blob: 232893dac36a1b7c883737918a6250fc3889819f [file] [log] [blame]
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001//===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11/// analysis.
12///
13/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14/// class of bugs on its own. Instead, it provides a generic dynamic data flow
15/// analysis framework to be used by clients to help detect application-specific
16/// issues within their own code.
17///
18/// The analysis is based on automatic propagation of data flow labels (also
19/// known as taint labels) through a program as it performs computation. Each
20/// byte of application memory is backed by two bytes of shadow memory which
21/// hold the label. On Linux/x86_64, memory is laid out as follows:
22///
23/// +--------------------+ 0x800000000000 (top of memory)
24/// | application memory |
25/// +--------------------+ 0x700000008000 (kAppAddr)
26/// | |
27/// | unused |
28/// | |
29/// +--------------------+ 0x200200000000 (kUnusedAddr)
30/// | union table |
31/// +--------------------+ 0x200000000000 (kUnionTableAddr)
32/// | shadow memory |
33/// +--------------------+ 0x000000010000 (kShadowAddr)
34/// | reserved by kernel |
35/// +--------------------+ 0x000000000000
36///
37/// To derive a shadow memory address from an application memory address,
38/// bits 44-46 are cleared to bring the address into the range
39/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
40/// account for the double byte representation of shadow labels and move the
41/// address into the shadow memory range. See the function
42/// DataFlowSanitizer::getShadowAddress below.
43///
44/// For more information, please refer to the design document:
45/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46
47#include "llvm/Transforms/Instrumentation.h"
48#include "llvm/ADT/DenseMap.h"
49#include "llvm/ADT/DenseSet.h"
50#include "llvm/ADT/DepthFirstIterator.h"
51#include "llvm/Analysis/ValueTracking.h"
52#include "llvm/IR/InlineAsm.h"
53#include "llvm/IR/IRBuilder.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/MDBuilder.h"
56#include "llvm/IR/Type.h"
57#include "llvm/IR/Value.h"
58#include "llvm/InstVisitor.h"
59#include "llvm/Pass.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Peter Collingbourneaaae6e92013-08-09 21:42:53 +000062#include "llvm/Transforms/Utils/Local.h"
Peter Collingbourne6fa33f52013-08-07 22:47:18 +000063#include "llvm/Transforms/Utils/SpecialCaseList.h"
64#include <iterator>
65
66using namespace llvm;
67
68// The -dfsan-preserve-alignment flag controls whether this pass assumes that
69// alignment requirements provided by the input IR are correct. For example,
70// if the input IR contains a load with alignment 8, this flag will cause
71// the shadow load to have alignment 16. This flag is disabled by default as
72// we have unfortunately encountered too much code (including Clang itself;
73// see PR14291) which performs misaligned access.
74static cl::opt<bool> ClPreserveAlignment(
75 "dfsan-preserve-alignment",
76 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
77 cl::init(false));
78
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +000079// The ABI list file controls how shadow parameters are passed. The pass treats
80// every function labelled "uninstrumented" in the ABI list file as conforming
81// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
82// additional annotations for those functions, a call to one of those functions
83// will produce a warning message, as the labelling behaviour of the function is
84// unknown. The other supported annotations are "functional" and "discard",
85// which are described below under DataFlowSanitizer::WrapperKind.
86static cl::opt<std::string> ClABIListFile(
87 "dfsan-abilist",
88 cl::desc("File listing native ABI functions and how the pass treats them"),
Peter Collingbourne6fa33f52013-08-07 22:47:18 +000089 cl::Hidden);
90
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +000091// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
92// functions (see DataFlowSanitizer::InstrumentedABI below).
Peter Collingbourne6fa33f52013-08-07 22:47:18 +000093static cl::opt<bool> ClArgsABI(
94 "dfsan-args-abi",
95 cl::desc("Use the argument ABI rather than the TLS ABI"),
96 cl::Hidden);
97
Peter Collingbournea77d9f72013-08-15 18:51:12 +000098static cl::opt<bool> ClDebugNonzeroLabels(
99 "dfsan-debug-nonzero-labels",
100 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
101 "load or return with a nonzero label"),
102 cl::Hidden);
103
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000104namespace {
105
106class DataFlowSanitizer : public ModulePass {
107 friend struct DFSanFunction;
108 friend class DFSanVisitor;
109
110 enum {
111 ShadowWidth = 16
112 };
113
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000114 /// Which ABI should be used for instrumented functions?
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000115 enum InstrumentedABI {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000116 /// Argument and return value labels are passed through additional
117 /// arguments and by modifying the return type.
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000118 IA_Args,
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000119
120 /// Argument and return value labels are passed through TLS variables
121 /// __dfsan_arg_tls and __dfsan_retval_tls.
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000122 IA_TLS
123 };
124
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000125 /// How should calls to uninstrumented functions be handled?
126 enum WrapperKind {
127 /// This function is present in an uninstrumented form but we don't know
128 /// how it should be handled. Print a warning and call the function anyway.
129 /// Don't label the return value.
130 WK_Warning,
131
132 /// This function does not write to (user-accessible) memory, and its return
133 /// value is unlabelled.
134 WK_Discard,
135
136 /// This function does not write to (user-accessible) memory, and the label
137 /// of its return value is the union of the label of its arguments.
138 WK_Functional,
139
140 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
141 /// where F is the name of the function. This function may wrap the
142 /// original function or provide its own implementation. This is similar to
143 /// the IA_Args ABI, except that IA_Args uses a struct return type to
144 /// pass the return value shadow in a register, while WK_Custom uses an
145 /// extra pointer argument to return the shadow. This allows the wrapped
146 /// form of the function type to be expressed in C.
