blob: 26015cf0e946992bf614c0b199fd184cef00c54a [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Reid Spencer47a53ac2006-08-18 09:01:07 +000014// This transformation makes the following changes to each loop with an
Chris Lattner40bf8b42004-04-02 20:24:31 +000015// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
20// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24// 1. The exit condition for the loop is canonicalized to compare the
25// induction value against the exit value. This turns loops like:
26// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27// 2. Any use outside of the loop of an expression derived from the indvar
28// is changed to compute the derived value outside of the loop, eliminating
29// the dependence on the exit value of the induction variable. If the only
30// purpose of the loop is to compute the exit value of some derived
31// expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
Dan Gohmanc2c4cbf2009-05-19 20:38:47 +000034// desired loop transformations have been performed.
Chris Lattner6148c022001-12-03 17:28:42 +000035//
36//===----------------------------------------------------------------------===//
37
Chris Lattner0e5f4992006-12-19 21:40:18 +000038#define DEBUG_TYPE "indvars"
Chris Lattner022103b2002-05-07 20:03:00 +000039#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000040#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000041#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000042#include "llvm/Instructions.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000043#include "llvm/Type.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000044#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/IVUsers.h"
Nate Begeman36f891b2005-07-30 00:12:19 +000046#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswell47df12d2003-12-18 17:19:19 +000047#include "llvm/Analysis/LoopInfo.h"
Devang Patel5ee99972007-03-07 06:39:01 +000048#include "llvm/Analysis/LoopPass.h"
Chris Lattner455889a2002-02-12 22:39:50 +000049#include "llvm/Support/CFG.h"
Reid Spencer9133fe22007-02-05 23:32:05 +000050#include "llvm/Support/Compiler.h"
Chris Lattneree4f13a2007-01-07 01:14:12 +000051#include "llvm/Support/Debug.h"
John Criswell47df12d2003-12-18 17:19:19 +000052#include "llvm/Transforms/Utils/Local.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000053#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000054#include "llvm/Support/CommandLine.h"
Reid Spencera54b7cb2007-01-12 07:05:14 +000055#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000056#include "llvm/ADT/Statistic.h"
Dan Gohman81db61a2009-05-12 02:17:14 +000057#include "llvm/ADT/STLExtras.h"
John Criswell47df12d2003-12-18 17:19:19 +000058using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000059
Chris Lattner0e5f4992006-12-19 21:40:18 +000060STATISTIC(NumRemoved , "Number of aux indvars removed");
Chris Lattner0e5f4992006-12-19 21:40:18 +000061STATISTIC(NumInserted, "Number of canonical indvars added");
62STATISTIC(NumReplaced, "Number of exit values replaced");
63STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Chris Lattner3324e712003-12-22 03:58:44 +000064
Chris Lattner0e5f4992006-12-19 21:40:18 +000065namespace {
Devang Patel5ee99972007-03-07 06:39:01 +000066 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
Dan Gohman81db61a2009-05-12 02:17:14 +000067 IVUsers *IU;
Chris Lattner40bf8b42004-04-02 20:24:31 +000068 LoopInfo *LI;
69 ScalarEvolution *SE;
Chris Lattner15cad752003-12-23 07:47:09 +000070 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +000071 public:
Devang Patel794fd752007-05-01 21:15:47 +000072
Nick Lewyckyecd94c82007-05-06 13:37:16 +000073 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000074 IndVarSimplify() : LoopPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000075
Dan Gohman60f8a632009-02-17 20:49:49 +000076 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
77
Devang Patel5ee99972007-03-07 06:39:01 +000078 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohman81db61a2009-05-12 02:17:14 +000079 AU.addRequired<DominatorTree>();
Devang Patelbc533cd2007-09-10 18:08:23 +000080 AU.addRequired<ScalarEvolution>();
Devang Patel5ee99972007-03-07 06:39:01 +000081 AU.addRequiredID(LCSSAID);
82 AU.addRequiredID(LoopSimplifyID);
Devang Patel5ee99972007-03-07 06:39:01 +000083 AU.addRequired<LoopInfo>();
Dan Gohman81db61a2009-05-12 02:17:14 +000084 AU.addRequired<IVUsers>();
Dan Gohman474cecf2009-02-23 16:29:41 +000085 AU.addPreserved<ScalarEvolution>();
Devang Patel5ee99972007-03-07 06:39:01 +000086 AU.addPreservedID(LoopSimplifyID);
Dan Gohman81db61a2009-05-12 02:17:14 +000087 AU.addPreserved<IVUsers>();
Devang Patel5ee99972007-03-07 06:39:01 +000088 AU.addPreservedID(LCSSAID);
89 AU.setPreservesCFG();
90 }
Chris Lattner15cad752003-12-23 07:47:09 +000091
Chris Lattner40bf8b42004-04-02 20:24:31 +000092 private:
Devang Patel5ee99972007-03-07 06:39:01 +000093
Dan Gohman60f8a632009-02-17 20:49:49 +000094 void RewriteNonIntegerIVs(Loop *L);
95
Dan Gohman81db61a2009-05-12 02:17:14 +000096 ICmpInst *LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount,
Dan Gohmana5758712009-02-17 15:57:39 +000097 Value *IndVar,
Dan Gohmanc2390b12009-02-12 22:19:27 +000098 BasicBlock *ExitingBlock,
99 BranchInst *BI,
Dan Gohman15cab282009-02-23 23:20:35 +0000100 SCEVExpander &Rewriter);
Dan Gohman890f92b2009-04-18 17:56:28 +0000101 void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000102
Dan Gohman81db61a2009-05-12 02:17:14 +0000103 void RewriteIVExpressions(Loop *L, const Type *LargestType,
104 SCEVExpander &Rewriter);
Devang Pateld22a8492008-09-09 21:41:07 +0000105
Dan Gohman81db61a2009-05-12 02:17:14 +0000106 void SinkUnusedInvariants(Loop *L, SCEVExpander &Rewriter);
107
108 void FixUsesBeforeDefs(Loop *L, SCEVExpander &Rewriter);
109
110 void HandleFloatingPointIV(Loop *L, PHINode *PH);
Chris Lattner3324e712003-12-22 03:58:44 +0000111 };
Chris Lattner5e761402002-09-10 05:24:05 +0000112}
Chris Lattner394437f2001-12-04 04:32:29 +0000113
Dan Gohman844731a2008-05-13 00:00:25 +0000114char IndVarSimplify::ID = 0;
115static RegisterPass<IndVarSimplify>
116X("indvars", "Canonicalize Induction Variables");
117
Daniel Dunbar394f0442008-10-22 23:32:42 +0000118Pass *llvm::createIndVarSimplifyPass() {
Chris Lattner3324e712003-12-22 03:58:44 +0000119 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000120}
121
Chris Lattner40bf8b42004-04-02 20:24:31 +0000122/// LinearFunctionTestReplace - This method rewrites the exit condition of the
Chris Lattner59fdaee2004-04-15 15:21:43 +0000123/// loop to be a canonical != comparison against the incremented loop induction
124/// variable. This pass is able to rewrite the exit tests of any loop where the
125/// SCEV analysis can determine a loop-invariant trip count of the loop, which
126/// is actually a much broader range than just linear tests.
