a live-in.
610 if (!TII->isSafeToMoveRegClassDefs(RC))
611 // This is no longer available.
612 NotAvailable.insert(Reg);
613 else {
614 MBB.addLiveIn(Reg);
Evan Cheng427a6b62009-05-15 06:48:19 +0000615 InvalidateKill(Reg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000616 }
617
618 // Skip over the same register.
619 std::multimap<unsigned, int>::iterator NI = next(I);
620 while (NI != E && NI->first == Reg) {
621 ++I;
622 ++NI;
623 }
624 }
625
626 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
627 E = NotAvailable.end(); I != E; ++I) {
628 ClobberPhysReg(*I);
629 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
630 *SubRegs; ++SubRegs)
631 ClobberPhysReg(*SubRegs);
632 }
633}
634
635/// ModifyStackSlotOrReMat - This method is called when the value in a stack
636/// slot changes. This removes information about which register the previous
637/// value for this slot lives in (as the previous value is dead now).
638void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
639 std::map<int, unsigned>::iterator It =
640 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
641 if (It == SpillSlotsOrReMatsAvailable.end()) return;
642 unsigned Reg = It->second >> 1;
643 SpillSlotsOrReMatsAvailable.erase(It);
644
645 // This register may hold the value of multiple stack slots, only remove this
646 // stack slot from the set of values the register contains.
647 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
648 for (; ; ++I) {
649 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
650 "Map inverse broken!");
651 if (I->second == SlotOrReMat) break;
652 }
653 PhysRegsAvailable.erase(I);
654}
655
656// ************************** //
657// Reuse Info Implementation //
658// ************************** //
659
660/// GetRegForReload - We are about to emit a reload into PhysReg. If there
661/// is some other operand that is using the specified register, either pick
662/// a new register to use, or evict the previous reload and use this reg.
663unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
664 AvailableSpills &Spills,
665 std::vector<MachineInstr*> &MaybeDeadStores,
666 SmallSet<unsigned, 8> &Rejected,
667 BitVector &RegKills,
668 std::vector<MachineOperand*> &KillOps,
669 VirtRegMap &VRM) {
670 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
671 .getInstrInfo();
672
673 if (Reuses.empty()) return PhysReg; // This is most often empty.
674
675 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
676 ReusedOp &Op = Reuses[ro];
677 // If we find some other reuse that was supposed to use this register
678 // exactly for its reload, we can change this reload to use ITS reload
679 // register. That is, unless its reload register has already been
680 // considered and subsequently rejected because it has also been reused
681 // by another operand.
682 if (Op.PhysRegReused == PhysReg &&
683 Rejected.count(Op.AssignedPhysReg) == 0) {
684 // Yup, use the reload register that we didn't use before.
685 unsigned NewReg = Op.AssignedPhysReg;
686 Rejected.insert(PhysReg);
687 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
688 RegKills, KillOps, VRM);
689 } else {
690 // Otherwise, we might also have a problem if a previously reused
691 // value aliases the new register. If so, codegen the previous reload
692 // and use this one.
693 unsigned PRRU = Op.PhysRegReused;
694 const TargetRegisterInfo *TRI = Spills.getRegInfo();
695 if (TRI->areAliases(PRRU, PhysReg)) {
696 // Okay, we found out that an alias of a reused register
697 // was used. This isn't good because it means we have
698 // to undo a previous reuse.
699 MachineBasicBlock *MBB = MI->getParent();
700 const TargetRegisterClass *AliasRC =
701 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
702
703 // Copy Op out of the vector and remove it, we're going to insert an
704 // explicit load for it.
705 ReusedOp NewOp = Op;
706 Reuses.erase(Reuses.begin()+ro);
707
708 // Ok, we're going to try to reload the assigned physreg into the
709 // slot that we were supposed to in the first place. However, that
710 // register could hold a reuse. Check to see if it conflicts or
711 // would prefer us to use a different register.
712 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
713 MI, Spills, MaybeDeadStores,
714 Rejected, RegKills, KillOps, VRM);
715
716 MachineBasicBlock::iterator MII = MI;
717 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
718 ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
719 } else {
720 TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
721 NewOp.StackSlotOrReMat, AliasRC);
722 MachineInstr *LoadMI = prior(MII);
723 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
724 // Any stores to this stack slot are not dead anymore.
725 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
726 ++NumLoads;
727 }
728 Spills.ClobberPhysReg(NewPhysReg);
729 Spills.ClobberPhysReg(NewOp.PhysRegReused);
730
731 unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
732 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
733 MI->getOperand(NewOp.Operand).setReg(RReg);
734 MI->getOperand(NewOp.Operand).setSubReg(0);
735
736 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
737 --MII;
Evan Cheng427a6b62009-05-15 06:48:19 +0000738 UpdateKills(*MII, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +0000739 DOUT << '\t' << *MII;
740
741 DOUT << "Reuse undone!\n";
742 --NumReused;
743
744 // Finally, PhysReg is now available, go ahead and use it.
745 return PhysReg;
746 }
747 }
748 }
749 return PhysReg;
750}
751
752// ************************************************************************ //
753
754/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
755/// stack slot mod/ref. It also checks if it's possible to unfold the
756/// instruction by having it define a specified physical register instead.
757static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
758 const TargetInstrInfo *TII,
759 const TargetRegisterInfo *TRI,
760 VirtRegMap &VRM) {
761 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
762 return false;
763
764 bool Found = false;
765 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
766 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
767 unsigned VirtReg = I->second.first;
768 VirtRegMap::ModRef MR = I->second.second;
769 if (MR & VirtRegMap::isModRef)
770 if (VRM.getStackSlot(VirtReg) == SS) {
771 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
772 break;
773 }
774 }
775 if (!Found)
776 return false;
777
778 // Does the instruction uses a register that overlaps the scratch register?
779 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
780 MachineOperand &MO = MI.getOperand(i);
781 if (!MO.isReg() || MO.getReg() == 0)
782 continue;
783 unsigned Reg = MO.getReg();
784 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
785 if (!VRM.hasPhys(Reg))
786 continue;
787 Reg = VRM.getPhys(Reg);
788 }
789 if (TRI->regsOverlap(PhysReg, Reg))
790 return false;
791 }
792 return true;
793}
794
795/// FindFreeRegister - Find a free register of a given register class by looking
796/// at (at most) the last two machine instructions.
797static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
798 MachineBasicBlock &MBB,
799 const TargetRegisterClass *RC,
800 const TargetRegisterInfo *TRI,
801 BitVector &AllocatableRegs) {
802 BitVector Defs(TRI->getNumRegs());
803 BitVector Uses(TRI->getNumRegs());
804 SmallVector<unsigned, 4> LocalUses;
805 SmallVector<unsigned, 4> Kills;
806
807 // Take a look at 2 instructions at most.
