Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 1 | //===- InstCombineShifts.cpp ----------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visitShl, visitLShr, and visitAShr functions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "InstCombine.h" |
Chris Lattner | 818ff34 | 2010-01-23 18:49:30 +0000 | [diff] [blame] | 15 | #include "llvm/IntrinsicInst.h" |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 16 | #include "llvm/Support/PatternMatch.h" |
| 17 | using namespace llvm; |
| 18 | using namespace PatternMatch; |
| 19 | |
| 20 | Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { |
| 21 | assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); |
| 22 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 23 | |
| 24 | // shl X, 0 == X and shr X, 0 == X |
| 25 | // shl 0, X == 0 and shr 0, X == 0 |
| 26 | if (Op1 == Constant::getNullValue(Op1->getType()) || |
| 27 | Op0 == Constant::getNullValue(Op0->getType())) |
| 28 | return ReplaceInstUsesWith(I, Op0); |
| 29 | |
| 30 | if (isa<UndefValue>(Op0)) { |
| 31 | if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef |
| 32 | return ReplaceInstUsesWith(I, Op0); |
| 33 | else // undef << X -> 0, undef >>u X -> 0 |
| 34 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 35 | } |
| 36 | if (isa<UndefValue>(Op1)) { |
| 37 | if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X |
| 38 | return ReplaceInstUsesWith(I, Op0); |
| 39 | else // X << undef, X >>u undef -> 0 |
| 40 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 41 | } |
| 42 | |
| 43 | // See if we can fold away this shift. |
| 44 | if (SimplifyDemandedInstructionBits(I)) |
| 45 | return &I; |
| 46 | |
| 47 | // Try to fold constant and into select arguments. |
| 48 | if (isa<Constant>(Op0)) |
| 49 | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) |
| 50 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 51 | return R; |
| 52 | |
| 53 | if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) |
| 54 | if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) |
| 55 | return Res; |
Benjamin Kramer | b70ebd2 | 2010-11-23 18:52:42 +0000 | [diff] [blame] | 56 | |
Benjamin Kramer | c21a821 | 2010-11-23 20:33:57 +0000 | [diff] [blame^] | 57 | // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. |
Benjamin Kramer | b70ebd2 | 2010-11-23 18:52:42 +0000 | [diff] [blame] | 58 | // Because shifts by negative values are undefined. |
| 59 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op1)) |
Benjamin Kramer | c21a821 | 2010-11-23 20:33:57 +0000 | [diff] [blame^] | 60 | if (BO->hasOneUse() && BO->getOpcode() == Instruction::SRem) |
| 61 | if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| 62 | if (CI->getValue().isPowerOf2()) { |
| 63 | Constant *C = ConstantInt::get(BO->getType(), CI->getValue()-1); |
| 64 | Value *Rem = Builder->CreateAnd(BO->getOperand(0), C, BO->getName()); |
| 65 | I.setOperand(1, Rem); |
| 66 | return &I; |
| 67 | } |
Benjamin Kramer | b70ebd2 | 2010-11-23 18:52:42 +0000 | [diff] [blame] | 68 | |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 69 | return 0; |
| 70 | } |
| 71 | |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 72 | /// CanEvaluateShifted - See if we can compute the specified value, but shifted |
| 73 | /// logically to the left or right by some number of bits. This should return |
| 74 | /// true if the expression can be computed for the same cost as the current |
| 75 | /// expression tree. This is used to eliminate extraneous shifting from things |
| 76 | /// like: |
| 77 | /// %C = shl i128 %A, 64 |
| 78 | /// %D = shl i128 %B, 96 |
| 79 | /// %E = or i128 %C, %D |
| 80 | /// %F = lshr i128 %E, 64 |
| 81 | /// where the client will ask if E can be computed shifted right by 64-bits. If |
| 82 | /// this succeeds, the GetShiftedValue function will be called to produce the |
| 83 | /// value. |
| 84 | static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift, |
| 85 | InstCombiner &IC) { |
| 86 | // We can always evaluate constants shifted. |
| 87 | if (isa<Constant>(V)) |
| 88 | return true; |
| 89 | |
| 90 | Instruction *I = dyn_cast<Instruction>(V); |
| 91 | if (!I) return false; |
| 92 | |
| 93 | // If this is the opposite shift, we can directly reuse the input of the shift |
| 94 | // if the needed bits are already zero in the input. This allows us to reuse |
| 95 | // the value which means that we don't care if the shift has multiple uses. |