Dan Gohman81db61a2009-05-12 02:17:14 +0000127ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
Dan Gohman46bdfb02009-02-24 18:55:53 +0000128 SCEVHandle BackedgeTakenCount,
Dan Gohmanc2390b12009-02-12 22:19:27 +0000129 Value *IndVar,
130 BasicBlock *ExitingBlock,
131 BranchInst *BI,
Dan Gohman15cab282009-02-23 23:20:35 +0000132 SCEVExpander &Rewriter) {
Chris Lattnerd2440572004-04-15 20:26:22 +0000133 // If the exiting block is not the same as the backedge block, we must compare
134 // against the preincremented value, otherwise we prefer to compare against
135 // the post-incremented value.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000136 Value *CmpIndVar;
Dan Gohman46bdfb02009-02-24 18:55:53 +0000137 SCEVHandle RHS = BackedgeTakenCount;
Dan Gohmanc2390b12009-02-12 22:19:27 +0000138 if (ExitingBlock == L->getLoopLatch()) {
Dan Gohman46bdfb02009-02-24 18:55:53 +0000139 // Add one to the "backedge-taken" count to get the trip count.
140 // If this addition may overflow, we have to be more pessimistic and
141 // cast the induction variable before doing the add.
142 SCEVHandle Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
Dan Gohmanc2390b12009-02-12 22:19:27 +0000143 SCEVHandle N =
Dan Gohman46bdfb02009-02-24 18:55:53 +0000144 SE->getAddExpr(BackedgeTakenCount,
145 SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
Dan Gohmanc2390b12009-02-12 22:19:27 +0000146 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
147 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
148 // No overflow. Cast the sum.
Dan Gohman46bdfb02009-02-24 18:55:53 +0000149 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
Dan Gohmanc2390b12009-02-12 22:19:27 +0000150 } else {
151 // Potential overflow. Cast before doing the add.
Dan Gohman46bdfb02009-02-24 18:55:53 +0000152 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
153 IndVar->getType());
154 RHS = SE->getAddExpr(RHS,
155 SE->getIntegerSCEV(1, IndVar->getType()));
Dan Gohmanc2390b12009-02-12 22:19:27 +0000156 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000157
Dan Gohman46bdfb02009-02-24 18:55:53 +0000158 // The BackedgeTaken expression contains the number of times that the
159 // backedge branches to the loop header. This is one less than the
160 // number of times the loop executes, so use the incremented indvar.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000161 CmpIndVar = L->getCanonicalInductionVariableIncrement();
Chris Lattnerd2440572004-04-15 20:26:22 +0000162 } else {
163 // We have to use the preincremented value...
Dan Gohman46bdfb02009-02-24 18:55:53 +0000164 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
165 IndVar->getType());
Dan Gohmanc2390b12009-02-12 22:19:27 +0000166 CmpIndVar = IndVar;
Chris Lattnerd2440572004-04-15 20:26:22 +0000167 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000168
Chris Lattner40bf8b42004-04-02 20:24:31 +0000169 // Expand the code for the iteration count into the preheader of the loop.
170 BasicBlock *Preheader = L->getLoopPreheader();
Dan Gohman5be18e82009-05-19 02:15:55 +0000171 Value *ExitCnt = Rewriter.expandCodeFor(RHS, CmpIndVar->getType(),
Dan Gohmanc2390b12009-02-12 22:19:27 +0000172 Preheader->getTerminator());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000173
Reid Spencere4d87aa2006-12-23 06:05:41 +0000174 // Insert a new icmp_ne or icmp_eq instruction before the branch.
175 ICmpInst::Predicate Opcode;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000176 if (L->contains(BI->getSuccessor(0)))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000177 Opcode = ICmpInst::ICMP_NE;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000178 else
Reid Spencere4d87aa2006-12-23 06:05:41 +0000179 Opcode = ICmpInst::ICMP_EQ;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000180
Dan Gohmanc2390b12009-02-12 22:19:27 +0000181 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
182 << " LHS:" << *CmpIndVar // includes a newline
183 << " op:\t"
Dan Gohmanf108e2e2009-02-14 02:26:50 +0000184 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
Dan Gohman46bdfb02009-02-24 18:55:53 +0000185 << " RHS:\t" << *RHS << "\n";
Dan Gohmanc2390b12009-02-12 22:19:27 +0000186
Dan Gohman81db61a2009-05-12 02:17:14 +0000187 ICmpInst *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
188
189 Instruction *OrigCond = cast<Instruction>(BI->getCondition());
190 OrigCond->replaceAllUsesWith(Cond);
191 RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
192
Chris Lattner40bf8b42004-04-02 20:24:31 +0000193 ++NumLFTR;
194 Changed = true;
Dan Gohman81db61a2009-05-12 02:17:14 +0000195 return Cond;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000196}
197
Chris Lattner40bf8b42004-04-02 20:24:31 +0000198/// RewriteLoopExitValues - Check to see if this loop has a computable
199/// loop-invariant execution count. If so, this means that we can compute the
200/// final value of any expressions that are recurrent in the loop, and
201/// substitute the exit values from the loop into any instructions outside of
202/// the loop that use the final values of the current expressions.
