blob: 0ca5562bae9cdf03a53d286b625e75f2a2914415 [file] [log] [blame]
Chris Lattner2240d2b2003-09-20 05:03:31 +00001//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner2240d2b2003-09-20 05:03:31 +00009//
Chris Lattner7152da32003-12-08 05:34:54 +000010// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop. This pass also implements the following extensions to the basic
13// algorithm:
Chris Lattner2240d2b2003-09-20 05:03:31 +000014//
Chris Lattner7152da32003-12-08 05:34:54 +000015// 1. Trivial instructions between the call and return do not prevent the
16// transformation from taking place, though currently the analysis cannot
17// support moving any really useful instructions (only dead ones).
Chris Lattner543d6222003-12-08 23:19:26 +000018// 2. This pass transforms functions that are prevented from being tail
19// recursive by an associative expression to use an accumulator variable,
20// thus compiling the typical naive factorial or 'fib' implementation into
21// efficient code.
Chris Lattnerd64152a2003-12-14 23:57:39 +000022// 3. TRE is performed if the function returns void, if the return
23// returns the result returned by the call, or if the function returns a
24// run-time constant on all exits from the function. It is possible, though
25// unlikely, that the return returns something else (like constant 0), and
26// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27// the function return the exact same value.
Chris Lattner2240d2b2003-09-20 05:03:31 +000028//
Chris Lattner7152da32003-12-08 05:34:54 +000029// There are several improvements that could be made:
30//
31// 1. If the function has any alloca instructions, these instructions will be
32// moved out of the entry block of the function, causing them to be
33// evaluated each time through the tail recursion. Safely keeping allocas
34// in the entry block requires analysis to proves that the tail-called
35// function does not read or write the stack object.
Chris Lattner2240d2b2003-09-20 05:03:31 +000036// 2. Tail recursion is only performed if the call immediately preceeds the
Chris Lattner7152da32003-12-08 05:34:54 +000037// return instruction. It's possible that there could be a jump between
38// the call and the return.
Chris Lattnerd64152a2003-12-14 23:57:39 +000039// 3. There can be intervening operations between the call and the return that
Chris Lattner7152da32003-12-08 05:34:54 +000040// prevent the TRE from occurring. For example, there could be GEP's and
41// stores to memory that will not be read or written by the call. This
42// requires some substantial analysis (such as with DSA) to prove safe to
43// move ahead of the call, but doing so could allow many more TREs to be
44// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
Chris Lattner2240d2b2003-09-20 05:03:31 +000045//
46//===----------------------------------------------------------------------===//
47
Chris Lattner3fc6ef12003-09-20 05:14:13 +000048#include "llvm/Transforms/Scalar.h"
Chris Lattner2240d2b2003-09-20 05:03:31 +000049#include "llvm/DerivedTypes.h"
50#include "llvm/Function.h"
51#include "llvm/Instructions.h"
52#include "llvm/Pass.h"
Chris Lattner543d6222003-12-08 23:19:26 +000053#include "llvm/Support/CFG.h"
Chris Lattner2240d2b2003-09-20 05:03:31 +000054#include "Support/Statistic.h"
Chris Lattnerf8485c62003-11-20 18:25:24 +000055using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000056
Chris Lattner2240d2b2003-09-20 05:03:31 +000057namespace {
58 Statistic<> NumEliminated("tailcallelim", "Number of tail calls removed");
Chris Lattner543d6222003-12-08 23:19:26 +000059 Statistic<> NumAccumAdded("tailcallelim","Number of accumulators introduced");
Chris Lattner2240d2b2003-09-20 05:03:31 +000060
61 struct TailCallElim : public FunctionPass {
62 virtual bool runOnFunction(Function &F);
Chris Lattner7152da32003-12-08 05:34:54 +000063
64 private:
65 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
66 std::vector<PHINode*> &ArgumentPHIs);
67 bool CanMoveAboveCall(Instruction *I, CallInst *CI);
Chris Lattner543d6222003-12-08 23:19:26 +000068 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
Chris Lattner2240d2b2003-09-20 05:03:31 +000069 };
70 RegisterOpt<TailCallElim> X("tailcallelim", "Tail Call Elimination");
71}
72
Brian Gaeked0fde302003-11-11 22:41:34 +000073// Public interface to the TailCallElimination pass
Chris Lattnerf8485c62003-11-20 18:25:24 +000074FunctionPass *llvm::createTailCallEliminationPass() {
75 return new TailCallElim();
76}
Chris Lattner3fc6ef12003-09-20 05:14:13 +000077
Chris Lattner2240d2b2003-09-20 05:03:31 +000078
79bool TailCallElim::runOnFunction(Function &F) {
80 // If this function is a varargs function, we won't be able to PHI the args
81 // right, so don't even try to convert it...
