blob: ae382bfaa45a2259de87975bbde35e877efb73bf [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000019#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000020#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000021#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000022#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000023#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000029#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000030#include "llvm/Support/Debug.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000031#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000032using namespace llvm;
33
Chris Lattnerbd3401f2008-04-20 22:39:42 +000034STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000036STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000037
Chris Lattner177480b2008-04-20 21:13:06 +000038static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden);
42
Chris Lattner8383a7b2008-04-20 20:35:01 +000043namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000044 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
49 ///
50 /// An example of when this can occur is code like this:
51 ///
52 /// if () { ...
53 /// X = 4;
54 /// }
55 /// if (X < 3) {
56 ///
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
59 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000060 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000061 TargetData *TD;
Mike Stumpfe095f32009-05-04 18:40:41 +000062#ifdef NDEBUG
63 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000067 public:
68 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000069 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000070
71 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000072 void FindLoopHeaders(Function &F);
73
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000074 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000075 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000077 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78 BasicBlock *PredBB);
Chris Lattner5729d382009-11-07 08:05:03 +000079
80 typedef SmallVectorImpl<std::pair<ConstantInt*,
81 BasicBlock*> > PredValueInfo;
82
83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84 PredValueInfo &Result);
85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
Chris Lattner421fa9e2008-12-03 07:48:08 +000088 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +000089 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +000090
Chris Lattnerd38c14e2008-04-22 06:36:15 +000091 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattner69e067f2008-11-27 05:07:53 +000092
93 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +000094 };
Chris Lattner8383a7b2008-04-20 20:35:01 +000095}
96
Dan Gohman844731a2008-05-13 00:00:25 +000097char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
Chris Lattner8383a7b2008-04-20 20:35:01 +0000101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000107 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000108 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000109
Mike Stumpfe095f32009-05-04 18:40:41 +0000110 FindLoopHeaders(F);
111
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000112 bool AnotherIteration = true, EverChanged = false;
113 while (AnotherIteration) {
114 AnotherIteration = false;
115 bool Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000116 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117 BasicBlock *BB = I;
118 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000119 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000120
121 ++I;
122
123 // If the block is trivially dead, zap it. This eliminates the successor
124 // edges which simplifies the CFG.
125 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000126 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000127 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000128 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000129 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000130 DeleteDeadBlock(BB);
131 Changed = true;
132 }
133 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000134 AnotherIteration = Changed;
135 EverChanged |= Changed;
136 }
Mike Stumpfe095f32009-05-04 18:40:41 +0000137
138 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000139 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000140}
Chris Lattner177480b2008-04-20 21:13:06 +0000141
Chris Lattner78c552e2009-10-11 07:24:57 +0000142/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
143/// thread across it.
144static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
145 /// Ignore PHI nodes, these will be flattened when duplication happens.
146 BasicBlock::const_iterator I = BB->getFirstNonPHI();
147
148 // Sum up the cost of each instruction until we get to the terminator. Don't
149 // include the terminator because the copy won't include it.
150 unsigned Size = 0;
151 for (; !isa<TerminatorInst>(I); ++I) {
152 // Debugger intrinsics don't incur code size.
153 if (isa<DbgInfoIntrinsic>(I)) continue;
154
155 // If this is a pointer->pointer bitcast, it is free.
156 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
157 continue;
158
159 // All other instructions count for at least one unit.
160 ++Size;
161
162 // Calls are more expensive. If they are non-intrinsic calls, we model them
163 // as having cost of 4. If they are a non-vector intrinsic, we model them
164 // as having cost of 2 total, and if they are a vector intrinsic, we model
165 // them as having cost 1.
166 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
167 if (!isa<IntrinsicInst>(CI))
168 Size += 3;
169 else if (!isa<VectorType>(CI->getType()))
170 Size += 1;
171 }
172 }
173
174 // Threading through a switch statement is particularly profitable. If this
175 // block ends in a switch, decrease its cost to make it more likely to happen.
176 if (isa<SwitchInst>(I))
177 Size = Size > 6 ? Size-6 : 0;
178
179 return Size;
180}
181
182
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000183//===----------------------------------------------------------------------===//
184
185
186/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
187/// method is called when we're about to delete Pred as a predecessor of BB. If
188/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
189///
190/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
191/// nodes that collapse into identity values. For example, if we have:
192/// x = phi(1, 0, 0, 0)
193/// y = and x, z
194///
195/// .. and delete the predecessor corresponding to the '1', this will attempt to
196/// recursively fold the and to 0.
197static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
198 TargetData *TD) {
199 // This only adjusts blocks with PHI nodes.
200 if (!isa<PHINode>(BB->begin()))
201 return;
202
203 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
204 // them down. This will leave us with single entry phi nodes and other phis
205 // that can be removed.
206 //BB->removePredecessor(Pred, true);
207 BB->removePredecessor(Pred, true);
208
209 WeakVH PhiIt = &BB->front();
210 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
211 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
212
213 Value *PNV = PN->hasConstantValue();
214 if (PNV == 0) continue;
215
216 assert(PNV != PN && "hasConstantValue broken");
217
218 // If we're able to simplify the phi to a constant, simplify it into its
219 // uses.
220 while (!PN->use_empty()) {
221 // Update the instruction to use the new value.
222 Use &U = PN->use_begin().getUse();
223 Instruction *User = cast<Instruction>(U.getUser());
224 U = PNV;
225
226 // See if we can simplify it (constant folding).