808 for (unsigned Count = 0; Count < 2; ++Count) {
809 if (MII == MBB.begin())
810 break;
811 MachineInstr *PrevMI = prior(MII);
812 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
813 MachineOperand &MO = PrevMI->getOperand(i);
814 if (!MO.isReg() || MO.getReg() == 0)
815 continue;
816 unsigned Reg = MO.getReg();
817 if (MO.isDef()) {
818 Defs.set(Reg);
819 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
820 Defs.set(*AS);
821 } else {
822 LocalUses.push_back(Reg);
823 if (MO.isKill() && AllocatableRegs[Reg])
824 Kills.push_back(Reg);
825 }
826 }
827
828 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
829 unsigned Kill = Kills[i];
830 if (!Defs[Kill] && !Uses[Kill] &&
831 TRI->getPhysicalRegisterRegClass(Kill) == RC)
832 return Kill;
833 }
834 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
835 unsigned Reg = LocalUses[i];
836 Uses.set(Reg);
837 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
838 Uses.set(*AS);
839 }
840
841 MII = PrevMI;
842 }
843
844 return 0;
845}
846
847static
848void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg) {
849 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
850 MachineOperand &MO = MI->getOperand(i);
851 if (MO.isReg() && MO.getReg() == VirtReg)
852 MO.setReg(PhysReg);
853 }
854}
855
Evan Chengeca24fb2009-05-12 23:07:00 +0000856namespace {
857 struct RefSorter {
858 bool operator()(const std::pair<MachineInstr*, int> &A,
859 const std::pair<MachineInstr*, int> &B) {
860 return A.second < B.second;
861 }
862 };
863}
Lang Hames87e3bca2009-05-06 02:36:21 +0000864
865// ***************************** //
866// Local Spiller Implementation //
867// ***************************** //
868
869class VISIBILITY_HIDDEN LocalRewriter : public VirtRegRewriter {
870 MachineRegisterInfo *RegInfo;
871 const TargetRegisterInfo *TRI;
872 const TargetInstrInfo *TII;
873 BitVector AllocatableRegs;
874 DenseMap<MachineInstr*, unsigned> DistanceMap;
875public:
876
877 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
878 LiveIntervals* LIs) {
879 RegInfo = &MF.getRegInfo();
880 TRI = MF.getTarget().getRegisterInfo();
881 TII = MF.getTarget().getInstrInfo();
882 AllocatableRegs = TRI->getAllocatableSet(MF);
883 DOUT << "\n**** Local spiller rewriting function '"
884 << MF.getFunction()->getName() << "':\n";
885 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
886 " ****\n";
887 DEBUG(MF.dump());
888
889 // Spills - Keep track of which spilled values are available in physregs
890 // so that we can choose to reuse the physregs instead of emitting
891 // reloads. This is usually refreshed per basic block.
892 AvailableSpills Spills(TRI, TII);
893
894 // Keep track of kill information.
895 BitVector RegKills(TRI->getNumRegs());
896 std::vector<MachineOperand*> KillOps;
897 KillOps.resize(TRI->getNumRegs(), NULL);
898
899 // SingleEntrySuccs - Successor blocks which have a single predecessor.
900 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
901 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
902
903 // Traverse the basic blocks depth first.
904 MachineBasicBlock *Entry = MF.begin();
905 SmallPtrSet<MachineBasicBlock*,16> Visited;
906 for (df_ext_iterator<MachineBasicBlock*,
907 SmallPtrSet<MachineBasicBlock*,16> >
908 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
909 DFI != E; ++DFI) {
910 MachineBasicBlock *MBB = *DFI;
911 if (!EarlyVisited.count(MBB))
912 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
913
914 // If this MBB is the only predecessor of a successor. Keep the
915 // availability information and visit it next.
916 do {
917 // Keep visiting single predecessor successor as long as possible.
918 SinglePredSuccs.clear();
919 findSinglePredSuccessor(MBB, SinglePredSuccs);
920 if (SinglePredSuccs.empty())
921 MBB = 0;
922 else {
923 // FIXME: More than one successors, each of which has MBB has
924 // the only predecessor.
925 MBB = SinglePredSuccs[0];
926 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
927 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
928 RewriteMBB(*MBB, VRM, LIs, Spills, RegKills, KillOps);
929 }
930 }
931 } while (MBB);
932
933 // Clear the availability info.
934 Spills.clear();
935 }
936
937 DOUT << "**** Post Machine Instrs ****\n";
938 DEBUG(MF.dump());
939
940 // Mark unused spill slots.
941 MachineFrameInfo *MFI = MF.getFrameInfo();
942 int SS = VRM.getLowSpillSlot();
943 if (SS != VirtRegMap::NO_STACK_SLOT)
944 for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
945 if (!VRM.isSpillSlotUsed(SS)) {
946 MFI->RemoveStackObject(SS);
947 ++NumDSS;
948 }
949
950 return true;
951 }
952
953private:
954
955 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
956 /// a scratch register is available.
957 /// xorq %r12<kill>, %r13
958 /// addq %rax, -184(%rbp)
959 /// addq %r13, -184(%rbp)
960 /// ==>
961 /// xorq %r12<kill>, %r13
962 /// movq -184(%rbp), %r12
963 /// addq %rax, %r12
964 /// addq %r13, %r12
965 /// movq %r12, -184(%rbp)
966 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
967 MachineBasicBlock &MBB,
968 MachineBasicBlock::iterator &MII,
969 std::vector<MachineInstr*> &MaybeDeadStores,
970 AvailableSpills &Spills,
971 BitVector &RegKills,
972 std::vector<MachineOperand*> &KillOps,
973 VirtRegMap &VRM) {
974
975 MachineBasicBlock::iterator NextMII = next(MII);
976 if (NextMII == MBB.end())
977 return false;
978
979 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
980 return false;
981
982 // Now let's see if the last couple of instructions happens to have freed up
983 // a register.
984 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
985 unsigned PhysReg = FindFreeRegister(MII, MBB, RC, TRI, AllocatableRegs);
986 if (!PhysReg)
987 return false;
988
989 MachineFunction &MF = *MBB.getParent();
990 TRI = MF.getTarget().getRegisterInfo();
991 MachineInstr &MI = *MII;
992 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, VRM))
993 return false;
994
995 // If the next instruction also folds the same SS modref and can be unfoled,
996 // then it's worthwhile to issue a load from SS into the free register and
997 // then unfold these instructions.
998 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM))
999 return false;
1000
1001 // Load from SS to the spare physical register.
1002 TII->loadRegFromStackSlot(MBB, MII, PhysReg, SS, RC);
1003 // This invalidates Phys.
1004 Spills.ClobberPhysReg(PhysReg);
1005 // Remember it's available.
1006 Spills.addAvailable(SS, PhysReg);
1007 MaybeDeadStores[SS] = NULL;
1008
1009 // Unfold current MI.
1010 SmallVector<MachineInstr*, 4> NewMIs;
1011 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001012 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001013 assert(NewMIs.size() == 1);
1014 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1015 VRM.transferRestorePts(&MI, NewMIs[0]);
1016 MII = MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001017 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001018 VRM.RemoveMachineInstrFromMaps(&MI);
1019 MBB.erase(&MI);
1020 ++NumModRefUnfold;
1021
1022 // Unfold next instructions that fold the same SS.
1023 do {
1024 MachineInstr &NextMI = *NextMII;
1025 NextMII = next(NextMII);
1026 NewMIs.clear();
1027 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
Torok Edwinc23197a2009-07-14 16:55:14 +00001028 llvm_unreachable("Unable unfold the load / store folding instruction!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001029 assert(NewMIs.size() == 1);
1030 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg);
1031 VRM.transferRestorePts(&NextMI, NewMIs[0]);
1032 MBB.insert(NextMII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001033 InvalidateKills(NextMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001034 VRM.RemoveMachineInstrFromMaps(&NextMI);
1035 MBB.erase(&NextMI);
1036 ++NumModRefUnfold;
Evan Cheng2c48fe62009-06-03 09:00:27 +00001037 if (NextMII == MBB.end())
1038 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001039 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, VRM));
1040
1041 // Store the value back into SS.
1042 TII->storeRegToStackSlot(MBB, NextMII, PhysReg, true, SS, RC);
1043 MachineInstr *StoreMI = prior(NextMII);
1044 VRM.addSpillSlotUse(SS, StoreMI);
1045 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1046
1047 return true;
1048 }
1049
1050 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1051 /// instruction. e.g.
