blob: 552583042a77ac712950d6d998a11dd6b23a52f1 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
Chris Lattner124993a2008-01-11 06:09:30 +000021#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Analysis/CallGraph.h"
Chris Lattner124993a2008-01-11 06:09:30 +000023#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/CallSite.h"
26using namespace llvm;
27
28bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
29 return InlineFunction(CallSite(CI), CG, TD);
30}
31bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
32 return InlineFunction(CallSite(II), CG, TD);
33}
34
35/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
36/// in the body of the inlined function into invokes and turn unwind
37/// instructions into branches to the invoke unwind dest.
38///
39/// II is the invoke instruction begin inlined. FirstNewBlock is the first
40/// block of the inlined code (the last block is the end of the function),
41/// and InlineCodeInfo is information about the code that got inlined.
42static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
43 ClonedCodeInfo &InlinedCodeInfo) {
44 BasicBlock *InvokeDest = II->getUnwindDest();
45 std::vector<Value*> InvokeDestPHIValues;
46
47 // If there are PHI nodes in the unwind destination block, we need to
48 // keep track of which values came into them from this invoke, then remove
49 // the entry for this block.
50 BasicBlock *InvokeBlock = II->getParent();
51 for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
52 PHINode *PN = cast<PHINode>(I);
53 // Save the value to use for this edge.
54 InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
55 }
56
57 Function *Caller = FirstNewBlock->getParent();
58
59 // The inlined code is currently at the end of the function, scan from the
60 // start of the inlined code to its end, checking for stuff we need to
61 // rewrite.
62 if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
63 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
64 BB != E; ++BB) {
65 if (InlinedCodeInfo.ContainsCalls) {
66 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
67 Instruction *I = BBI++;
68
69 // We only need to check for function calls: inlined invoke
70 // instructions require no special handling.
71 if (!isa<CallInst>(I)) continue;
72 CallInst *CI = cast<CallInst>(I);
73
Duncan Sands1c5526c2007-12-17 18:08:19 +000074 // If this call cannot unwind, don't convert it to an invoke.
Duncan Sands7dc19d42007-12-18 09:59:50 +000075 if (CI->doesNotThrow())
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076 continue;
Duncan Sands79d28872007-12-03 20:06:50 +000077
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078 // Convert this function call into an invoke instruction.
79 // First, split the basic block.
80 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
81
82 // Next, create the new invoke instruction, inserting it at the end
83 // of the old basic block.
84 SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
85 InvokeInst *II =
86 new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
David Greene8278ef52007-08-27 19:04:21 +000087 InvokeArgs.begin(), InvokeArgs.end(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000088 CI->getName(), BB->getTerminator());
89 II->setCallingConv(CI->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +000090 II->setParamAttrs(CI->getParamAttrs());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 // Make sure that anything using the call now uses the invoke!
93 CI->replaceAllUsesWith(II);
94
95 // Delete the unconditional branch inserted by splitBasicBlock
96 BB->getInstList().pop_back();
97 Split->getInstList().pop_front(); // Delete the original call
98
99 // Update any PHI nodes in the exceptional block to indicate that
100 // there is now a new entry in them.
101 unsigned i = 0;
102 for (BasicBlock::iterator I = InvokeDest->begin();
103 isa<PHINode>(I); ++I, ++i) {
104 PHINode *PN = cast<PHINode>(I);
105 PN->addIncoming(InvokeDestPHIValues[i], BB);
106 }
107
108 // This basic block is now complete, start scanning the next one.
109 break;
110 }
111 }
112
113 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
114 // An UnwindInst requires special handling when it gets inlined into an
115 // invoke site. Once this happens, we know that the unwind would cause
116 // a control transfer to the invoke exception destination, so we can
117 // transform it into a direct branch to the exception destination.
118 new BranchInst(InvokeDest, UI);
119
120 // Delete the unwind instruction!
121 UI->getParent()->getInstList().pop_back();
122
123 // Update any PHI nodes in the exceptional block to indicate that
124 // there is now a new entry in them.