227 if (Constant *C = ConstantFoldInstruction(User, TD)) {
228 User->replaceAllUsesWith(C);
229 User->eraseFromParent();
230 }
231 }
232
233 PN->replaceAllUsesWith(PNV);
234 PN->eraseFromParent();
235
236 // If recursive simplification ended up deleting the next PHI node we would
237 // iterate to, then our iterator is invalid, restart scanning from the top
238 // of the block.
239 if (PhiIt == 0) PhiIt = &BB->front();
240 }
241}
242
243//===----------------------------------------------------------------------===//
244
Chris Lattner78c552e2009-10-11 07:24:57 +0000245
Mike Stumpfe095f32009-05-04 18:40:41 +0000246/// FindLoopHeaders - We do not want jump threading to turn proper loop
247/// structures into irreducible loops. Doing this breaks up the loop nesting
248/// hierarchy and pessimizes later transformations. To prevent this from
249/// happening, we first have to find the loop headers. Here we approximate this
250/// by finding targets of backedges in the CFG.
251///
252/// Note that there definitely are cases when we want to allow threading of
253/// edges across a loop header. For example, threading a jump from outside the
254/// loop (the preheader) to an exit block of the loop is definitely profitable.
255/// It is also almost always profitable to thread backedges from within the loop
256/// to exit blocks, and is often profitable to thread backedges to other blocks
257/// within the loop (forming a nested loop). This simple analysis is not rich
258/// enough to track all of these properties and keep it up-to-date as the CFG
259/// mutates, so we don't allow any of these transformations.
260///
261void JumpThreading::FindLoopHeaders(Function &F) {
262 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
263 FindFunctionBackedges(F, Edges);
264
265 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
266 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
267}
268
Chris Lattner5729d382009-11-07 08:05:03 +0000269/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
270/// hand sides of the compare instruction, try to determine the result. If the
271/// result can not be determined, a null pointer is returned.
272static Constant *GetResultOfComparison(CmpInst::Predicate pred,
273 Value *LHS, Value *RHS) {
274 if (Constant *CLHS = dyn_cast<Constant>(LHS))
275 if (Constant *CRHS = dyn_cast<Constant>(RHS))
276 return ConstantExpr::getCompare(pred, CLHS, CRHS);
Chris Lattner6bf77502008-04-22 07:05:46 +0000277
Chris Lattner5729d382009-11-07 08:05:03 +0000278 if (LHS == RHS)
279 if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) {
280 if (ICmpInst::isTrueWhenEqual(pred))
281 return ConstantInt::getTrue(LHS->getContext());
282 else
283 return ConstantInt::getFalse(LHS->getContext());
284 }
285 return 0;
Chris Lattner78567252009-11-06 18:15:14 +0000286}
Chris Lattner5729d382009-11-07 08:05:03 +0000287
288
289/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
290/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000291/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000292/// result vector. If a value is known to be undef, it is returned as null.
293///
294/// The BB basic block is known to start with a PHI node.
295///
296/// This returns true if there were any known values.
297///
298///
299/// TODO: Per PR2563, we could infer value range information about a predecessor
300/// based on its terminator.
301bool JumpThreading::
302ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
303 PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
Chris Lattner78567252009-11-06 18:15:14 +0000304
Chris Lattner5729d382009-11-07 08:05:03 +0000305 // If V is a constantint, then it is known in all predecessors.
306 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
307 ConstantInt *CI = dyn_cast<ConstantInt>(V);
308 Result.resize(TheFirstPHI->getNumIncomingValues());
309 for (unsigned i = 0, e = Result.size(); i != e; ++i)
310 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
311 return true;
312 }
313
314 // If V is a non-instruction value, or an instruction in a different block,
315 // then it can't be derived from a PHI.
316 Instruction *I = dyn_cast<Instruction>(V);
317 if (I == 0 || I->getParent() != BB)
318 return false;
319
320 /// If I is a PHI node, then we know the incoming values for any constants.
321 if (PHINode *PN = dyn_cast<PHINode>(I)) {
322 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
323 Value *InVal = PN->getIncomingValue(i);
324 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
325 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
326 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
327 }
328 }
329 return !Result.empty();
330 }
331
332 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
333
334 // Handle some boolean conditions.
335 if (I->getType()->getPrimitiveSizeInBits() == 1) {
336 // X | true -> true
337 // X & false -> false
338 if (I->getOpcode() == Instruction::Or ||
339 I->getOpcode() == Instruction::And) {
340 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
341 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
342
343 if (LHSVals.empty() && RHSVals.empty())
344 return false;
345
346 ConstantInt *InterestingVal;
347 if (I->getOpcode() == Instruction::Or)
348 InterestingVal = ConstantInt::getTrue(I->getContext());
349 else
350 InterestingVal = ConstantInt::getFalse(I->getContext());
351
352 // Scan for the sentinel.
353 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
354 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
355 Result.push_back(LHSVals[i]);
356 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
357 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
358 Result.push_back(RHSVals[i]);
359 return !Result.empty();
360 }
361
362 // TODO: Should handle the NOT form of XOR.
363
364 }
365
366 // Handle compare with phi operand, where the PHI is defined in this block.
367 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
368 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
369 if (PN && PN->getParent() == BB) {
370 // We can do this simplification if any comparisons fold to true or false.
371 // See if any do.