1052 /// xorl %edi, %eax
1053 /// movl %eax, -32(%ebp)
1054 /// movl -36(%ebp), %eax
1055 /// orl %eax, -32(%ebp)
1056 /// ==>
1057 /// xorl %edi, %eax
1058 /// orl -36(%ebp), %eax
1059 /// mov %eax, -32(%ebp)
1060 /// This enables unfolding optimization for a subsequent instruction which will
1061 /// also eliminate the newly introduced store instruction.
1062 bool OptimizeByUnfold(MachineBasicBlock &MBB,
1063 MachineBasicBlock::iterator &MII,
1064 std::vector<MachineInstr*> &MaybeDeadStores,
1065 AvailableSpills &Spills,
1066 BitVector &RegKills,
1067 std::vector<MachineOperand*> &KillOps,
1068 VirtRegMap &VRM) {
1069 MachineFunction &MF = *MBB.getParent();
1070 MachineInstr &MI = *MII;
1071 unsigned UnfoldedOpc = 0;
1072 unsigned UnfoldPR = 0;
1073 unsigned UnfoldVR = 0;
1074 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1075 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1076 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1077 // Only transform a MI that folds a single register.
1078 if (UnfoldedOpc)
1079 return false;
1080 UnfoldVR = I->second.first;
1081 VirtRegMap::ModRef MR = I->second.second;
1082 // MI2VirtMap be can updated which invalidate the iterator.
1083 // Increment the iterator first.
1084 ++I;
1085 if (VRM.isAssignedReg(UnfoldVR))
1086 continue;
1087 // If this reference is not a use, any previous store is now dead.
1088 // Otherwise, the store to this stack slot is not dead anymore.
1089 FoldedSS = VRM.getStackSlot(UnfoldVR);
1090 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1091 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1092 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1093 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1094 continue;
1095 UnfoldPR = PhysReg;
1096 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1097 false, true);
1098 }
1099 }
1100
1101 if (!UnfoldedOpc) {
1102 if (!UnfoldVR)
1103 return false;
1104
1105 // Look for other unfolding opportunities.
1106 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MBB, MII,
1107 MaybeDeadStores, Spills, RegKills, KillOps, VRM);
1108 }
1109
1110 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1111 MachineOperand &MO = MI.getOperand(i);
1112 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1113 continue;
1114 unsigned VirtReg = MO.getReg();
1115 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1116 continue;
1117 if (VRM.isAssignedReg(VirtReg)) {
1118 unsigned PhysReg = VRM.getPhys(VirtReg);
1119 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1120 return false;
1121 } else if (VRM.isReMaterialized(VirtReg))
1122 continue;
1123 int SS = VRM.getStackSlot(VirtReg);
1124 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1125 if (PhysReg) {
1126 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1127 return false;
1128 continue;
1129 }
1130 if (VRM.hasPhys(VirtReg)) {
1131 PhysReg = VRM.getPhys(VirtReg);
1132 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1133 continue;
1134 }
1135
1136 // Ok, we'll need to reload the value into a register which makes
1137 // it impossible to perform the store unfolding optimization later.
1138 // Let's see if it is possible to fold the load if the store is
1139 // unfolded. This allows us to perform the store unfolding
1140 // optimization.
1141 SmallVector<MachineInstr*, 4> NewMIs;
1142 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1143 assert(NewMIs.size() == 1);
1144 MachineInstr *NewMI = NewMIs.back();
1145 NewMIs.clear();
1146 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1147 assert(Idx != -1);
1148 SmallVector<unsigned, 1> Ops;
1149 Ops.push_back(Idx);
1150 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
1151 if (FoldedMI) {
1152 VRM.addSpillSlotUse(SS, FoldedMI);
1153 if (!VRM.hasPhys(UnfoldVR))
1154 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
1155 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1156 MII = MBB.insert(MII, FoldedMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001157 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001158 VRM.RemoveMachineInstrFromMaps(&MI);
1159 MBB.erase(&MI);
1160 MF.DeleteMachineInstr(NewMI);
1161 return true;
1162 }
1163 MF.DeleteMachineInstr(NewMI);
1164 }
1165 }
1166
1167 return false;
1168 }
1169
Evan Cheng261ce1d2009-07-10 19:15:51 +00001170 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1171 /// where SrcReg is r1 and it is tied to r0. Return true if after
1172 /// commuting this instruction it will be r0 = op r2, r1.
1173 static bool CommuteChangesDestination(MachineInstr *DefMI,
1174 const TargetInstrDesc &TID,
1175 unsigned SrcReg,
1176 const TargetInstrInfo *TII,
1177 unsigned &DstIdx) {
1178 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1179 return false;
1180 if (!DefMI->getOperand(1).isReg() ||
1181 DefMI->getOperand(1).getReg() != SrcReg)
1182 return false;
1183 unsigned DefIdx;
1184 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1185 return false;
1186 unsigned SrcIdx1, SrcIdx2;
1187 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1188 return false;
1189 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1190 DstIdx = 2;
1191 return true;
1192 }
1193 return false;
1194 }
1195
Lang Hames87e3bca2009-05-06 02:36:21 +00001196 /// CommuteToFoldReload -
1197 /// Look for
1198 /// r1 = load fi#1
1199 /// r1 = op r1, r2<kill>
1200 /// store r1, fi#1
1201 ///
1202 /// If op is commutable and r2 is killed, then we can xform these to
1203 /// r2 = op r2, fi#1
1204 /// store r2, fi#1
1205 bool CommuteToFoldReload(MachineBasicBlock &MBB,
1206 MachineBasicBlock::iterator &MII,
1207 unsigned VirtReg, unsigned SrcReg, int SS,
1208 AvailableSpills &Spills,
1209 BitVector &RegKills,
1210 std::vector<MachineOperand*> &KillOps,
1211 const TargetRegisterInfo *TRI,
1212 VirtRegMap &VRM) {
1213 if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
1214 return false;
1215
1216 MachineFunction &MF = *MBB.getParent();
1217 MachineInstr &MI = *MII;
1218 MachineBasicBlock::iterator DefMII = prior(MII);
1219 MachineInstr *DefMI = DefMII;
1220 const TargetInstrDesc &TID = DefMI->getDesc();
1221 unsigned NewDstIdx;
1222 if (DefMII != MBB.begin() &&
1223 TID.isCommutable() &&
Evan Cheng261ce1d2009-07-10 19:15:51 +00001224 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
Lang Hames87e3bca2009-05-06 02:36:21 +00001225 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1226 unsigned NewReg = NewDstMO.getReg();
1227 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1228 return false;
1229 MachineInstr *ReloadMI = prior(DefMII);
1230 int FrameIdx;
1231 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1232 if (DestReg != SrcReg || FrameIdx != SS)
1233 return false;
1234 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1235 if (UseIdx == -1)
1236 return false;
1237 unsigned DefIdx;
1238 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1239 return false;
1240 assert(DefMI->getOperand(DefIdx).isReg() &&
1241 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1242
1243 // Now commute def instruction.
1244 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1245 if (!CommutedMI)
1246 return false;
1247 SmallVector<unsigned, 1> Ops;
1248 Ops.push_back(NewDstIdx);
1249 MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
1250 // Not needed since foldMemoryOperand returns new MI.
1251 MF.DeleteMachineInstr(CommutedMI);
1252 if (!FoldedMI)
1253 return false;
1254
1255 VRM.addSpillSlotUse(SS, FoldedMI);
1256 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1257 // Insert new def MI and spill MI.
