blob: 0a118cd338b9269b88b88a1882ae09d7e565bc79 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnere96fda32003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000026#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000027#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000029#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer9133fe22007-02-05 23:32:05 +000032#include "llvm/Support/Compiler.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000036#include <algorithm>
Dan Gohmanc9235d22008-03-21 23:51:57 +000037#include <map>
Chris Lattnerd7456022004-01-09 06:02:20 +000038using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000039
Chris Lattner0e5f4992006-12-19 21:40:18 +000040STATISTIC(NumLinear , "Number of insts linearized");
41STATISTIC(NumChanged, "Number of insts reassociated");
42STATISTIC(NumAnnihil, "Number of expr tree annihilated");
43STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000044
Chris Lattner0e5f4992006-12-19 21:40:18 +000045namespace {
Reid Spencer9133fe22007-02-05 23:32:05 +000046 struct VISIBILITY_HIDDEN ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000047 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000054}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000055
Chris Lattnere5022fe2006-03-04 09:31:13 +000056/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59 Module *M = I->getParent()->getParent()->getParent();
Bill Wendling832171c2006-12-07 20:04:42 +000060 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnere5022fe2006-03-04 09:31:13 +000061 << *Ops[0].Op->getType();
62 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Bill Wendling832171c2006-12-07 20:04:42 +000063 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
Chris Lattnere5022fe2006-03-04 09:31:13 +000064 << "," << Ops[i].Rank;
65}
66
67namespace {
Reid Spencer9133fe22007-02-05 23:32:05 +000068 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
Chris Lattner0c0edf82002-07-25 06:17:51 +000069 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattnerfb5be092003-08-13 16:16:26 +000070 std::map<Value*, unsigned> ValueRankMap;
Chris Lattnerc0649ac2005-05-07 21:59:39 +000071 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +000072 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +000073 static char ID; // Pass identification, replacement for typeid
Devang Patel794fd752007-05-01 21:15:47 +000074 Reassociate() : FunctionPass((intptr_t)&ID) {}
75
Chris Lattner7e708292002-06-25 16:13:24 +000076 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000077
78 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +000079 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +000080 }
81 private:
Chris Lattner7e708292002-06-25 16:13:24 +000082 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +000083 unsigned getRank(Value *V);
Chris Lattner895b3922006-03-14 07:11:11 +000084 void ReassociateExpression(BinaryOperator *I);
Chris Lattnere9efecb2006-03-14 16:04:29 +000085 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
86 unsigned Idx = 0);
Chris Lattnere5022fe2006-03-04 09:31:13 +000087 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000088 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
89 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +000090 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattnerc0649ac2005-05-07 21:59:39 +000091 void ReassociateBB(BasicBlock *BB);
Chris Lattnere5022fe2006-03-04 09:31:13 +000092
93 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +000094 };
Chris Lattnerf6293092002-07-23 18:06:35 +000095
Devang Patel19974732007-05-03 01:11:54 +000096 char Reassociate::ID = 0;
Chris Lattner7f8897f2006-08-27 22:42:52 +000097 RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattner4fd56002002-05-08 22:19:27 +000098}
99
Brian Gaeked0fde302003-11-11 22:41:34 +0000100// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000101FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000102
Chris Lattnere5022fe2006-03-04 09:31:13 +0000103void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000104 Instruction *Op = dyn_cast<Instruction>(V);
105 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
106 return;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000107
Reid Spencere4d87aa2006-12-23 06:05:41 +0000108 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000109 RemoveDeadBinaryOp(LHS);
110 RemoveDeadBinaryOp(RHS);
111}
112
Chris Lattner9c723192005-05-08 20:57:04 +0000113
114static bool isUnmovableInstruction(Instruction *I) {
115 if (I->getOpcode() == Instruction::PHI ||
116 I->getOpcode() == Instruction::Alloca ||
117 I->getOpcode() == Instruction::Load ||
118 I->getOpcode() == Instruction::Malloc ||
119 I->getOpcode() == Instruction::Invoke ||
120 I->getOpcode() == Instruction::Call ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000121 I->getOpcode() == Instruction::UDiv ||
122 I->getOpcode() == Instruction::SDiv ||
123 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000124 I->getOpcode() == Instruction::URem ||
125 I->getOpcode() == Instruction::SRem ||
126 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000127 return true;
128 return false;
129}
130
Chris Lattner7e708292002-06-25 16:13:24 +0000131void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000132 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000133
134 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000135 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerfb5be092003-08-13 16:16:26 +0000136 ValueRankMap[I] = ++i;
137
Chris Lattner7e708292002-06-25 16:13:24 +0000138 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000139 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000140 E = RPOT.end(); I != E; ++I) {
141 BasicBlock *BB = *I;
142 unsigned BBRank = RankMap[BB] = ++i << 16;
143
144 // Walk the basic block, adding precomputed ranks for any instructions that
145 // we cannot move. This ensures that the ranks for these instructions are
146 // all different in the block.
