blob: f1a6df420d0bfca6c410e2e48b3ca6ac64bbf090 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a simple loop unroller. It works best when loops have
11// been canonicalized by the -indvars pass, allowing it to determine the trip
12// counts of loops easily.
13//
14// This pass will multi-block loops only if they contain no non-unrolled
15// subloops. The process of unrolling can produce extraneous basic blocks
16// linked with unconditional branches. This will be corrected in the future.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "loop-unroll"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Instructions.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/LoopInfo.h"
27#include "llvm/Analysis/LoopPass.h"
28#include "llvm/Transforms/Utils/Cloning.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/IntrinsicInst.h"
39#include <cstdio>
40#include <algorithm>
41using namespace llvm;
42
43STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
Chris Lattner03dc7d72007-08-02 16:53:43 +000044STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000045
46namespace {
47 cl::opt<unsigned>
48 UnrollThreshold
49 ("unroll-threshold", cl::init(100), cl::Hidden,
50 cl::desc("The cut-off point for automatic loop unrolling"));
51
52 cl::opt<unsigned>
53 UnrollCount
54 ("unroll-count", cl::init(0), cl::Hidden,
55 cl::desc("Use this unroll count for all loops, for testing purposes"));
56
57 class VISIBILITY_HIDDEN LoopUnroll : public LoopPass {
58 LoopInfo *LI; // The current loop information
59 public:
60 static char ID; // Pass ID, replacement for typeid
61 LoopUnroll() : LoopPass((intptr_t)&ID) {}
62
63 /// A magic value for use with the Threshold parameter to indicate
64 /// that the loop unroll should be performed regardless of how much
65 /// code expansion would result.
66 static const unsigned NoThreshold = UINT_MAX;
67
68 bool runOnLoop(Loop *L, LPPassManager &LPM);
69 bool unrollLoop(Loop *L, unsigned Count, unsigned Threshold);
70 BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB);
71
72 /// This transformation requires natural loop information & requires that
73 /// loop preheaders be inserted into the CFG...
74 ///
75 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76 AU.addRequiredID(LoopSimplifyID);
77 AU.addRequiredID(LCSSAID);
78 AU.addRequired<LoopInfo>();
79 AU.addPreservedID(LCSSAID);
80 AU.addPreserved<LoopInfo>();
81 }
82 };
83 char LoopUnroll::ID = 0;
84 RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
85}
86
87LoopPass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
88
89/// ApproximateLoopSize - Approximate the size of the loop.
90static unsigned ApproximateLoopSize(const Loop *L) {
91 unsigned Size = 0;
92 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
93 BasicBlock *BB = L->getBlocks()[i];
94 Instruction *Term = BB->getTerminator();
95 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
96 if (isa<PHINode>(I) && BB == L->getHeader()) {
97 // Ignore PHI nodes in the header.
98 } else if (I->hasOneUse() && I->use_back() == Term) {
99 // Ignore instructions only used by the loop terminator.
100 } else if (isa<DbgInfoIntrinsic>(I)) {
101 // Ignore debug instructions
102 } else {
103 ++Size;
104 }
105
106 // TODO: Ignore expressions derived from PHI and constants if inval of phi
107 // is a constant, or if operation is associative. This will get induction
108 // variables.
109 }
110 }
111
112 return Size;
113}
114
115// RemapInstruction - Convert the instruction operands from referencing the
116// current values into those specified by ValueMap.
117//
118static inline void RemapInstruction(Instruction *I,
119 DenseMap<const Value *, Value*> &ValueMap) {
120 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
121 Value *Op = I->getOperand(op);
122 DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
123 if (It != ValueMap.end()) Op = It->second;
124 I->setOperand(op, Op);
125 }
126}
127
128// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
129// only has one predecessor, and that predecessor only has one successor.
130// Returns the new combined block.
131BasicBlock *LoopUnroll::FoldBlockIntoPredecessor(BasicBlock *BB) {
132 // Merge basic blocks into their predecessor if there is only one distinct
133 // pred, and if there is only one distinct successor of the predecessor, and
134 // if there are no PHI nodes.