1258 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1259 TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
1260 MII = prior(MII);
1261 MachineInstr *StoreMI = MII;
1262 VRM.addSpillSlotUse(SS, StoreMI);
1263 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1264 MII = MBB.insert(MII, FoldedMI); // Update MII to backtrack.
1265
1266 // Delete all 3 old instructions.
Evan Cheng427a6b62009-05-15 06:48:19 +00001267 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001268 VRM.RemoveMachineInstrFromMaps(ReloadMI);
1269 MBB.erase(ReloadMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001270 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001271 VRM.RemoveMachineInstrFromMaps(DefMI);
1272 MBB.erase(DefMI);
Evan Cheng427a6b62009-05-15 06:48:19 +00001273 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001274 VRM.RemoveMachineInstrFromMaps(&MI);
1275 MBB.erase(&MI);
1276
1277 // If NewReg was previously holding value of some SS, it's now clobbered.
1278 // This has to be done now because it's a physical register. When this
1279 // instruction is re-visited, it's ignored.
1280 Spills.ClobberPhysReg(NewReg);
1281
1282 ++NumCommutes;
1283 return true;
1284 }
1285
1286 return false;
1287 }
1288
1289 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1290 /// the last store to the same slot is now dead. If so, remove the last store.
1291 void SpillRegToStackSlot(MachineBasicBlock &MBB,
1292 MachineBasicBlock::iterator &MII,
1293 int Idx, unsigned PhysReg, int StackSlot,
1294 const TargetRegisterClass *RC,
1295 bool isAvailable, MachineInstr *&LastStore,
1296 AvailableSpills &Spills,
1297 SmallSet<MachineInstr*, 4> &ReMatDefs,
1298 BitVector &RegKills,
1299 std::vector<MachineOperand*> &KillOps,
1300 VirtRegMap &VRM) {
1301
1302 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
1303 MachineInstr *StoreMI = next(MII);
1304 VRM.addSpillSlotUse(StackSlot, StoreMI);
1305 DOUT << "Store:\t" << *StoreMI;
1306
1307 // If there is a dead store to this stack slot, nuke it now.
1308 if (LastStore) {
1309 DOUT << "Removed dead store:\t" << *LastStore;
1310 ++NumDSE;
1311 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00001312 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00001313 MachineBasicBlock::iterator PrevMII = LastStore;
1314 bool CheckDef = PrevMII != MBB.begin();
1315 if (CheckDef)
1316 --PrevMII;
1317 VRM.RemoveMachineInstrFromMaps(LastStore);
1318 MBB.erase(LastStore);
1319 if (CheckDef) {
1320 // Look at defs of killed registers on the store. Mark the defs
1321 // as dead since the store has been deleted and they aren't
1322 // being reused.
1323 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1324 bool HasOtherDef = false;
1325 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
1326 MachineInstr *DeadDef = PrevMII;
1327 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
Evan Cheng4784f1f2009-06-30 08:49:04 +00001328 // FIXME: This assumes a remat def does not have side effects.
Lang Hames87e3bca2009-05-06 02:36:21 +00001329 VRM.RemoveMachineInstrFromMaps(DeadDef);
1330 MBB.erase(DeadDef);
1331 ++NumDRM;
1332 }
1333 }
1334 }
1335 }
1336 }
1337
1338 LastStore = next(MII);
1339
1340 // If the stack slot value was previously available in some other
1341 // register, change it now. Otherwise, make the register available,
1342 // in PhysReg.
1343 Spills.ModifyStackSlotOrReMat(StackSlot);
1344 Spills.ClobberPhysReg(PhysReg);
1345 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1346 ++NumStores;
1347 }
1348
1349 /// TransferDeadness - A identity copy definition is dead and it's being
1350 /// removed. Find the last def or use and mark it as dead / kill.
1351 void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
1352 unsigned Reg, BitVector &RegKills,
Evan Chengeca24fb2009-05-12 23:07:00 +00001353 std::vector<MachineOperand*> &KillOps,
1354 VirtRegMap &VRM) {
1355 SmallPtrSet<MachineInstr*, 4> Seens;
1356 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
Lang Hames87e3bca2009-05-06 02:36:21 +00001357 for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
1358 RE = RegInfo->reg_end(); RI != RE; ++RI) {
1359 MachineInstr *UDMI = &*RI;
1360 if (UDMI->getParent() != MBB)
1361 continue;
1362 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1363 if (DI == DistanceMap.end() || DI->second > CurDist)
1364 continue;
Evan Chengeca24fb2009-05-12 23:07:00 +00001365 if (Seens.insert(UDMI))
1366 Refs.push_back(std::make_pair(UDMI, DI->second));
Lang Hames87e3bca2009-05-06 02:36:21 +00001367 }
1368
Evan Chengeca24fb2009-05-12 23:07:00 +00001369 if (Refs.empty())
1370 return;
1371 std::sort(Refs.begin(), Refs.end(), RefSorter());
1372
1373 while (!Refs.empty()) {
1374 MachineInstr *LastUDMI = Refs.back().first;
1375 Refs.pop_back();
1376
Lang Hames87e3bca2009-05-06 02:36:21 +00001377 MachineOperand *LastUD = NULL;
1378 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1379 MachineOperand &MO = LastUDMI->getOperand(i);
1380 if (!MO.isReg() || MO.getReg() != Reg)
1381 continue;
1382 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1383 LastUD = &MO;
1384 if (LastUDMI->isRegTiedToDefOperand(i))
Evan Chengeca24fb2009-05-12 23:07:00 +00001385 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001386 }
Evan Chengeca24fb2009-05-12 23:07:00 +00001387 if (LastUD->isDef()) {
1388 // If the instruction has no side effect, delete it and propagate
1389 // backward further. Otherwise, mark is dead and we are done.
1390 const TargetInstrDesc &TID = LastUDMI->getDesc();
1391 if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
1392 TID.hasUnmodeledSideEffects()) {
1393 LastUD->setIsDead();
1394 break;
1395 }
1396 VRM.RemoveMachineInstrFromMaps(LastUDMI);
1397 MBB->erase(LastUDMI);
1398 } else {
Lang Hames87e3bca2009-05-06 02:36:21 +00001399 LastUD->setIsKill();
1400 RegKills.set(Reg);
1401 KillOps[Reg] = LastUD;
Evan Chengeca24fb2009-05-12 23:07:00 +00001402 break;
Lang Hames87e3bca2009-05-06 02:36:21 +00001403 }
1404 }
1405 }
1406
1407 /// rewriteMBB - Keep track of which spills are available even after the
1408 /// register allocator is done with them. If possible, avid reloading vregs.
1409 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
1410 LiveIntervals *LIs,
1411 AvailableSpills &Spills, BitVector &RegKills,
1412 std::vector<MachineOperand*> &KillOps) {
1413
1414 DOUT << "\n**** Local spiller rewriting MBB '"
1415 << MBB.getBasicBlock()->getName() << "':\n";
1416
1417 MachineFunction &MF = *MBB.getParent();
1418
1419 // MaybeDeadStores - When we need to write a value back into a stack slot,
1420 // keep track of the inserted store. If the stack slot value is never read
1421 // (because the value was used from some available register, for example), and
1422 // subsequently stored to, the original store is dead. This map keeps track
1423 // of inserted stores that are not used. If we see a subsequent store to the
1424 // same stack slot, the original store is deleted.
1425 std::vector<MachineInstr*> MaybeDeadStores;
1426 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
1427
1428 // ReMatDefs - These are rematerializable def MIs which are not deleted.
1429 SmallSet<MachineInstr*, 4> ReMatDefs;
1430
1431 // Clear kill info.