147 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
148 if (isUnmovableInstruction(I))
149 ValueRankMap[I] = ++BBRank;
150 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000151}
152
153unsigned Reassociate::getRank(Value *V) {
Chris Lattnerfb5be092003-08-13 16:16:26 +0000154 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
155
Chris Lattner08b43922005-05-07 04:08:02 +0000156 Instruction *I = dyn_cast<Instruction>(V);
157 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattner4fd56002002-05-08 22:19:27 +0000158
Chris Lattner08b43922005-05-07 04:08:02 +0000159 unsigned &CachedRank = ValueRankMap[I];
160 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000161
Chris Lattner08b43922005-05-07 04:08:02 +0000162 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
163 // we can reassociate expressions for code motion! Since we do not recurse
164 // for PHI nodes, we cannot have infinite recursion here, because there
165 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000166 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
167 for (unsigned i = 0, e = I->getNumOperands();
168 i != e && Rank != MaxRank; ++i)
169 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000170
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000171 // If this is a not or neg instruction, do not count it for rank. This
172 // assures us that X and ~X will have the same rank.
Chris Lattner42a75512007-01-15 02:27:26 +0000173 if (!I->getType()->isInteger() ||
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000174 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
175 ++Rank;
176
Bill Wendling832171c2006-12-07 20:04:42 +0000177 //DOUT << "Calculated Rank[" << V->getName() << "] = "
178 // << Rank << "\n";
Jeff Cohen00b168892005-07-27 06:12:32 +0000179
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000180 return CachedRank = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000181}
182
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000183/// isReassociableOp - Return true if V is an instruction of the specified
184/// opcode and if it only has one use.
185static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000186 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000187 cast<Instruction>(V)->getOpcode() == Opcode)
188 return cast<BinaryOperator>(V);
189 return 0;
190}
Chris Lattner4fd56002002-05-08 22:19:27 +0000191
Chris Lattnerf33151a2005-05-08 21:28:52 +0000192/// LowerNegateToMultiply - Replace 0-X with X*-1.
193///
194static Instruction *LowerNegateToMultiply(Instruction *Neg) {
Reid Spencer24d6da52007-01-21 00:29:26 +0000195 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000196
Chris Lattner6934a042007-02-11 01:23:03 +0000197 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, "",Neg);
198 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000199 Neg->replaceAllUsesWith(Res);
200 Neg->eraseFromParent();
201 return Res;
202}
203
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000204// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
205// Note that if D is also part of the expression tree that we recurse to
206// linearize it as well. Besides that case, this does not recurse into A,B, or
207// C.
208void Reassociate::LinearizeExpr(BinaryOperator *I) {
209 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
210 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000211 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000212 isReassociableOp(RHS, I->getOpcode()) &&
213 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000214
Bill Wendling832171c2006-12-07 20:04:42 +0000215 DOUT << "Linear" << *LHS << *RHS << *I;
Chris Lattner4fd56002002-05-08 22:19:27 +0000216
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000217 // Move the RHS instruction to live immediately before I, avoiding breaking
218 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000219 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000220
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000221 // Move operands around to do the linearization.
222 I->setOperand(1, RHS->getOperand(0));
223 RHS->setOperand(0, LHS);
224 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000225
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000226 ++NumLinear;
227 MadeChange = true;
Bill Wendling832171c2006-12-07 20:04:42 +0000228 DOUT << "Linearized: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000229
230 // If D is part of this expression tree, tail recurse.