| 96 | // TODO: Handle opposite shift by exact value. |
| 97 | ConstantInt *CI; |
| 98 | if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || |
| 99 | (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { |
| 100 | if (CI->getZExtValue() == NumBits) { |
| 101 | // TODO: Check that the input bits are already zero with MaskedValueIsZero |
| 102 | #if 0 |
| 103 | // If this is a truncate of a logical shr, we can truncate it to a smaller |
| 104 | // lshr iff we know that the bits we would otherwise be shifting in are |
| 105 | // already zeros. |
| 106 | uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); |
| 107 | uint32_t BitWidth = Ty->getScalarSizeInBits(); |
| 108 | if (MaskedValueIsZero(I->getOperand(0), |
| 109 | APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && |
| 110 | CI->getLimitedValue(BitWidth) < BitWidth) { |
| 111 | return CanEvaluateTruncated(I->getOperand(0), Ty); |
| 112 | } |
| 113 | #endif |
| 114 | |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | // We can't mutate something that has multiple uses: doing so would |
| 119 | // require duplicating the instruction in general, which isn't profitable. |
| 120 | if (!I->hasOneUse()) return false; |
| 121 | |
| 122 | switch (I->getOpcode()) { |
| 123 | default: return false; |
| 124 | case Instruction::And: |
| 125 | case Instruction::Or: |
| 126 | case Instruction::Xor: |
| 127 | // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. |
| 128 | return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) && |
| 129 | CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC); |
| 130 | |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 131 | case Instruction::Shl: { |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 132 | // We can often fold the shift into shifts-by-a-constant. |
| 133 | CI = dyn_cast<ConstantInt>(I->getOperand(1)); |
| 134 | if (CI == 0) return false; |
| 135 | |
| 136 | // We can always fold shl(c1)+shl(c2) -> shl(c1+c2). |
| 137 | if (isLeftShift) return true; |
| 138 | |
| 139 | // We can always turn shl(c)+shr(c) -> and(c2). |
| 140 | if (CI->getValue() == NumBits) return true; |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 141 | |
| 142 | unsigned TypeWidth = I->getType()->getScalarSizeInBits(); |
| 143 | |
| 144 | // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 145 | // profitable unless we know the and'd out bits are already zero. |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 146 | if (CI->getZExtValue() > NumBits) { |
Dale Johannesen | 201ab3a | 2010-11-10 01:30:56 +0000 | [diff] [blame] | 147 | unsigned LowBits = TypeWidth - CI->getZExtValue(); |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 148 | if (MaskedValueIsZero(I->getOperand(0), |
Dale Johannesen | 201ab3a | 2010-11-10 01:30:56 +0000 | [diff] [blame] | 149 | APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits)) |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 150 | return true; |
| 151 | } |
| 152 | |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 153 | return false; |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 154 | } |
| 155 | case Instruction::LShr: { |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 156 | // We can often fold the shift into shifts-by-a-constant. |
| 157 | CI = dyn_cast<ConstantInt>(I->getOperand(1)); |
| 158 | if (CI == 0) return false; |
| 159 | |
| 160 | // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2). |
| 161 | if (!isLeftShift) return true; |
| 162 | |
| 163 | // We can always turn lshr(c)+shl(c) -> and(c2). |
| 164 | if (CI->getValue() == NumBits) return true; |
| 165 | |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 166 | unsigned TypeWidth = I->getType()->getScalarSizeInBits(); |
| 167 | |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 168 | // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't |
| 169 | // profitable unless we know the and'd out bits are already zero. |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 170 | if (CI->getZExtValue() > NumBits) { |
| 171 | unsigned LowBits = CI->getZExtValue() - NumBits; |
| 172 | if (MaskedValueIsZero(I->getOperand(0), |
Owen Anderson | 648b20d | 2010-11-01 21:08:20 +0000 | [diff] [blame] | 173 | APInt::getLowBitsSet(TypeWidth, LowBits) << NumBits)) |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 174 | return true; |
| 175 | } |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 176 | |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 177 | return false; |