1432 SmallSet<unsigned, 2> KilledMIRegs;
1433 RegKills.reset();
1434 KillOps.clear();
1435 KillOps.resize(TRI->getNumRegs(), NULL);
1436
1437 unsigned Dist = 0;
1438 DistanceMap.clear();
1439 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
1440 MII != E; ) {
1441 MachineBasicBlock::iterator NextMII = next(MII);
1442
1443 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1444 bool Erased = false;
1445 bool BackTracked = false;
1446 if (OptimizeByUnfold(MBB, MII,
1447 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
1448 NextMII = next(MII);
1449
1450 MachineInstr &MI = *MII;
1451
1452 if (VRM.hasEmergencySpills(&MI)) {
1453 // Spill physical register(s) in the rare case the allocator has run out
1454 // of registers to allocate.
1455 SmallSet<int, 4> UsedSS;
1456 std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
1457 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1458 unsigned PhysReg = EmSpills[i];
1459 const TargetRegisterClass *RC =
1460 TRI->getPhysicalRegisterRegClass(PhysReg);
1461 assert(RC && "Unable to determine register class!");
1462 int SS = VRM.getEmergencySpillSlot(RC);
1463 if (UsedSS.count(SS))
Torok Edwinc23197a2009-07-14 16:55:14 +00001464 llvm_unreachable("Need to spill more than one physical registers!");
Lang Hames87e3bca2009-05-06 02:36:21 +00001465 UsedSS.insert(SS);
1466 TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
1467 MachineInstr *StoreMI = prior(MII);
1468 VRM.addSpillSlotUse(SS, StoreMI);
1469 TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
1470 MachineInstr *LoadMI = next(MII);
1471 VRM.addSpillSlotUse(SS, LoadMI);
1472 ++NumPSpills;
1473 }
1474 NextMII = next(MII);
1475 }
1476
1477 // Insert restores here if asked to.
1478 if (VRM.isRestorePt(&MI)) {
1479 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
1480 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1481 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1482 if (!VRM.getPreSplitReg(VirtReg))
1483 continue; // Split interval spilled again.
1484 unsigned Phys = VRM.getPhys(VirtReg);
1485 RegInfo->setPhysRegUsed(Phys);
1486
1487 // Check if the value being restored if available. If so, it must be
1488 // from a predecessor BB that fallthrough into this BB. We do not
1489 // expect:
1490 // BB1:
1491 // r1 = load fi#1
1492 // ...
1493 // = r1<kill>
1494 // ... # r1 not clobbered
1495 // ...
1496 // = load fi#1
1497 bool DoReMat = VRM.isReMaterialized(VirtReg);
1498 int SSorRMId = DoReMat
1499 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1500 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1501 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1502 if (InReg == Phys) {
1503 // If the value is already available in the expected register, save
1504 // a reload / remat.
1505 if (SSorRMId)
1506 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1507 else
1508 DOUT << "Reusing SS#" << SSorRMId;
1509 DOUT << " from physreg "
1510 << TRI->getName(InReg) << " for vreg"
1511 << VirtReg <<" instead of reloading into physreg "
1512 << TRI->getName(Phys) << "\n";
1513 ++NumOmitted;
1514 continue;
1515 } else if (InReg && InReg != Phys) {
1516 if (SSorRMId)
1517 DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
1518 else
1519 DOUT << "Reusing SS#" << SSorRMId;
1520 DOUT << " from physreg "
1521 << TRI->getName(InReg) << " for vreg"
1522 << VirtReg <<" by copying it into physreg "
1523 << TRI->getName(Phys) << "\n";
1524
1525 // If the reloaded / remat value is available in another register,
1526 // copy it to the desired register.
1527 TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
1528
1529 // This invalidates Phys.
1530 Spills.ClobberPhysReg(Phys);
1531 // Remember it's available.
1532 Spills.addAvailable(SSorRMId, Phys);
1533
1534 // Mark is killed.
1535 MachineInstr *CopyMI = prior(MII);
1536 MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
1537 KillOpnd->setIsKill();
Evan Cheng427a6b62009-05-15 06:48:19 +00001538 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001539
1540 DOUT << '\t' << *CopyMI;
1541 ++NumCopified;
1542 continue;
1543 }
1544
1545 if (VRM.isReMaterialized(VirtReg)) {
1546 ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
1547 } else {
1548 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1549 TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
1550 MachineInstr *LoadMI = prior(MII);
1551 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1552 ++NumLoads;
1553 }
1554
1555 // This invalidates Phys.
1556 Spills.ClobberPhysReg(Phys);
1557 // Remember it's available.
1558 Spills.addAvailable(SSorRMId, Phys);
1559
Evan Cheng427a6b62009-05-15 06:48:19 +00001560 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001561 DOUT << '\t' << *prior(MII);
1562 }
1563 }
1564
1565 // Insert spills here if asked to.
1566 if (VRM.isSpillPt(&MI)) {
1567 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1568 VRM.getSpillPtSpills(&MI);
1569 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1570 unsigned VirtReg = SpillRegs[i].first;
1571 bool isKill = SpillRegs[i].second;
1572 if (!VRM.getPreSplitReg(VirtReg))
1573 continue; // Split interval spilled again.
1574 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1575 unsigned Phys = VRM.getPhys(VirtReg);
1576 int StackSlot = VRM.getStackSlot(VirtReg);
1577 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1578 MachineInstr *StoreMI = next(MII);
1579 VRM.addSpillSlotUse(StackSlot, StoreMI);
1580 DOUT << "Store:\t" << *StoreMI;
1581 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1582 }
1583 NextMII = next(MII);
1584 }
1585
1586 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1587 /// reuse.
1588 ReuseInfo ReusedOperands(MI, TRI);
1589 SmallVector<unsigned, 4> VirtUseOps;
1590 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1591 MachineOperand &MO = MI.getOperand(i);
1592 if (!MO.isReg() || MO.getReg() == 0)
1593 continue; // Ignore non-register operands.
1594
1595 unsigned VirtReg = MO.getReg();
1596 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1597 // Ignore physregs for spilling, but remember that it is used by this
1598 // function.
1599 RegInfo->setPhysRegUsed(VirtReg);
1600 continue;
1601 }
1602
1603 // We want to process implicit virtual register uses first.
1604 if (MO.isImplicit())
1605 // If the virtual register is implicitly defined, emit a implicit_def
1606 // before so scavenger knows it's "defined".
Evan Cheng4784f1f2009-06-30 08:49:04 +00001607 // FIXME: This is a horrible hack done the by register allocator to
1608 // remat a definition with virtual register operand.
Lang Hames87e3bca2009-05-06 02:36:21 +00001609 VirtUseOps.insert(VirtUseOps.begin(), i);
1610 else
1611 VirtUseOps.push_back(i);
1612 }
1613
1614 // Process all of the spilled uses and all non spilled reg references.
1615 SmallVector<int, 2> PotentialDeadStoreSlots;
1616 KilledMIRegs.clear();
1617 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1618 unsigned i = VirtUseOps[j];
1619 MachineOperand &MO = MI.getOperand(i);
1620 unsigned VirtReg = MO.getReg();
1621 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1622 "Not a virtual register?");
1623
1624 unsigned SubIdx = MO.getSubReg();
1625 if (VRM.isAssignedReg(VirtReg)) {
1626 // This virtual register was assigned a physreg!
1627 unsigned Phys = VRM.getPhys(VirtReg);
1628 RegInfo->setPhysRegUsed(Phys);
1629 if (MO.isDef())
1630 ReusedOperands.markClobbered(Phys);
1631 unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
1632 MI.getOperand(i).setReg(RReg);
1633 MI.getOperand(i).setSubReg(0);
1634 if (VRM.isImplicitlyDefined(VirtReg))
Evan Cheng4784f1f2009-06-30 08:49:04 +00001635 // FIXME: Is this needed?