125 unsigned i = 0;
126 for (BasicBlock::iterator I = InvokeDest->begin();
127 isa<PHINode>(I); ++I, ++i) {
128 PHINode *PN = cast<PHINode>(I);
129 PN->addIncoming(InvokeDestPHIValues[i], BB);
130 }
131 }
132 }
133 }
134
135 // Now that everything is happy, we have one final detail. The PHI nodes in
136 // the exception destination block still have entries due to the original
137 // invoke instruction. Eliminate these entries (which might even delete the
138 // PHI node) now.
139 InvokeDest->removePredecessor(II->getParent());
140}
141
142/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
143/// into the caller, update the specified callgraph to reflect the changes we
144/// made. Note that it's possible that not all code was copied over, so only
145/// some edges of the callgraph will be remain.
146static void UpdateCallGraphAfterInlining(const Function *Caller,
147 const Function *Callee,
148 Function::iterator FirstNewBlock,
149 DenseMap<const Value*, Value*> &ValueMap,
150 CallGraph &CG) {
151 // Update the call graph by deleting the edge from Callee to Caller
152 CallGraphNode *CalleeNode = CG[Callee];
153 CallGraphNode *CallerNode = CG[Caller];
154 CallerNode->removeCallEdgeTo(CalleeNode);
155
156 // Since we inlined some uninlined call sites in the callee into the caller,
157 // add edges from the caller to all of the callees of the callee.
158 for (CallGraphNode::iterator I = CalleeNode->begin(),
159 E = CalleeNode->end(); I != E; ++I) {
160 const Instruction *OrigCall = I->first.getInstruction();
161
162 DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
163 // Only copy the edge if the call was inlined!
164 if (VMI != ValueMap.end() && VMI->second) {
165 // If the call was inlined, but then constant folded, there is no edge to
166 // add. Check for this case.
167 if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
168 CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
169 }
170 }
171}
172
173
174// InlineFunction - This function inlines the called function into the basic
175// block of the caller. This returns false if it is not possible to inline this
176// call. The program is still in a well defined state if this occurs though.
177//
178// Note that this only does one level of inlining. For example, if the
179// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
180// exists in the instruction stream. Similiarly this will inline a recursive
181// function by one level.
182//
183bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
184 Instruction *TheCall = CS.getInstruction();
185 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
186 "Instruction not in function!");
187
188 const Function *CalledFunc = CS.getCalledFunction();
189 if (CalledFunc == 0 || // Can't inline external function or indirect
190 CalledFunc->isDeclaration() || // call, or call to a vararg function!
191 CalledFunc->getFunctionType()->isVarArg()) return false;
192
193
194 // If the call to the callee is a non-tail call, we must clear the 'tail'
195 // flags on any calls that we inline.
196 bool MustClearTailCallFlags =
197 isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
198
Duncan Sands2937e352007-12-19 21:13:37 +0000199 // If the call to the callee cannot throw, set the 'nounwind' flag on any
200 // calls that we inline.
201 bool MarkNoUnwind = CS.doesNotThrow();
202
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 BasicBlock *OrigBB = TheCall->getParent();
204 Function *Caller = OrigBB->getParent();
205
Gordon Henriksena86e9192007-12-25 03:10:07 +0000206 // GC poses two hazards to inlining, which only occur when the callee has GC:
207 // 1. If the caller has no GC, then the callee's GC must be propagated to the
208 // caller.
209 // 2. If the caller has a differing GC, it is invalid to inline.
210 if (CalledFunc->hasCollector()) {
211 if (!Caller->hasCollector())
212 Caller->setCollector(CalledFunc->getCollector());
213 else if (CalledFunc->getCollector() != Caller->getCollector())
214 return false;
215 }
216
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000217 // Get an iterator to the last basic block in the function, which will have
218 // the new function inlined after it.
219 //
220 Function::iterator LastBlock = &Caller->back();
221
222 // Make sure to capture all of the return instructions from the cloned
223 // function.
224 std::vector<ReturnInst*> Returns;
225 ClonedCodeInfo InlinedFunctionInfo;
226 Function::iterator FirstNewBlock;
Duncan Sands2937e352007-12-19 21:13:37 +0000227
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000228 { // Scope to destroy ValueMap after cloning.