372 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
373 BasicBlock *PredBB = PN->getIncomingBlock(i);
374 Value *LHS = PN->getIncomingValue(i);
375 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
376
377 Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
378 if (Res == 0) continue;
379
380 if (isa<UndefValue>(Res))
381 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
382 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
383 Result.push_back(std::make_pair(CI, PredBB));
384 }
385
386 return !Result.empty();
387 }
388
389 // TODO: We could also recurse to see if we can determine constants another
390 // way.
391 }
392 return false;
393}
394
395
Chris Lattner6bf77502008-04-22 07:05:46 +0000396
Chris Lattnere33583b2009-10-11 04:18:15 +0000397/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
398/// in an undefined jump, decide which block is best to revector to.
399///
400/// Since we can pick an arbitrary destination, we pick the successor with the
401/// fewest predecessors. This should reduce the in-degree of the others.
402///
403static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
404 TerminatorInst *BBTerm = BB->getTerminator();
405 unsigned MinSucc = 0;
406 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
407 // Compute the successor with the minimum number of predecessors.
408 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
409 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
410 TestBB = BBTerm->getSuccessor(i);
411 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
412 if (NumPreds < MinNumPreds)
413 MinSucc = i;
414 }
415
416 return MinSucc;
417}
418
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000419/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000420/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000421bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000422 // If this block has a single predecessor, and if that pred has a single
423 // successor, merge the blocks. This encourages recursive jump threading
424 // because now the condition in this block can be threaded through
425 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000426 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000427 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
428 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000429 // If SinglePred was a loop header, BB becomes one.
430 if (LoopHeaders.erase(SinglePred))
431 LoopHeaders.insert(BB);
432
Chris Lattner3d86d242008-11-27 19:25:19 +0000433 // Remember if SinglePred was the entry block of the function. If so, we
434 // will need to move BB back to the entry position.
435 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000436 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000437
438 if (isEntry && BB != &BB->getParent()->getEntryBlock())
439 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000440 return true;
441 }
Chris Lattner5729d382009-11-07 08:05:03 +0000442 }
443
444 // Look to see if the terminator is a branch of switch, if not we can't thread
445 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000446 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000447 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
448 // Can't thread an unconditional jump.
449 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000450 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000451 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000452 Condition = SI->getCondition();
453 else
454 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000455
456 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000457 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000458 // other blocks.
459 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000460 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000461 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000462 ++NumFolds;
463 ConstantFoldTerminator(BB);
464 return true;
465 }
466
Chris Lattner421fa9e2008-12-03 07:48:08 +0000467 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000468 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000469 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000470 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000471
472 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000473 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000474 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000475 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000476 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000477 }
478
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000479 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000480 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000481 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000482 BBTerm->eraseFromParent();
483 return true;
484 }
485
486 Instruction *CondInst = dyn_cast<Instruction>(Condition);
487
488 // If the condition is an instruction defined in another block, see if a
489 // predecessor has the same condition:
490 // br COND, BBX, BBY
491 // BBX:
492 // br COND, BBZ, BBW
493 if (!Condition->hasOneUse() && // Multiple uses.
494 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
495 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
496 if (isa<BranchInst>(BB->getTerminator())) {
497 for (; PI != E; ++PI)
498 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
499 if (PBI->isConditional() && PBI->getCondition() == Condition &&
500 ProcessBranchOnDuplicateCond(*PI, BB))
501 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000502 } else {
503 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
504 for (; PI != E; ++PI)
505 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
506 if (PSI->getCondition() == Condition &&
507 ProcessSwitchOnDuplicateCond(*PI, BB))
508 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000509 }
510 }
511
Chris Lattner421fa9e2008-12-03 07:48:08 +0000512 // All the rest of our checks depend on the condition being an instruction.
513 if (CondInst == 0)
514 return false;
515
Chris Lattner177480b2008-04-20 21:13:06 +0000516 // See if this is a phi node in the current block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000517 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
518 if (PN->getParent() == BB)
519 return ProcessJumpOnPHI(PN);
Chris Lattner177480b2008-04-20 21:13:06 +0000520
Nick Lewycky9683f182009-06-19 04:56:29 +0000521 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000522 if (!isa<PHINode>(CondCmp->getOperand(0)) ||
523 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
524 // If we have a comparison, loop over the predecessors to see if there is
525 // a condition with a lexically identical value.
526 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
527 for (; PI != E; ++PI)
528 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
529 if (PBI->isConditional() && *PI != BB) {
530 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
531 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
532 CI->getOperand(1) == CondCmp->getOperand(1) &&
533 CI->getPredicate() == CondCmp->getPredicate()) {
534 // TODO: Could handle things like (x != 4) --> (x == 17)
535 if (ProcessBranchOnDuplicateCond(*PI, BB))
536 return true;
537 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000538 }
539 }
Chris Lattner5729d382009-11-07 08:05:03 +0000540 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000541 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000542
543 // Check for some cases that are worth simplifying. Right now we want to look
544 // for loads that are used by a switch or by the condition for the branch. If
545 // we see one, check to see if it's partially redundant. If so, insert a PHI
546 // which can then be used to thread the values.
