blob: 17ffa2d2de6b40bc40fb8d66ce7a8173d02fcadc [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000018#include "llvm/GlobalVariable.h"
Chris Lattner173234a2008-06-02 01:18:21 +000019#include "llvm/IntrinsicInst.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000020#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/MathExtras.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000023#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000024using namespace llvm;
25
26/// getOpcode - If this is an Instruction or a ConstantExpr, return the
27/// opcode value. Otherwise return UserOp1.
28static unsigned getOpcode(const Value *V) {
29 if (const Instruction *I = dyn_cast<Instruction>(V))
30 return I->getOpcode();
31 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
32 return CE->getOpcode();
33 // Use UserOp1 to mean there's no opcode.
34 return Instruction::UserOp1;
35}
36
37
38/// ComputeMaskedBits - Determine which of the bits specified in Mask are
39/// known to be either zero or one and return them in the KnownZero/KnownOne
40/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
41/// processing.
42/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
43/// we cannot optimize based on the assumption that it is zero without changing
44/// it to be an explicit zero. If we don't change it to zero, other code could
45/// optimized based on the contradictory assumption that it is non-zero.
46/// Because instcombine aggressively folds operations with undef args anyway,
47/// this won't lose us code quality.
48void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
49 APInt &KnownZero, APInt &KnownOne,
50 TargetData *TD, unsigned Depth) {
Dan Gohman9004c8a2009-05-21 02:28:33 +000051 const unsigned MaxDepth = 6;
Chris Lattner173234a2008-06-02 01:18:21 +000052 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000053 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000054 unsigned BitWidth = Mask.getBitWidth();
Dan Gohman6de29f82009-06-15 22:12:54 +000055 assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
Chris Lattner173234a2008-06-02 01:18:21 +000056 "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +000057 assert((!TD ||
58 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
59 (!V->getType()->isIntOrIntVector() ||
60 V->getType()->getScalarSizeInBits() == BitWidth) &&
Chris Lattner173234a2008-06-02 01:18:21 +000061 KnownZero.getBitWidth() == BitWidth &&
62 KnownOne.getBitWidth() == BitWidth &&
63 "V, Mask, KnownOne and KnownZero should have same BitWidth");
64
65 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
66 // We know all of the bits for a constant!
67 KnownOne = CI->getValue() & Mask;
68 KnownZero = ~KnownOne & Mask;
69 return;
70 }
Dan Gohman6de29f82009-06-15 22:12:54 +000071 // Null and aggregate-zero are all-zeros.
72 if (isa<ConstantPointerNull>(V) ||
73 isa<ConstantAggregateZero>(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +000074 KnownOne.clear();
75 KnownZero = Mask;
76 return;
77 }
Dan Gohman6de29f82009-06-15 22:12:54 +000078 // Handle a constant vector by taking the intersection of the known bits of
79 // each element.
80 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
81 KnownZero.set(); KnownOne.set();
82 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
83 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
84 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
85 TD, Depth);
86 KnownZero &= KnownZero2;
87 KnownOne &= KnownOne2;
88 }
89 return;
90 }
Chris Lattner173234a2008-06-02 01:18:21 +000091 // The address of an aligned GlobalValue has trailing zeros.
92 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
93 unsigned Align = GV->getAlignment();
94 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
95 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
96 if (Align > 0)
97 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
98 CountTrailingZeros_32(Align));
99 else
100 KnownZero.clear();
101 KnownOne.clear();
102 return;
103 }
104
105 KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
106
Dan Gohman9004c8a2009-05-21 02:28:33 +0000107 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +0000108 return; // Limit search depth.
109
110 User *I = dyn_cast<User>(V);
111 if (!I) return;
112
113 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
114 switch (getOpcode(I)) {
115 default: break;
116 case Instruction::And: {
117 // If either the LHS or the RHS are Zero, the result is zero.
118 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
119 APInt Mask2(Mask & ~KnownZero);
120 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
121 Depth+1);
122 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
123 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
124
125 // Output known-1 bits are only known if set in both the LHS & RHS.
126 KnownOne &= KnownOne2;
127 // Output known-0 are known to be clear if zero in either the LHS | RHS.
128 KnownZero |= KnownZero2;
129 return;
130 }
131 case Instruction::Or: {
132 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
133 APInt Mask2(Mask & ~KnownOne);
134 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
135 Depth+1);
136 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
137 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
138
139 // Output known-0 bits are only known if clear in both the LHS & RHS.