Lang Hames87e3bca2009-05-06 02:36:21 +00001636 BuildMI(MBB, &MI, MI.getDebugLoc(),
1637 TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
1638 continue;
1639 }
1640
1641 // This virtual register is now known to be a spilled value.
1642 if (!MO.isUse())
1643 continue; // Handle defs in the loop below (handle use&def here though)
1644
Evan Cheng4784f1f2009-06-30 08:49:04 +00001645 bool AvoidReload = MO.isUndef();
1646 // Check if it is defined by an implicit def. It should not be spilled.
1647 // Note, this is for correctness reason. e.g.
1648 // 8 %reg1024<def> = IMPLICIT_DEF
1649 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1650 // The live range [12, 14) are not part of the r1024 live interval since
1651 // it's defined by an implicit def. It will not conflicts with live
1652 // interval of r1025. Now suppose both registers are spilled, you can
1653 // easily see a situation where both registers are reloaded before
1654 // the INSERT_SUBREG and both target registers that would overlap.
Lang Hames87e3bca2009-05-06 02:36:21 +00001655 bool DoReMat = VRM.isReMaterialized(VirtReg);
1656 int SSorRMId = DoReMat
1657 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1658 int ReuseSlot = SSorRMId;
1659
1660 // Check to see if this stack slot is available.
1661 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1662
1663 // If this is a sub-register use, make sure the reuse register is in the
1664 // right register class. For example, for x86 not all of the 32-bit
1665 // registers have accessible sub-registers.
1666 // Similarly so for EXTRACT_SUBREG. Consider this:
1667 // EDI = op
1668 // MOV32_mr fi#1, EDI
1669 // ...
1670 // = EXTRACT_SUBREG fi#1
1671 // fi#1 is available in EDI, but it cannot be reused because it's not in
1672 // the right register file.
1673 if (PhysReg && !AvoidReload &&
1674 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1675 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1676 if (!RC->contains(PhysReg))
1677 PhysReg = 0;
1678 }
1679
1680 if (PhysReg && !AvoidReload) {
1681 // This spilled operand might be part of a two-address operand. If this
1682 // is the case, then changing it will necessarily require changing the
1683 // def part of the instruction as well. However, in some cases, we
1684 // aren't allowed to modify the reused register. If none of these cases
1685 // apply, reuse it.
1686 bool CanReuse = true;
1687 bool isTied = MI.isRegTiedToDefOperand(i);
1688 if (isTied) {
1689 // Okay, we have a two address operand. We can reuse this physreg as
1690 // long as we are allowed to clobber the value and there isn't an
1691 // earlier def that has already clobbered the physreg.
1692 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
1693 Spills.canClobberPhysReg(PhysReg);
1694 }
1695
1696 if (CanReuse) {
1697 // If this stack slot value is already available, reuse it!
1698 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1699 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1700 else
1701 DOUT << "Reusing SS#" << ReuseSlot;
1702 DOUT << " from physreg "
1703 << TRI->getName(PhysReg) << " for vreg"
1704 << VirtReg <<" instead of reloading into physreg "
1705 << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
1706 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1707 MI.getOperand(i).setReg(RReg);
1708 MI.getOperand(i).setSubReg(0);
1709
1710 // The only technical detail we have is that we don't know that
1711 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1712 // later in the instruction. In particular, consider 'op V1, V2'.
1713 // If V1 is available in physreg R0, we would choose to reuse it
1714 // here, instead of reloading it into the register the allocator
1715 // indicated (say R1). However, V2 might have to be reloaded
1716 // later, and it might indicate that it needs to live in R0. When
1717 // this occurs, we need to have information available that
1718 // indicates it is safe to use R1 for the reload instead of R0.
1719 //
1720 // To further complicate matters, we might conflict with an alias,
1721 // or R0 and R1 might not be compatible with each other. In this
1722 // case, we actually insert a reload for V1 in R1, ensuring that
1723 // we can get at R0 or its alias.
1724 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1725 VRM.getPhys(VirtReg), VirtReg);
1726 if (isTied)
1727 // Only mark it clobbered if this is a use&def operand.
1728 ReusedOperands.markClobbered(PhysReg);
1729 ++NumReused;
1730
1731 if (MI.getOperand(i).isKill() &&
1732 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1733
1734 // The store of this spilled value is potentially dead, but we
1735 // won't know for certain until we've confirmed that the re-use
1736 // above is valid, which means waiting until the other operands
1737 // are processed. For now we just track the spill slot, we'll
1738 // remove it after the other operands are processed if valid.
1739
1740 PotentialDeadStoreSlots.push_back(ReuseSlot);
1741 }
1742
1743 // Mark is isKill if it's there no other uses of the same virtual
1744 // register and it's not a two-address operand. IsKill will be
1745 // unset if reg is reused.
1746 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
1747 MI.getOperand(i).setIsKill();
1748 KilledMIRegs.insert(VirtReg);
1749 }
1750
1751 continue;
1752 } // CanReuse
1753
1754 // Otherwise we have a situation where we have a two-address instruction
1755 // whose mod/ref operand needs to be reloaded. This reload is already
1756 // available in some register "PhysReg", but if we used PhysReg as the
1757 // operand to our 2-addr instruction, the instruction would modify
1758 // PhysReg. This isn't cool if something later uses PhysReg and expects
1759 // to get its initial value.
1760 //
1761 // To avoid this problem, and to avoid doing a load right after a store,
1762 // we emit a copy from PhysReg into the designated register for this
1763 // operand.
1764 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1765 assert(DesignatedReg && "Must map virtreg to physreg!");
1766
1767 // Note that, if we reused a register for a previous operand, the
1768 // register we want to reload into might not actually be
1769 // available. If this occurs, use the register indicated by the
1770 // reuser.
1771 if (ReusedOperands.hasReuses())
1772 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1773 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1774
1775 // If the mapped designated register is actually the physreg we have
1776 // incoming, we don't need to inserted a dead copy.
1777 if (DesignatedReg == PhysReg) {
1778 // If this stack slot value is already available, reuse it!
1779 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1780 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1781 else
1782 DOUT << "Reusing SS#" << ReuseSlot;
1783 DOUT << " from physreg " << TRI->getName(PhysReg)
1784 << " for vreg" << VirtReg
1785 << " instead of reloading into same physreg.\n";
1786 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1787 MI.getOperand(i).setReg(RReg);
1788 MI.getOperand(i).setSubReg(0);
1789 ReusedOperands.markClobbered(RReg);
1790 ++NumReused;
1791 continue;
1792 }
1793
1794 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1795 RegInfo->setPhysRegUsed(DesignatedReg);
1796 ReusedOperands.markClobbered(DesignatedReg);
1797 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1798
1799 MachineInstr *CopyMI = prior(MII);
Evan Cheng427a6b62009-05-15 06:48:19 +00001800 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001801
1802 // This invalidates DesignatedReg.
1803 Spills.ClobberPhysReg(DesignatedReg);
1804
1805 Spills.addAvailable(ReuseSlot, DesignatedReg);
1806 unsigned RReg =
1807 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1808 MI.getOperand(i).setReg(RReg);
1809 MI.getOperand(i).setSubReg(0);
1810 DOUT << '\t' << *prior(MII);
1811 ++NumReused;
1812 continue;
1813 } // if (PhysReg)
1814
1815 // Otherwise, reload it and remember that we have it.
1816 PhysReg = VRM.getPhys(VirtReg);
1817 assert(PhysReg && "Must map virtreg to physreg!");
1818
1819 // Note that, if we reused a register for a previous operand, the
1820 // register we want to reload into might not actually be
1821 // available. If this occurs, use the register indicated by the
1822 // reuser.