231 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
232 LinearizeExpr(I);
233}
234
235
236/// LinearizeExprTree - Given an associative binary expression tree, traverse
237/// all of the uses putting it into canonical form. This forces a left-linear
238/// form of the the expression (((a+b)+c)+d), and collects information about the
239/// rank of the non-tree operands.
240///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000241/// NOTE: These intentionally destroys the expression tree operands (turning
242/// them into undef values) to reduce #uses of the values. This means that the
243/// caller MUST use something like RewriteExprTree to put the values back in.
244///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000245void Reassociate::LinearizeExprTree(BinaryOperator *I,
246 std::vector<ValueEntry> &Ops) {
247 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
248 unsigned Opcode = I->getOpcode();
249
250 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
251 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
252 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
253
Chris Lattnerf33151a2005-05-08 21:28:52 +0000254 // If this is a multiply expression tree and it contains internal negations,
255 // transform them into multiplies by -1 so they can be reassociated.
256 if (I->getOpcode() == Instruction::Mul) {
257 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
258 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
259 LHSBO = isReassociableOp(LHS, Opcode);
260 }
261 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
262 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
263 RHSBO = isReassociableOp(RHS, Opcode);
264 }
265 }
266
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000267 if (!LHSBO) {
268 if (!RHSBO) {
269 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
270 // such, just remember these operands and their rank.
271 Ops.push_back(ValueEntry(getRank(LHS), LHS));
272 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000273
274 // Clear the leaves out.
275 I->setOperand(0, UndefValue::get(I->getType()));
276 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000277 return;
278 } else {
279 // Turn X+(Y+Z) -> (Y+Z)+X
280 std::swap(LHSBO, RHSBO);
281 std::swap(LHS, RHS);
282 bool Success = !I->swapOperands();
283 assert(Success && "swapOperands failed");
284 MadeChange = true;
285 }
286 } else if (RHSBO) {
287 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
288 // part of the expression tree.
289 LinearizeExpr(I);
290 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
291 RHS = I->getOperand(1);
292 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000293 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000294
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000295 // Okay, now we know that the LHS is a nested expression and that the RHS is
296 // not. Perform reassociation.
297 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000298
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000299 // Move LHS right before I to make sure that the tree expression dominates all
300 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000301 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000302
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000303 // Linearize the expression tree on the LHS.
304 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000305
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000306 // Remember the RHS operand and its rank.
307 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnere9efecb2006-03-14 16:04:29 +0000308
309 // Clear the RHS leaf out.
310 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000311}
312
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000313// RewriteExprTree - Now that the operands for this expression tree are
314// linearized and optimized, emit them in-order. This function is written to be
315// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000316void Reassociate::RewriteExprTree(BinaryOperator *I,
317 std::vector<ValueEntry> &Ops,
318 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000319 if (i+2 == Ops.size()) {
320 if (I->getOperand(0) != Ops[i].Op ||
321 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000322 Value *OldLHS = I->getOperand(0);
Bill Wendling832171c2006-12-07 20:04:42 +0000323 DOUT << "RA: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000324 I->setOperand(0, Ops[i].Op);
325 I->setOperand(1, Ops[i+1].Op);
Bill Wendling832171c2006-12-07 20:04:42 +0000326 DOUT << "TO: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000327 MadeChange = true;
328 ++NumChanged;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000329
330 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
331 // delete the extra, now dead, nodes.
332 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000333 }
334 return;
335 }
336 assert(i+2 < Ops.size() && "Ops index out of range!");
337
338 if (I->getOperand(1) != Ops[i].Op) {
Bill Wendling832171c2006-12-07 20:04:42 +0000339 DOUT << "RA: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000340 I->setOperand(1, Ops[i].Op);
Bill Wendling832171c2006-12-07 20:04:42 +0000341 DOUT << "TO: " << *I;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000342 MadeChange = true;
343 ++NumChanged;
344 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000345
346 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
347 assert(LHS->getOpcode() == I->getOpcode() &&
348 "Improper expression tree!");
349
350 // Compactify the tree instructions together with each other to guarantee
351 // that the expression tree is dominated by all of Ops.