140 KnownZero &= KnownZero2;
141 // Output known-1 are known to be set if set in either the LHS | RHS.
142 KnownOne |= KnownOne2;
143 return;
144 }
145 case Instruction::Xor: {
146 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
147 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
148 Depth+1);
149 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
150 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
151
152 // Output known-0 bits are known if clear or set in both the LHS & RHS.
153 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
154 // Output known-1 are known to be set if set in only one of the LHS, RHS.
155 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
156 KnownZero = KnownZeroOut;
157 return;
158 }
159 case Instruction::Mul: {
160 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
161 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
162 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
163 Depth+1);
164 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
165 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
166
167 // If low bits are zero in either operand, output low known-0 bits.
168 // Also compute a conserative estimate for high known-0 bits.
169 // More trickiness is possible, but this is sufficient for the
170 // interesting case of alignment computation.
171 KnownOne.clear();
172 unsigned TrailZ = KnownZero.countTrailingOnes() +
173 KnownZero2.countTrailingOnes();
174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
175 KnownZero2.countLeadingOnes(),
176 BitWidth) - BitWidth;
177
178 TrailZ = std::min(TrailZ, BitWidth);
179 LeadZ = std::min(LeadZ, BitWidth);
180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
181 APInt::getHighBitsSet(BitWidth, LeadZ);
182 KnownZero &= Mask;
183 return;
184 }
185 case Instruction::UDiv: {
186 // For the purposes of computing leading zeros we can conservatively
187 // treat a udiv as a logical right shift by the power of 2 known to
188 // be less than the denominator.
189 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
190 ComputeMaskedBits(I->getOperand(0),
191 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
192 unsigned LeadZ = KnownZero2.countLeadingOnes();
193
194 KnownOne2.clear();
195 KnownZero2.clear();
196 ComputeMaskedBits(I->getOperand(1),
197 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
198 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
199 if (RHSUnknownLeadingOnes != BitWidth)
200 LeadZ = std::min(BitWidth,
201 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
202
203 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
204 return;
205 }
206 case Instruction::Select:
207 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
208 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
209 Depth+1);
210 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
211 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
212
213 // Only known if known in both the LHS and RHS.
214 KnownOne &= KnownOne2;
215 KnownZero &= KnownZero2;
216 return;
217 case Instruction::FPTrunc:
218 case Instruction::FPExt:
219 case Instruction::FPToUI:
220 case Instruction::FPToSI:
221 case Instruction::SIToFP:
222 case Instruction::UIToFP:
223 return; // Can't work with floating point.
224 case Instruction::PtrToInt:
225 case Instruction::IntToPtr:
226 // We can't handle these if we don't know the pointer size.
227 if (!TD) return;
228 // FALL THROUGH and handle them the same as zext/trunc.
229 case Instruction::ZExt:
230 case Instruction::Trunc: {
231 // Note that we handle pointer operands here because of inttoptr/ptrtoint
232 // which fall through here.
233 const Type *SrcTy = I->getOperand(0)->getType();
Chris Lattner79abedb2009-01-20 18:22:57 +0000234 unsigned SrcBitWidth = TD ?
Chris Lattner173234a2008-06-02 01:18:21 +0000235 TD->getTypeSizeInBits(SrcTy) :
Dan Gohman6de29f82009-06-15 22:12:54 +0000236 SrcTy->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000237 APInt MaskIn(Mask);
238 MaskIn.zextOrTrunc(SrcBitWidth);
239 KnownZero.zextOrTrunc(SrcBitWidth);
240 KnownOne.zextOrTrunc(SrcBitWidth);
241 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
242 Depth+1);
243 KnownZero.zextOrTrunc(BitWidth);
244 KnownOne.zextOrTrunc(BitWidth);
245 // Any top bits are known to be zero.
246 if (BitWidth > SrcBitWidth)
247 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
248 return;
249 }
250 case Instruction::BitCast: {
251 const Type *SrcTy = I->getOperand(0)->getType();
252 if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
253 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
254 Depth+1);
255 return;
256 }
257 break;
258 }
259 case Instruction::SExt: {
260 // Compute the bits in the result that are not present in the input.