Dan Gohman81db61a2009-05-12 02:17:14 +0000203///
204/// This is mostly redundant with the regular IndVarSimplify activities that
205/// happen later, except that it's more powerful in some cases, because it's
206/// able to brute-force evaluate arbitrary instructions as long as they have
207/// constant operands at the beginning of the loop.
Dan Gohman890f92b2009-04-18 17:56:28 +0000208void IndVarSimplify::RewriteLoopExitValues(Loop *L,
209 const SCEV *BackedgeTakenCount) {
Dan Gohman81db61a2009-05-12 02:17:14 +0000210 // Verify the input to the pass in already in LCSSA form.
211 assert(L->isLCSSAForm());
212
Chris Lattner40bf8b42004-04-02 20:24:31 +0000213 BasicBlock *Preheader = L->getLoopPreheader();
214
215 // Scan all of the instructions in the loop, looking at those that have
216 // extra-loop users and which are recurrences.
Dan Gohman5be18e82009-05-19 02:15:55 +0000217 SCEVExpander Rewriter(*SE);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000218
219 // We insert the code into the preheader of the loop if the loop contains
220 // multiple exit blocks, or in the exit block if there is exactly one.
221 BasicBlock *BlockToInsertInto;
Devang Patelb7211a22007-08-21 00:31:24 +0000222 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000223 L->getUniqueExitBlocks(ExitBlocks);
Chris Lattnerf1ab4b42004-04-18 22:14:10 +0000224 if (ExitBlocks.size() == 1)
225 BlockToInsertInto = ExitBlocks[0];
Chris Lattner40bf8b42004-04-02 20:24:31 +0000226 else
227 BlockToInsertInto = Preheader;
Dan Gohman02dea8b2008-05-23 21:05:58 +0000228 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000229
Chris Lattner9f3d7382007-03-04 03:43:23 +0000230 std::map<Instruction*, Value*> ExitValues;
Misha Brukmanfd939082005-04-21 23:48:37 +0000231
Chris Lattner9f3d7382007-03-04 03:43:23 +0000232 // Find all values that are computed inside the loop, but used outside of it.
233 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
234 // the exit blocks of the loop to find them.
235 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
236 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmancafb8132009-02-17 19:13:57 +0000237
Chris Lattner9f3d7382007-03-04 03:43:23 +0000238 // If there are no PHI nodes in this exit block, then no values defined
239 // inside the loop are used on this path, skip it.
240 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
241 if (!PN) continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000242
Chris Lattner9f3d7382007-03-04 03:43:23 +0000243 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmancafb8132009-02-17 19:13:57 +0000244
Chris Lattner9f3d7382007-03-04 03:43:23 +0000245 // Iterate over all of the PHI nodes.
246 BasicBlock::iterator BBI = ExitBB->begin();
247 while ((PN = dyn_cast<PHINode>(BBI++))) {
Dan Gohmancafb8132009-02-17 19:13:57 +0000248
Chris Lattner9f3d7382007-03-04 03:43:23 +0000249 // Iterate over all of the values in all the PHI nodes.
250 for (unsigned i = 0; i != NumPreds; ++i) {
251 // If the value being merged in is not integer or is not defined
252 // in the loop, skip it.
253 Value *InVal = PN->getIncomingValue(i);
254 if (!isa<Instruction>(InVal) ||
255 // SCEV only supports integer expressions for now.
Dan Gohman2d1be872009-04-16 03:18:22 +0000256 (!isa<IntegerType>(InVal->getType()) &&
257 !isa<PointerType>(InVal->getType())))
Chris Lattner9f3d7382007-03-04 03:43:23 +0000258 continue;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000259
Chris Lattner9f3d7382007-03-04 03:43:23 +0000260 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmancafb8132009-02-17 19:13:57 +0000261 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattner9f3d7382007-03-04 03:43:23 +0000262 continue; // The Block is in a subloop, skip it.
263
264 // Check that InVal is defined in the loop.
265 Instruction *Inst = cast<Instruction>(InVal);
266 if (!L->contains(Inst->getParent()))
267 continue;
Dan Gohmancafb8132009-02-17 19:13:57 +0000268
Chris Lattner9f3d7382007-03-04 03:43:23 +0000269 // Okay, this instruction has a user outside of the current loop
270 // and varies predictably *inside* the loop. Evaluate the value it
271 // contains when the loop exits, if possible.
Dan Gohman81db61a2009-05-12 02:17:14 +0000272 SCEVHandle SH = SE->getSCEV(Inst);
273 SCEVHandle ExitValue = SE->getSCEVAtScope(SH, L->getParentLoop());
Chris Lattner9f3d7382007-03-04 03:43:23 +0000274 if (isa<SCEVCouldNotCompute>(ExitValue) ||
275 !ExitValue->isLoopInvariant(L))
276 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000277
Chris Lattner9f3d7382007-03-04 03:43:23 +0000278 Changed = true;
279 ++NumReplaced;
Dan Gohmancafb8132009-02-17 19:13:57 +0000280
Chris Lattner9f3d7382007-03-04 03:43:23 +0000281 // See if we already computed the exit value for the instruction, if so,
282 // just reuse it.
283 Value *&ExitVal = ExitValues[Inst];
284 if (!ExitVal)
Dan Gohman2d1be872009-04-16 03:18:22 +0000285 ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), InsertPt);
Dan Gohmancafb8132009-02-17 19:13:57 +0000286
Chris Lattner9f3d7382007-03-04 03:43:23 +0000287 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
288 << " LoopVal = " << *Inst << "\n";
289
290 PN->setIncomingValue(i, ExitVal);
Dan Gohmancafb8132009-02-17 19:13:57 +0000291
Dan Gohman81db61a2009-05-12 02:17:14 +0000292 // If this instruction is dead now, delete it.