352 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000353 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000354}
355
356
Chris Lattner4fd56002002-05-08 22:19:27 +0000357
Chris Lattnera36e6c82002-05-16 04:37:07 +0000358// NegateValue - Insert instructions before the instruction pointed to by BI,
359// that computes the negative version of the value specified. The negative
360// version of the value is returned, and BI is left pointing at the instruction
361// that should be processed next by the reassociation pass.
362//
Chris Lattner08b43922005-05-07 04:08:02 +0000363static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattnera36e6c82002-05-16 04:37:07 +0000364 // We are trying to expose opportunity for reassociation. One of the things
365 // that we want to do to achieve this is to push a negation as deep into an
366 // expression chain as possible, to expose the add instructions. In practice,
367 // this means that we turn this:
368 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
369 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
370 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman5560c9d2003-08-18 14:43:39 +0000371 // we introduce tons of unnecessary negation instructions...
Chris Lattnera36e6c82002-05-16 04:37:07 +0000372 //
373 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000374 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000375 // Push the negates through the add.
376 I->setOperand(0, NegateValue(I->getOperand(0), BI));
377 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000378
Chris Lattner2cd85da2005-09-02 06:38:04 +0000379 // We must move the add instruction here, because the neg instructions do
380 // not dominate the old add instruction in general. By moving it, we are
381 // assured that the neg instructions we just inserted dominate the
382 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000383 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000384 I->moveBefore(BI);
385 I->setName(I->getName()+".neg");
386 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000387 }
388
389 // Insert a 'neg' instruction that subtracts the value from zero to get the
390 // negation.
391 //
Chris Lattner08b43922005-05-07 04:08:02 +0000392 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
393}
394
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000395/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
396/// X-Y into (X + -Y).
397static bool ShouldBreakUpSubtract(Instruction *Sub) {
398 // If this is a negation, we can't split it up!
399 if (BinaryOperator::isNeg(Sub))
400 return false;
401
402 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000403 // subtract or if this is only used by one.
404 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
405 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000406 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000407 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000408 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000409 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000410 if (Sub->hasOneUse() &&
411 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
412 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000413 return true;
414
415 return false;
416}
417
Chris Lattner08b43922005-05-07 04:08:02 +0000418/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
419/// only used by an add, transform this into (X+(0-Y)) to promote better
420/// reassociation.
421static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattner08b43922005-05-07 04:08:02 +0000422 // Convert a subtract into an add and a neg instruction... so that sub
423 // instructions can be commuted with other add instructions...
424 //
425 // Calculate the negative value of Operand 1 of the sub instruction...
426 // and set it as the RHS of the add instruction we just made...
427 //
Chris Lattner08b43922005-05-07 04:08:02 +0000428 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
429 Instruction *New =
Chris Lattner6934a042007-02-11 01:23:03 +0000430 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, "", Sub);
431 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000432
433 // Everyone now refers to the add instruction.
434 Sub->replaceAllUsesWith(New);
435 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000436
Bill Wendling832171c2006-12-07 20:04:42 +0000437 DOUT << "Negated: " << *New;
Chris Lattner08b43922005-05-07 04:08:02 +0000438 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000439}
440
Chris Lattner0975ed52005-05-07 04:24:13 +0000441/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
442/// by one, change this into a multiply by a constant to assist with further
443/// reassociation.
444static Instruction *ConvertShiftToMul(Instruction *Shl) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000445 // If an operand of this shift is a reassociable multiply, or if the shift
446 // is used by a reassociable multiply or add, turn into a multiply.
447 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
448 (Shl->hasOneUse() &&
449 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
450 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
451 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
452 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
453
Chris Lattner22a66c42006-03-14 06:55:18 +0000454 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
Chris Lattner6934a042007-02-11 01:23:03 +0000455 "", Shl);
456 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000457 Shl->replaceAllUsesWith(Mul);
458 Shl->eraseFromParent();
459 return Mul;
460 }
461 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000462}
463
Chris Lattner109d34d2005-05-08 18:59:37 +0000464// Scan backwards and forwards among values with the same rank as element i to
465// see if X exists. If X does not exist, return i.