| 178 | } |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 179 | case Instruction::Select: { |
| 180 | SelectInst *SI = cast<SelectInst>(I); |
| 181 | return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) && |
| 182 | CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC); |
| 183 | } |
| 184 | case Instruction::PHI: { |
| 185 | // We can change a phi if we can change all operands. Note that we never |
| 186 | // get into trouble with cyclic PHIs here because we only consider |
| 187 | // instructions with a single use. |
| 188 | PHINode *PN = cast<PHINode>(I); |
| 189 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 190 | if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC)) |
| 191 | return false; |
| 192 | return true; |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | /// GetShiftedValue - When CanEvaluateShifted returned true for an expression, |
| 198 | /// this value inserts the new computation that produces the shifted value. |
| 199 | static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, |
| 200 | InstCombiner &IC) { |
| 201 | // We can always evaluate constants shifted. |
| 202 | if (Constant *C = dyn_cast<Constant>(V)) { |
| 203 | if (isLeftShift) |
| 204 | V = IC.Builder->CreateShl(C, NumBits); |
| 205 | else |
| 206 | V = IC.Builder->CreateLShr(C, NumBits); |
| 207 | // If we got a constantexpr back, try to simplify it with TD info. |
| 208 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) |
| 209 | V = ConstantFoldConstantExpression(CE, IC.getTargetData()); |
| 210 | return V; |
| 211 | } |
| 212 | |
| 213 | Instruction *I = cast<Instruction>(V); |
| 214 | IC.Worklist.Add(I); |
| 215 | |
| 216 | switch (I->getOpcode()) { |
| 217 | default: assert(0 && "Inconsistency with CanEvaluateShifted"); |
| 218 | case Instruction::And: |
| 219 | case Instruction::Or: |
| 220 | case Instruction::Xor: |
| 221 | // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. |
| 222 | I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC)); |
| 223 | I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC)); |
| 224 | return I; |
| 225 | |
| 226 | case Instruction::Shl: { |
| 227 | unsigned TypeWidth = I->getType()->getScalarSizeInBits(); |
| 228 | |
| 229 | // We only accept shifts-by-a-constant in CanEvaluateShifted. |
| 230 | ConstantInt *CI = cast<ConstantInt>(I->getOperand(1)); |
| 231 | |
| 232 | // We can always fold shl(c1)+shl(c2) -> shl(c1+c2). |
| 233 | if (isLeftShift) { |
| 234 | // If this is oversized composite shift, then unsigned shifts get 0. |
| 235 | unsigned NewShAmt = NumBits+CI->getZExtValue(); |
| 236 | if (NewShAmt >= TypeWidth) |
| 237 | return Constant::getNullValue(I->getType()); |
| 238 | |
| 239 | I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt)); |
| 240 | return I; |
| 241 | } |
| 242 | |
| 243 | // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have |
| 244 | // zeros. |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 245 | if (CI->getValue() == NumBits) { |
| 246 | APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits)); |
| 247 | V = IC.Builder->CreateAnd(I->getOperand(0), |
| 248 | ConstantInt::get(I->getContext(), Mask)); |
| 249 | if (Instruction *VI = dyn_cast<Instruction>(V)) { |
| 250 | VI->moveBefore(I); |
| 251 | VI->takeName(I); |
| 252 | } |
| 253 | return V; |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 254 | } |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 255 | |
| 256 | // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that |
| 257 | // the and won't be needed. |
| 258 | assert(CI->getZExtValue() > NumBits); |
| 259 | I->setOperand(1, ConstantInt::get(I->getType(), |
| 260 | CI->getZExtValue() - NumBits)); |
| 261 | return I; |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 262 | } |
| 263 | case Instruction::LShr: { |
| 264 | unsigned TypeWidth = I->getType()->getScalarSizeInBits(); |
| 265 | // We only accept shifts-by-a-constant in CanEvaluateShifted. |
| 266 | ConstantInt *CI = cast<ConstantInt>(I->getOperand(1)); |
| 267 | |
| 268 | // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2). |
| 269 | if (!isLeftShift) { |
| 270 | // If this is oversized composite shift, then unsigned shifts get 0. |
| 271 | unsigned NewShAmt = NumBits+CI->getZExtValue(); |
| 272 | if (NewShAmt >= TypeWidth) |
| 273 | return Constant::getNullValue(I->getType()); |
| 274 | |