293 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohmancafb8132009-02-17 19:13:57 +0000294
Chris Lattner9f3d7382007-03-04 03:43:23 +0000295 // See if this is a single-entry LCSSA PHI node. If so, we can (and
296 // have to) remove
Chris Lattner9caed542007-03-04 01:00:28 +0000297 // the PHI entirely. This is safe, because the NewVal won't be variant
298 // in the loop, so we don't need an LCSSA phi node anymore.
Chris Lattner9f3d7382007-03-04 03:43:23 +0000299 if (NumPreds == 1) {
300 PN->replaceAllUsesWith(ExitVal);
Dan Gohman81db61a2009-05-12 02:17:14 +0000301 RecursivelyDeleteTriviallyDeadInstructions(PN);
Chris Lattner9f3d7382007-03-04 03:43:23 +0000302 break;
Chris Lattnerc9838f22007-03-03 22:48:48 +0000303 }
304 }
Chris Lattnerc9838f22007-03-03 22:48:48 +0000305 }
306 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000307}
308
Dan Gohman60f8a632009-02-17 20:49:49 +0000309void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
Dan Gohman2d1be872009-04-16 03:18:22 +0000310 // First step. Check to see if there are any floating-point recurrences.
Chris Lattner40bf8b42004-04-02 20:24:31 +0000311 // If there are, change them into integer recurrences, permitting analysis by
312 // the SCEV routines.
313 //
314 BasicBlock *Header = L->getHeader();
Misha Brukmanfd939082005-04-21 23:48:37 +0000315
Dan Gohman81db61a2009-05-12 02:17:14 +0000316 SmallVector<WeakVH, 8> PHIs;
317 for (BasicBlock::iterator I = Header->begin();
318 PHINode *PN = dyn_cast<PHINode>(I); ++I)
319 PHIs.push_back(PN);
320
321 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
322 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
323 HandleFloatingPointIV(L, PN);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000324
Dan Gohman2d1be872009-04-16 03:18:22 +0000325 // If the loop previously had floating-point IV, ScalarEvolution
Dan Gohman60f8a632009-02-17 20:49:49 +0000326 // may not have been able to compute a trip count. Now that we've done some
327 // re-writing, the trip count may be computable.
328 if (Changed)
Dan Gohman46bdfb02009-02-24 18:55:53 +0000329 SE->forgetLoopBackedgeTakenCount(L);
Dale Johannesenc671d892009-04-15 23:31:51 +0000330}
331
Dan Gohmanc2390b12009-02-12 22:19:27 +0000332bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohman81db61a2009-05-12 02:17:14 +0000333 IU = &getAnalysis<IVUsers>();
Devang Patel5ee99972007-03-07 06:39:01 +0000334 LI = &getAnalysis<LoopInfo>();
335 SE = &getAnalysis<ScalarEvolution>();
Devang Patel5ee99972007-03-07 06:39:01 +0000336 Changed = false;
Dan Gohman60f8a632009-02-17 20:49:49 +0000337
Dan Gohman2d1be872009-04-16 03:18:22 +0000338 // If there are any floating-point recurrences, attempt to
Dan Gohman60f8a632009-02-17 20:49:49 +0000339 // transform them to use integer recurrences.
340 RewriteNonIntegerIVs(L);
341
Dan Gohmanc2390b12009-02-12 22:19:27 +0000342 BasicBlock *Header = L->getHeader();
Dan Gohman81db61a2009-05-12 02:17:14 +0000343 BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
344 SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner9caed542007-03-04 01:00:28 +0000345
Chris Lattner40bf8b42004-04-02 20:24:31 +0000346 // Check to see if this loop has a computable loop-invariant execution count.
347 // If so, this means that we can compute the final value of any expressions
348 // that are recurrent in the loop, and substitute the exit values from the
349 // loop into any instructions outside of the loop that use the final values of
350 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +0000351 //
Dan Gohman46bdfb02009-02-24 18:55:53 +0000352 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
353 RewriteLoopExitValues(L, BackedgeTakenCount);
Chris Lattner6148c022001-12-03 17:28:42 +0000354
Dan Gohman81db61a2009-05-12 02:17:14 +0000355 // Compute the type of the largest recurrence expression, and decide whether
356 // a canonical induction variable should be inserted.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000357 const Type *LargestType = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +0000358 bool NeedCannIV = false;
Dan Gohman46bdfb02009-02-24 18:55:53 +0000359 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
360 LargestType = BackedgeTakenCount->getType();
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000361 LargestType = SE->getEffectiveSCEVType(LargestType);
Dan Gohman81db61a2009-05-12 02:17:14 +0000362 // If we have a known trip count and a single exit block, we'll be
363 // rewriting the loop exit test condition below, which requires a
364 // canonical induction variable.
365 if (ExitingBlock)
366 NeedCannIV = true;
Chris Lattnerf50af082004-04-17 18:08:33 +0000367 }
Dan Gohman81db61a2009-05-12 02:17:14 +0000368 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
369 SCEVHandle Stride = IU->StrideOrder[i];
370 const Type *Ty = SE->getEffectiveSCEVType(Stride->getType());
Dan Gohmanc2390b12009-02-12 22:19:27 +0000371 if (!LargestType ||
Dan Gohman81db61a2009-05-12 02:17:14 +0000372 SE->getTypeSizeInBits(Ty) >
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000373 SE->getTypeSizeInBits(LargestType))
Dan Gohman81db61a2009-05-12 02:17:14 +0000374 LargestType = Ty;
375
376 std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
377 IU->IVUsesByStride.find(IU->StrideOrder[i]);
378 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
379
380 if (!SI->second->Users.empty())
381 NeedCannIV = true;
Chris Lattner6148c022001-12-03 17:28:42 +0000382 }
383
Chris Lattner40bf8b42004-04-02 20:24:31 +0000384 // Create a rewriter object which we'll use to transform the code with.