147 WK_Custom
148 };
149
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000150 DataLayout *DL;
151 Module *Mod;
152 LLVMContext *Ctx;
153 IntegerType *ShadowTy;
154 PointerType *ShadowPtrTy;
155 IntegerType *IntptrTy;
156 ConstantInt *ZeroShadow;
157 ConstantInt *ShadowPtrMask;
158 ConstantInt *ShadowPtrMul;
159 Constant *ArgTLS;
160 Constant *RetvalTLS;
161 void *(*GetArgTLSPtr)();
162 void *(*GetRetvalTLSPtr)();
163 Constant *GetArgTLS;
164 Constant *GetRetvalTLS;
165 FunctionType *DFSanUnionFnTy;
166 FunctionType *DFSanUnionLoadFnTy;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000167 FunctionType *DFSanUnimplementedFnTy;
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000168 FunctionType *DFSanSetLabelFnTy;
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000169 FunctionType *DFSanNonzeroLabelFnTy;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000170 Constant *DFSanUnionFn;
171 Constant *DFSanUnionLoadFn;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000172 Constant *DFSanUnimplementedFn;
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000173 Constant *DFSanSetLabelFn;
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000174 Constant *DFSanNonzeroLabelFn;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000175 MDNode *ColdCallWeights;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000176 OwningPtr<SpecialCaseList> ABIList;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000177 DenseMap<Value *, Function *> UnwrappedFnMap;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000178 AttributeSet ReadOnlyNoneAttrs;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000179
180 Value *getShadowAddress(Value *Addr, Instruction *Pos);
181 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
Peter Collingbournef1366c52013-08-22 20:08:08 +0000182 bool isInstrumented(const Function *F);
183 bool isInstrumented(const GlobalAlias *GA);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000184 FunctionType *getArgsFunctionType(FunctionType *T);
185 FunctionType *getCustomFunctionType(FunctionType *T);
186 InstrumentedABI getInstrumentedABI();
187 WrapperKind getWrapperKind(Function *F);
Peter Collingbournef1366c52013-08-22 20:08:08 +0000188 void addGlobalNamePrefix(GlobalValue *GV);
Peter Collingbourne4f68e9e2013-08-22 20:08:11 +0000189 Function *buildWrapperFunction(Function *F, StringRef NewFName,
190 GlobalValue::LinkageTypes NewFLink,
191 FunctionType *NewFT);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000192
Dmitry Vyukova036a312013-08-13 16:52:41 +0000193 public:
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000194 DataFlowSanitizer(StringRef ABIListFile = StringRef(),
195 void *(*getArgTLS)() = 0, void *(*getRetValTLS)() = 0);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000196 static char ID;
197 bool doInitialization(Module &M);
198 bool runOnModule(Module &M);
199};
200
201struct DFSanFunction {
202 DataFlowSanitizer &DFS;
203 Function *F;
204 DataFlowSanitizer::InstrumentedABI IA;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000205 bool IsNativeABI;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000206 Value *ArgTLSPtr;
207 Value *RetvalTLSPtr;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000208 AllocaInst *LabelReturnAlloca;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000209 DenseMap<Value *, Value *> ValShadowMap;
210 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
211 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
212 DenseSet<Instruction *> SkipInsts;
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000213 DenseSet<Value *> NonZeroChecks;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000214
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000215 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
216 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
217 IsNativeABI(IsNativeABI), ArgTLSPtr(0), RetvalTLSPtr(0),
218 LabelReturnAlloca(0) {}
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000219 Value *getArgTLSPtr();
220 Value *getArgTLS(unsigned Index, Instruction *Pos);
221 Value *getRetvalTLS();
222 Value *getShadow(Value *V);
223 void setShadow(Instruction *I, Value *Shadow);
224 Value *combineOperandShadows(Instruction *Inst);
225 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
226 Instruction *Pos);
227 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
228 Instruction *Pos);
229};
230
231class DFSanVisitor : public InstVisitor<DFSanVisitor> {
Dmitry Vyukova036a312013-08-13 16:52:41 +0000232 public:
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000233 DFSanFunction &DFSF;
234 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
235
236 void visitOperandShadowInst(Instruction &I);
237
238 void visitBinaryOperator(BinaryOperator &BO);
239 void visitCastInst(CastInst &CI);
240 void visitCmpInst(CmpInst &CI);
241 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
242 void visitLoadInst(LoadInst &LI);
243 void visitStoreInst(StoreInst &SI);
244 void visitReturnInst(ReturnInst &RI);
245 void visitCallSite(CallSite CS);
246 void visitPHINode(PHINode &PN);
247 void visitExtractElementInst(ExtractElementInst &I);
248 void visitInsertElementInst(InsertElementInst &I);
249 void visitShuffleVectorInst(ShuffleVectorInst &I);
250 void visitExtractValueInst(ExtractValueInst &I);
251 void visitInsertValueInst(InsertValueInst &I);
252 void visitAllocaInst(AllocaInst &I);
253 void visitSelectInst(SelectInst &I);
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000254 void visitMemSetInst(MemSetInst &I);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000255 void visitMemTransferInst(MemTransferInst &I);
256};
257
258}
259
260char DataFlowSanitizer::ID;
261INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
262 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
263
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000264ModulePass *llvm::createDataFlowSanitizerPass(StringRef ABIListFile,
265 void *(*getArgTLS)(),
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000266 void *(*getRetValTLS)()) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000267 return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000268}
269
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000270DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile,
271 void *(*getArgTLS)(),
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000272 void *(*getRetValTLS)())
273 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS),
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000274 ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile
275 : ABIListFile)) {
276}
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000277
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000278FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000279 llvm::SmallVector<Type *, 4> ArgTypes;
280 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
281 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
282 ArgTypes.push_back(ShadowTy);
283 if (T->isVarArg())
284 ArgTypes.push_back(ShadowPtrTy);
285 Type *RetType = T->getReturnType();
286 if (!RetType->isVoidTy())
287 RetType = StructType::get(RetType, ShadowTy, (Type *)0);
288 return FunctionType::get(RetType, ArgTypes, T->isVarArg());
289}
290
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000291FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
292 assert(!T->isVarArg());
293 llvm::SmallVector<Type *, 4> ArgTypes;
294 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
295 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