261 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
Chris Lattner79abedb2009-01-20 18:22:57 +0000262 unsigned SrcBitWidth = SrcTy->getBitWidth();
Chris Lattner173234a2008-06-02 01:18:21 +0000263
264 APInt MaskIn(Mask);
265 MaskIn.trunc(SrcBitWidth);
266 KnownZero.trunc(SrcBitWidth);
267 KnownOne.trunc(SrcBitWidth);
268 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
269 Depth+1);
270 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
271 KnownZero.zext(BitWidth);
272 KnownOne.zext(BitWidth);
273
274 // If the sign bit of the input is known set or clear, then we know the
275 // top bits of the result.
276 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
277 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
278 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
279 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
280 return;
281 }
282 case Instruction::Shl:
283 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
284 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
285 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
286 APInt Mask2(Mask.lshr(ShiftAmt));
287 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
288 Depth+1);
289 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
290 KnownZero <<= ShiftAmt;
291 KnownOne <<= ShiftAmt;
292 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
293 return;
294 }
295 break;
296 case Instruction::LShr:
297 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
298 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
299 // Compute the new bits that are at the top now.
300 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
301
302 // Unsigned shift right.
303 APInt Mask2(Mask.shl(ShiftAmt));
304 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
305 Depth+1);
306 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
307 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
308 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
309 // high bits known zero.
310 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
311 return;
312 }
313 break;
314 case Instruction::AShr:
315 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
316 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
317 // Compute the new bits that are at the top now.
318 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
319
320 // Signed shift right.
321 APInt Mask2(Mask.shl(ShiftAmt));
322 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
323 Depth+1);
324 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
325 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
326 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
327
328 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
329 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
330 KnownZero |= HighBits;
331 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
332 KnownOne |= HighBits;
333 return;
334 }
335 break;
336 case Instruction::Sub: {
337 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
338 // We know that the top bits of C-X are clear if X contains less bits
339 // than C (i.e. no wrap-around can happen). For example, 20-X is
340 // positive if we can prove that X is >= 0 and < 16.
341 if (!CLHS->getValue().isNegative()) {
342 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
343 // NLZ can't be BitWidth with no sign bit
344 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
345 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
346 TD, Depth+1);
347
348 // If all of the MaskV bits are known to be zero, then we know the
349 // output top bits are zero, because we now know that the output is
350 // from [0-C].
351 if ((KnownZero2 & MaskV) == MaskV) {
352 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
353 // Top bits known zero.
354 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
355 }
356 }
357 }
358 }
359 // fall through
360 case Instruction::Add: {
Dan Gohman39250432009-05-24 18:02:35 +0000361 // If one of the operands has trailing zeros, than the bits that the
362 // other operand has in those bit positions will be preserved in the
363 // result. For an add, this works with either operand. For a subtract,
364 // this only works if the known zeros are in the right operand.
365 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
366 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
367 BitWidth - Mask.countLeadingZeros());
368 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000369 Depth+1);
Dan Gohman39250432009-05-24 18:02:35 +0000370 assert((LHSKnownZero & LHSKnownOne) == 0 &&
371 "Bits known to be one AND zero?");
372 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000373
374 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
375 Depth+1);
376 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Dan Gohman39250432009-05-24 18:02:35 +0000377 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000378
Dan Gohman39250432009-05-24 18:02:35 +0000379 // Determine which operand has more trailing zeros, and use that
380 // many bits from the other operand.
381 if (LHSKnownZeroOut > RHSKnownZeroOut) {
382 if (getOpcode(I) == Instruction::Add) {
383 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
384 KnownZero |= KnownZero2 & Mask;
385 KnownOne |= KnownOne2 & Mask;
386 } else {
387 // If the known zeros are in the left operand for a subtract,
388 // fall back to the minimum known zeros in both operands.
389 KnownZero |= APInt::getLowBitsSet(BitWidth,
390 std::min(LHSKnownZeroOut,
391 RHSKnownZeroOut));
392 }
393 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
394 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
395 KnownZero |= LHSKnownZero & Mask;
396 KnownOne |= LHSKnownOne & Mask;
397 }
Chris Lattner173234a2008-06-02 01:18:21 +0000398 return;
399 }
400 case Instruction::SRem:
401 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
402 APInt RA = Rem->getValue();
403 if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
404 APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
405 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
406 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
407 Depth+1);
408
Dan Gohmana60832b2008-08-13 23:12:35 +0000409 // If the sign bit of the first operand is zero, the sign bit of
410 // the result is zero. If the first operand has no one bits below
411 // the second operand's single 1 bit, its sign will be zero.