547 //
548 // This is particularly important because reg2mem inserts loads and stores all
549 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000550 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000551 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
552 if (isa<Constant>(CondCmp->getOperand(1)))
553 SimplifyValue = CondCmp->getOperand(0);
554
555 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
556 if (SimplifyPartiallyRedundantLoad(LI))
557 return true;
558
Chris Lattner5729d382009-11-07 08:05:03 +0000559
560 // Handle a variety of cases where we are branching on something derived from
561 // a PHI node in the current block. If we can prove that any predecessors
562 // compute a predictable value based on a PHI node, thread those predecessors.
563 //
564 // We only bother doing this if the current block has a PHI node and if the
565 // conditional instruction lives in the current block. If either condition
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000566 // fails, this won't be a computable value anyway.
Chris Lattner5729d382009-11-07 08:05:03 +0000567 if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
568 if (ProcessThreadableEdges(CondInst, BB))
569 return true;
570
571
Chris Lattner69e067f2008-11-27 05:07:53 +0000572 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
573 // "(X == 4)" thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000574
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000575 return false;
576}
577
Chris Lattner421fa9e2008-12-03 07:48:08 +0000578/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
579/// block that jump on exactly the same condition. This means that we almost
580/// always know the direction of the edge in the DESTBB:
581/// PREDBB:
582/// br COND, DESTBB, BBY
583/// DESTBB:
584/// br COND, BBZ, BBW
585///
586/// If DESTBB has multiple predecessors, we can't just constant fold the branch
587/// in DESTBB, we have to thread over it.
588bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
589 BasicBlock *BB) {
590 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
591
592 // If both successors of PredBB go to DESTBB, we don't know anything. We can
593 // fold the branch to an unconditional one, which allows other recursive
594 // simplifications.
595 bool BranchDir;
596 if (PredBI->getSuccessor(1) != BB)
597 BranchDir = true;
598 else if (PredBI->getSuccessor(0) != BB)
599 BranchDir = false;
600 else {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000601 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000602 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000603 ++NumFolds;
604 ConstantFoldTerminator(PredBB);
605 return true;
606 }
607
608 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
609
610 // If the dest block has one predecessor, just fix the branch condition to a
611 // constant and fold it.
612 if (BB->getSinglePredecessor()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000613 DEBUG(errs() << " In block '" << BB->getName()
614 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000615 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000616 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000617 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000618 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
619 BranchDir));
Chris Lattner421fa9e2008-12-03 07:48:08 +0000620 ConstantFoldTerminator(BB);
Chris Lattner5a06cf62009-10-11 18:39:58 +0000621 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000622 return true;
623 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000624
Chris Lattner421fa9e2008-12-03 07:48:08 +0000625
626 // Next, figure out which successor we are threading to.
627 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
628
Chris Lattner5729d382009-11-07 08:05:03 +0000629 SmallVector<BasicBlock*, 2> Preds;
630 Preds.push_back(PredBB);
631
Mike Stumpfe095f32009-05-04 18:40:41 +0000632 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000633 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000634}
635
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000636/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
637/// block that switch on exactly the same condition. This means that we almost
638/// always know the direction of the edge in the DESTBB:
639/// PREDBB:
640/// switch COND [... DESTBB, BBY ... ]
641/// DESTBB:
642/// switch COND [... BBZ, BBW ]
643///
644/// Optimizing switches like this is very important, because simplifycfg builds
645/// switches out of repeated 'if' conditions.
646bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
647 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000648 // Can't thread edge to self.
649 if (PredBB == DestBB)
650 return false;
651
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000652 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
653 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
654
655 // There are a variety of optimizations that we can potentially do on these
656 // blocks: we order them from most to least preferable.
657
658 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
659 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000660 // growth. Skip debug info first.
661 BasicBlock::iterator BBI = DestBB->begin();
662 while (isa<DbgInfoIntrinsic>(BBI))
663 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000664
665 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000666 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000667 bool MadeChange = false;
668 // Ignore the default edge for now.
669 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
670 ConstantInt *DestVal = DestSI->getCaseValue(i);
671 BasicBlock *DestSucc = DestSI->getSuccessor(i);
672
673 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
674 // PredSI has an explicit case for it. If so, forward. If it is covered
675 // by the default case, we can't update PredSI.
676 unsigned PredCase = PredSI->findCaseValue(DestVal);
677 if (PredCase == 0) continue;
678
679 // If PredSI doesn't go to DestBB on this value, then it won't reach the
680 // case on this condition.
681 if (PredSI->getSuccessor(PredCase) != DestBB &&
682 DestSI->getSuccessor(i) != DestBB)
683 continue;
684
685 // Otherwise, we're safe to make the change. Make sure that the edge from
686 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000687 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
688 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000689
690 // If the destination has PHI nodes, just split the edge for updating
691 // simplicity.
692 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
693 SplitCriticalEdge(DestSI, i, this);
694 DestSucc = DestSI->getSuccessor(i);
695 }
696 FoldSingleEntryPHINodes(DestSucc);
697 PredSI->setSuccessor(PredCase, DestSucc);
698 MadeChange = true;
699 }
700
701 if (MadeChange)
702 return true;
703 }
704
705 return false;
706}
707
708
Chris Lattner69e067f2008-11-27 05:07:53 +0000709/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
710/// load instruction, eliminate it by replacing it with a PHI node. This is an
711/// important optimization that encourages jump threading, and needs to be run
712/// interlaced with other jump threading tasks.
713bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
714 // Don't hack volatile loads.
715 if (LI->isVolatile()) return false;
716
717 // If the load is defined in a block with exactly one predecessor, it can't be
718 // partially redundant.