82 if (F.getFunctionType()->isVarArg()) return false;
83
84 BasicBlock *OldEntry = 0;
85 std::vector<PHINode*> ArgumentPHIs;
86 bool MadeChange = false;
87
88 // Loop over the function, looking for any returning blocks...
89 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
90 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
Chris Lattner7152da32003-12-08 05:34:54 +000091 MadeChange |= ProcessReturningBlock(Ret, OldEntry, ArgumentPHIs);
Chris Lattner2240d2b2003-09-20 05:03:31 +000092
Chris Lattnercf2f8922003-12-08 23:37:35 +000093 // If we eliminated any tail recursions, it's possible that we inserted some
94 // silly PHI nodes which just merge an initial value (the incoming operand)
95 // with themselves. Check to see if we did and clean up our mess if so. This
96 // occurs when a function passes an argument straight through to its tail
97 // call.
98 if (!ArgumentPHIs.empty()) {
99 unsigned NumIncoming = ArgumentPHIs[0]->getNumIncomingValues();
100 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
101 PHINode *PN = ArgumentPHIs[i];
102 Value *V = 0;
103 for (unsigned op = 0, e = NumIncoming; op != e; ++op) {
104 Value *Op = PN->getIncomingValue(op);
105 if (Op != PN) {
106 if (V == 0) {
107 V = Op; // First value seen?
108 } else if (V != Op) {
109 V = 0;
110 break;
111 }
112 }
113 }
114
115 // If the PHI Node is a dynamic constant, replace it with the value it is.
116 if (V) {
117 PN->replaceAllUsesWith(V);
118 PN->getParent()->getInstList().erase(PN);
119 }
120 }
121 }
122
Chris Lattner2240d2b2003-09-20 05:03:31 +0000123 return MadeChange;
124}
Chris Lattner7152da32003-12-08 05:34:54 +0000125
126
Chris Lattner543d6222003-12-08 23:19:26 +0000127/// CanMoveAboveCall - Return true if it is safe to move the specified
128/// instruction from after the call to before the call, assuming that all
129/// instructions between the call and this instruction are movable.
130///
Chris Lattner7152da32003-12-08 05:34:54 +0000131bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
132 // FIXME: We can move load/store/call/free instructions above the call if the
133 // call does not mod/ref the memory location being processed.
134 if (I->mayWriteToMemory() || isa<LoadInst>(I))
135 return false;
136
137 // Otherwise, if this is a side-effect free instruction, check to make sure
138 // that it does not use the return value of the call. If it doesn't use the
139 // return value of the call, it must only use things that are defined before
140 // the call, or movable instructions between the call and the instruction
141 // itself.
142 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
143 if (I->getOperand(i) == CI)
144 return false;
145 return true;
146}
147
Chris Lattnerd64152a2003-12-14 23:57:39 +0000148// isDynamicConstant - Return true if the specified value is the same when the
149// return would exit as it was when the initial iteration of the recursive
150// function was executed.
151//
152// We currently handle static constants and arguments that are not modified as
153// part of the recursion.
154//
155static bool isDynamicConstant(Value *V, CallInst *CI) {
156 if (isa<Constant>(V)) return true; // Static constants are always dyn consts
157
158 // Check to see if this is an immutable argument, if so, the value
159 // will be available to initialize the accumulator.
160 if (Argument *Arg = dyn_cast<Argument>(V)) {
161 // Figure out which argument number this is...
162 unsigned ArgNo = 0;
163 Function *F = CI->getParent()->getParent();
164 for (Function::aiterator AI = F->abegin(); &*AI != Arg; ++AI)
165 ++ArgNo;
166
167 // If we are passing this argument into call as the corresponding
168 // argument operand, then the argument is dynamically constant.
169 // Otherwise, we cannot transform this function safely.
170 if (CI->getOperand(ArgNo+1) == Arg)
171 return true;
172 }
173 // Not a constant or immutable argument, we can't safely transform.