Dan Gohman5be18e82009-05-19 02:15:55 +0000385 SCEVExpander Rewriter(*SE);
Chris Lattner15cad752003-12-23 07:47:09 +0000386
Dan Gohman81db61a2009-05-12 02:17:14 +0000387 // Now that we know the largest of of the induction variable expressions
388 // in this loop, insert a canonical induction variable of the largest size.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000389 Value *IndVar = 0;
Dan Gohman81db61a2009-05-12 02:17:14 +0000390 if (NeedCannIV) {
Dan Gohmanc2390b12009-02-12 22:19:27 +0000391 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
392 ++NumInserted;
393 Changed = true;
394 DOUT << "INDVARS: New CanIV: " << *IndVar;
Dan Gohmand19534a2007-06-15 14:38:12 +0000395 }
Chris Lattner15cad752003-12-23 07:47:09 +0000396
Dan Gohmanc2390b12009-02-12 22:19:27 +0000397 // If we have a trip count expression, rewrite the loop's exit condition
398 // using it. We can currently only handle loops with a single exit.
Dan Gohman81db61a2009-05-12 02:17:14 +0000399 ICmpInst *NewICmp = 0;
400 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
401 assert(NeedCannIV &&
402 "LinearFunctionTestReplace requires a canonical induction variable");
Dan Gohmanc2390b12009-02-12 22:19:27 +0000403 // Can't rewrite non-branch yet.
Dan Gohman81db61a2009-05-12 02:17:14 +0000404 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
405 NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
406 ExitingBlock, BI, Rewriter);
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000407 }
408
Dan Gohman81db61a2009-05-12 02:17:14 +0000409 Rewriter.setInsertionPoint(Header->getFirstNonPHI());
Chris Lattner5d461d22004-04-21 22:22:01 +0000410
Dan Gohman81db61a2009-05-12 02:17:14 +0000411 // Rewrite IV-derived expressions.
412 RewriteIVExpressions(L, LargestType, Rewriter);
Dan Gohmanc2390b12009-02-12 22:19:27 +0000413
Dan Gohman81db61a2009-05-12 02:17:14 +0000414 // Loop-invariant instructions in the preheader that aren't used in the
415 // loop may be sunk below the loop to reduce register pressure.
416 SinkUnusedInvariants(L, Rewriter);
Chris Lattner394437f2001-12-04 04:32:29 +0000417
Dan Gohman81db61a2009-05-12 02:17:14 +0000418 // Reorder instructions to avoid use-before-def conditions.
419 FixUsesBeforeDefs(L, Rewriter);
420
421 // For completeness, inform IVUsers of the IV use in the newly-created
422 // loop exit test instruction.
423 if (NewICmp)
424 IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
425
426 // Clean up dead instructions.
427 DeleteDeadPHIs(L->getHeader());
428 // Check a post-condition.
429 assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
Devang Patel5ee99972007-03-07 06:39:01 +0000430 return Changed;
Chris Lattner6148c022001-12-03 17:28:42 +0000431}
Devang Pateld22a8492008-09-09 21:41:07 +0000432
Dan Gohman81db61a2009-05-12 02:17:14 +0000433void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
434 SCEVExpander &Rewriter) {
435 SmallVector<WeakVH, 16> DeadInsts;
436
437 // Rewrite all induction variable expressions in terms of the canonical
438 // induction variable.
439 //
440 // If there were induction variables of other sizes or offsets, manually
441 // add the offsets to the primary induction variable and cast, avoiding
442 // the need for the code evaluation methods to insert induction variables
443 // of different sizes.
444 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
445 SCEVHandle Stride = IU->StrideOrder[i];
446
447 std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
448 IU->IVUsesByStride.find(IU->StrideOrder[i]);
449 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
450 ilist<IVStrideUse> &List = SI->second->Users;
451 for (ilist<IVStrideUse>::iterator UI = List.begin(),
452 E = List.end(); UI != E; ++UI) {
453 SCEVHandle Offset = UI->getOffset();
454 Value *Op = UI->getOperandValToReplace();
455 Instruction *User = UI->getUser();
456 bool isSigned = UI->isSigned();
457
458 // Compute the final addrec to expand into code.
459 SCEVHandle AR = IU->getReplacementExpr(*UI);
460
461 // FIXME: It is an extremely bad idea to indvar substitute anything more
462 // complex than affine induction variables. Doing so will put expensive
463 // polynomial evaluations inside of the loop, and the str reduction pass
464 // currently can only reduce affine polynomials. For now just disable
465 // indvar subst on anything more complex than an affine addrec, unless
466 // it can be expanded to a trivial value.
467 if (!Stride->isLoopInvariant(L) &&
468 !isa<SCEVConstant>(AR) &&
469 L->contains(User->getParent()))
470 continue;
471
472 Value *NewVal = 0;
473 if (AR->isLoopInvariant(L)) {
474 BasicBlock::iterator I = Rewriter.getInsertionPoint();
475 // Expand loop-invariant values in the loop preheader. They will
476 // be sunk to the exit block later, if possible.
Dan Gohman5be18e82009-05-19 02:15:55 +0000477 NewVal =
Dan Gohman81db61a2009-05-12 02:17:14 +0000478 Rewriter.expandCodeFor(AR, LargestType,
479 L->getLoopPreheader()->getTerminator());
480 Rewriter.setInsertionPoint(I);
481 ++NumReplaced;
482 } else {
483 const Type *IVTy = Offset->getType();
484 const Type *UseTy = Op->getType();
485
486 // Promote the Offset and Stride up to the canonical induction
487 // variable's bit width.
488 SCEVHandle PromotedOffset = Offset;
489 SCEVHandle PromotedStride = Stride;
490 if (SE->getTypeSizeInBits(IVTy) != SE->getTypeSizeInBits(LargestType)) {
491 // It doesn't matter for correctness whether zero or sign extension
492 // is used here, since the value is truncated away below, but if the
493 // value is signed, sign extension is more likely to be folded.