| 275 | I->setOperand(1, ConstantInt::get(I->getType(), NewShAmt)); |
| 276 | return I; |
| 277 | } |
| 278 | |
| 279 | // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have |
| 280 | // zeros. |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 281 | if (CI->getValue() == NumBits) { |
| 282 | APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits)); |
| 283 | V = IC.Builder->CreateAnd(I->getOperand(0), |
| 284 | ConstantInt::get(I->getContext(), Mask)); |
| 285 | if (Instruction *VI = dyn_cast<Instruction>(V)) { |
| 286 | VI->moveBefore(I); |
| 287 | VI->takeName(I); |
| 288 | } |
| 289 | return V; |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 290 | } |
Chris Lattner | 4ece577 | 2010-08-27 22:53:44 +0000 | [diff] [blame] | 291 | |
| 292 | // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that |
| 293 | // the and won't be needed. |
| 294 | assert(CI->getZExtValue() > NumBits); |
| 295 | I->setOperand(1, ConstantInt::get(I->getType(), |
| 296 | CI->getZExtValue() - NumBits)); |
| 297 | return I; |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 298 | } |
| 299 | |
| 300 | case Instruction::Select: |
| 301 | I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC)); |
| 302 | I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC)); |
| 303 | return I; |
| 304 | case Instruction::PHI: { |
| 305 | // We can change a phi if we can change all operands. Note that we never |
| 306 | // get into trouble with cyclic PHIs here because we only consider |
| 307 | // instructions with a single use. |
| 308 | PHINode *PN = cast<PHINode>(I); |
| 309 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| 310 | PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), |
| 311 | NumBits, isLeftShift, IC)); |
| 312 | return PN; |
| 313 | } |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | |
| 318 | |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 319 | Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, |
| 320 | BinaryOperator &I) { |
| 321 | bool isLeftShift = I.getOpcode() == Instruction::Shl; |
Chris Lattner | 2d0822a | 2010-08-27 21:04:34 +0000 | [diff] [blame] | 322 | |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 323 | |
| 324 | // See if we can propagate this shift into the input, this covers the trivial |
| 325 | // cast of lshr(shl(x,c1),c2) as well as other more complex cases. |
| 326 | if (I.getOpcode() != Instruction::AShr && |
| 327 | CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) { |
Chris Lattner | 3dd0873 | 2010-08-28 01:20:38 +0000 | [diff] [blame] | 328 | DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression" |
| 329 | " to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n"); |
Chris Lattner | 29cc0b3 | 2010-08-27 22:24:38 +0000 | [diff] [blame] | 330 | |
| 331 | return ReplaceInstUsesWith(I, |
| 332 | GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this)); |
| 333 | } |
| 334 | |
| 335 | |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 336 | // See if we can simplify any instructions used by the instruction whose sole |
| 337 | // purpose is to compute bits we don't care about. |
| 338 | uint32_t TypeBits = Op0->getType()->getScalarSizeInBits(); |
| 339 | |
| 340 | // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate |
| 341 | // a signed shift. |
| 342 | // |
| 343 | if (Op1->uge(TypeBits)) { |
| 344 | if (I.getOpcode() != Instruction::AShr) |
| 345 | return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); |
Chris Lattner | 818ff34 | 2010-01-23 18:49:30 +0000 | [diff] [blame] | 346 | // ashr i32 X, 32 --> ashr i32 X, 31 |
| 347 | I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); |
| 348 | return &I; |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 349 | } |
| 350 | |
| 351 | // ((X*C1) << C2) == (X * (C1 << C2)) |
| 352 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) |
| 353 | if (BO->getOpcode() == Instruction::Mul && isLeftShift) |
| 354 | if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) |
| 355 | return BinaryOperator::CreateMul(BO->getOperand(0), |
| 356 | ConstantExpr::getShl(BOOp, Op1)); |
| 357 | |
| 358 | // Try to fold constant and into select arguments. |
| 359 | if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) |
| 360 | if (Instruction *R = FoldOpIntoSelect(I, SI)) |
| 361 | return R; |
| 362 | if (isa<PHINode>(Op0)) |
| 363 | if (Instruction *NV = FoldOpIntoPhi(I)) |
| 364 | return NV; |
| 365 | |