296 ArgTypes.push_back(ShadowTy);
297 Type *RetType = T->getReturnType();
298 if (!RetType->isVoidTy())
299 ArgTypes.push_back(ShadowPtrTy);
300 return FunctionType::get(T->getReturnType(), ArgTypes, false);
301}
302
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000303bool DataFlowSanitizer::doInitialization(Module &M) {
304 DL = getAnalysisIfAvailable<DataLayout>();
305 if (!DL)
306 return false;
307
308 Mod = &M;
309 Ctx = &M.getContext();
310 ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
311 ShadowPtrTy = PointerType::getUnqual(ShadowTy);
312 IntptrTy = DL->getIntPtrType(*Ctx);
313 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
Peter Collingbourne46c72c72013-08-08 00:15:27 +0000314 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000315 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
316
317 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
318 DFSanUnionFnTy =
319 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
320 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
321 DFSanUnionLoadFnTy =
322 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000323 DFSanUnimplementedFnTy = FunctionType::get(
324 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000325 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
326 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
327 DFSanSetLabelArgs, /*isVarArg=*/false);
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000328 DFSanNonzeroLabelFnTy = FunctionType::get(
329 Type::getVoidTy(*Ctx), ArrayRef<Type *>(), /*isVarArg=*/false);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000330
331 if (GetArgTLSPtr) {
332 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
333 ArgTLS = 0;
334 GetArgTLS = ConstantExpr::getIntToPtr(
335 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
336 PointerType::getUnqual(
337 FunctionType::get(PointerType::getUnqual(ArgTLSTy), (Type *)0)));
338 }
339 if (GetRetvalTLSPtr) {
340 RetvalTLS = 0;
341 GetRetvalTLS = ConstantExpr::getIntToPtr(
342 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
343 PointerType::getUnqual(
344 FunctionType::get(PointerType::getUnqual(ShadowTy), (Type *)0)));
345 }
346
347 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
348 return true;
349}
350
Peter Collingbournef1366c52013-08-22 20:08:08 +0000351bool DataFlowSanitizer::isInstrumented(const Function *F) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000352 return !ABIList->isIn(*F, "uninstrumented");
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000353}
354
Peter Collingbournef1366c52013-08-22 20:08:08 +0000355bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
356 return !ABIList->isIn(*GA, "uninstrumented");
357}
358
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000359DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000360 return ClArgsABI ? IA_Args : IA_TLS;
361}
362
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000363DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
364 if (ABIList->isIn(*F, "functional"))
365 return WK_Functional;
366 if (ABIList->isIn(*F, "discard"))
367 return WK_Discard;
368 if (ABIList->isIn(*F, "custom"))
369 return WK_Custom;
370
371 return WK_Warning;
372}
373
Peter Collingbournef1366c52013-08-22 20:08:08 +0000374void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
375 std::string GVName = GV->getName(), Prefix = "dfs$";
376 GV->setName(Prefix + GVName);
377
378 // Try to change the name of the function in module inline asm. We only do
379 // this for specific asm directives, currently only ".symver", to try to avoid
380 // corrupting asm which happens to contain the symbol name as a substring.
381 // Note that the substitution for .symver assumes that the versioned symbol
382 // also has an instrumented name.
383 std::string Asm = GV->getParent()->getModuleInlineAsm();
384 std::string SearchStr = ".symver " + GVName + ",";
385 size_t Pos = Asm.find(SearchStr);
386 if (Pos != std::string::npos) {
387 Asm.replace(Pos, SearchStr.size(),
388 ".symver " + Prefix + GVName + "," + Prefix);
389 GV->getParent()->setModuleInlineAsm(Asm);
390 }
391}
392
Peter Collingbourne4f68e9e2013-08-22 20:08:11 +0000393Function *
394DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
395 GlobalValue::LinkageTypes NewFLink,
396 FunctionType *NewFT) {
397 FunctionType *FT = F->getFunctionType();
398 Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
399 F->getParent());
400 NewF->copyAttributesFrom(F);
401 NewF->removeAttributes(
402 AttributeSet::ReturnIndex,
403 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
404 AttributeSet::ReturnIndex));
405
406 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
407 std::vector<Value *> Args;
408 unsigned n = FT->getNumParams();
409 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
410 Args.push_back(&*ai);
411 CallInst *CI = CallInst::Create(F, Args, "", BB);
412 if (FT->getReturnType()->isVoidTy())
413 ReturnInst::Create(*Ctx, BB);
414 else
415 ReturnInst::Create(*Ctx, CI, BB);
416
417 return NewF;
418}
419
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000420bool DataFlowSanitizer::runOnModule(Module &M) {
421 if (!DL)
422 return false;
423
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000424 if (ABIList->isIn(M, "skip"))
425 return false;
426
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000427 if (!GetArgTLSPtr) {
428 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
429 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
430 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
431 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
432 }
433 if (!GetRetvalTLSPtr) {
434 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
435 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
436 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
437 }
438
439 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
440 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
441 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
442 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
443 F->addAttribute(1, Attribute::ZExt);
444 F->addAttribute(2, Attribute::ZExt);
445 }
446 DFSanUnionLoadFn =
447 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
448 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
449 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
450 }
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000451 DFSanUnimplementedFn =
452 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000453 DFSanSetLabelFn =
454 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
455 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
456 F->addAttribute(1, Attribute::ZExt);
457 }
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000458 DFSanNonzeroLabelFn =
459 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000460
461 std::vector<Function *> FnsToInstrument;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000462 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000463 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000464 if (!i->isIntrinsic() &&
465 i != DFSanUnionFn &&
466 i != DFSanUnionLoadFn &&
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000467 i != DFSanUnimplementedFn &&
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000468 i != DFSanSetLabelFn &&
469 i != DFSanNonzeroLabelFn)
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000470 FnsToInstrument.push_back(&*i);
471 }
472
Peter Collingbourne054cec02013-08-22 20:08:15 +0000473 // Give function aliases prefixes when necessary, and build wrappers where the
474 // instrumentedness is inconsistent.