466static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
467 Value *X) {
468 unsigned XRank = Ops[i].Rank;
469 unsigned e = Ops.size();
470 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
471 if (Ops[j].Op == X)
472 return j;
473 // Scan backwards
474 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
475 if (Ops[j].Op == X)
476 return j;
477 return i;
478}
479
Chris Lattnere5022fe2006-03-04 09:31:13 +0000480/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
481/// and returning the result. Insert the tree before I.
482static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
483 if (Ops.size() == 1) return Ops.back();
484
485 Value *V1 = Ops.back();
486 Ops.pop_back();
487 Value *V2 = EmitAddTreeOfValues(I, Ops);
488 return BinaryOperator::createAdd(V2, V1, "tmp", I);
489}
490
491/// RemoveFactorFromExpression - If V is an expression tree that is a
492/// multiplication sequence, and if this sequence contains a multiply by Factor,
493/// remove Factor from the tree and return the new tree.
494Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
495 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
496 if (!BO) return 0;
497
498 std::vector<ValueEntry> Factors;
499 LinearizeExprTree(BO, Factors);
500
501 bool FoundFactor = false;
502 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
503 if (Factors[i].Op == Factor) {
504 FoundFactor = true;
505 Factors.erase(Factors.begin()+i);
506 break;
507 }
Chris Lattnere9efecb2006-03-14 16:04:29 +0000508 if (!FoundFactor) {
509 // Make sure to restore the operands to the expression tree.
510 RewriteExprTree(BO, Factors);
511 return 0;
512 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000513
514 if (Factors.size() == 1) return Factors[0].Op;
515
Chris Lattnere9efecb2006-03-14 16:04:29 +0000516 RewriteExprTree(BO, Factors);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000517 return BO;
518}
519
Chris Lattnere9efecb2006-03-14 16:04:29 +0000520/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
521/// add its operands as factors, otherwise add V to the list of factors.
522static void FindSingleUseMultiplyFactors(Value *V,
523 std::vector<Value*> &Factors) {
524 BinaryOperator *BO;
525 if ((!V->hasOneUse() && !V->use_empty()) ||
526 !(BO = dyn_cast<BinaryOperator>(V)) ||
527 BO->getOpcode() != Instruction::Mul) {
528 Factors.push_back(V);
529 return;
530 }
531
532 // Otherwise, add the LHS and RHS to the list of factors.
533 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
534 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
535}
536
537
Chris Lattnere5022fe2006-03-04 09:31:13 +0000538
539Value *Reassociate::OptimizeExpression(BinaryOperator *I,
540 std::vector<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +0000541 // Now that we have the linearized expression tree, try to optimize it.
542 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +0000543 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000544 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000545
Chris Lattnere5022fe2006-03-04 09:31:13 +0000546 unsigned Opcode = I->getOpcode();
547
Chris Lattner46900102005-05-08 00:19:31 +0000548 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
549 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
550 Ops.pop_back();
551 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000552 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +0000553 }
554
555 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000556 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +0000557 switch (Opcode) {
558 default: break;
559 case Instruction::And:
Reid Spencercae57542007-03-02 00:28:52 +0000560 if (CstVal->isZero()) { // ... & 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000561 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000562 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000563 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
564 Ops.pop_back();
565 }
566 break;
567 case Instruction::Mul:
Reid Spencercae57542007-03-02 00:28:52 +0000568 if (CstVal->isZero()) { // ... * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000569 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000570 return CstVal;
Reid Spencercae57542007-03-02 00:28:52 +0000571 } else if (cast<ConstantInt>(CstVal)->isOne()) {
Chris Lattner46900102005-05-08 00:19:31 +0000572 Ops.pop_back(); // ... * 1 -> ...
573 }
574 break;
575 case Instruction::Or:
576 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000577 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000578 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +0000579 }
580 // FALLTHROUGH!
581 case Instruction::Add:
582 case Instruction::Xor:
Reid Spencercae57542007-03-02 00:28:52 +0000583 if (CstVal->isZero()) // ... [|^+] 0 -> ...
Chris Lattner46900102005-05-08 00:19:31 +0000584 Ops.pop_back();
585 break;
586 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000587 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +0000588
589 // Handle destructive annihilation do to identities between elements in the
590 // argument list here.