229 DenseMap<const Value*, Value*> ValueMap;
230
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
232 std::distance(CS.arg_begin(), CS.arg_end()) &&
233 "No varargs calls can be inlined!");
Chris Lattner124993a2008-01-11 06:09:30 +0000234
235 // Calculate the vector of arguments to pass into the function cloner, which
236 // matches up the formal to the actual argument values.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237 CallSite::arg_iterator AI = CS.arg_begin();
Chris Lattner124993a2008-01-11 06:09:30 +0000238 unsigned ArgNo = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
Chris Lattner124993a2008-01-11 06:09:30 +0000240 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
241 Value *ActualArg = *AI;
242
Duncan Sands96ad1262008-01-27 18:12:58 +0000243 // When byval arguments actually inlined, we need to make the copy implied
244 // by them explicit. However, we don't do this if the callee is readonly
245 // or readnone, because the copy would be unneeded: the callee doesn't
246 // modify the struct.
247 if (CalledFunc->paramHasAttr(ArgNo+1, ParamAttr::ByVal) &&
248 !CalledFunc->onlyReadsMemory()) {
Chris Lattner124993a2008-01-11 06:09:30 +0000249 const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
250 const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);
251
252 // Create the alloca. If we have TargetData, use nice alignment.
253 unsigned Align = 1;
254 if (TD) Align = TD->getPrefTypeAlignment(AggTy);
255 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
256 Caller->begin()->begin());
257 // Emit a memcpy.
258 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
259 Intrinsic::memcpy_i64);
260 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
261 Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);
262
263 Value *Size;
264 if (TD == 0)
265 Size = ConstantExpr::getSizeOf(AggTy);
266 else
267 Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));
268
269 // Always generate a memcpy of alignment 1 here because we don't know
270 // the alignment of the src pointer. Other optimizations can infer
271 // better alignment.
272 Value *CallArgs[] = {
273 DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
274 };
275 CallInst *TheMemCpy =
276 new CallInst(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);
277
278 // If we have a call graph, update it.
279 if (CG) {
280 CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
281 CallGraphNode *CallerNode = (*CG)[Caller];
282 CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
283 }
284
285 // Uses of the argument in the function should use our new alloca
286 // instead.
287 ActualArg = NewAlloca;
288 }
289
290 ValueMap[I] = ActualArg;
291 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292
293 // We want the inliner to prune the code as it copies. We would LOVE to
294 // have no dead or constant instructions leftover after inlining occurs
295 // (which can happen, e.g., because an argument was constant), but we'll be
296 // happy with whatever the cloner can do.
297 CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
298 &InlinedFunctionInfo, TD);
299
300 // Remember the first block that is newly cloned over.
301 FirstNewBlock = LastBlock; ++FirstNewBlock;
302
303 // Update the callgraph if requested.
304 if (CG)
305 UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
306 *CG);
307 }
308
309 // If there are any alloca instructions in the block that used to be the entry
310 // block for the callee, move them to the entry block of the caller. First
311 // calculate which instruction they should be inserted before. We insert the
312 // instructions at the end of the current alloca list.
313 //
314 {
315 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
316 for (BasicBlock::iterator I = FirstNewBlock->begin(),
317 E = FirstNewBlock->end(); I != E; )
318 if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
319 // If the alloca is now dead, remove it. This often occurs due to code
320 // specialization.
321 if (AI->use_empty()) {
322 AI->eraseFromParent();
323 continue;
324 }
325
326 if (isa<Constant>(AI->getArraySize())) {
327 // Scan for the block of allocas that we can move over, and move them
328 // all at once.
329 while (isa<AllocaInst>(I) &&
330 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
331 ++I;
332
333 // Transfer all of the allocas over in a block. Using splice means
334 // that the instructions aren't removed from the symbol table, then
335 // reinserted.
336 Caller->getEntryBlock().getInstList().splice(
337 InsertPoint,
338 FirstNewBlock->getInstList(),
339 AI, I);
340 }
341 }
342 }
343
344 // If the inlined code contained dynamic alloca instructions, wrap the inlined
345 // code with llvm.stacksave/llvm.stackrestore intrinsics.