Peter Collingbournef1366c52013-08-22 20:08:08 +0000475 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
476 GlobalAlias *GA = &*i;
477 ++i;
478 // Don't stop on weak. We assume people aren't playing games with the
479 // instrumentedness of overridden weak aliases.
480 if (Function *F = dyn_cast<Function>(
481 GA->resolveAliasedGlobal(/*stopOnWeak=*/false))) {
482 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
483 if (GAInst && FInst) {
484 addGlobalNamePrefix(GA);
Peter Collingbourne054cec02013-08-22 20:08:15 +0000485 } else if (GAInst != FInst) {
486 // Non-instrumented alias of an instrumented function, or vice versa.
487 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
488 // below will take care of instrumenting it.
489 Function *NewF =
490 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
491 GA->replaceAllUsesWith(NewF);
492 NewF->takeName(GA);
493 GA->eraseFromParent();
494 FnsToInstrument.push_back(NewF);
Peter Collingbournef1366c52013-08-22 20:08:08 +0000495 }
496 }
497 }
498
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000499 AttrBuilder B;
500 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
501 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
502
503 // First, change the ABI of every function in the module. ABI-listed
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000504 // functions keep their original ABI and get a wrapper function.
505 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
506 e = FnsToInstrument.end();
507 i != e; ++i) {
508 Function &F = **i;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000509 FunctionType *FT = F.getFunctionType();
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000510
Peter Collingbournef1366c52013-08-22 20:08:08 +0000511 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
512 FT->getReturnType()->isVoidTy());
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000513
514 if (isInstrumented(&F)) {
Peter Collingbournef1366c52013-08-22 20:08:08 +0000515 // Instrumented functions get a 'dfs$' prefix. This allows us to more
516 // easily identify cases of mismatching ABIs.
517 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000518 FunctionType *NewFT = getArgsFunctionType(FT);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000519 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000520 NewF->copyAttributesFrom(&F);
521 NewF->removeAttributes(
522 AttributeSet::ReturnIndex,
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000523 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000524 AttributeSet::ReturnIndex));
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000525 for (Function::arg_iterator FArg = F.arg_begin(),
526 NewFArg = NewF->arg_begin(),
527 FArgEnd = F.arg_end();
528 FArg != FArgEnd; ++FArg, ++NewFArg) {
529 FArg->replaceAllUsesWith(NewFArg);
530 }
531 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
532
533 for (Function::use_iterator ui = F.use_begin(), ue = F.use_end();
534 ui != ue;) {
535 BlockAddress *BA = dyn_cast<BlockAddress>(ui.getUse().getUser());
536 ++ui;
537 if (BA) {
538 BA->replaceAllUsesWith(
539 BlockAddress::get(NewF, BA->getBasicBlock()));
540 delete BA;
541 }
542 }
543 F.replaceAllUsesWith(
544 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
545 NewF->takeName(&F);
546 F.eraseFromParent();
547 *i = NewF;
Peter Collingbournef1366c52013-08-22 20:08:08 +0000548 addGlobalNamePrefix(NewF);
549 } else {
550 addGlobalNamePrefix(&F);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000551 }
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000552 // Hopefully, nobody will try to indirectly call a vararg
553 // function... yet.
554 } else if (FT->isVarArg()) {
555 UnwrappedFnMap[&F] = &F;
556 *i = 0;
Peter Collingbournef1366c52013-08-22 20:08:08 +0000557 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000558 // Build a wrapper function for F. The wrapper simply calls F, and is
559 // added to FnsToInstrument so that any instrumentation according to its
560 // WrapperKind is done in the second pass below.
561 FunctionType *NewFT = getInstrumentedABI() == IA_Args
562 ? getArgsFunctionType(FT)
563 : FT;
Alexey Samsonovbbe88b72013-08-23 07:42:51 +0000564 Function *NewF = buildWrapperFunction(
565 &F, std::string("dfsw$") + std::string(F.getName()),
566 GlobalValue::LinkOnceODRLinkage, NewFT);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000567 if (getInstrumentedABI() == IA_TLS)
Peter Collingbourne4f68e9e2013-08-22 20:08:11 +0000568 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000569
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000570 Value *WrappedFnCst =
571 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
572 F.replaceAllUsesWith(WrappedFnCst);
573 UnwrappedFnMap[WrappedFnCst] = &F;
574 *i = NewF;
575
576 if (!F.isDeclaration()) {
577 // This function is probably defining an interposition of an
578 // uninstrumented function and hence needs to keep the original ABI.
579 // But any functions it may call need to use the instrumented ABI, so
580 // we instrument it in a mode which preserves the original ABI.
581 FnsWithNativeABI.insert(&F);
582
583 // This code needs to rebuild the iterators, as they may be invalidated
584 // by the push_back, taking care that the new range does not include
585 // any functions added by this code.