Chris Lattner109d34d2005-05-08 18:59:37 +0000591 switch (Opcode) {
592 default: break;
593 case Instruction::And:
594 case Instruction::Or:
595 case Instruction::Xor:
596 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
597 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
598 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
599 // First, check for X and ~X in the operand list.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000600 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000601 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
602 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
603 unsigned FoundX = FindInOperandList(Ops, i, X);
604 if (FoundX != i) {
605 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner109d34d2005-05-08 18:59:37 +0000606 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000607 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000608 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner109d34d2005-05-08 18:59:37 +0000609 ++NumAnnihil;
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +0000610 return ConstantInt::getAllOnesValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000611 }
612 }
613 }
614
615 // Next, check for duplicate pairs of values, which we assume are next to
616 // each other, due to our sorting criteria.
Chris Lattner368a3aa2005-09-02 05:23:22 +0000617 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000618 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
619 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
620 // Drop duplicate values.
621 Ops.erase(Ops.begin()+i);
622 --i; --e;
623 IterateOptimization = true;
624 ++NumAnnihil;
625 } else {
626 assert(Opcode == Instruction::Xor);
Chris Lattnerac83b032005-08-24 17:55:32 +0000627 if (e == 2) {
Chris Lattnerac83b032005-08-24 17:55:32 +0000628 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000629 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattnerac83b032005-08-24 17:55:32 +0000630 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000631 // ... X^X -> ...
632 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattnerac83b032005-08-24 17:55:32 +0000633 i -= 1; e -= 2;
Chris Lattner109d34d2005-05-08 18:59:37 +0000634 IterateOptimization = true;
635 ++NumAnnihil;
636 }
637 }
638 }
639 break;
640
641 case Instruction::Add:
642 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattnere5022fe2006-03-04 09:31:13 +0000643 // can simplify the expression. X+-X == 0.
Chris Lattner109d34d2005-05-08 18:59:37 +0000644 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner368a3aa2005-09-02 05:23:22 +0000645 assert(i < Ops.size());
Chris Lattner109d34d2005-05-08 18:59:37 +0000646 // Check for X and -X in the operand list.
647 if (BinaryOperator::isNeg(Ops[i].Op)) {
648 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
649 unsigned FoundX = FindInOperandList(Ops, i, X);
650 if (FoundX != i) {
651 // Remove X and -X from the operand list.
652 if (Ops.size() == 2) {
Chris Lattner109d34d2005-05-08 18:59:37 +0000653 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000654 return Constant::getNullValue(X->getType());
Chris Lattner109d34d2005-05-08 18:59:37 +0000655 } else {
656 Ops.erase(Ops.begin()+i);
Chris Lattner368a3aa2005-09-02 05:23:22 +0000657 if (i < FoundX)
658 --FoundX;
659 else
660 --i; // Need to back up an extra one.
Chris Lattner109d34d2005-05-08 18:59:37 +0000661 Ops.erase(Ops.begin()+FoundX);
662 IterateOptimization = true;
663 ++NumAnnihil;
Chris Lattner368a3aa2005-09-02 05:23:22 +0000664 --i; // Revisit element.
665 e -= 2; // Removed two elements.
Chris Lattner109d34d2005-05-08 18:59:37 +0000666 }
667 }
668 }
669 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000670
671
672 // Scan the operand list, checking to see if there are any common factors
673 // between operands. Consider something like A*A+A*B*C+D. We would like to
674 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
675 // To efficiently find this, we count the number of times a factor occurs
676 // for any ADD operands that are MULs.
677 std::map<Value*, unsigned> FactorOccurrences;
678 unsigned MaxOcc = 0;
679 Value *MaxOccVal = 0;
Reid Spencer24d6da52007-01-21 00:29:26 +0000680 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
681 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
682 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
683 // Compute all of the factors of this added value.
684 std::vector<Value*> Factors;
685 FindSingleUseMultiplyFactors(BOp, Factors);
686 assert(Factors.size() > 1 && "Bad linearize!");
687
688 // Add one to FactorOccurrences for each unique factor in this op.
689 if (Factors.size() == 2) {
690 unsigned Occ = ++FactorOccurrences[Factors[0]];
691 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
692 if (Factors[0] != Factors[1]) { // Don't double count A*A.