346 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
347 Module *M = Caller->getParent();
Christopher Lambbb2f2222007-12-17 01:12:55 +0000348 const Type *BytePtr = PointerType::getUnqual(Type::Int8Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 // Get the two intrinsics we care about.
350 Constant *StackSave, *StackRestore;
351 StackSave = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL);
352 StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
353 BytePtr, NULL);
354
355 // If we are preserving the callgraph, add edges to the stacksave/restore
356 // functions for the calls we insert.
357 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
358 if (CG) {
359 // We know that StackSave/StackRestore are Function*'s, because they are
360 // intrinsics which must have the right types.
361 StackSaveCGN = CG->getOrInsertFunction(cast<Function>(StackSave));
362 StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
363 CallerNode = (*CG)[Caller];
364 }
365
366 // Insert the llvm.stacksave.
367 CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
368 FirstNewBlock->begin());
369 if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
370
371 // Insert a call to llvm.stackrestore before any return instructions in the
372 // inlined function.
373 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
374 CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
375 if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
376 }
377
378 // Count the number of StackRestore calls we insert.
379 unsigned NumStackRestores = Returns.size();
380
381 // If we are inlining an invoke instruction, insert restores before each
382 // unwind. These unwinds will be rewritten into branches later.
383 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
384 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
385 BB != E; ++BB)
386 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
387 new CallInst(StackRestore, SavedPtr, "", UI);
388 ++NumStackRestores;
389 }
390 }
391 }
392
393 // If we are inlining tail call instruction through a call site that isn't
394 // marked 'tail', we must remove the tail marker for any calls in the inlined
Duncan Sands2937e352007-12-19 21:13:37 +0000395 // code. Also, calls inlined through a 'nounwind' call site should be marked
396 // 'nounwind'.
397 if (InlinedFunctionInfo.ContainsCalls &&
398 (MustClearTailCallFlags || MarkNoUnwind)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000399 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
400 BB != E; ++BB)
401 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Duncan Sands2937e352007-12-19 21:13:37 +0000402 if (CallInst *CI = dyn_cast<CallInst>(I)) {
403 if (MustClearTailCallFlags)
404 CI->setTailCall(false);
405 if (MarkNoUnwind)
406 CI->setDoesNotThrow();
407 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 }
409
Duncan Sands2937e352007-12-19 21:13:37 +0000410 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
411 // instructions are unreachable.
412 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
413 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
414 BB != E; ++BB) {
415 TerminatorInst *Term = BB->getTerminator();
416 if (isa<UnwindInst>(Term)) {
417 new UnreachableInst(Term);
418 BB->getInstList().erase(Term);
419 }
420 }
421
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000422 // If we are inlining for an invoke instruction, we must make sure to rewrite
423 // any inlined 'unwind' instructions into branches to the invoke exception
424 // destination, and call instructions into invoke instructions.
425 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
426 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
427
428 // If we cloned in _exactly one_ basic block, and if that block ends in a
429 // return instruction, we splice the body of the inlined callee directly into
430 // the calling basic block.
431 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
432 // Move all of the instructions right before the call.
433 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
434 FirstNewBlock->begin(), FirstNewBlock->end());
435 // Remove the cloned basic block.
436 Caller->getBasicBlockList().pop_back();
437
438 // If the call site was an invoke instruction, add a branch to the normal
439 // destination.
440 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
441 new BranchInst(II->getNormalDest(), TheCall);
442
443 // If the return instruction returned a value, replace uses of the call with
444 // uses of the returned value.
445 if (!TheCall->use_empty())
446 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
447
448 // Since we are now done with the Call/Invoke, we can delete it.
449 TheCall->getParent()->getInstList().erase(TheCall);
450
451 // Since we are now done with the return instruction, delete it also.
452 Returns[0]->getParent()->getInstList().erase(Returns[0]);
453
454 // We are now done with the inlining.