Chris Lattner173234a2008-06-02 01:18:21 +0000412 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
413 KnownZero2 |= ~LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000414
415 KnownZero |= KnownZero2 & Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000416
417 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
418 }
419 }
420 break;
421 case Instruction::URem: {
422 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
423 APInt RA = Rem->getValue();
424 if (RA.isPowerOf2()) {
425 APInt LowBits = (RA - 1);
426 APInt Mask2 = LowBits & Mask;
427 KnownZero |= ~LowBits & Mask;
428 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
429 Depth+1);
430 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
431 break;
432 }
433 }
434
435 // Since the result is less than or equal to either operand, any leading
436 // zero bits in either operand must also exist in the result.
437 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
438 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
439 TD, Depth+1);
440 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
441 TD, Depth+1);
442
Chris Lattner79abedb2009-01-20 18:22:57 +0000443 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000444 KnownZero2.countLeadingOnes());
445 KnownOne.clear();
446 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
447 break;
448 }
449
450 case Instruction::Alloca:
451 case Instruction::Malloc: {
452 AllocationInst *AI = cast<AllocationInst>(V);
453 unsigned Align = AI->getAlignment();
454 if (Align == 0 && TD) {
455 if (isa<AllocaInst>(AI))
Chris Lattner0f2831c2009-01-08 19:28:38 +0000456 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000457 else if (isa<MallocInst>(AI)) {
458 // Malloc returns maximally aligned memory.
459 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
460 Align =
461 std::max(Align,
462 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
463 Align =
464 std::max(Align,
465 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
466 }
467 }
468
469 if (Align > 0)
470 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
471 CountTrailingZeros_32(Align));
472 break;
473 }
474 case Instruction::GetElementPtr: {
475 // Analyze all of the subscripts of this getelementptr instruction
476 // to determine if we can prove known low zero bits.
477 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
478 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
479 ComputeMaskedBits(I->getOperand(0), LocalMask,
480 LocalKnownZero, LocalKnownOne, TD, Depth+1);
481 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
482
483 gep_type_iterator GTI = gep_type_begin(I);
484 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
485 Value *Index = I->getOperand(i);
486 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
487 // Handle struct member offset arithmetic.
488 if (!TD) return;
489 const StructLayout *SL = TD->getStructLayout(STy);
490 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
491 uint64_t Offset = SL->getElementOffset(Idx);
492 TrailZ = std::min(TrailZ,
493 CountTrailingZeros_64(Offset));
494 } else {
495 // Handle array index arithmetic.
496 const Type *IndexedTy = GTI.getIndexedType();
497 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000498 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000499 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000500 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
501 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
502 ComputeMaskedBits(Index, LocalMask,
503 LocalKnownZero, LocalKnownOne, TD, Depth+1);
504 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000505 unsigned(CountTrailingZeros_64(TypeSize) +
506 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000507 }
508 }
509
510 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
511 break;
512 }
513 case Instruction::PHI: {
514 PHINode *P = cast<PHINode>(I);
515 // Handle the case of a simple two-predecessor recurrence PHI.
516 // There's a lot more that could theoretically be done here, but
517 // this is sufficient to catch some interesting cases.
518 if (P->getNumIncomingValues() == 2) {
519 for (unsigned i = 0; i != 2; ++i) {
520 Value *L = P->getIncomingValue(i);
521 Value *R = P->getIncomingValue(!i);
522 User *LU = dyn_cast<User>(L);
523 if (!LU)
524 continue;
525 unsigned Opcode = getOpcode(LU);
526 // Check for operations that have the property that if
527 // both their operands have low zero bits, the result
528 // will have low zero bits.
529 if (Opcode == Instruction::Add ||
530 Opcode == Instruction::Sub ||
531 Opcode == Instruction::And ||
532 Opcode == Instruction::Or ||
533 Opcode == Instruction::Mul) {
534 Value *LL = LU->getOperand(0);
535 Value *LR = LU->getOperand(1);
536 // Find a recurrence.
537 if (LL == I)
538 L = LR;
539 else if (LR == I)
540 L = LL;
541 else
542 break;
543 // Ok, we have a PHI of the form L op= R. Check for low
544 // zero bits.
545 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
546 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
547 Mask2 = APInt::getLowBitsSet(BitWidth,
548 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000549
550 // We need to take the minimum number of known bits
551 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
552 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
553
Chris Lattner173234a2008-06-02 01:18:21 +0000554 KnownZero = Mask &
555 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000556 std::min(KnownZero2.countTrailingOnes(),
557 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000558 break;
559 }
560 }
561 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000562
563 // Otherwise take the unions of the known bit sets of the operands,
564 // taking conservative care to avoid excessive recursion.