174 return false;
175}
176
177// getCommonReturnValue - Check to see if the function containing the specified
178// return instruction and tail call consistently returns the same
179// runtime-constant value at all exit points. If so, return the returned value.
180//
181static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
182 Function *F = TheRI->getParent()->getParent();
183 Value *ReturnedValue = 0;
184
185 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
186 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
187 if (RI != TheRI) {
188 Value *RetOp = RI->getOperand(0);
189
190 // We can only perform this transformation if the value returned is
191 // evaluatable at the start of the initial invocation of the function,
192 // instead of at the end of the evaluation.
193 //
194 if (!isDynamicConstant(RetOp, CI))
195 return 0;
196
197 if (ReturnedValue && RetOp != ReturnedValue)
198 return 0; // Cannot transform if differing values are returned.
199 ReturnedValue = RetOp;
200 }
201 return ReturnedValue;
202}
Chris Lattner7152da32003-12-08 05:34:54 +0000203
Chris Lattner543d6222003-12-08 23:19:26 +0000204/// CanTransformAccumulatorRecursion - If the specified instruction can be
205/// transformed using accumulator recursion elimination, return the constant
206/// which is the start of the accumulator value. Otherwise return null.
207///
208Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
209 CallInst *CI) {
210 if (!I->isAssociative()) return 0;
211 assert(I->getNumOperands() == 2 &&
212 "Associative operations should have 2 args!");
213
214 // Exactly one operand should be the result of the call instruction...
215 if (I->getOperand(0) == CI && I->getOperand(1) == CI ||
216 I->getOperand(0) != CI && I->getOperand(1) != CI)
217 return 0;
218
219 // The only user of this instruction we allow is a single return instruction.
220 if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
221 return 0;
222
223 // Ok, now we have to check all of the other return instructions in this
224 // function. If they return non-constants or differing values, then we cannot
225 // transform the function safely.
Chris Lattnerd64152a2003-12-14 23:57:39 +0000226 return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
Chris Lattner543d6222003-12-08 23:19:26 +0000227}
228
Chris Lattner7152da32003-12-08 05:34:54 +0000229bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
230 std::vector<PHINode*> &ArgumentPHIs) {
231 BasicBlock *BB = Ret->getParent();
232 Function *F = BB->getParent();
233
234 if (&BB->front() == Ret) // Make sure there is something before the ret...
235 return false;
236
237 // Scan backwards from the return, checking to see if there is a tail call in
238 // this block. If so, set CI to it.
239 CallInst *CI;
240 BasicBlock::iterator BBI = Ret;
241 while (1) {
242 CI = dyn_cast<CallInst>(BBI);
243 if (CI && CI->getCalledFunction() == F)
244 break;
245
246 if (BBI == BB->begin())
247 return false; // Didn't find a potential tail call.
248 --BBI;
249 }
250
Chris Lattner543d6222003-12-08 23:19:26 +0000251 // If we are introducing accumulator recursion to eliminate associative
252 // operations after the call instruction, this variable contains the initial
253 // value for the accumulator. If this value is set, we actually perform
254 // accumulator recursion elimination instead of simple tail recursion
255 // elimination.
256 Value *AccumulatorRecursionEliminationInitVal = 0;
257 Instruction *AccumulatorRecursionInstr = 0;
258
Chris Lattner7152da32003-12-08 05:34:54 +0000259 // Ok, we found a potential tail call. We can currently only transform the
260 // tail call if all of the instructions between the call and the return are
261 // movable to above the call itself, leaving the call next to the return.
262 // Check that this is the case now.
263 for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
Chris Lattner543d6222003-12-08 23:19:26 +0000264 if (!CanMoveAboveCall(BBI, CI)) {
265 // If we can't move the instruction above the call, it might be because it
266 // is an associative operation that could be tranformed using accumulator
267 // recursion elimination. Check to see if this is the case, and if so,
268 // remember the initial accumulator value for later.
269 if ((AccumulatorRecursionEliminationInitVal =
270 CanTransformAccumulatorRecursion(BBI, CI))) {
271 // Yes, this is accumulator recursion. Remember which instruction
272 // accumulates.
273 AccumulatorRecursionInstr = BBI;
274 } else {
275 return false; // Otherwise, we cannot eliminate the tail recursion!