1823 if (ReusedOperands.hasReuses())
1824 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1825 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1826
1827 RegInfo->setPhysRegUsed(PhysReg);
1828 ReusedOperands.markClobbered(PhysReg);
1829 if (AvoidReload)
1830 ++NumAvoided;
1831 else {
1832 if (DoReMat) {
1833 ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
1834 } else {
1835 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1836 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1837 MachineInstr *LoadMI = prior(MII);
1838 VRM.addSpillSlotUse(SSorRMId, LoadMI);
1839 ++NumLoads;
1840 }
1841 // This invalidates PhysReg.
1842 Spills.ClobberPhysReg(PhysReg);
1843
1844 // Any stores to this stack slot are not dead anymore.
1845 if (!DoReMat)
1846 MaybeDeadStores[SSorRMId] = NULL;
1847 Spills.addAvailable(SSorRMId, PhysReg);
1848 // Assumes this is the last use. IsKill will be unset if reg is reused
1849 // unless it's a two-address operand.
1850 if (!MI.isRegTiedToDefOperand(i) &&
1851 KilledMIRegs.count(VirtReg) == 0) {
1852 MI.getOperand(i).setIsKill();
1853 KilledMIRegs.insert(VirtReg);
1854 }
1855
Evan Cheng427a6b62009-05-15 06:48:19 +00001856 UpdateKills(*prior(MII), TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001857 DOUT << '\t' << *prior(MII);
1858 }
1859 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1860 MI.getOperand(i).setReg(RReg);
1861 MI.getOperand(i).setSubReg(0);
1862 }
1863
1864 // Ok - now we can remove stores that have been confirmed dead.
1865 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
1866 // This was the last use and the spilled value is still available
1867 // for reuse. That means the spill was unnecessary!
1868 int PDSSlot = PotentialDeadStoreSlots[j];
1869 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
1870 if (DeadStore) {
1871 DOUT << "Removed dead store:\t" << *DeadStore;
Evan Cheng427a6b62009-05-15 06:48:19 +00001872 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001873 VRM.RemoveMachineInstrFromMaps(DeadStore);
1874 MBB.erase(DeadStore);
1875 MaybeDeadStores[PDSSlot] = NULL;
1876 ++NumDSE;
1877 }
1878 }
1879
1880
1881 DOUT << '\t' << MI;
1882
1883
1884 // If we have folded references to memory operands, make sure we clear all
1885 // physical registers that may contain the value of the spilled virtual
1886 // register
1887 SmallSet<int, 2> FoldedSS;
1888 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
1889 unsigned VirtReg = I->second.first;
1890 VirtRegMap::ModRef MR = I->second.second;
1891 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1892
1893 // MI2VirtMap be can updated which invalidate the iterator.
1894 // Increment the iterator first.
1895 ++I;
1896 int SS = VRM.getStackSlot(VirtReg);
1897 if (SS == VirtRegMap::NO_STACK_SLOT)
1898 continue;
1899 FoldedSS.insert(SS);
1900 DOUT << " - StackSlot: " << SS << "\n";
1901
1902 // If this folded instruction is just a use, check to see if it's a
1903 // straight load from the virt reg slot.
1904 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1905 int FrameIdx;
1906 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1907 if (DestReg && FrameIdx == SS) {
1908 // If this spill slot is available, turn it into a copy (or nothing)
1909 // instead of leaving it as a load!
1910 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1911 DOUT << "Promoted Load To Copy: " << MI;
1912 if (DestReg != InReg) {
1913 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1914 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1915 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
1916 unsigned SubIdx = DefMO->getSubReg();
1917 // Revisit the copy so we make sure to notice the effects of the
1918 // operation on the destreg (either needing to RA it if it's
1919 // virtual or needing to clobber any values if it's physical).
1920 NextMII = &MI;
1921 --NextMII; // backtrack to the copy.
1922 // Propagate the sub-register index over.
1923 if (SubIdx) {
1924 DefMO = NextMII->findRegisterDefOperand(DestReg);
1925 DefMO->setSubReg(SubIdx);
1926 }
1927
1928 // Mark is killed.
1929 MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
1930 KillOpnd->setIsKill();
1931
1932 BackTracked = true;
1933 } else {
1934 DOUT << "Removing now-noop copy: " << MI;
1935 // Unset last kill since it's being reused.
Evan Cheng427a6b62009-05-15 06:48:19 +00001936 InvalidateKill(InReg, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001937 Spills.disallowClobberPhysReg(InReg);
1938 }
1939
Evan Cheng427a6b62009-05-15 06:48:19 +00001940 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001941 VRM.RemoveMachineInstrFromMaps(&MI);
1942 MBB.erase(&MI);
1943 Erased = true;
1944 goto ProcessNextInst;
1945 }
1946 } else {
1947 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1948 SmallVector<MachineInstr*, 4> NewMIs;
1949 if (PhysReg &&
1950 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1951 MBB.insert(MII, NewMIs[0]);
Evan Cheng427a6b62009-05-15 06:48:19 +00001952 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001953 VRM.RemoveMachineInstrFromMaps(&MI);
1954 MBB.erase(&MI);
1955 Erased = true;
1956 --NextMII; // backtrack to the unfolded instruction.
1957 BackTracked = true;
1958 goto ProcessNextInst;
1959 }
1960 }
1961 }
1962
1963 // If this reference is not a use, any previous store is now dead.
1964 // Otherwise, the store to this stack slot is not dead anymore.
1965 MachineInstr* DeadStore = MaybeDeadStores[SS];
1966 if (DeadStore) {
1967 bool isDead = !(MR & VirtRegMap::isRef);
1968 MachineInstr *NewStore = NULL;
1969 if (MR & VirtRegMap::isModRef) {
1970 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1971 SmallVector<MachineInstr*, 4> NewMIs;
1972 // We can reuse this physreg as long as we are allowed to clobber
1973 // the value and there isn't an earlier def that has already clobbered
1974 // the physreg.
1975 if (PhysReg &&
1976 !ReusedOperands.isClobbered(PhysReg) &&
1977 Spills.canClobberPhysReg(PhysReg) &&
1978 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
1979 MachineOperand *KillOpnd =
1980 DeadStore->findRegisterUseOperand(PhysReg, true);
1981 // Note, if the store is storing a sub-register, it's possible the
1982 // super-register is needed below.
1983 if (KillOpnd && !KillOpnd->getSubReg() &&
1984 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
1985 MBB.insert(MII, NewMIs[0]);
1986 NewStore = NewMIs[1];
1987 MBB.insert(MII, NewStore);
1988 VRM.addSpillSlotUse(SS, NewStore);
Evan Cheng427a6b62009-05-15 06:48:19 +00001989 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00001990 VRM.RemoveMachineInstrFromMaps(&MI);
1991 MBB.erase(&MI);
1992 Erased = true;
1993 --NextMII;
1994 --NextMII; // backtrack to the unfolded instruction.
1995 BackTracked = true;
1996 isDead = true;
1997 ++NumSUnfold;
1998 }
1999 }
2000 }
2001
2002 if (isDead) { // Previous store is dead.
2003 // If we get here, the store is dead, nuke it now.
2004 DOUT << "Removed dead store:\t" << *DeadStore;
Evan Cheng427a6b62009-05-15 06:48:19 +00002005 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002006 VRM.RemoveMachineInstrFromMaps(DeadStore);
2007 MBB.erase(DeadStore);
2008 if (!NewStore)
2009 ++NumDSE;
2010 }
2011
2012 MaybeDeadStores[SS] = NULL;
2013 if (NewStore) {
2014 // Treat this store as a spill merged into a copy. That makes the
2015 // stack slot value available.