| 366 | // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) |
| 367 | if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { |
| 368 | Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); |
| 369 | // If 'shift2' is an ashr, we would have to get the sign bit into a funny |
| 370 | // place. Don't try to do this transformation in this case. Also, we |
| 371 | // require that the input operand is a shift-by-constant so that we have |
| 372 | // confidence that the shifts will get folded together. We could do this |
| 373 | // xform in more cases, but it is unlikely to be profitable. |
| 374 | if (TrOp && I.isLogicalShift() && TrOp->isShift() && |
| 375 | isa<ConstantInt>(TrOp->getOperand(1))) { |
| 376 | // Okay, we'll do this xform. Make the shift of shift. |
| 377 | Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); |
| 378 | // (shift2 (shift1 & 0x00FF), c2) |
| 379 | Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName()); |
| 380 | |
| 381 | // For logical shifts, the truncation has the effect of making the high |
| 382 | // part of the register be zeros. Emulate this by inserting an AND to |
| 383 | // clear the top bits as needed. This 'and' will usually be zapped by |
| 384 | // other xforms later if dead. |
| 385 | unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); |
| 386 | unsigned DstSize = TI->getType()->getScalarSizeInBits(); |
| 387 | APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); |
| 388 | |
| 389 | // The mask we constructed says what the trunc would do if occurring |
| 390 | // between the shifts. We want to know the effect *after* the second |
| 391 | // shift. We know that it is a logical shift by a constant, so adjust the |
| 392 | // mask as appropriate. |
| 393 | if (I.getOpcode() == Instruction::Shl) |
| 394 | MaskV <<= Op1->getZExtValue(); |
| 395 | else { |
| 396 | assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); |
| 397 | MaskV = MaskV.lshr(Op1->getZExtValue()); |
| 398 | } |
| 399 | |
| 400 | // shift1 & 0x00FF |
| 401 | Value *And = Builder->CreateAnd(NSh, |
| 402 | ConstantInt::get(I.getContext(), MaskV), |
| 403 | TI->getName()); |
| 404 | |
| 405 | // Return the value truncated to the interesting size. |
| 406 | return new TruncInst(And, I.getType()); |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | if (Op0->hasOneUse()) { |
| 411 | if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { |
| 412 | // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) |
| 413 | Value *V1, *V2; |
| 414 | ConstantInt *CC; |
| 415 | switch (Op0BO->getOpcode()) { |
Chris Lattner | abff82d | 2010-01-10 06:59:55 +0000 | [diff] [blame] | 416 | default: break; |
| 417 | case Instruction::Add: |
| 418 | case Instruction::And: |
| 419 | case Instruction::Or: |
| 420 | case Instruction::Xor: { |
| 421 | // These operators commute. |
| 422 | // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) |
| 423 | if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && |
| 424 | match(Op0BO->getOperand(1), m_Shr(m_Value(V1), |
| 425 | m_Specific(Op1)))) { |
| 426 | Value *YS = // (Y << C) |
| 427 | Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); |
| 428 | // (X + (Y << C)) |
| 429 | Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1, |
| 430 | Op0BO->getOperand(1)->getName()); |
| 431 | uint32_t Op1Val = Op1->getLimitedValue(TypeBits); |
| 432 | return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), |
| 433 | APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 434 | } |
Chris Lattner | abff82d | 2010-01-10 06:59:55 +0000 | [diff] [blame] | 435 | |
| 436 | // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) |
| 437 | Value *Op0BOOp1 = Op0BO->getOperand(1); |
| 438 | if (isLeftShift && Op0BOOp1->hasOneUse() && |
| 439 | match(Op0BOOp1, |
| 440 | m_And(m_Shr(m_Value(V1), m_Specific(Op1)), |
| 441 | m_ConstantInt(CC))) && |
| 442 | cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) { |
| 443 | Value *YS = // (Y << C) |
| 444 | Builder->CreateShl(Op0BO->getOperand(0), Op1, |
| 445 | Op0BO->getName()); |
| 446 | // X & (CC << C) |
| 447 | Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), |
| 448 | V1->getName()+".mask"); |
| 449 | return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 450 | } |
| 451 | } |
Chris Lattner | abff82d | 2010-01-10 06:59:55 +0000 | [diff] [blame] | 452 | |
| 453 | // FALL THROUGH. |
| 454 | case Instruction::Sub: { |
| 455 | // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) |