494 if (isSigned) {
495 PromotedOffset = SE->getSignExtendExpr(PromotedOffset, LargestType);
496 PromotedStride = SE->getSignExtendExpr(PromotedStride, LargestType);
497 } else {
498 PromotedOffset = SE->getZeroExtendExpr(PromotedOffset, LargestType);
499 // If the stride is obviously negative, use sign extension to
500 // produce things like x-1 instead of x+255.
501 if (isa<SCEVConstant>(PromotedStride) &&
502 cast<SCEVConstant>(PromotedStride)
503 ->getValue()->getValue().isNegative())
504 PromotedStride = SE->getSignExtendExpr(PromotedStride,
505 LargestType);
506 else
507 PromotedStride = SE->getZeroExtendExpr(PromotedStride,
508 LargestType);
509 }
510 }
511
512 // Create the SCEV representing the offset from the canonical
513 // induction variable, still in the canonical induction variable's
514 // type, so that all expanded arithmetic is done in the same type.
515 SCEVHandle NewAR = SE->getAddRecExpr(SE->getIntegerSCEV(0, LargestType),
516 PromotedStride, L);
517 // Add the PromotedOffset as a separate step, because it may not be
518 // loop-invariant.
519 NewAR = SE->getAddExpr(NewAR, PromotedOffset);
520
521 // Expand the addrec into instructions.
Dan Gohman5be18e82009-05-19 02:15:55 +0000522 Value *V = Rewriter.expandCodeFor(NewAR);
Dan Gohman81db61a2009-05-12 02:17:14 +0000523
524 // Insert an explicit cast if necessary to truncate the value
525 // down to the original stride type. This is done outside of
526 // SCEVExpander because in SCEV expressions, a truncate of an
527 // addrec is always folded.
528 if (LargestType != IVTy) {
529 if (SE->getTypeSizeInBits(IVTy) != SE->getTypeSizeInBits(LargestType))
530 NewAR = SE->getTruncateExpr(NewAR, IVTy);
531 if (Rewriter.isInsertedExpression(NewAR))
Dan Gohman5be18e82009-05-19 02:15:55 +0000532 V = Rewriter.expandCodeFor(NewAR);
Dan Gohman81db61a2009-05-12 02:17:14 +0000533 else {
534 V = Rewriter.InsertCastOfTo(CastInst::getCastOpcode(V, false,
535 IVTy, false),
536 V, IVTy);
537 assert(!isa<SExtInst>(V) && !isa<ZExtInst>(V) &&
538 "LargestType wasn't actually the largest type!");
539 // Force the rewriter to use this trunc whenever this addrec
540 // appears so that it doesn't insert new phi nodes or
541 // arithmetic in a different type.
542 Rewriter.addInsertedValue(V, NewAR);
543 }
544 }
545
546 DOUT << "INDVARS: Made offset-and-trunc IV for offset "
547 << *IVTy << " " << *Offset << ": ";
548 DEBUG(WriteAsOperand(*DOUT, V, false));
549 DOUT << "\n";
550
551 // Now expand it into actual Instructions and patch it into place.
552 NewVal = Rewriter.expandCodeFor(AR, UseTy);
553 }
554
555 // Patch the new value into place.
556 if (Op->hasName())
557 NewVal->takeName(Op);
558 User->replaceUsesOfWith(Op, NewVal);
559 UI->setOperandValToReplace(NewVal);
560 DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *Op
561 << " into = " << *NewVal << "\n";
562 ++NumRemoved;
563 Changed = true;
564
565 // The old value may be dead now.
566 DeadInsts.push_back(Op);
567 }
568 }
569
570 // Now that we're done iterating through lists, clean up any instructions
571 // which are now dead.
572 while (!DeadInsts.empty()) {
573 Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
574 if (Inst)
575 RecursivelyDeleteTriviallyDeadInstructions(Inst);
576 }
577}
578
579/// If there's a single exit block, sink any loop-invariant values that
580/// were defined in the preheader but not used inside the loop into the
581/// exit block to reduce register pressure in the loop.
582void IndVarSimplify::SinkUnusedInvariants(Loop *L, SCEVExpander &Rewriter) {
583 BasicBlock *ExitBlock = L->getExitBlock();
584 if (!ExitBlock) return;
585
586 Instruction *NonPHI = ExitBlock->getFirstNonPHI();
587 BasicBlock *Preheader = L->getLoopPreheader();
588 BasicBlock::iterator I = Preheader->getTerminator();
589 while (I != Preheader->begin()) {
590 --I;
591 // New instructions were inserted at the end of the preheader. Only
592 // consider those new instructions.
593 if (!Rewriter.isInsertedInstruction(I))
594 break;
595 // Determine if there is a use in or before the loop (direct or
596 // otherwise).
597 bool UsedInLoop = false;
598 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
599 UI != UE; ++UI) {
600 BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
601 if (PHINode *P = dyn_cast<PHINode>(UI)) {
602 unsigned i =
603 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
604 UseBB = P->getIncomingBlock(i);
605 }
606 if (UseBB == Preheader || L->contains(UseBB)) {
607 UsedInLoop = true;
608 break;
609 }
610 }
611 // If there is, the def must remain in the preheader.
612 if (UsedInLoop)
613 continue;
614 // Otherwise, sink it to the exit block.
615 Instruction *ToMove = I;
616 bool Done = false;
617 if (I != Preheader->begin())
618 --I;
619 else
620 Done = true;
621 ToMove->moveBefore(NonPHI);
622 if (Done)
623 break;
624 }
625}
626
627/// Re-schedule the inserted instructions to put defs before uses. This
628/// fixes problems that arrise when SCEV expressions contain loop-variant
629/// values unrelated to the induction variable which are defined inside the
630/// loop. FIXME: It would be better to insert instructions in the right
631/// place so that this step isn't needed.
632void IndVarSimplify::FixUsesBeforeDefs(Loop *L, SCEVExpander &Rewriter) {
633 // Visit all the blocks in the loop in pre-order dom-tree dfs order.