586 size_t N = i - FnsToInstrument.begin(),
587 Count = e - FnsToInstrument.begin();
588 FnsToInstrument.push_back(&F);
589 i = FnsToInstrument.begin() + N;
590 e = FnsToInstrument.begin() + Count;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000591 }
592 }
593 }
594
595 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
596 e = FnsToInstrument.end();
597 i != e; ++i) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000598 if (!*i || (*i)->isDeclaration())
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000599 continue;
600
Peter Collingbourneaaae6e92013-08-09 21:42:53 +0000601 removeUnreachableBlocks(**i);
602
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000603 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000604
605 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
606 // Build a copy of the list before iterating over it.
607 llvm::SmallVector<BasicBlock *, 4> BBList;
608 std::copy(df_begin(&(*i)->getEntryBlock()), df_end(&(*i)->getEntryBlock()),
609 std::back_inserter(BBList));
610
611 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
612 e = BBList.end();
613 i != e; ++i) {
614 Instruction *Inst = &(*i)->front();
615 while (1) {
616 // DFSanVisitor may split the current basic block, changing the current
617 // instruction's next pointer and moving the next instruction to the
618 // tail block from which we should continue.
619 Instruction *Next = Inst->getNextNode();
Peter Collingbournea90d91f2013-08-12 22:38:39 +0000620 // DFSanVisitor may delete Inst, so keep track of whether it was a
621 // terminator.
622 bool IsTerminator = isa<TerminatorInst>(Inst);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000623 if (!DFSF.SkipInsts.count(Inst))
624 DFSanVisitor(DFSF).visit(Inst);
Peter Collingbournea90d91f2013-08-12 22:38:39 +0000625 if (IsTerminator)
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000626 break;
627 Inst = Next;
628 }
629 }
630
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000631 // We will not necessarily be able to compute the shadow for every phi node
632 // until we have visited every block. Therefore, the code that handles phi
633 // nodes adds them to the PHIFixups list so that they can be properly
634 // handled here.
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000635 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
636 i = DFSF.PHIFixups.begin(),
637 e = DFSF.PHIFixups.end();
638 i != e; ++i) {
639 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
640 ++val) {
641 i->second->setIncomingValue(
642 val, DFSF.getShadow(i->first->getIncomingValue(val)));
643 }
644 }
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000645
646 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
647 // places (i.e. instructions in basic blocks we haven't even begun visiting
648 // yet). To make our life easier, do this work in a pass after the main
649 // instrumentation.
650 if (ClDebugNonzeroLabels) {
651 for (DenseSet<Value *>::iterator i = DFSF.NonZeroChecks.begin(),
652 e = DFSF.NonZeroChecks.end();
653 i != e; ++i) {
654 Instruction *Pos;
655 if (Instruction *I = dyn_cast<Instruction>(*i))
656 Pos = I->getNextNode();
657 else
658 Pos = DFSF.F->getEntryBlock().begin();
659 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
660 Pos = Pos->getNextNode();
661 IRBuilder<> IRB(Pos);
662 Instruction *NeInst = cast<Instruction>(
663 IRB.CreateICmpNE(*i, DFSF.DFS.ZeroShadow));
664 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
665 NeInst, /*Unreachable=*/ false, ColdCallWeights));
666 IRBuilder<> ThenIRB(BI);
667 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn);
668 }
669 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000670 }
671
672 return false;
673}
674
675Value *DFSanFunction::getArgTLSPtr() {
676 if (ArgTLSPtr)
677 return ArgTLSPtr;
678 if (DFS.ArgTLS)
679 return ArgTLSPtr = DFS.ArgTLS;
680
681 IRBuilder<> IRB(F->getEntryBlock().begin());
682 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS);
683}
684
685Value *DFSanFunction::getRetvalTLS() {
686 if (RetvalTLSPtr)
687 return RetvalTLSPtr;
688 if (DFS.RetvalTLS)
689 return RetvalTLSPtr = DFS.RetvalTLS;
690
691 IRBuilder<> IRB(F->getEntryBlock().begin());
692 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS);
693}
694
695Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
696 IRBuilder<> IRB(Pos);
697 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
698}
699
700Value *DFSanFunction::getShadow(Value *V) {
701 if (!isa<Argument>(V) && !isa<Instruction>(V))
702 return DFS.ZeroShadow;
703 Value *&Shadow = ValShadowMap[V];
704 if (!Shadow) {
705 if (Argument *A = dyn_cast<Argument>(V)) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000706 if (IsNativeABI)
707 return DFS.ZeroShadow;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000708 switch (IA) {
709 case DataFlowSanitizer::IA_TLS: {
710 Value *ArgTLSPtr = getArgTLSPtr();
711 Instruction *ArgTLSPos =
712 DFS.ArgTLS ? &*F->getEntryBlock().begin()
713 : cast<Instruction>(ArgTLSPtr)->getNextNode();
714 IRBuilder<> IRB(ArgTLSPos);
715 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
716 break;
717 }
718 case DataFlowSanitizer::IA_Args: {
719 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
720 Function::arg_iterator i = F->arg_begin();
721 while (ArgIdx--)
722 ++i;
723 Shadow = i;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000724 assert(Shadow->getType() == DFS.ShadowTy);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000725 break;
726 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000727 }
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000728 NonZeroChecks.insert(Shadow);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000729 } else {
730 Shadow = DFS.ZeroShadow;
731 }
732 }
733 return Shadow;
734}
735
736void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
737 assert(!ValShadowMap.count(I));
738 assert(Shadow->getType() == DFS.ShadowTy);
739 ValShadowMap[I] = Shadow;
740}
741
742Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
743 assert(Addr != RetvalTLS && "Reinstrumenting?");
744 IRBuilder<> IRB(Pos);
745 return IRB.CreateIntToPtr(
746 IRB.CreateMul(
747 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask),
748 ShadowPtrMul),
749 ShadowPtrTy);
750}
751
752// Generates IR to compute the union of the two given shadows, inserting it
753// before Pos. Returns the computed union Value.