| 456 | if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && |
| 457 | match(Op0BO->getOperand(0), m_Shr(m_Value(V1), |
| 458 | m_Specific(Op1)))) { |
| 459 | Value *YS = // (Y << C) |
| 460 | Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); |
| 461 | // (X + (Y << C)) |
| 462 | Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS, |
| 463 | Op0BO->getOperand(0)->getName()); |
| 464 | uint32_t Op1Val = Op1->getLimitedValue(TypeBits); |
| 465 | return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), |
| 466 | APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); |
| 467 | } |
| 468 | |
| 469 | // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) |
| 470 | if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && |
| 471 | match(Op0BO->getOperand(0), |
| 472 | m_And(m_Shr(m_Value(V1), m_Value(V2)), |
| 473 | m_ConstantInt(CC))) && V2 == Op1 && |
| 474 | cast<BinaryOperator>(Op0BO->getOperand(0)) |
| 475 | ->getOperand(0)->hasOneUse()) { |
| 476 | Value *YS = // (Y << C) |
| 477 | Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); |
| 478 | // X & (CC << C) |
| 479 | Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), |
| 480 | V1->getName()+".mask"); |
| 481 | |
| 482 | return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); |
| 483 | } |
| 484 | |
| 485 | break; |
| 486 | } |
| 487 | } |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 488 | |
| 489 | |
| 490 | // If the operand is an bitwise operator with a constant RHS, and the |
| 491 | // shift is the only use, we can pull it out of the shift. |
| 492 | if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { |
| 493 | bool isValid = true; // Valid only for And, Or, Xor |
| 494 | bool highBitSet = false; // Transform if high bit of constant set? |
| 495 | |
| 496 | switch (Op0BO->getOpcode()) { |
Chris Lattner | abff82d | 2010-01-10 06:59:55 +0000 | [diff] [blame] | 497 | default: isValid = false; break; // Do not perform transform! |
| 498 | case Instruction::Add: |
| 499 | isValid = isLeftShift; |
| 500 | break; |
| 501 | case Instruction::Or: |
| 502 | case Instruction::Xor: |
| 503 | highBitSet = false; |
| 504 | break; |
| 505 | case Instruction::And: |
| 506 | highBitSet = true; |
| 507 | break; |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 508 | } |
| 509 | |
| 510 | // If this is a signed shift right, and the high bit is modified |
| 511 | // by the logical operation, do not perform the transformation. |
| 512 | // The highBitSet boolean indicates the value of the high bit of |
| 513 | // the constant which would cause it to be modified for this |
| 514 | // operation. |
| 515 | // |
| 516 | if (isValid && I.getOpcode() == Instruction::AShr) |
| 517 | isValid = Op0C->getValue()[TypeBits-1] == highBitSet; |
| 518 | |
| 519 | if (isValid) { |
| 520 | Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); |
| 521 | |
| 522 | Value *NewShift = |
| 523 | Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); |
| 524 | NewShift->takeName(Op0BO); |
| 525 | |
| 526 | return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, |
| 527 | NewRHS); |
| 528 | } |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | // Find out if this is a shift of a shift by a constant. |
| 534 | BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); |
| 535 | if (ShiftOp && !ShiftOp->isShift()) |
| 536 | ShiftOp = 0; |
| 537 | |
| 538 | if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { |
| 539 | ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); |
| 540 | uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); |
| 541 | uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); |
| 542 | assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); |
| 543 | if (ShiftAmt1 == 0) return 0; // Will be simplified in the future. |
| 544 | Value *X = ShiftOp->getOperand(0); |
| 545 | |
| 546 | uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. |
| 547 | |
| 548 | const IntegerType *Ty = cast<IntegerType>(I.getType()); |
| 549 | |
| 550 | // Check for (X << c1) << c2 and (X >> c1) >> c2 |
| 551 | if (I.getOpcode() == ShiftOp->getOpcode()) { |
| 552 | // If this is oversized composite shift, then unsigned shifts get 0, ashr |
| 553 | // saturates. |
| 554 | if (AmtSum >= TypeBits) { |
| 555 | if (I.getOpcode() != Instruction::AShr) |
| 556 | return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); |
| 557 | AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr. |