135 //
136 BasicBlock *OnlyPred = BB->getSinglePredecessor();
137 if (!OnlyPred) return 0;
138
139 if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
140 return 0;
141
142 DOUT << "Merging: " << *BB << "into: " << *OnlyPred;
143
144 // Resolve any PHI nodes at the start of the block. They are all
145 // guaranteed to have exactly one entry if they exist, unless there are
146 // multiple duplicate (but guaranteed to be equal) entries for the
147 // incoming edges. This occurs when there are multiple edges from
148 // OnlyPred to OnlySucc.
149 //
150 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
151 PN->replaceAllUsesWith(PN->getIncomingValue(0));
152 BB->getInstList().pop_front(); // Delete the phi node...
153 }
154
155 // Delete the unconditional branch from the predecessor...
156 OnlyPred->getInstList().pop_back();
157
158 // Move all definitions in the successor to the predecessor...
159 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
160
161 // Make all PHI nodes that referred to BB now refer to Pred as their
162 // source...
163 BB->replaceAllUsesWith(OnlyPred);
164
165 std::string OldName = BB->getName();
166
167 // Erase basic block from the function...
168 LI->removeBlock(BB);
169 BB->eraseFromParent();
170
171 // Inherit predecessor's name if it exists...
172 if (!OldName.empty() && !OnlyPred->hasName())
173 OnlyPred->setName(OldName);
174
175 return OnlyPred;
176}
177
178bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
179 LI = &getAnalysis<LoopInfo>();
180
181 // Unroll the loop.
182 if (!unrollLoop(L, UnrollCount, UnrollThreshold))
183 return false;
184
185 // Update the loop information for this loop.
186 // If we completely unrolled the loop, remove it from the parent.
187 if (L->getNumBackEdges() == 0)
188 LPM.deleteLoopFromQueue(L);
189
190 return true;
191}
192
193/// Unroll the given loop by UnrollCount, or by a heuristically-determined
194/// value if Count is zero. If Threshold is not NoThreshold, it is a value
195/// to limit code size expansion. If the loop size would expand beyond the
196/// threshold value, unrolling is suppressed. The return value is true if
197/// any transformations are performed.
198///
199bool LoopUnroll::unrollLoop(Loop *L, unsigned Count, unsigned Threshold) {
200 assert(L->isLCSSAForm());
201
202 BasicBlock *Header = L->getHeader();
203 BasicBlock *LatchBlock = L->getLoopLatch();
204 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
205
206 DOUT << "Loop Unroll: F[" << Header->getParent()->getName()
207 << "] Loop %" << Header->getName() << "\n";
208
209 if (!BI || BI->isUnconditional()) {
210 // The loop-rorate pass can be helpful to avoid this in many cases.
211 DOUT << " Can't unroll; loop not terminated by a conditional branch.\n";
212 return false;
213 }
214
215 // Determine the trip count and/or trip multiple. A TripCount value of zero
216 // is used to mean an unknown trip count. The TripMultiple value is the
217 // greatest known integer multiple of the trip count.
218 unsigned TripCount = 0;
219 unsigned TripMultiple = 1;
220 if (Value *TripCountValue = L->getTripCount()) {
221 if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCountValue)) {
222 // Guard against huge trip counts. This also guards against assertions in
223 // APInt from the use of getZExtValue, below.
224 if (TripCountC->getValue().getActiveBits() <= 32) {
225 TripCount = (unsigned)TripCountC->getZExtValue();
226 }
227 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCountValue)) {
228 switch (BO->getOpcode()) {
229 case BinaryOperator::Mul:
230 if (ConstantInt *MultipleC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
231 if (MultipleC->getValue().getActiveBits() <= 32) {
232 TripMultiple = (unsigned)MultipleC->getZExtValue();
233 }
234 }
235 break;
236 default: break;
237 }
238 }
239 }
240 if (TripCount != 0)
241 DOUT << " Trip Count = " << TripCount << "\n";
242 if (TripMultiple != 1)
243 DOUT << " Trip Multiple = " << TripMultiple << "\n";
244
245 // Automatically select an unroll count.
246 if (Count == 0) {
247 // Conservative heuristic: if we know the trip count, see if we can
248 // completely unroll (subject to the threshold, checked below); otherwise
249 // don't unroll.
250 if (TripCount != 0) {
251 Count = TripCount;
252 } else {
253 return false;
254 }
255 }
256
257 // Effectively "DCE" unrolled iterations that are beyond the tripcount
258 // and will never be executed.