719 BasicBlock *LoadBB = LI->getParent();
720 if (LoadBB->getSinglePredecessor())
721 return false;
722
723 Value *LoadedPtr = LI->getOperand(0);
724
725 // If the loaded operand is defined in the LoadBB, it can't be available.
726 // FIXME: Could do PHI translation, that would be fun :)
727 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
728 if (PtrOp->getParent() == LoadBB)
729 return false;
730
731 // Scan a few instructions up from the load, to see if it is obviously live at
732 // the entry to its block.
733 BasicBlock::iterator BBIt = LI;
734
Chris Lattner52c95852008-11-27 08:10:05 +0000735 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
736 BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000737 // If the value if the load is locally available within the block, just use
738 // it. This frequently occurs for reg2mem'd allocas.
739 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000740
741 // If the returned value is the load itself, replace with an undef. This can
742 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000743 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000744 LI->replaceAllUsesWith(AvailableVal);
745 LI->eraseFromParent();
746 return true;
747 }
748
749 // Otherwise, if we scanned the whole block and got to the top of the block,
750 // we know the block is locally transparent to the load. If not, something
751 // might clobber its value.
752 if (BBIt != LoadBB->begin())
753 return false;
754
755
756 SmallPtrSet<BasicBlock*, 8> PredsScanned;
757 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
758 AvailablePredsTy AvailablePreds;
759 BasicBlock *OneUnavailablePred = 0;
760
761 // If we got here, the loaded value is transparent through to the start of the
762 // block. Check to see if it is available in any of the predecessor blocks.
763 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
764 PI != PE; ++PI) {
765 BasicBlock *PredBB = *PI;
766
767 // If we already scanned this predecessor, skip it.
768 if (!PredsScanned.insert(PredBB))
769 continue;
770
771 // Scan the predecessor to see if the value is available in the pred.
772 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000773 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000774 if (!PredAvailable) {
775 OneUnavailablePred = PredBB;
776 continue;
777 }
778
779 // If so, this load is partially redundant. Remember this info so that we
780 // can create a PHI node.
781 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
782 }
783
784 // If the loaded value isn't available in any predecessor, it isn't partially
785 // redundant.
786 if (AvailablePreds.empty()) return false;
787
788 // Okay, the loaded value is available in at least one (and maybe all!)
789 // predecessors. If the value is unavailable in more than one unique
790 // predecessor, we want to insert a merge block for those common predecessors.
791 // This ensures that we only have to insert one reload, thus not increasing
792 // code size.
793 BasicBlock *UnavailablePred = 0;
794
795 // If there is exactly one predecessor where the value is unavailable, the
796 // already computed 'OneUnavailablePred' block is it. If it ends in an
797 // unconditional branch, we know that it isn't a critical edge.
798 if (PredsScanned.size() == AvailablePreds.size()+1 &&
799 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
800 UnavailablePred = OneUnavailablePred;
801 } else if (PredsScanned.size() != AvailablePreds.size()) {
802 // Otherwise, we had multiple unavailable predecessors or we had a critical
803 // edge from the one.
804 SmallVector<BasicBlock*, 8> PredsToSplit;
805 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
806
807 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
808 AvailablePredSet.insert(AvailablePreds[i].first);
809
810 // Add all the unavailable predecessors to the PredsToSplit list.
811 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
812 PI != PE; ++PI)
813 if (!AvailablePredSet.count(*PI))
814 PredsToSplit.push_back(*PI);
815
816 // Split them out to their own block.
817 UnavailablePred =
818 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
819 "thread-split", this);
820 }
821
822 // If the value isn't available in all predecessors, then there will be
823 // exactly one where it isn't available. Insert a load on that edge and add
824 // it to the AvailablePreds list.
825 if (UnavailablePred) {
826 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
827 "Can't handle critical edge here!");
828 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
829 UnavailablePred->getTerminator());
830 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
831 }
832
833 // Now we know that each predecessor of this block has a value in
834 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000835 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000836
837 // Create a PHI node at the start of the block for the PRE'd load value.
838 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
839 PN->takeName(LI);
840
841 // Insert new entries into the PHI for each predecessor. A single block may
842 // have multiple entries here.
843 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
844 ++PI) {
845 AvailablePredsTy::iterator I =
846 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
847 std::make_pair(*PI, (Value*)0));
848
849 assert(I != AvailablePreds.end() && I->first == *PI &&
850 "Didn't find entry for predecessor!");
851
852 PN->addIncoming(I->second, I->first);
853 }
854
855 //cerr << "PRE: " << *LI << *PN << "\n";
856
857 LI->replaceAllUsesWith(PN);
858 LI->eraseFromParent();
859
860 return true;
861}
862
Chris Lattner5729d382009-11-07 08:05:03 +0000863/// FindMostPopularDest - The specified list contains multiple possible
864/// threadable destinations. Pick the one that occurs the most frequently in
865/// the list.
866static BasicBlock *
867FindMostPopularDest(BasicBlock *BB,
868 const SmallVectorImpl<std::pair<BasicBlock*,
869 BasicBlock*> > &PredToDestList) {
870 assert(!PredToDestList.empty());
871
872 // Determine popularity. If there are multiple possible destinations, we
873 // explicitly choose to ignore 'undef' destinations. We prefer to thread
874 // blocks with known and real destinations to threading undef. We'll handle
875 // them later if interesting.