693 Occ = ++FactorOccurrences[Factors[1]];
694 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
695 }
696 } else {
697 std::set<Value*> Duplicates;
698 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
699 if (Duplicates.insert(Factors[i]).second) {
700 unsigned Occ = ++FactorOccurrences[Factors[i]];
701 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000702 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000703 }
704 }
Reid Spencer24d6da52007-01-21 00:29:26 +0000705 }
Chris Lattnere5022fe2006-03-04 09:31:13 +0000706 }
707 }
708
709 // If any factor occurred more than one time, we can pull it out.
710 if (MaxOcc > 1) {
Bill Wendling832171c2006-12-07 20:04:42 +0000711 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
Chris Lattnere5022fe2006-03-04 09:31:13 +0000712
713 // Create a new instruction that uses the MaxOccVal twice. If we don't do
714 // this, we could otherwise run into situations where removing a factor
715 // from an expression will drop a use of maxocc, and this can cause
716 // RemoveFactorFromExpression on successive values to behave differently.
717 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
718 std::vector<Value*> NewMulOps;
719 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
720 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
721 NewMulOps.push_back(V);
722 Ops.erase(Ops.begin()+i);
723 --i; --e;
724 }
725 }
726
727 // No need for extra uses anymore.
728 delete DummyInst;
729
Chris Lattnere9efecb2006-03-14 16:04:29 +0000730 unsigned NumAddedValues = NewMulOps.size();
Chris Lattnere5022fe2006-03-04 09:31:13 +0000731 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000732 Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000733
Chris Lattnere9efecb2006-03-14 16:04:29 +0000734 // Now that we have inserted V and its sole use, optimize it. This allows
735 // us to handle cases that require multiple factoring steps, such as this:
736 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
737 if (NumAddedValues > 1)
738 ReassociateExpression(cast<BinaryOperator>(V));
739
Chris Lattnere5022fe2006-03-04 09:31:13 +0000740 ++NumFactor;
741
Dan Gohman30359592008-01-29 13:02:09 +0000742 if (Ops.empty())
Chris Lattnere9efecb2006-03-14 16:04:29 +0000743 return V2;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000744
745 // Add the new value to the list of things being added.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000746 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
Chris Lattnere5022fe2006-03-04 09:31:13 +0000747
748 // Rewrite the tree so that there is now a use of V.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000749 RewriteExprTree(I, Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000750 return OptimizeExpression(I, Ops);
751 }
Chris Lattner109d34d2005-05-08 18:59:37 +0000752 break;
753 //case Instruction::Mul:
754 }
755
Jeff Cohen00b168892005-07-27 06:12:32 +0000756 if (IterateOptimization)
Chris Lattnere5022fe2006-03-04 09:31:13 +0000757 return OptimizeExpression(I, Ops);
758 return 0;
Chris Lattner46900102005-05-08 00:19:31 +0000759}
760
Chris Lattnera36e6c82002-05-16 04:37:07 +0000761
Chris Lattner08b43922005-05-07 04:08:02 +0000762/// ReassociateBB - Inspect all of the instructions in this basic block,
763/// reassociating them as we go.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000764void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000765 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
766 Instruction *BI = BBI++;
Chris Lattner641f02f2005-05-10 03:39:25 +0000767 if (BI->getOpcode() == Instruction::Shl &&
768 isa<ConstantInt>(BI->getOperand(1)))
769 if (Instruction *NI = ConvertShiftToMul(BI)) {
770 MadeChange = true;
771 BI = NI;
772 }
773
Chris Lattner6f156852005-05-08 21:33:47 +0000774 // Reject cases where it is pointless to do this.
Reid Spencere4d87aa2006-12-23 06:05:41 +0000775 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
Reid Spencer9d6565a2007-02-15 02:26:10 +0000776 isa<VectorType>(BI->getType()))
Chris Lattner6f156852005-05-08 21:33:47 +0000777 continue; // Floating point ops are not associative.
778
Chris Lattner08b43922005-05-07 04:08:02 +0000779 // If this is a subtract instruction which is not already in negate form,
780 // see if we can convert it to X+-Y.