455 return true;
456 }
457
458 // Otherwise, we have the normal case, of more than one block to inline or
459 // multiple return sites.
460
461 // We want to clone the entire callee function into the hole between the
462 // "starter" and "ender" blocks. How we accomplish this depends on whether
463 // this is an invoke instruction or a call instruction.
464 BasicBlock *AfterCallBB;
465 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
466
467 // Add an unconditional branch to make this look like the CallInst case...
468 BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
469
470 // Split the basic block. This guarantees that no PHI nodes will have to be
471 // updated due to new incoming edges, and make the invoke case more
472 // symmetric to the call case.
473 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
474 CalledFunc->getName()+".exit");
475
476 } else { // It's a call
477 // If this is a call instruction, we need to split the basic block that
478 // the call lives in.
479 //
480 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
481 CalledFunc->getName()+".exit");
482 }
483
484 // Change the branch that used to go to AfterCallBB to branch to the first
485 // basic block of the inlined function.
486 //
487 TerminatorInst *Br = OrigBB->getTerminator();
488 assert(Br && Br->getOpcode() == Instruction::Br &&
489 "splitBasicBlock broken!");
490 Br->setOperand(0, FirstNewBlock);
491
492
493 // Now that the function is correct, make it a little bit nicer. In
494 // particular, move the basic blocks inserted from the end of the function
495 // into the space made by splitting the source basic block.
496 //
497 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
498 FirstNewBlock, Caller->end());
499
500 // Handle all of the return instructions that we just cloned in, and eliminate
501 // any users of the original call/invoke instruction.
502 if (Returns.size() > 1) {
503 // The PHI node should go at the front of the new basic block to merge all
504 // possible incoming values.
505 //
506 PHINode *PHI = 0;
507 if (!TheCall->use_empty()) {
508 PHI = new PHINode(CalledFunc->getReturnType(),
509 TheCall->getName(), AfterCallBB->begin());
510
511 // Anything that used the result of the function call should now use the
512 // PHI node as their operand.
513 //
514 TheCall->replaceAllUsesWith(PHI);
515 }
516
517 // Loop over all of the return instructions, turning them into unconditional
518 // branches to the merge point now, and adding entries to the PHI node as
519 // appropriate.
520 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
521 ReturnInst *RI = Returns[i];
522
523 if (PHI) {
524 assert(RI->getReturnValue() && "Ret should have value!");
525 assert(RI->getReturnValue()->getType() == PHI->getType() &&
526 "Ret value not consistent in function!");
527 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
528 }
529
530 // Add a branch to the merge point where the PHI node lives if it exists.
531 new BranchInst(AfterCallBB, RI);
532
533 // Delete the return instruction now
534 RI->getParent()->getInstList().erase(RI);
535 }
536
537 } else if (!Returns.empty()) {
538 // Otherwise, if there is exactly one return value, just replace anything
539 // using the return value of the call with the computed value.
540 if (!TheCall->use_empty())
541 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
542
543 // Splice the code from the return block into the block that it will return
544 // to, which contains the code that was after the call.
545 BasicBlock *ReturnBB = Returns[0]->getParent();
546 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
547 ReturnBB->getInstList());
548
549 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
550 ReturnBB->replaceAllUsesWith(AfterCallBB);
551
552 // Delete the return instruction now and empty ReturnBB now.
553 Returns[0]->eraseFromParent();
554 ReturnBB->eraseFromParent();
555 } else if (!TheCall->use_empty()) {
556 // No returns, but something is using the return value of the call. Just
557 // nuke the result.
558 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
559 }
560
561 // Since we are now done with the Call/Invoke, we can delete it.
562 TheCall->eraseFromParent();
563
564 // We should always be able to fold the entry block of the function into the
565 // single predecessor of the block...
566 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
567 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
568
569 // Splice the code entry block into calling block, right before the
570 // unconditional branch.
571 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
572 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
573
574 // Remove the unconditional branch.
575 OrigBB->getInstList().erase(Br);
576
577 // Now we can remove the CalleeEntry block, which is now empty.
578 Caller->getBasicBlockList().erase(CalleeEntry);
579
580 return true;
581}