565 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
566 KnownZero = APInt::getAllOnesValue(BitWidth);
567 KnownOne = APInt::getAllOnesValue(BitWidth);
568 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
569 // Skip direct self references.
570 if (P->getIncomingValue(i) == P) continue;
571
572 KnownZero2 = APInt(BitWidth, 0);
573 KnownOne2 = APInt(BitWidth, 0);
574 // Recurse, but cap the recursion to one level, because we don't
575 // want to waste time spinning around in loops.
576 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
577 KnownZero2, KnownOne2, TD, MaxDepth-1);
578 KnownZero &= KnownZero2;
579 KnownOne &= KnownOne2;
580 // If all bits have been ruled out, there's no need to check
581 // more operands.
582 if (!KnownZero && !KnownOne)
583 break;
584 }
585 }
Chris Lattner173234a2008-06-02 01:18:21 +0000586 break;
587 }
588 case Instruction::Call:
589 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
590 switch (II->getIntrinsicID()) {
591 default: break;
592 case Intrinsic::ctpop:
593 case Intrinsic::ctlz:
594 case Intrinsic::cttz: {
595 unsigned LowBits = Log2_32(BitWidth)+1;
596 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
597 break;
598 }
599 }
600 }
601 break;
602 }
603}
604
605/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
606/// this predicate to simplify operations downstream. Mask is known to be zero
607/// for bits that V cannot have.
608bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
609 TargetData *TD, unsigned Depth) {
610 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
611 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
612 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
613 return (KnownZero & Mask) == Mask;
614}
615
616
617
618/// ComputeNumSignBits - Return the number of times the sign bit of the
619/// register is replicated into the other bits. We know that at least 1 bit
620/// is always equal to the sign bit (itself), but other cases can give us
621/// information. For example, immediately after an "ashr X, 2", we know that
622/// the top 3 bits are all equal to each other, so we return 3.
623///
624/// 'Op' must have a scalar integer type.
625///
626unsigned llvm::ComputeNumSignBits(Value *V, TargetData *TD, unsigned Depth) {
Dan Gohman6de29f82009-06-15 22:12:54 +0000627 const Type *Ty = V->getType();
628 unsigned TyBits = Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000629 unsigned Tmp, Tmp2;
630 unsigned FirstAnswer = 1;
631
Chris Lattnerd82e5112008-06-02 18:39:07 +0000632 // Note that ConstantInt is handled by the general ComputeMaskedBits case
633 // below.
634
Chris Lattner173234a2008-06-02 01:18:21 +0000635 if (Depth == 6)
636 return 1; // Limit search depth.
637
638 User *U = dyn_cast<User>(V);
639 switch (getOpcode(V)) {
640 default: break;
641 case Instruction::SExt:
642 Tmp = TyBits-cast<IntegerType>(U->getOperand(0)->getType())->getBitWidth();
643 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
644
645 case Instruction::AShr:
646 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
647 // ashr X, C -> adds C sign bits.
648 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
649 Tmp += C->getZExtValue();
650 if (Tmp > TyBits) Tmp = TyBits;
651 }
652 return Tmp;
653 case Instruction::Shl:
654 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
655 // shl destroys sign bits.
656 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
657 if (C->getZExtValue() >= TyBits || // Bad shift.
658 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
659 return Tmp - C->getZExtValue();
660 }
661 break;
662 case Instruction::And:
663 case Instruction::Or:
664 case Instruction::Xor: // NOT is handled here.
665 // Logical binary ops preserve the number of sign bits at the worst.
666 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
667 if (Tmp != 1) {
668 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
669 FirstAnswer = std::min(Tmp, Tmp2);
670 // We computed what we know about the sign bits as our first
671 // answer. Now proceed to the generic code that uses
672 // ComputeMaskedBits, and pick whichever answer is better.
673 }
674 break;
675
676 case Instruction::Select:
677 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
678 if (Tmp == 1) return 1; // Early out.
679 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
680 return std::min(Tmp, Tmp2);
681
682 case Instruction::Add:
683 // Add can have at most one carry bit. Thus we know that the output
684 // is, at worst, one more bit than the inputs.
685 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
686 if (Tmp == 1) return 1; // Early out.
687
688 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +0000689 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +0000690 if (CRHS->isAllOnesValue()) {
691 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
692 APInt Mask = APInt::getAllOnesValue(TyBits);
693 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
694 Depth+1);
695
696 // If the input is known to be 0 or 1, the output is 0/-1, which is all
697 // sign bits set.