276 }
277 }
Chris Lattner7152da32003-12-08 05:34:54 +0000278
279 // We can only transform call/return pairs that either ignore the return value
Chris Lattnerd64152a2003-12-14 23:57:39 +0000280 // of the call and return void, ignore the value of the call and return a
281 // constant, return the value returned by the tail call, or that are being
282 // accumulator recursion variable eliminated.
Chris Lattner543d6222003-12-08 23:19:26 +0000283 if (Ret->getNumOperands() != 0 && Ret->getReturnValue() != CI &&
Chris Lattnerd64152a2003-12-14 23:57:39 +0000284 AccumulatorRecursionEliminationInitVal == 0 &&
285 !getCommonReturnValue(Ret, CI))
Chris Lattner7152da32003-12-08 05:34:54 +0000286 return false;
287
288 // OK! We can transform this tail call. If this is the first one found,
289 // create the new entry block, allowing us to branch back to the old entry.
290 if (OldEntry == 0) {
291 OldEntry = &F->getEntryBlock();
292 std::string OldName = OldEntry->getName(); OldEntry->setName("tailrecurse");
Chris Lattnerc24a0762004-02-04 03:58:28 +0000293 BasicBlock *NewEntry = new BasicBlock(OldName, F, OldEntry);
Chris Lattner7152da32003-12-08 05:34:54 +0000294 new BranchInst(OldEntry, NewEntry);
295
296 // Now that we have created a new block, which jumps to the entry
297 // block, insert a PHI node for each argument of the function.
298 // For now, we initialize each PHI to only have the real arguments
299 // which are passed in.
300 Instruction *InsertPos = OldEntry->begin();
301 for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I) {
302 PHINode *PN = new PHINode(I->getType(), I->getName()+".tr", InsertPos);
303 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
304 PN->addIncoming(I, NewEntry);
305 ArgumentPHIs.push_back(PN);
306 }
307 }
308
309 // Ok, now that we know we have a pseudo-entry block WITH all of the
310 // required PHI nodes, add entries into the PHI node for the actual
311 // parameters passed into the tail-recursive call.
312 for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
313 ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
314
Chris Lattner543d6222003-12-08 23:19:26 +0000315 // If we are introducing an accumulator variable to eliminate the recursion,
316 // do so now. Note that we _know_ that no subsequent tail recursion
317 // eliminations will happen on this function because of the way the
318 // accumulator recursion predicate is set up.
319 //
320 if (AccumulatorRecursionEliminationInitVal) {
321 Instruction *AccRecInstr = AccumulatorRecursionInstr;
322 // Start by inserting a new PHI node for the accumulator.
323 PHINode *AccPN = new PHINode(AccRecInstr->getType(), "accumulator.tr",
324 OldEntry->begin());
325
326 // Loop over all of the predecessors of the tail recursion block. For the
327 // real entry into the function we seed the PHI with the initial value,
328 // computed earlier. For any other existing branches to this block (due to
329 // other tail recursions eliminated) the accumulator is not modified.
330 // Because we haven't added the branch in the current block to OldEntry yet,
331 // it will not show up as a predecessor.
332 for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
333 PI != PE; ++PI) {
334 if (*PI == &F->getEntryBlock())
335 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
336 else
337 AccPN->addIncoming(AccPN, *PI);
338 }
339
340 // Add an incoming argument for the current block, which is computed by our
341 // associative accumulator instruction.
342 AccPN->addIncoming(AccRecInstr, BB);
343
344 // Next, rewrite the accumulator recursion instruction so that it does not
345 // use the result of the call anymore, instead, use the PHI node we just
346 // inserted.
347 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
348
349 // Finally, rewrite any return instructions in the program to return the PHI
350 // node instead of the "initval" that they do currently. This loop will
351 // actually rewrite the return value we are destroying, but that's ok.
352 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
353 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
354 RI->setOperand(0, AccPN);
355 ++NumAccumAdded;
356 }
357
Chris Lattner7152da32003-12-08 05:34:54 +0000358 // Now that all of the PHI nodes are in place, remove the call and
359 // ret instructions, replacing them with an unconditional branch.
360 new BranchInst(OldEntry, Ret);
361 BB->getInstList().erase(Ret); // Remove return.
362 BB->getInstList().erase(CI); // Remove call.
Chris Lattner543d6222003-12-08 23:19:26 +0000363 ++NumEliminated;
Chris Lattner7152da32003-12-08 05:34:54 +0000364 return true;
365}