Chris Lattnerf33151a2005-05-08 21:28:52 +0000781 if (BI->getOpcode() == Instruction::Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000782 if (ShouldBreakUpSubtract(BI)) {
Chris Lattnerd5b8d922008-02-18 02:18:25 +0000783 BI = BreakUpSubtract(BI);
784 MadeChange = true;
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000785 } else if (BinaryOperator::isNeg(BI)) {
Chris Lattnerf33151a2005-05-08 21:28:52 +0000786 // Otherwise, this is a negation. See if the operand is a multiply tree
787 // and if this is not an inner node of a multiply tree.
788 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
789 (!BI->hasOneUse() ||
790 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
791 BI = LowerNegateToMultiply(BI);
792 MadeChange = true;
793 }
Chris Lattner08b43922005-05-07 04:08:02 +0000794 }
Chris Lattnerf33151a2005-05-08 21:28:52 +0000795 }
Chris Lattnere4b73042002-10-31 17:12:59 +0000796
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000797 // If this instruction is a commutative binary operator, process it.
798 if (!BI->isAssociative()) continue;
799 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen00b168892005-07-27 06:12:32 +0000800
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000801 // If this is an interior node of a reassociable tree, ignore it until we
802 // get to the root of the tree, to avoid N^2 analysis.
803 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
804 continue;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000805
Chris Lattner7b4ad942005-09-02 07:07:58 +0000806 // If this is an add tree that is used by a sub instruction, ignore it
807 // until we process the subtract.
808 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
809 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
810 continue;
811
Chris Lattner895b3922006-03-14 07:11:11 +0000812 ReassociateExpression(I);
813 }
814}
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000815
Chris Lattner895b3922006-03-14 07:11:11 +0000816void Reassociate::ReassociateExpression(BinaryOperator *I) {
817
818 // First, walk the expression tree, linearizing the tree, collecting
819 std::vector<ValueEntry> Ops;
820 LinearizeExprTree(I, Ops);
821
Bill Wendling832171c2006-12-07 20:04:42 +0000822 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000823
824 // Now that we have linearized the tree to a list and have gathered all of
825 // the operands and their ranks, sort the operands by their rank. Use a
826 // stable_sort so that values with equal ranks will have their relative
827 // positions maintained (and so the compiler is deterministic). Note that
828 // this sorts so that the highest ranking values end up at the beginning of
829 // the vector.
830 std::stable_sort(Ops.begin(), Ops.end());
831
832 // OptimizeExpression - Now that we have the expression tree in a convenient
833 // sorted form, optimize it globally if possible.
834 if (Value *V = OptimizeExpression(I, Ops)) {
835 // This expression tree simplified to something that isn't a tree,
836 // eliminate it.
Bill Wendling832171c2006-12-07 20:04:42 +0000837 DOUT << "Reassoc to scalar: " << *V << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000838 I->replaceAllUsesWith(V);
839 RemoveDeadBinaryOp(I);
840 return;
841 }
842
843 // We want to sink immediates as deeply as possible except in the case where
844 // this is a multiply tree used only by an add, and the immediate is a -1.
845 // In this case we reassociate to put the negation on the outside so that we
846 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
847 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
848 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
849 isa<ConstantInt>(Ops.back().Op) &&
850 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
851 Ops.insert(Ops.begin(), Ops.back());
852 Ops.pop_back();
853 }
854
Bill Wendling832171c2006-12-07 20:04:42 +0000855 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
Chris Lattner895b3922006-03-14 07:11:11 +0000856
857 if (Ops.size() == 1) {
858 // This expression tree simplified to something that isn't a tree,
859 // eliminate it.
860 I->replaceAllUsesWith(Ops[0].Op);
861 RemoveDeadBinaryOp(I);
862 } else {
863 // Now that we ordered and optimized the expressions, splat them back into
864 // the expression tree, removing any unneeded nodes.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000865 RewriteExprTree(I, Ops);
Chris Lattner4fd56002002-05-08 22:19:27 +0000866 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000867}
868
869
Chris Lattner7e708292002-06-25 16:13:24 +0000870bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +0000871 // Recalculate the rank map for F
872 BuildRankMap(F);
873
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000874 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +0000875 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000876 ReassociateBB(FI);
Chris Lattner4fd56002002-05-08 22:19:27 +0000877
878 // We are done with the rank map...
879 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +0000880 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000881 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000882}
Brian Gaeked0fde302003-11-11 22:41:34 +0000883