698 if ((KnownZero | APInt(TyBits, 1)) == Mask)
699 return TyBits;
700
701 // If we are subtracting one from a positive number, there is no carry
702 // out of the result.
703 if (KnownZero.isNegative())
704 return Tmp;
705 }
706
707 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
708 if (Tmp2 == 1) return 1;
709 return std::min(Tmp, Tmp2)-1;
710 break;
711
712 case Instruction::Sub:
713 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
714 if (Tmp2 == 1) return 1;
715
716 // Handle NEG.
717 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
718 if (CLHS->isNullValue()) {
719 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
720 APInt Mask = APInt::getAllOnesValue(TyBits);
721 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
722 TD, Depth+1);
723 // If the input is known to be 0 or 1, the output is 0/-1, which is all
724 // sign bits set.
725 if ((KnownZero | APInt(TyBits, 1)) == Mask)
726 return TyBits;
727
728 // If the input is known to be positive (the sign bit is known clear),
729 // the output of the NEG has the same number of sign bits as the input.
730 if (KnownZero.isNegative())
731 return Tmp2;
732
733 // Otherwise, we treat this like a SUB.
734 }
735
736 // Sub can have at most one carry bit. Thus we know that the output
737 // is, at worst, one more bit than the inputs.
738 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
739 if (Tmp == 1) return 1; // Early out.
740 return std::min(Tmp, Tmp2)-1;
741 break;
742 case Instruction::Trunc:
743 // FIXME: it's tricky to do anything useful for this, but it is an important
744 // case for targets like X86.
745 break;
746 }
747
748 // Finally, if we can prove that the top bits of the result are 0's or 1's,
749 // use this information.
750 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
751 APInt Mask = APInt::getAllOnesValue(TyBits);
752 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
753
754 if (KnownZero.isNegative()) { // sign bit is 0
755 Mask = KnownZero;
756 } else if (KnownOne.isNegative()) { // sign bit is 1;
757 Mask = KnownOne;
758 } else {
759 // Nothing known.
760 return FirstAnswer;
761 }
762
763 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
764 // the number of identical bits in the top of the input value.
765 Mask = ~Mask;
766 Mask <<= Mask.getBitWidth()-TyBits;
767 // Return # leading zeros. We use 'min' here in case Val was zero before
768 // shifting. We don't want to return '64' as for an i32 "0".
769 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
770}
Chris Lattner833f25d2008-06-02 01:29:46 +0000771
772/// CannotBeNegativeZero - Return true if we can prove that the specified FP
773/// value is never equal to -0.0.
774///
775/// NOTE: this function will need to be revisited when we support non-default
776/// rounding modes!
777///
778bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
779 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
780 return !CFP->getValueAPF().isNegZero();
781
782 if (Depth == 6)
783 return 1; // Limit search depth.
784
785 const Instruction *I = dyn_cast<Instruction>(V);
786 if (I == 0) return false;
787
788 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000789 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +0000790 isa<ConstantFP>(I->getOperand(1)) &&
791 cast<ConstantFP>(I->getOperand(1))->isNullValue())
792 return true;
793
794 // sitofp and uitofp turn into +0.0 for zero.
795 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
796 return true;
797
798 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
799 // sqrt(-0.0) = -0.0, no other negative results are possible.
800 if (II->getIntrinsicID() == Intrinsic::sqrt)
801 return CannotBeNegativeZero(II->getOperand(1), Depth+1);
802
803 if (const CallInst *CI = dyn_cast<CallInst>(I))
804 if (const Function *F = CI->getCalledFunction()) {
805 if (F->isDeclaration()) {
806 switch (F->getNameLen()) {
807 case 3: // abs(x) != -0.0
808 if (!strcmp(F->getNameStart(), "abs")) return true;
809 break;
810 case 4: // abs[lf](x) != -0.0
811 if (!strcmp(F->getNameStart(), "absf")) return true;
812 if (!strcmp(F->getNameStart(), "absl")) return true;
813 break;
814 }
815 }
816 }
817
818 return false;
819}
820
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000821// This is the recursive version of BuildSubAggregate. It takes a few different
822// arguments. Idxs is the index within the nested struct From that we are
823// looking at now (which is of type IndexedType). IdxSkip is the number of
824// indices from Idxs that should be left out when inserting into the resulting
825// struct. To is the result struct built so far, new insertvalue instructions
826// build on that.
827Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
828 SmallVector<unsigned, 10> &Idxs,
829 unsigned IdxSkip,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000830 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000831 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
832 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000833 // Save the original To argument so we can modify it
834 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000835 // General case, the type indexed by Idxs is a struct
836 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
837 // Process each struct element recursively
838 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000839 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000840 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
841 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000842 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000843 if (!To) {
844 // Couldn't find any inserted value for this index? Cleanup
845 while (PrevTo != OrigTo) {
846 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
847 PrevTo = Del->getAggregateOperand();
848 Del->eraseFromParent();
849 }
850 // Stop processing elements
851 break;
852 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000853 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000854 // If we succesfully found a value for each of our subaggregates
855 if (To)
856 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000857 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000858 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
859 // the struct's elements had a value that was inserted directly. In the latter
860 // case, perhaps we can't determine each of the subelements individually, but
861 // we might be able to find the complete struct somewhere.
862
863 // Find the value that is at that particular spot
864 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
865
866 if (!V)
867 return NULL;
868
869 // Insert the value in the new (sub) aggregrate
870 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
871 Idxs.end(), "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000872}
873
874// This helper takes a nested struct and extracts a part of it (which is again a
875// struct) into a new value. For example, given the struct:
876// { a, { b, { c, d }, e } }
877// and the indices "1, 1" this returns
878// { c, d }.
879//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000880// It does this by inserting an insertvalue for each element in the resulting
881// struct, as opposed to just inserting a single struct. This will only work if
882// each of the elements of the substruct are known (ie, inserted into From by an
883// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000884//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000885// All inserted insertvalue instructions are inserted before InsertBefore
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000886Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000887 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000888 assert(InsertBefore && "Must have someplace to insert!");
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000889 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
890 idx_begin,
891 idx_end);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000892 Value *To = UndefValue::get(IndexedType);
893 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
894 unsigned IdxSkip = Idxs.size();
895
896 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
897}
898
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000899/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
900/// the scalar value indexed is already around as a register, for example if it
901/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000902///
903/// If InsertBefore is not null, this function will duplicate (modified)
904/// insertvalues when a part of a nested struct is extracted.
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000905Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
Matthijs Kooijman0a7413d2008-06-16 13:13:08 +0000906 const unsigned *idx_end, Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000907 // Nothing to index? Just return V then (this is useful at the end of our
908 // recursion)
909 if (idx_begin == idx_end)
910 return V;
911 // We have indices, so V should have an indexable type
912 assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
913 && "Not looking at a struct or array?");
914 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
915 && "Invalid indices for type?");
916 const CompositeType *PTy = cast<CompositeType>(V->getType());
917
918 if (isa<UndefValue>(V))
919 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
920 idx_begin,
921 idx_end));
922 else if (isa<ConstantAggregateZero>(V))
923 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
924 idx_begin,
925 idx_end));
926 else if (Constant *C = dyn_cast<Constant>(V)) {
927 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
928 // Recursively process this constant
Matthijs Kooijmandddc8272008-07-16 10:47:35 +0000929 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, idx_end,
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000930 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000931 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
932 // Loop the indices for the insertvalue instruction in parallel with the
933 // requested indices
934 const unsigned *req_idx = idx_begin;
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000935 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
936 i != e; ++i, ++req_idx) {
Duncan Sands9954c762008-06-19 08:47:31 +0000937 if (req_idx == idx_end) {
Matthijs Kooijman97728912008-06-16 13:28:31 +0000938 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +0000939 // The requested index identifies a part of a nested aggregate. Handle
940 // this specially. For example,
941 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
942 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
943 // %C = extractvalue {i32, { i32, i32 } } %B, 1
944 // This can be changed into
945 // %A = insertvalue {i32, i32 } undef, i32 10, 0
946 // %C = insertvalue {i32, i32 } %A, i32 11, 1
947 // which allows the unused 0,0 element from the nested struct to be
948 // removed.
Matthijs Kooijman97728912008-06-16 13:28:31 +0000949 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
950 else
951 // We can't handle this without inserting insertvalues
952 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +0000953 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000954
955 // This insert value inserts something else than what we are looking for.
956 // See if the (aggregrate) value inserted into has the value we are
957 // looking for, then.
958 if (*req_idx != *i)
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000959 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
960 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000961 }
962 // If we end up here, the indices of the insertvalue match with those
963 // requested (though possibly only partially). Now we recursively look at
964 // the inserted value, passing any remaining indices.