634 DominatorTree *DT = &getAnalysis<DominatorTree>();
635 std::map<Instruction *, unsigned> NumPredsLeft;
636 SmallVector<DomTreeNode *, 16> Worklist;
637 Worklist.push_back(DT->getNode(L->getHeader()));
638 do {
639 DomTreeNode *Node = Worklist.pop_back_val();
640 for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I)
641 if (L->contains((*I)->getBlock()))
642 Worklist.push_back(*I);
643 BasicBlock *BB = Node->getBlock();
644 // Visit all the instructions in the block top down.
645 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
646 // Count the number of operands that aren't properly dominating.
647 unsigned NumPreds = 0;
648 if (Rewriter.isInsertedInstruction(I) && !isa<PHINode>(I))
649 for (User::op_iterator OI = I->op_begin(), OE = I->op_end();
650 OI != OE; ++OI)
651 if (Instruction *Inst = dyn_cast<Instruction>(OI))
652 if (L->contains(Inst->getParent()) && !NumPredsLeft.count(Inst))
653 ++NumPreds;
654 NumPredsLeft[I] = NumPreds;
655 // Notify uses of the position of this instruction, and move the
656 // users (and their dependents, recursively) into place after this
657 // instruction if it is their last outstanding operand.
658 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
659 UI != UE; ++UI) {
660 Instruction *Inst = cast<Instruction>(UI);
661 std::map<Instruction *, unsigned>::iterator Z = NumPredsLeft.find(Inst);
662 if (Z != NumPredsLeft.end() && Z->second != 0 && --Z->second == 0) {
663 SmallVector<Instruction *, 4> UseWorkList;
664 UseWorkList.push_back(Inst);
665 BasicBlock::iterator InsertPt = next(I);
666 while (isa<PHINode>(InsertPt)) ++InsertPt;
667 do {
668 Instruction *Use = UseWorkList.pop_back_val();
669 Use->moveBefore(InsertPt);
670 NumPredsLeft.erase(Use);
671 for (Value::use_iterator IUI = Use->use_begin(),
672 IUE = Use->use_end(); IUI != IUE; ++IUI) {
673 Instruction *IUIInst = cast<Instruction>(IUI);
674 if (L->contains(IUIInst->getParent()) &&
675 Rewriter.isInsertedInstruction(IUIInst) &&
676 !isa<PHINode>(IUIInst))
677 UseWorkList.push_back(IUIInst);
678 }
679 } while (!UseWorkList.empty());
680 }
681 }
682 }
683 } while (!Worklist.empty());
684}
685
Devang Patel13877bf2008-11-18 00:40:02 +0000686/// Return true if it is OK to use SIToFPInst for an inducation variable
687/// with given inital and exit values.
688static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
689 uint64_t intIV, uint64_t intEV) {
690
Dan Gohmancafb8132009-02-17 19:13:57 +0000691 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
Devang Patel13877bf2008-11-18 00:40:02 +0000692 return true;
693
694 // If the iteration range can be handled by SIToFPInst then use it.
695 APInt Max = APInt::getSignedMaxValue(32);
Dale Johannesenbae7d6d2009-05-14 16:47:34 +0000696 if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
Devang Patel13877bf2008-11-18 00:40:02 +0000697 return true;
Dan Gohmancafb8132009-02-17 19:13:57 +0000698
Devang Patel13877bf2008-11-18 00:40:02 +0000699 return false;
700}
701
702/// convertToInt - Convert APF to an integer, if possible.
Devang Patelcd402332008-11-17 23:27:13 +0000703static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
704
705 bool isExact = false;
Evan Cheng794a7db2008-11-26 01:11:57 +0000706 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
707 return false;
Dan Gohmancafb8132009-02-17 19:13:57 +0000708 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
Devang Patelcd402332008-11-17 23:27:13 +0000709 APFloat::rmTowardZero, &isExact)
710 != APFloat::opOK)
711 return false;
Dan Gohmancafb8132009-02-17 19:13:57 +0000712 if (!isExact)
Devang Patelcd402332008-11-17 23:27:13 +0000713 return false;
714 return true;
715
716}
717
Devang Patel58d43d42008-11-03 18:32:19 +0000718/// HandleFloatingPointIV - If the loop has floating induction variable
719/// then insert corresponding integer induction variable if possible.
Devang Patel84e35152008-11-17 21:32:02 +0000720/// For example,
721/// for(double i = 0; i < 10000; ++i)
722/// bar(i)
723/// is converted into
724/// for(int i = 0; i < 10000; ++i)
725/// bar((double)i);
726///
Dan Gohman81db61a2009-05-12 02:17:14 +0000727void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
Devang Patel58d43d42008-11-03 18:32:19 +0000728
Devang Patel84e35152008-11-17 21:32:02 +0000729 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
730 unsigned BackEdge = IncomingEdge^1;
Dan Gohmancafb8132009-02-17 19:13:57 +0000731
Devang Patel84e35152008-11-17 21:32:02 +0000732 // Check incoming value.
Devang Patelcd402332008-11-17 23:27:13 +0000733 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
734 if (!InitValue) return;
735 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
736 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
737 return;
738
739 // Check IV increment. Reject this PH if increement operation is not
740 // an add or increment value can not be represented by an integer.
Dan Gohmancafb8132009-02-17 19:13:57 +0000741 BinaryOperator *Incr =
Devang Patel84e35152008-11-17 21:32:02 +0000742 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
743 if (!Incr) return;
744 if (Incr->getOpcode() != Instruction::Add) return;
745 ConstantFP *IncrValue = NULL;
746 unsigned IncrVIndex = 1;
747 if (Incr->getOperand(1) == PH)
748 IncrVIndex = 0;
749 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
750 if (!IncrValue) return;
Devang Patelcd402332008-11-17 23:27:13 +0000751 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
752 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
753 return;
Dan Gohmancafb8132009-02-17 19:13:57 +0000754
Devang Patelcd402332008-11-17 23:27:13 +0000755 // Check Incr uses. One user is PH and the other users is exit condition used
756 // by the conditional terminator.