| 558 | } |
| 559 | |
| 560 | return BinaryOperator::Create(I.getOpcode(), X, |
| 561 | ConstantInt::get(Ty, AmtSum)); |
| 562 | } |
| 563 | |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 564 | if (ShiftAmt1 == ShiftAmt2) { |
| 565 | // If we have ((X >>? C) << C), turn this into X & (-1 << C). |
Chris Lattner | 2d0822a | 2010-08-27 21:04:34 +0000 | [diff] [blame] | 566 | if (I.getOpcode() == Instruction::Shl && |
| 567 | ShiftOp->getOpcode() != Instruction::Shl) { |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 568 | APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1)); |
| 569 | return BinaryOperator::CreateAnd(X, |
| 570 | ConstantInt::get(I.getContext(),Mask)); |
| 571 | } |
| 572 | // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). |
Chris Lattner | 2d0822a | 2010-08-27 21:04:34 +0000 | [diff] [blame] | 573 | if (I.getOpcode() == Instruction::LShr && |
| 574 | ShiftOp->getOpcode() == Instruction::Shl) { |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 575 | APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); |
| 576 | return BinaryOperator::CreateAnd(X, |
| 577 | ConstantInt::get(I.getContext(), Mask)); |
| 578 | } |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 579 | } else if (ShiftAmt1 < ShiftAmt2) { |
| 580 | uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; |
| 581 | |
| 582 | // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) |
Chris Lattner | 2d0822a | 2010-08-27 21:04:34 +0000 | [diff] [blame] | 583 | if (I.getOpcode() == Instruction::Shl && |
| 584 | ShiftOp->getOpcode() != Instruction::Shl) { |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 585 | assert(ShiftOp->getOpcode() == Instruction::LShr || |
| 586 | ShiftOp->getOpcode() == Instruction::AShr); |
| 587 | Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); |
| 588 | |
| 589 | APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| 590 | return BinaryOperator::CreateAnd(Shift, |
| 591 | ConstantInt::get(I.getContext(),Mask)); |
| 592 | } |
| 593 | |
| 594 | // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) |
Chris Lattner | 2d0822a | 2010-08-27 21:04:34 +0000 | [diff] [blame] | 595 | if (I.getOpcode() == Instruction::LShr && |
| 596 | ShiftOp->getOpcode() == Instruction::Shl) { |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 597 | assert(ShiftOp->getOpcode() == Instruction::Shl); |
| 598 | Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff)); |
| 599 | |
| 600 | APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| 601 | return BinaryOperator::CreateAnd(Shift, |
| 602 | ConstantInt::get(I.getContext(),Mask)); |
| 603 | } |
| 604 | |
| 605 | // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. |
| 606 | } else { |
| 607 | assert(ShiftAmt2 < ShiftAmt1); |
| 608 | uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; |
| 609 | |
| 610 | // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) |
Chris Lattner | 2d0822a | 2010-08-27 21:04:34 +0000 | [diff] [blame] | 611 | if (I.getOpcode() == Instruction::Shl && |
| 612 | ShiftOp->getOpcode() != Instruction::Shl) { |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 613 | Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X, |
| 614 | ConstantInt::get(Ty, ShiftDiff)); |
| 615 | |
| 616 | APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| 617 | return BinaryOperator::CreateAnd(Shift, |
| 618 | ConstantInt::get(I.getContext(),Mask)); |
| 619 | } |
| 620 | |
| 621 | // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) |
Chris Lattner | 2d0822a | 2010-08-27 21:04:34 +0000 | [diff] [blame] | 622 | if (I.getOpcode() == Instruction::LShr && |
| 623 | ShiftOp->getOpcode() == Instruction::Shl) { |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 624 | Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff)); |
| 625 | |
| 626 | APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); |
| 627 | return BinaryOperator::CreateAnd(Shift, |
| 628 | ConstantInt::get(I.getContext(),Mask)); |
| 629 | } |
| 630 | |
| 631 | // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in. |
| 632 | } |
| 633 | } |
| 634 | return 0; |
| 635 | } |
| 636 | |
| 637 | Instruction *InstCombiner::visitShl(BinaryOperator &I) { |
| 638 | return commonShiftTransforms(I); |
| 639 | } |
| 640 | |
| 641 | Instruction *InstCombiner::visitLShr(BinaryOperator &I) { |
Chris Lattner | 818ff34 | 2010-01-23 18:49:30 +0000 | [diff] [blame] | 642 | if (Instruction *R = commonShiftTransforms(I)) |