876 DenseMap<BasicBlock*, unsigned> DestPopularity;
877 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
878 if (PredToDestList[i].second)
879 DestPopularity[PredToDestList[i].second]++;
880
881 // Find the most popular dest.
882 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
883 BasicBlock *MostPopularDest = DPI->first;
884 unsigned Popularity = DPI->second;
885 SmallVector<BasicBlock*, 4> SamePopularity;
886
887 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
888 // If the popularity of this entry isn't higher than the popularity we've
889 // seen so far, ignore it.
890 if (DPI->second < Popularity)
891 ; // ignore.
892 else if (DPI->second == Popularity) {
893 // If it is the same as what we've seen so far, keep track of it.
894 SamePopularity.push_back(DPI->first);
895 } else {
896 // If it is more popular, remember it.
897 SamePopularity.clear();
898 MostPopularDest = DPI->first;
899 Popularity = DPI->second;
900 }
901 }
902
903 // Okay, now we know the most popular destination. If there is more than
904 // destination, we need to determine one. This is arbitrary, but we need
905 // to make a deterministic decision. Pick the first one that appears in the
906 // successor list.
907 if (!SamePopularity.empty()) {
908 SamePopularity.push_back(MostPopularDest);
909 TerminatorInst *TI = BB->getTerminator();
910 for (unsigned i = 0; ; ++i) {
911 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
912
913 if (std::find(SamePopularity.begin(), SamePopularity.end(),
914 TI->getSuccessor(i)) == SamePopularity.end())
915 continue;
916
917 MostPopularDest = TI->getSuccessor(i);
918 break;
919 }
920 }
921
922 // Okay, we have finally picked the most popular destination.
923 return MostPopularDest;
924}
925
926bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
927 BasicBlock *BB) {
928 // If threading this would thread across a loop header, don't even try to
929 // thread the edge.
930 if (LoopHeaders.count(BB))
931 return false;
932
Chris Lattner5729d382009-11-07 08:05:03 +0000933 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
934 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
935 return false;
936 assert(!PredValues.empty() &&
937 "ComputeValueKnownInPredecessors returned true with no values");
938
939 DEBUG(errs() << "IN BB: " << *BB;
940 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
941 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
942 if (PredValues[i].first)
943 errs() << *PredValues[i].first;
944 else
945 errs() << "UNDEF";
946 errs() << " for pred '" << PredValues[i].second->getName()
947 << "'.\n";
948 });
949
950 // Decide what we want to thread through. Convert our list of known values to
951 // a list of known destinations for each pred. This also discards duplicate
952 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000953 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +0000954 SmallPtrSet<BasicBlock*, 16> SeenPreds;
955 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
956
957 BasicBlock *OnlyDest = 0;
958 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
959
960 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
961 BasicBlock *Pred = PredValues[i].second;
962 if (!SeenPreds.insert(Pred))
963 continue; // Duplicate predecessor entry.
964
965 // If the predecessor ends with an indirect goto, we can't change its
966 // destination.
967 if (isa<IndirectBrInst>(Pred->getTerminator()))
968 continue;
969
970 ConstantInt *Val = PredValues[i].first;
971
972 BasicBlock *DestBB;
973 if (Val == 0) // Undef.
974 DestBB = 0;
975 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
976 DestBB = BI->getSuccessor(Val->isZero());
977 else {
978 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
979 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
980 }
981
982 // If we have exactly one destination, remember it for efficiency below.
983 if (i == 0)
984 OnlyDest = DestBB;
985 else if (OnlyDest != DestBB)
986 OnlyDest = MultipleDestSentinel;
987
988 PredToDestList.push_back(std::make_pair(Pred, DestBB));
989 }
990
991 // If all edges were unthreadable, we fail.
992 if (PredToDestList.empty())
993 return false;
994
995 // Determine which is the most common successor. If we have many inputs and
996 // this block is a switch, we want to start by threading the batch that goes
997 // to the most popular destination first. If we only know about one
998 // threadable destination (the common case) we can avoid this.
999 BasicBlock *MostPopularDest = OnlyDest;
1000
1001 if (MostPopularDest == MultipleDestSentinel)
1002 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1003
1004 // Now that we know what the most popular destination is, factor all
1005 // predecessors that will jump to it into a single predecessor.
1006 SmallVector<BasicBlock*, 16> PredsToFactor;
1007 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1008 if (PredToDestList[i].second == MostPopularDest) {
1009 BasicBlock *Pred = PredToDestList[i].first;
1010
1011 // This predecessor may be a switch or something else that has multiple
1012 // edges to the block. Factor each of these edges by listing them
1013 // according to # occurrences in PredsToFactor.
1014 TerminatorInst *PredTI = Pred->getTerminator();
1015 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1016 if (PredTI->getSuccessor(i) == BB)
1017 PredsToFactor.push_back(Pred);
1018 }
1019
1020 // If the threadable edges are branching on an undefined value, we get to pick
1021 // the destination that these predecessors should get to.
1022 if (MostPopularDest == 0)
1023 MostPopularDest = BB->getTerminator()->
1024 getSuccessor(GetBestDestForJumpOnUndef(BB));
1025
1026 // Ok, try to thread it!
1027 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1028}
Chris Lattner69e067f2008-11-27 05:07:53 +00001029
Chris Lattnere33583b2009-10-11 04:18:15 +00001030/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001031/// the current block. See if there are any simplifications we can do based on
1032/// inputs to the phi node.