Devang Patel84e35152008-11-17 21:32:02 +0000757 Value::use_iterator IncrUse = Incr->use_begin();
758 Instruction *U1 = cast<Instruction>(IncrUse++);
759 if (IncrUse == Incr->use_end()) return;
760 Instruction *U2 = cast<Instruction>(IncrUse++);
761 if (IncrUse != Incr->use_end()) return;
Dan Gohmancafb8132009-02-17 19:13:57 +0000762
Devang Patel84e35152008-11-17 21:32:02 +0000763 // Find exit condition.
764 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
765 if (!EC)
766 EC = dyn_cast<FCmpInst>(U2);
767 if (!EC) return;
768
769 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
770 if (!BI->isConditional()) return;
771 if (BI->getCondition() != EC) return;
Devang Patel58d43d42008-11-03 18:32:19 +0000772 }
Devang Patel58d43d42008-11-03 18:32:19 +0000773
Devang Patelcd402332008-11-17 23:27:13 +0000774 // Find exit value. If exit value can not be represented as an interger then
775 // do not handle this floating point PH.
Devang Patel84e35152008-11-17 21:32:02 +0000776 ConstantFP *EV = NULL;
777 unsigned EVIndex = 1;
778 if (EC->getOperand(1) == Incr)
779 EVIndex = 0;
780 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
781 if (!EV) return;
Devang Patel84e35152008-11-17 21:32:02 +0000782 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
Devang Patelcd402332008-11-17 23:27:13 +0000783 if (!convertToInt(EV->getValueAPF(), &intEV))
Devang Patel84e35152008-11-17 21:32:02 +0000784 return;
Dan Gohmancafb8132009-02-17 19:13:57 +0000785
Devang Patel84e35152008-11-17 21:32:02 +0000786 // Find new predicate for integer comparison.
787 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
788 switch (EC->getPredicate()) {
789 case CmpInst::FCMP_OEQ:
790 case CmpInst::FCMP_UEQ:
791 NewPred = CmpInst::ICMP_EQ;
792 break;
793 case CmpInst::FCMP_OGT:
794 case CmpInst::FCMP_UGT:
795 NewPred = CmpInst::ICMP_UGT;
796 break;
797 case CmpInst::FCMP_OGE:
798 case CmpInst::FCMP_UGE:
799 NewPred = CmpInst::ICMP_UGE;
800 break;
801 case CmpInst::FCMP_OLT:
802 case CmpInst::FCMP_ULT:
803 NewPred = CmpInst::ICMP_ULT;
804 break;
805 case CmpInst::FCMP_OLE:
806 case CmpInst::FCMP_ULE:
807 NewPred = CmpInst::ICMP_ULE;
808 break;
809 default:
810 break;
Devang Patel58d43d42008-11-03 18:32:19 +0000811 }
Devang Patel84e35152008-11-17 21:32:02 +0000812 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
Dan Gohmancafb8132009-02-17 19:13:57 +0000813
Devang Patel84e35152008-11-17 21:32:02 +0000814 // Insert new integer induction variable.
815 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
816 PH->getName()+".int", PH);
Devang Patelcd402332008-11-17 23:27:13 +0000817 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
Devang Patel84e35152008-11-17 21:32:02 +0000818 PH->getIncomingBlock(IncomingEdge));
819
Dan Gohmancafb8132009-02-17 19:13:57 +0000820 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
821 ConstantInt::get(Type::Int32Ty,
Devang Patelcd402332008-11-17 23:27:13 +0000822 newIncrValue),
Devang Patel84e35152008-11-17 21:32:02 +0000823 Incr->getName()+".int", Incr);
824 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
825
Dale Johannesen617d1082009-04-27 21:03:15 +0000826 // The back edge is edge 1 of newPHI, whatever it may have been in the
827 // original PHI.
Devang Patel84e35152008-11-17 21:32:02 +0000828 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
Dale Johannesen617d1082009-04-27 21:03:15 +0000829 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
830 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
Dan Gohmancafb8132009-02-17 19:13:57 +0000831 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
Devang Patel84e35152008-11-17 21:32:02 +0000832 EC->getParent()->getTerminator());
Dan Gohmancafb8132009-02-17 19:13:57 +0000833
Dan Gohman81db61a2009-05-12 02:17:14 +0000834 // In the following deltions, PH may become dead and may be deleted.
835 // Use a WeakVH to observe whether this happens.
836 WeakVH WeakPH = PH;
837
Devang Patel84e35152008-11-17 21:32:02 +0000838 // Delete old, floating point, exit comparision instruction.
839 EC->replaceAllUsesWith(NewEC);
Dan Gohman81db61a2009-05-12 02:17:14 +0000840 RecursivelyDeleteTriviallyDeadInstructions(EC);
Dan Gohmancafb8132009-02-17 19:13:57 +0000841
Devang Patel84e35152008-11-17 21:32:02 +0000842 // Delete old, floating point, increment instruction.
843 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
Dan Gohman81db61a2009-05-12 02:17:14 +0000844 RecursivelyDeleteTriviallyDeadInstructions(Incr);
Dan Gohmancafb8132009-02-17 19:13:57 +0000845
Dan Gohman81db61a2009-05-12 02:17:14 +0000846 // Replace floating induction variable, if it isn't already deleted.
847 // Give SIToFPInst preference over UIToFPInst because it is faster on
848 // platforms that are widely used.
849 if (WeakPH && !PH->use_empty()) {
850 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
851 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
852 PH->getParent()->getFirstNonPHI());
853 PH->replaceAllUsesWith(Conv);
854 } else {
855 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
856 PH->getParent()->getFirstNonPHI());
857 PH->replaceAllUsesWith(Conv);
858 }
859 RecursivelyDeleteTriviallyDeadInstructions(PH);
Devang Patelcd402332008-11-17 23:27:13 +0000860 }
Devang Patel58d43d42008-11-03 18:32:19 +0000861
Dan Gohman81db61a2009-05-12 02:17:14 +0000862 // Add a new IVUsers entry for the newly-created integer PHI.
863 IU->AddUsersIfInteresting(NewPHI);
864}