754Value *DataFlowSanitizer::combineShadows(Value *V1, Value *V2,
755 Instruction *Pos) {
756 if (V1 == ZeroShadow)
757 return V2;
758 if (V2 == ZeroShadow)
759 return V1;
760 if (V1 == V2)
761 return V1;
762 IRBuilder<> IRB(Pos);
763 BasicBlock *Head = Pos->getParent();
764 Value *Ne = IRB.CreateICmpNE(V1, V2);
765 Instruction *NeInst = dyn_cast<Instruction>(Ne);
766 if (NeInst) {
767 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
768 NeInst, /*Unreachable=*/ false, ColdCallWeights));
769 IRBuilder<> ThenIRB(BI);
770 CallInst *Call = ThenIRB.CreateCall2(DFSanUnionFn, V1, V2);
771 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
772 Call->addAttribute(1, Attribute::ZExt);
773 Call->addAttribute(2, Attribute::ZExt);
774
775 BasicBlock *Tail = BI->getSuccessor(0);
776 PHINode *Phi = PHINode::Create(ShadowTy, 2, "", Tail->begin());
777 Phi->addIncoming(Call, Call->getParent());
778 Phi->addIncoming(ZeroShadow, Head);
779 Pos = Phi;
780 return Phi;
781 } else {
782 assert(0 && "todo");
783 return 0;
784 }
785}
786
787// A convenience function which folds the shadows of each of the operands
788// of the provided instruction Inst, inserting the IR before Inst. Returns
789// the computed union Value.
790Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
791 if (Inst->getNumOperands() == 0)
792 return DFS.ZeroShadow;
793
794 Value *Shadow = getShadow(Inst->getOperand(0));
795 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
796 Shadow = DFS.combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
797 }
798 return Shadow;
799}
800
801void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
802 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
803 DFSF.setShadow(&I, CombinedShadow);
804}
805
806// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
807// Addr has alignment Align, and take the union of each of those shadows.
808Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
809 Instruction *Pos) {
810 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
811 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
812 AllocaShadowMap.find(AI);
813 if (i != AllocaShadowMap.end()) {
814 IRBuilder<> IRB(Pos);
815 return IRB.CreateLoad(i->second);
816 }
817 }
818
819 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
820 SmallVector<Value *, 2> Objs;
821 GetUnderlyingObjects(Addr, Objs, DFS.DL);
822 bool AllConstants = true;
823 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
824 i != e; ++i) {
825 if (isa<Function>(*i) || isa<BlockAddress>(*i))
826 continue;
827 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
828 continue;
829
830 AllConstants = false;
831 break;
832 }
833 if (AllConstants)
834 return DFS.ZeroShadow;
835
836 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
837 switch (Size) {
838 case 0:
839 return DFS.ZeroShadow;
840 case 1: {
841 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
842 LI->setAlignment(ShadowAlign);
843 return LI;
844 }
845 case 2: {
846 IRBuilder<> IRB(Pos);
847 Value *ShadowAddr1 =
848 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1));
849 return DFS.combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
850 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign),
851 Pos);
852 }
853 }
854 if (Size % (64 / DFS.ShadowWidth) == 0) {
855 // Fast path for the common case where each byte has identical shadow: load
856 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
857 // shadow is non-equal.
858 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
859 IRBuilder<> FallbackIRB(FallbackBB);
860 CallInst *FallbackCall = FallbackIRB.CreateCall2(
861 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
862 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
863
864 // Compare each of the shadows stored in the loaded 64 bits to each other,
865 // by computing (WideShadow rotl ShadowWidth) == WideShadow.
866 IRBuilder<> IRB(Pos);
867 Value *WideAddr =
868 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
869 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
870 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
871 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
872 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
873 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
874 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
875
876 BasicBlock *Head = Pos->getParent();
877 BasicBlock *Tail = Head->splitBasicBlock(Pos);
878 // In the following code LastBr will refer to the previous basic block's
879 // conditional branch instruction, whose true successor is fixed up to point
880 // to the next block during the loop below or to the tail after the final
881 // iteration.
882 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
883 ReplaceInstWithInst(Head->getTerminator(), LastBr);
884
885 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
886 Ofs += 64 / DFS.ShadowWidth) {
887 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
888 IRBuilder<> NextIRB(NextBB);
889 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1));
890 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
891 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
892 LastBr->setSuccessor(0, NextBB);
893 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
894 }
895
896 LastBr->setSuccessor(0, Tail);
897 FallbackIRB.CreateBr(Tail);
898 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
899 Shadow->addIncoming(FallbackCall, FallbackBB);
900 Shadow->addIncoming(TruncShadow, LastBr->getParent());
901 return Shadow;
902 }
903
904 IRBuilder<> IRB(Pos);
905 CallInst *FallbackCall = IRB.CreateCall2(
906 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
907 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
908 return FallbackCall;
909}
910
911void DFSanVisitor::visitLoadInst(LoadInst &LI) {
912 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType());
913 uint64_t Align;
914 if (ClPreserveAlignment) {
915 Align = LI.getAlignment();
916 if (Align == 0)
917 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType());
918 } else {
919 Align = 1;
920 }
921 IRBuilder<> IRB(&LI);
922 Value *LoadedShadow =
923 DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
924 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000925 Value *CombinedShadow = DFSF.DFS.combineShadows(LoadedShadow, PtrShadow, &LI);
926 if (CombinedShadow != DFSF.DFS.ZeroShadow)
927 DFSF.NonZeroChecks.insert(CombinedShadow);
928
929 DFSF.setShadow(&LI, CombinedShadow);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000930}
931
932void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
933 Value *Shadow, Instruction *Pos) {
934 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
935 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
936 AllocaShadowMap.find(AI);
937 if (i != AllocaShadowMap.end()) {
938 IRBuilder<> IRB(Pos);
939 IRB.CreateStore(Shadow, i->second);
940 return;
941 }
942 }
943
944 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
945 IRBuilder<> IRB(Pos);
946 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
947 if (Shadow == DFS.ZeroShadow) {
948 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
949 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