| 643 | return R; |
| 644 | |
| 645 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| 646 | |
| 647 | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) |
| 648 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) { |
Chris Lattner | f7d0d16 | 2010-01-23 23:31:46 +0000 | [diff] [blame] | 649 | unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); |
Chris Lattner | 818ff34 | 2010-01-23 18:49:30 +0000 | [diff] [blame] | 650 | // ctlz.i32(x)>>5 --> zext(x == 0) |
| 651 | // cttz.i32(x)>>5 --> zext(x == 0) |
| 652 | // ctpop.i32(x)>>5 --> zext(x == -1) |
| 653 | if ((II->getIntrinsicID() == Intrinsic::ctlz || |
| 654 | II->getIntrinsicID() == Intrinsic::cttz || |
| 655 | II->getIntrinsicID() == Intrinsic::ctpop) && |
Chris Lattner | f7d0d16 | 2010-01-23 23:31:46 +0000 | [diff] [blame] | 656 | isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == Op1C->getZExtValue()){ |
Chris Lattner | 818ff34 | 2010-01-23 18:49:30 +0000 | [diff] [blame] | 657 | bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop; |
Chris Lattner | f7d0d16 | 2010-01-23 23:31:46 +0000 | [diff] [blame] | 658 | Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0); |
Gabor Greif | de9f545 | 2010-06-24 00:44:01 +0000 | [diff] [blame] | 659 | Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS); |
Chris Lattner | 818ff34 | 2010-01-23 18:49:30 +0000 | [diff] [blame] | 660 | return new ZExtInst(Cmp, II->getType()); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | return 0; |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 665 | } |
| 666 | |
| 667 | Instruction *InstCombiner::visitAShr(BinaryOperator &I) { |
| 668 | if (Instruction *R = commonShiftTransforms(I)) |
| 669 | return R; |
| 670 | |
Chris Lattner | a85732f | 2010-01-08 19:04:21 +0000 | [diff] [blame] | 671 | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 672 | |
Chris Lattner | a85732f | 2010-01-08 19:04:21 +0000 | [diff] [blame] | 673 | if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) { |
| 674 | // ashr int -1, X = -1 (for any arithmetic shift rights of ~0) |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 675 | if (CSI->isAllOnesValue()) |
| 676 | return ReplaceInstUsesWith(I, CSI); |
Chris Lattner | a85732f | 2010-01-08 19:04:21 +0000 | [diff] [blame] | 677 | } |
| 678 | |
| 679 | if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| 680 | // If the input is a SHL by the same constant (ashr (shl X, C), C), then we |
Chris Lattner | cd5adbb | 2010-01-18 22:19:16 +0000 | [diff] [blame] | 681 | // have a sign-extend idiom. |
Chris Lattner | a85732f | 2010-01-08 19:04:21 +0000 | [diff] [blame] | 682 | Value *X; |
Chris Lattner | cd5adbb | 2010-01-18 22:19:16 +0000 | [diff] [blame] | 683 | if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) { |
| 684 | // If the input value is known to already be sign extended enough, delete |
| 685 | // the extension. |
| 686 | if (ComputeNumSignBits(X) > Op1C->getZExtValue()) |
| 687 | return ReplaceInstUsesWith(I, X); |
| 688 | |
| 689 | // If the input is an extension from the shifted amount value, e.g. |
| 690 | // %x = zext i8 %A to i32 |
| 691 | // %y = shl i32 %x, 24 |
| 692 | // %z = ashr %y, 24 |
| 693 | // then turn this into "z = sext i8 A to i32". |
| 694 | if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) { |
| 695 | uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits(); |
| 696 | uint32_t DestBits = ZI->getType()->getScalarSizeInBits(); |
| 697 | if (Op1C->getZExtValue() == DestBits-SrcBits) |
| 698 | return new SExtInst(ZI->getOperand(0), ZI->getType()); |
| 699 | } |
| 700 | } |
Chris Lattner | a85732f | 2010-01-08 19:04:21 +0000 | [diff] [blame] | 701 | } |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 702 | |
| 703 | // See if we can turn a signed shr into an unsigned shr. |
| 704 | if (MaskedValueIsZero(Op0, |
| 705 | APInt::getSignBit(I.getType()->getScalarSizeInBits()))) |
Chris Lattner | a85732f | 2010-01-08 19:04:21 +0000 | [diff] [blame] | 706 | return BinaryOperator::CreateLShr(Op0, Op1); |
Chris Lattner | 9cdd5f3 | 2010-01-05 07:44:46 +0000 | [diff] [blame] | 707 | |
| 708 | // Arithmetic shifting an all-sign-bit value is a no-op. |
| 709 | unsigned NumSignBits = ComputeNumSignBits(Op0); |
| 710 | if (NumSignBits == Op0->getType()->getScalarSizeInBits()) |
| 711 | return ReplaceInstUsesWith(I, Op0); |
| 712 | |
| 713 | return 0; |
| 714 | } |
| 715 | |