2016 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2017 goto ProcessNextInst;
2018 }
2019 }
2020
2021 // If the spill slot value is available, and this is a new definition of
2022 // the value, the value is not available anymore.
2023 if (MR & VirtRegMap::isMod) {
2024 // Notice that the value in this stack slot has been modified.
2025 Spills.ModifyStackSlotOrReMat(SS);
2026
2027 // If this is *just* a mod of the value, check to see if this is just a
2028 // store to the spill slot (i.e. the spill got merged into the copy). If
2029 // so, realize that the vreg is available now, and add the store to the
2030 // MaybeDeadStore info.
2031 int StackSlot;
2032 if (!(MR & VirtRegMap::isRef)) {
2033 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2034 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2035 "Src hasn't been allocated yet?");
2036
2037 if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
2038 Spills, RegKills, KillOps, TRI, VRM)) {
2039 NextMII = next(MII);
2040 BackTracked = true;
2041 goto ProcessNextInst;
2042 }
2043
2044 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2045 // this as a potentially dead store in case there is a subsequent
2046 // store into the stack slot without a read from it.
2047 MaybeDeadStores[StackSlot] = &MI;
2048
2049 // If the stack slot value was previously available in some other
2050 // register, change it now. Otherwise, make the register
2051 // available in PhysReg.
2052 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2053 }
2054 }
2055 }
2056 }
2057
2058 // Process all of the spilled defs.
2059 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2060 MachineOperand &MO = MI.getOperand(i);
2061 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2062 continue;
2063
2064 unsigned VirtReg = MO.getReg();
2065 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2066 // Check to see if this is a noop copy. If so, eliminate the
2067 // instruction before considering the dest reg to be changed.
Evan Cheng2578ba22009-07-01 01:59:31 +00002068 // Also check if it's copying from an "undef", if so, we can't
2069 // eliminate this or else the undef marker is lost and it will
2070 // confuses the scavenger. This is extremely rare.
Lang Hames87e3bca2009-05-06 02:36:21 +00002071 unsigned Src, Dst, SrcSR, DstSR;
Evan Cheng2578ba22009-07-01 01:59:31 +00002072 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst &&
2073 !MI.findRegisterUseOperand(Src)->isUndef()) {
Lang Hames87e3bca2009-05-06 02:36:21 +00002074 ++NumDCE;
2075 DOUT << "Removing now-noop copy: " << MI;
2076 SmallVector<unsigned, 2> KillRegs;
Evan Cheng427a6b62009-05-15 06:48:19 +00002077 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
Lang Hames87e3bca2009-05-06 02:36:21 +00002078 if (MO.isDead() && !KillRegs.empty()) {
2079 // Source register or an implicit super/sub-register use is killed.
2080 assert(KillRegs[0] == Dst ||
2081 TRI->isSubRegister(KillRegs[0], Dst) ||
2082 TRI->isSuperRegister(KillRegs[0], Dst));
2083 // Last def is now dead.
Evan Chengeca24fb2009-05-12 23:07:00 +00002084 TransferDeadness(&MBB, Dist, Src, RegKills, KillOps, VRM);
Lang Hames87e3bca2009-05-06 02:36:21 +00002085 }
2086 VRM.RemoveMachineInstrFromMaps(&MI);
2087 MBB.erase(&MI);
2088 Erased = true;
2089 Spills.disallowClobberPhysReg(VirtReg);
2090 goto ProcessNextInst;
2091 }
Evan Cheng2578ba22009-07-01 01:59:31 +00002092
Lang Hames87e3bca2009-05-06 02:36:21 +00002093 // If it's not a no-op copy, it clobbers the value in the destreg.
2094 Spills.ClobberPhysReg(VirtReg);
2095 ReusedOperands.markClobbered(VirtReg);
2096
2097 // Check to see if this instruction is a load from a stack slot into
2098 // a register. If so, this provides the stack slot value in the reg.
2099 int FrameIdx;
2100 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2101 assert(DestReg == VirtReg && "Unknown load situation!");
2102
2103 // If it is a folded reference, then it's not safe to clobber.
2104 bool Folded = FoldedSS.count(FrameIdx);
2105 // Otherwise, if it wasn't available, remember that it is now!
2106 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2107 goto ProcessNextInst;
2108 }
2109
2110 continue;
2111 }
2112
2113 unsigned SubIdx = MO.getSubReg();
2114 bool DoReMat = VRM.isReMaterialized(VirtReg);
2115 if (DoReMat)
2116 ReMatDefs.insert(&MI);
2117
2118 // The only vregs left are stack slot definitions.
2119 int StackSlot = VRM.getStackSlot(VirtReg);
2120 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
2121
2122 // If this def is part of a two-address operand, make sure to execute
2123 // the store from the correct physical register.
2124 unsigned PhysReg;
2125 unsigned TiedOp;
2126 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2127 PhysReg = MI.getOperand(TiedOp).getReg();
2128 if (SubIdx) {
2129 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2130 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2131 "Can't find corresponding super-register!");
2132 PhysReg = SuperReg;
2133 }
2134 } else {
2135 PhysReg = VRM.getPhys(VirtReg);
2136 if (ReusedOperands.isClobbered(PhysReg)) {
2137 // Another def has taken the assigned physreg. It must have been a
2138 // use&def which got it due to reuse. Undo the reuse!
2139 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
2140 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
2141 }
2142 }
2143
2144 assert(PhysReg && "VR not assigned a physical register?");
2145 RegInfo->setPhysRegUsed(PhysReg);
2146 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2147 ReusedOperands.markClobbered(RReg);
2148 MI.getOperand(i).setReg(RReg);
2149 MI.getOperand(i).setSubReg(0);
2150
2151 if (!MO.isDead()) {
2152 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2153 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
2154 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
2155 NextMII = next(MII);
2156
2157 // Check to see if this is a noop copy. If so, eliminate the
2158 // instruction before considering the dest reg to be changed.
2159 {
2160 unsigned Src, Dst, SrcSR, DstSR;
2161 if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
2162 ++NumDCE;
2163 DOUT << "Removing now-noop copy: " << MI;
Evan Cheng427a6b62009-05-15 06:48:19 +00002164 InvalidateKills(MI, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002165 VRM.RemoveMachineInstrFromMaps(&MI);
2166 MBB.erase(&MI);
2167 Erased = true;
Evan Cheng427a6b62009-05-15 06:48:19 +00002168 UpdateKills(*LastStore, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002169 goto ProcessNextInst;
2170 }
2171 }
2172 }
2173 }
2174 ProcessNextInst:
2175 DistanceMap.insert(std::make_pair(&MI, Dist++));
2176 if (!Erased && !BackTracked) {
2177 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
Evan Cheng427a6b62009-05-15 06:48:19 +00002178 UpdateKills(*II, TRI, RegKills, KillOps);
Lang Hames87e3bca2009-05-06 02:36:21 +00002179 }
2180 MII = NextMII;
2181 }
2182
2183 }
2184
2185};
2186
2187llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2188 switch (RewriterOpt) {
Torok Edwinc23197a2009-07-14 16:55:14 +00002189 default: llvm_unreachable("Unreachable!");
Lang Hames87e3bca2009-05-06 02:36:21 +00002190 case local:
2191 return new LocalRewriter();
Lang Hamesf41538d2009-06-02 16:53:25 +00002192 case trivial:
2193 return new TrivialRewriter();
Lang Hames87e3bca2009-05-06 02:36:21 +00002194 }
2195}