950 Value *ExtShadowAddr =
951 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
952 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
953 return;
954 }
955
956 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
957 uint64_t Offset = 0;
958 if (Size >= ShadowVecSize) {
959 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
960 Value *ShadowVec = UndefValue::get(ShadowVecTy);
961 for (unsigned i = 0; i != ShadowVecSize; ++i) {
962 ShadowVec = IRB.CreateInsertElement(
963 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
964 }
965 Value *ShadowVecAddr =
966 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
967 do {
968 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset);
969 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
970 Size -= ShadowVecSize;
971 ++Offset;
972 } while (Size >= ShadowVecSize);
973 Offset *= ShadowVecSize;
974 }
975 while (Size > 0) {
976 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset);
977 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
978 --Size;
979 ++Offset;
980 }
981}
982
983void DFSanVisitor::visitStoreInst(StoreInst &SI) {
984 uint64_t Size =
985 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType());
986 uint64_t Align;
987 if (ClPreserveAlignment) {
988 Align = SI.getAlignment();
989 if (Align == 0)
990 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType());
991 } else {
992 Align = 1;
993 }
994 DFSF.storeShadow(SI.getPointerOperand(), Size, Align,
995 DFSF.getShadow(SI.getValueOperand()), &SI);
996}
997
998void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
999 visitOperandShadowInst(BO);
1000}
1001
1002void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1003
1004void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1005
1006void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1007 visitOperandShadowInst(GEPI);
1008}
1009
1010void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1011 visitOperandShadowInst(I);
1012}
1013
1014void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1015 visitOperandShadowInst(I);
1016}
1017
1018void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1019 visitOperandShadowInst(I);
1020}
1021
1022void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1023 visitOperandShadowInst(I);
1024}
1025
1026void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1027 visitOperandShadowInst(I);
1028}
1029
1030void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1031 bool AllLoadsStores = true;
1032 for (Instruction::use_iterator i = I.use_begin(), e = I.use_end(); i != e;
1033 ++i) {
1034 if (isa<LoadInst>(*i))
1035 continue;
1036
1037 if (StoreInst *SI = dyn_cast<StoreInst>(*i)) {
1038 if (SI->getPointerOperand() == &I)
1039 continue;
1040 }
1041
1042 AllLoadsStores = false;
1043 break;
1044 }
1045 if (AllLoadsStores) {
1046 IRBuilder<> IRB(&I);
1047 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1048 }
1049 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1050}
1051
1052void DFSanVisitor::visitSelectInst(SelectInst &I) {
1053 Value *CondShadow = DFSF.getShadow(I.getCondition());
1054 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1055 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1056
1057 if (isa<VectorType>(I.getCondition()->getType())) {
1058 DFSF.setShadow(
1059 &I, DFSF.DFS.combineShadows(
1060 CondShadow,
1061 DFSF.DFS.combineShadows(TrueShadow, FalseShadow, &I), &I));
1062 } else {
1063 Value *ShadowSel;
1064 if (TrueShadow == FalseShadow) {
1065 ShadowSel = TrueShadow;
1066 } else {
1067 ShadowSel =
1068 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1069 }
1070 DFSF.setShadow(&I, DFSF.DFS.combineShadows(CondShadow, ShadowSel, &I));
1071 }
1072}
1073
Peter Collingbourneef8136d2013-08-14 20:51:38 +00001074void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1075 IRBuilder<> IRB(&I);
1076 Value *ValShadow = DFSF.getShadow(I.getValue());
1077 IRB.CreateCall3(
1078 DFSF.DFS.DFSanSetLabelFn, ValShadow,
1079 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
1080 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy));
1081}
1082
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001083void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1084 IRBuilder<> IRB(&I);
1085 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1086 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1087 Value *LenShadow = IRB.CreateMul(
1088 I.getLength(),
1089 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1090 Value *AlignShadow;
1091 if (ClPreserveAlignment) {
1092 AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
1093 ConstantInt::get(I.getAlignmentCst()->getType(),
1094 DFSF.DFS.ShadowWidth / 8));
1095 } else {
1096 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
1097 DFSF.DFS.ShadowWidth / 8);
1098 }
1099 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1100 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1101 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1102 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow,
1103 AlignShadow, I.getVolatileCst());
1104}
1105
1106void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001107 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001108 switch (DFSF.IA) {
1109 case DataFlowSanitizer::IA_TLS: {
1110 Value *S = DFSF.getShadow(RI.getReturnValue());
1111 IRBuilder<> IRB(&RI);
1112 IRB.CreateStore(S, DFSF.getRetvalTLS());
1113 break;
1114 }
1115 case DataFlowSanitizer::IA_Args: {
1116 IRBuilder<> IRB(&RI);
1117 Type *RT = DFSF.F->getFunctionType()->getReturnType();
1118 Value *InsVal =
1119 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1120 Value *InsShadow =
1121 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1122 RI.setOperand(0, InsShadow);
1123 break;
1124 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001125 }
1126 }
1127}
1128
1129void DFSanVisitor::visitCallSite(CallSite CS) {
1130 Function *F = CS.getCalledFunction();
1131 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1132 visitOperandShadowInst(*CS.getInstruction());
1133 return;
1134 }
1135
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001136 IRBuilder<> IRB(CS.getInstruction());
1137
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001138 DenseMap<Value *, Function *>::iterator i =
1139 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1140 if (i != DFSF.DFS.UnwrappedFnMap.end()) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001141 Function *F = i->second;
1142 switch (DFSF.DFS.getWrapperKind(F)) {
1143 case DataFlowSanitizer::WK_Warning: {
1144 CS.setCalledFunction(F);
1145 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1146 IRB.CreateGlobalStringPtr(F->getName()));
1147 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1148 return;
1149 }
1150 case DataFlowSanitizer::WK_Discard: {
1151 CS.setCalledFunction(F);
1152 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1153 return;
1154 }
1155 case DataFlowSanitizer::WK_Functional: {
1156 CS.setCalledFunction(F);
1157 visitOperandShadowInst(*CS.getInstruction());
1158 return;
1159 }
1160 case DataFlowSanitizer::WK_Custom: {
1161 // Don't try to handle invokes of custom functions, it's too complicated.