1033///
1034bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001035 BasicBlock *BB = PN->getParent();
1036
Chris Lattner5729d382009-11-07 08:05:03 +00001037 // If any of the predecessor blocks end in an unconditional branch, we can
1038 // *duplicate* the jump into that block in order to further encourage jump
1039 // threading and to eliminate cases where we have branch on a phi of an icmp
1040 // (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001041
1042 // We don't want to do this tranformation for switches, because we don't
1043 // really want to duplicate a switch.
1044 if (isa<SwitchInst>(BB->getTerminator()))
1045 return false;
1046
1047 // Look for unconditional branch predecessors.
1048 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1049 BasicBlock *PredBB = PN->getIncomingBlock(i);
1050 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1051 if (PredBr->isUnconditional() &&
1052 // Try to duplicate BB into PredBB.
1053 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1054 return true;
1055 }
1056
Chris Lattner6b65f472009-10-11 04:40:21 +00001057 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001058}
1059
Chris Lattnera5ddb592008-04-22 21:40:39 +00001060
Chris Lattner78c552e2009-10-11 07:24:57 +00001061/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1062/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1063/// NewPred using the entries from OldPred (suitably mapped).
1064static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1065 BasicBlock *OldPred,
1066 BasicBlock *NewPred,
1067 DenseMap<Instruction*, Value*> &ValueMap) {
1068 for (BasicBlock::iterator PNI = PHIBB->begin();
1069 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1070 // Ok, we have a PHI node. Figure out what the incoming value was for the
1071 // DestBlock.
1072 Value *IV = PN->getIncomingValueForBlock(OldPred);
1073
1074 // Remap the value if necessary.
1075 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1076 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1077 if (I != ValueMap.end())
1078 IV = I->second;
1079 }
1080
1081 PN->addIncoming(IV, NewPred);
1082 }
1083}
Chris Lattner6bf77502008-04-22 07:05:46 +00001084
Chris Lattner5729d382009-11-07 08:05:03 +00001085/// ThreadEdge - We have decided that it is safe and profitable to factor the
1086/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1087/// across BB. Transform the IR to reflect this change.
1088bool JumpThreading::ThreadEdge(BasicBlock *BB,
1089 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001090 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001091 // If threading to the same block as we come from, we would infinite loop.
1092 if (SuccBB == BB) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001093 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1094 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001095 return false;
1096 }
1097
1098 // If threading this would thread across a loop header, don't thread the edge.
1099 // See the comments above FindLoopHeaders for justifications and caveats.
1100 if (LoopHeaders.count(BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +00001101 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001102 << "' to dest BB '" << SuccBB->getName()
1103 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001104 return false;
1105 }
1106
Chris Lattner78c552e2009-10-11 07:24:57 +00001107 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1108 if (JumpThreadCost > Threshold) {
1109 DEBUG(errs() << " Not threading BB '" << BB->getName()
1110 << "' - Cost is too high: " << JumpThreadCost << "\n");
1111 return false;
1112 }
1113
Chris Lattner5729d382009-11-07 08:05:03 +00001114 // And finally, do it! Start by factoring the predecessors is needed.
1115 BasicBlock *PredBB;
1116 if (PredBBs.size() == 1)
1117 PredBB = PredBBs[0];
1118 else {
1119 DEBUG(errs() << " Factoring out " << PredBBs.size()
1120 << " common predecessors.\n");
1121 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1122 ".thr_comm", this);
1123 }
1124
Mike Stumpfe095f32009-05-04 18:40:41 +00001125 // And finally, do it!
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001126 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001127 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001128 << ", across block:\n "
1129 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001130
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001131 // We are going to have to map operands from the original BB block to the new
1132 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1133 // account for entry from PredBB.
1134 DenseMap<Instruction*, Value*> ValueMapping;
1135
Owen Anderson1d0be152009-08-13 21:58:54 +00001136 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1137 BB->getName()+".thread",
1138 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001139 NewBB->moveAfter(PredBB);
1140
1141 BasicBlock::iterator BI = BB->begin();
1142 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1143 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1144
1145 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1146 // mapping and using it to remap operands in the cloned instructions.
1147 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001148 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001149 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001150 NewBB->getInstList().push_back(New);
1151 ValueMapping[BI] = New;
1152
1153 // Remap operands to patch up intra-block references.
1154 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001155 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1156 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1157 if (I != ValueMapping.end())
1158 New->setOperand(i, I->second);
1159 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001160 }
1161
1162 // We didn't copy the terminator from BB over to NewBB, because there is now
1163 // an unconditional jump to SuccBB. Insert the unconditional jump.
1164 BranchInst::Create(SuccBB, NewBB);
1165
1166 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1167 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001168 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001169
Chris Lattner433a0db2009-10-10 09:05:58 +00001170 // If there were values defined in BB that are used outside the block, then we
1171 // now have to update all uses of the value to use either the original value,
1172 // the cloned value, or some PHI derived value. This can require arbitrary
1173 // PHI insertion, of which we are prepared to do, clean these up now.
1174 SSAUpdater SSAUpdate;
1175 SmallVector<Use*, 16> UsesToRename;
1176 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1177 // Scan all uses of this instruction to see if it is used outside of its
1178 // block, and if so, record them in UsesToRename.