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000965 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
966 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000967 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
968 // If we're extracting a value from an aggregrate that was extracted from
969 // something else, we can extract from that something else directly instead.
970 // However, we will need to chain I's indices with the requested indices.
971
972 // Calculate the number of indices required
973 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
974 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000975 SmallVector<unsigned, 5> Idxs;
976 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000977 // Add indices from the extract value instruction
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000978 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000979 i != e; ++i)
980 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000981
982 // Add requested indices
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000983 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
984 Idxs.push_back(*i);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000985
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000986 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000987 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000988
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +0000989 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
Matthijs Kooijman710eb232008-06-16 12:57:37 +0000990 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +0000991 }
992 // Otherwise, we don't know (such as, extracting from a function return value
993 // or load instruction)
994 return 0;
995}
Evan Cheng0ff39b32008-06-30 07:31:25 +0000996
997/// GetConstantStringInfo - This function computes the length of a
998/// null-terminated C string pointed to by V. If successful, it returns true
999/// and returns the string in Str. If unsuccessful, it returns false.
Bill Wendling0582ae92009-03-13 04:39:26 +00001000bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
1001 bool StopAtNul) {
1002 // If V is NULL then return false;
1003 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001004
1005 // Look through bitcast instructions.
1006 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +00001007 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1008
Evan Cheng0ff39b32008-06-30 07:31:25 +00001009 // If the value is not a GEP instruction nor a constant expression with a
1010 // GEP instruction, then return false because ConstantArray can't occur
1011 // any other way
1012 User *GEP = 0;
1013 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1014 GEP = GEPI;
1015 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1016 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +00001017 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1018 if (CE->getOpcode() != Instruction::GetElementPtr)
1019 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001020 GEP = CE;
1021 }
1022
1023 if (GEP) {
1024 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001025 if (GEP->getNumOperands() != 3)
1026 return false;
1027
Evan Cheng0ff39b32008-06-30 07:31:25 +00001028 // Make sure the index-ee is a pointer to array of i8.
1029 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1030 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Bill Wendling0582ae92009-03-13 04:39:26 +00001031 if (AT == 0 || AT->getElementType() != Type::Int8Ty)
1032 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001033
1034 // Check to make sure that the first operand of the GEP is an integer and
1035 // has value 0 so that we are sure we're indexing into the initializer.
1036 ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001037 if (FirstIdx == 0 || !FirstIdx->isZero())
1038 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001039
1040 // If the second index isn't a ConstantInt, then this is a variable index
1041 // into the array. If this occurs, we can't say anything meaningful about
1042 // the string.
1043 uint64_t StartIdx = 0;
Bill Wendling0582ae92009-03-13 04:39:26 +00001044 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001045 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001046 else
1047 return false;
1048 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001049 StopAtNul);
1050 }
1051
1052 // The GEP instruction, constant or instruction, must reference a global
1053 // variable that is a constant and is initialized. The referenced constant
1054 // initializer is the array that we'll use for optimization.
1055 GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Bill Wendling0582ae92009-03-13 04:39:26 +00001056 if (!GV || !GV->isConstant() || !GV->hasInitializer())
1057 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001058 Constant *GlobalInit = GV->getInitializer();
1059
1060 // Handle the ConstantAggregateZero case
Bill Wendling0582ae92009-03-13 04:39:26 +00001061 if (isa<ConstantAggregateZero>(GlobalInit)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001062 // This is a degenerate case. The initializer is constant zero so the
1063 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001064 Str.clear();
1065 return true;
1066 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001067
1068 // Must be a Constant Array
1069 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Bill Wendling0582ae92009-03-13 04:39:26 +00001070 if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
1071 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001072
1073 // Get the number of elements in the array
1074 uint64_t NumElts = Array->getType()->getNumElements();
1075
Bill Wendling0582ae92009-03-13 04:39:26 +00001076 if (Offset > NumElts)
1077 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001078
1079 // Traverse the constant array from 'Offset' which is the place the GEP refers
1080 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001081 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001082 for (unsigned i = Offset; i != NumElts; ++i) {
1083 Constant *Elt = Array->getOperand(i);
1084 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001085 if (!CI) // This array isn't suitable, non-int initializer.
1086 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001087 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001088 return true; // we found end of string, success!
1089 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001090 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001091
Evan Cheng0ff39b32008-06-30 07:31:25 +00001092 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001093 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001094}