1162 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1163 // wrapper.
1164 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1165 FunctionType *FT = F->getFunctionType();
1166 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
1167 std::string CustomFName = "__dfsw_";
1168 CustomFName += F->getName();
1169 Constant *CustomF =
1170 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
1171 if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1172 CustomFn->copyAttributesFrom(F);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001173
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001174 // Custom functions returning non-void will write to the return label.
1175 if (!FT->getReturnType()->isVoidTy()) {
1176 CustomFn->removeAttributes(AttributeSet::FunctionIndex,
1177 DFSF.DFS.ReadOnlyNoneAttrs);
1178 }
1179 }
1180
1181 std::vector<Value *> Args;
1182
1183 CallSite::arg_iterator i = CS.arg_begin();
1184 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1185 Args.push_back(*i);
1186
1187 i = CS.arg_begin();
1188 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1189 Args.push_back(DFSF.getShadow(*i));
1190
1191 if (!FT->getReturnType()->isVoidTy()) {
1192 if (!DFSF.LabelReturnAlloca) {
1193 DFSF.LabelReturnAlloca =
1194 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
1195 DFSF.F->getEntryBlock().begin());
1196 }
1197 Args.push_back(DFSF.LabelReturnAlloca);
1198 }
1199
1200 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1201 CustomCI->setCallingConv(CI->getCallingConv());
1202 CustomCI->setAttributes(CI->getAttributes());
1203
1204 if (!FT->getReturnType()->isVoidTy()) {
1205 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1206 DFSF.setShadow(CustomCI, LabelLoad);
1207 }
1208
1209 CI->replaceAllUsesWith(CustomCI);
1210 CI->eraseFromParent();
1211 return;
1212 }
1213 break;
1214 }
1215 }
1216 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001217
1218 FunctionType *FT = cast<FunctionType>(
1219 CS.getCalledValue()->getType()->getPointerElementType());
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001220 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001221 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1222 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1223 DFSF.getArgTLS(i, CS.getInstruction()));
1224 }
1225 }
1226
1227 Instruction *Next = 0;
1228 if (!CS.getType()->isVoidTy()) {
1229 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1230 if (II->getNormalDest()->getSinglePredecessor()) {
1231 Next = II->getNormalDest()->begin();
1232 } else {
1233 BasicBlock *NewBB =
1234 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DFS);
1235 Next = NewBB->begin();
1236 }
1237 } else {
1238 Next = CS->getNextNode();
1239 }
1240
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001241 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001242 IRBuilder<> NextIRB(Next);
1243 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1244 DFSF.SkipInsts.insert(LI);
1245 DFSF.setShadow(CS.getInstruction(), LI);
Peter Collingbournea77d9f72013-08-15 18:51:12 +00001246 DFSF.NonZeroChecks.insert(LI);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001247 }
1248 }
1249
1250 // Do all instrumentation for IA_Args down here to defer tampering with the
1251 // CFG in a way that SplitEdge may be able to detect.
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001252 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1253 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001254 Value *Func =
1255 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1256 std::vector<Value *> Args;
1257
1258 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1259 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1260 Args.push_back(*i);
1261
1262 i = CS.arg_begin();
1263 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1264 Args.push_back(DFSF.getShadow(*i));
1265
1266 if (FT->isVarArg()) {
1267 unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1268 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1269 AllocaInst *VarArgShadow =
1270 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin());
1271 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0));
1272 for (unsigned n = 0; i != e; ++i, ++n) {
1273 IRB.CreateStore(DFSF.getShadow(*i),
1274 IRB.CreateConstGEP2_32(VarArgShadow, 0, n));
1275 Args.push_back(*i);
1276 }
1277 }
1278
1279 CallSite NewCS;
1280 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1281 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1282 Args);
1283 } else {
1284 NewCS = IRB.CreateCall(Func, Args);
1285 }
1286 NewCS.setCallingConv(CS.getCallingConv());
1287 NewCS.setAttributes(CS.getAttributes().removeAttributes(
1288 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
1289 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(),
1290 AttributeSet::ReturnIndex)));
1291
1292 if (Next) {
1293 ExtractValueInst *ExVal =
1294 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1295 DFSF.SkipInsts.insert(ExVal);
1296 ExtractValueInst *ExShadow =
1297 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1298 DFSF.SkipInsts.insert(ExShadow);
1299 DFSF.setShadow(ExVal, ExShadow);
Peter Collingbournea77d9f72013-08-15 18:51:12 +00001300 DFSF.NonZeroChecks.insert(ExShadow);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001301
1302 CS.getInstruction()->replaceAllUsesWith(ExVal);
1303 }
1304
1305 CS.getInstruction()->eraseFromParent();
1306 }
1307}
1308
1309void DFSanVisitor::visitPHINode(PHINode &PN) {
1310 PHINode *ShadowPN =
1311 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1312
1313 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1314 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1315 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1316 ++i) {
1317 ShadowPN->addIncoming(UndefShadow, *i);
1318 }
1319
1320 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1321 DFSF.setShadow(&PN, ShadowPN);
1322}