1179 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1180 ++UI) {
1181 Instruction *User = cast<Instruction>(*UI);
1182 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1183 if (UserPN->getIncomingBlock(UI) == BB)
1184 continue;
1185 } else if (User->getParent() == BB)
1186 continue;
1187
1188 UsesToRename.push_back(&UI.getUse());
1189 }
1190
1191 // If there are no uses outside the block, we're done with this instruction.
1192 if (UsesToRename.empty())
1193 continue;
1194
1195 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1196
1197 // We found a use of I outside of BB. Rename all uses of I that are outside
1198 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1199 // with the two values we know.
1200 SSAUpdate.Initialize(I);
1201 SSAUpdate.AddAvailableValue(BB, I);
1202 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1203
1204 while (!UsesToRename.empty())
1205 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1206 DEBUG(errs() << "\n");
1207 }
1208
1209
Chris Lattneref0c6742008-12-01 04:48:07 +00001210 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001211 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1212 // us to simplify any PHI nodes in BB.
1213 TerminatorInst *PredTerm = PredBB->getTerminator();
1214 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1215 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001216 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001217 PredTerm->setSuccessor(i, NewBB);
1218 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001219
1220 // At this point, the IR is fully up to date and consistent. Do a quick scan
1221 // over the new instructions and zap any that are constants or dead. This
1222 // frequently happens because of phi translation.
1223 BI = NewBB->begin();
1224 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1225 Instruction *Inst = BI++;
Chris Lattner7b550cc2009-11-06 04:27:31 +00001226 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Chris Lattneref0c6742008-12-01 04:48:07 +00001227 Inst->replaceAllUsesWith(C);
1228 Inst->eraseFromParent();
1229 continue;
1230 }
1231
1232 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1233 }
Mike Stumpfe095f32009-05-04 18:40:41 +00001234
1235 // Threaded an edge!
1236 ++NumThreads;
1237 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001238}
Chris Lattner78c552e2009-10-11 07:24:57 +00001239
1240/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1241/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1242/// If we can duplicate the contents of BB up into PredBB do so now, this
1243/// improves the odds that the branch will be on an analyzable instruction like
1244/// a compare.
1245bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1246 BasicBlock *PredBB) {
1247 // If BB is a loop header, then duplicating this block outside the loop would
1248 // cause us to transform this into an irreducible loop, don't do this.
1249 // See the comments above FindLoopHeaders for justifications and caveats.
1250 if (LoopHeaders.count(BB)) {
1251 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1252 << "' into predecessor block '" << PredBB->getName()
1253 << "' - it might create an irreducible loop!\n");
1254 return false;
1255 }
1256
1257 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1258 if (DuplicationCost > Threshold) {
1259 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1260 << "' - Cost is too high: " << DuplicationCost << "\n");
1261 return false;
1262 }
1263
1264 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1265 // of PredBB.
1266 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1267 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1268 << DuplicationCost << " block is:" << *BB << "\n");
1269
1270 // We are going to have to map operands from the original BB block into the
1271 // PredBB block. Evaluate PHI nodes in BB.
1272 DenseMap<Instruction*, Value*> ValueMapping;
1273
1274 BasicBlock::iterator BI = BB->begin();
1275 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1276 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1277
1278 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1279
1280 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1281 // mapping and using it to remap operands in the cloned instructions.
1282 for (; BI != BB->end(); ++BI) {
1283 Instruction *New = BI->clone();
1284 New->setName(BI->getName());
1285 PredBB->getInstList().insert(OldPredBranch, New);
1286 ValueMapping[BI] = New;
1287
1288 // Remap operands to patch up intra-block references.
1289 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1290 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1291 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1292 if (I != ValueMapping.end())
1293 New->setOperand(i, I->second);
1294 }
1295 }
1296
1297 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1298 // add entries to the PHI nodes for branch from PredBB now.
1299 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1300 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1301 ValueMapping);
1302 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1303 ValueMapping);
1304
1305 // If there were values defined in BB that are used outside the block, then we
1306 // now have to update all uses of the value to use either the original value,
1307 // the cloned value, or some PHI derived value. This can require arbitrary
1308 // PHI insertion, of which we are prepared to do, clean these up now.
1309 SSAUpdater SSAUpdate;
1310 SmallVector<Use*, 16> UsesToRename;
1311 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1312 // Scan all uses of this instruction to see if it is used outside of its
1313 // block, and if so, record them in UsesToRename.
1314 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1315 ++UI) {
1316 Instruction *User = cast<Instruction>(*UI);
1317 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1318 if (UserPN->getIncomingBlock(UI) == BB)
1319 continue;
1320 } else if (User->getParent() == BB)
1321 continue;
1322
1323 UsesToRename.push_back(&UI.getUse());
1324 }
1325
1326 // If there are no uses outside the block, we're done with this instruction.
1327 if (UsesToRename.empty())
1328 continue;
1329
1330 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1331
1332 // We found a use of I outside of BB. Rename all uses of I that are outside
1333 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1334 // with the two values we know.
1335 SSAUpdate.Initialize(I);
1336 SSAUpdate.AddAvailableValue(BB, I);
1337 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1338
1339 while (!UsesToRename.empty())
1340 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1341 DEBUG(errs() << "\n");
1342 }
1343
1344 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1345 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001346 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001347
1348 // Remove the unconditional branch at the end of the PredBB block.
1349 OldPredBranch->eraseFromParent();
1350
1351 ++NumDupes;
1352 return true;
1353}
1354
1355