259 if (TripCount != 0 && Count > TripCount)
260 Count = TripCount;
261
262 assert(Count > 0);
263 assert(TripMultiple > 0);
264 assert(TripCount == 0 || TripCount % TripMultiple == 0);
265
266 // Enforce the threshold.
267 if (Threshold != NoThreshold) {
268 unsigned LoopSize = ApproximateLoopSize(L);
269 DOUT << " Loop Size = " << LoopSize << "\n";
270 uint64_t Size = (uint64_t)LoopSize*Count;
271 if (TripCount != 1 && Size > Threshold) {
272 DOUT << " TOO LARGE TO UNROLL: "
273 << Size << ">" << Threshold << "\n";
274 return false;
275 }
276 }
277
278 // Are we eliminating the loop control altogether?
279 bool CompletelyUnroll = Count == TripCount;
280
281 // If we know the trip count, we know the multiple...
282 unsigned BreakoutTrip = 0;
283 if (TripCount != 0) {
284 BreakoutTrip = TripCount % Count;
285 TripMultiple = 0;
286 } else {
287 // Figure out what multiple to use.
288 BreakoutTrip = TripMultiple =
289 (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
290 }
291
292 if (CompletelyUnroll) {
293 DOUT << "COMPLETELY UNROLLING loop %" << Header->getName()
294 << " with trip count " << TripCount << "!\n";
295 } else {
296 DOUT << "UNROLLING loop %" << Header->getName()
297 << " by " << Count;
298 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
299 DOUT << " with a breakout at trip " << BreakoutTrip;
300 } else if (TripMultiple != 1) {
301 DOUT << " with " << TripMultiple << " trips per branch";
302 }
303 DOUT << "!\n";
304 }
305
306 std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
307
308 bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
309 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
310
311 // For the first iteration of the loop, we should use the precloned values for
312 // PHI nodes. Insert associations now.
313 typedef DenseMap<const Value*, Value*> ValueMapTy;
314 ValueMapTy LastValueMap;
315 std::vector<PHINode*> OrigPHINode;
316 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
317 PHINode *PN = cast<PHINode>(I);
318 OrigPHINode.push_back(PN);
319 if (Instruction *I =
320 dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
321 if (L->contains(I->getParent()))
322 LastValueMap[I] = I;
323 }
324
325 std::vector<BasicBlock*> Headers;
326 std::vector<BasicBlock*> Latches;
327 Headers.push_back(Header);
328 Latches.push_back(LatchBlock);
329
330 for (unsigned It = 1; It != Count; ++It) {
331 char SuffixBuffer[100];
332 sprintf(SuffixBuffer, ".%d", It);
333
334 std::vector<BasicBlock*> NewBlocks;
335
336 for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
337 E = LoopBlocks.end(); BB != E; ++BB) {
338 ValueMapTy ValueMap;
339 BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
340 Header->getParent()->getBasicBlockList().push_back(New);
341
342 // Loop over all of the PHI nodes in the block, changing them to use the
343 // incoming values from the previous block.
344 if (*BB == Header)
345 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
346 PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
347 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
348 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
349 if (It > 1 && L->contains(InValI->getParent()))
350 InVal = LastValueMap[InValI];
351 ValueMap[OrigPHINode[i]] = InVal;
352 New->getInstList().erase(NewPHI);
353 }
354
355 // Update our running map of newest clones
356 LastValueMap[*BB] = New;
357 for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
358 VI != VE; ++VI)
359 LastValueMap[VI->first] = VI->second;
360
Owen Andersonca0b9d42007-11-27 03:43:35 +0000361 L->addBasicBlockToLoop(New, LI->getBase());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362
363 // Add phi entries for newly created values to all exit blocks except
364 // the successor of the latch block. The successor of the exit block will
365 // be updated specially after unrolling all the way.
366 if (*BB != LatchBlock)
367 for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
368 UI != UE; ++UI) {
369 Instruction *UseInst = cast<Instruction>(*UI);
370 if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
371 PHINode *phi = cast<PHINode>(UseInst);
372 Value *Incoming = phi->getIncomingValueForBlock(*BB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373 phi->addIncoming(Incoming, New);
374 }
375 }
376
377 // Keep track of new headers and latches as we create them, so that
378 // we can insert the proper branches later.
379 if (*BB == Header)
380 Headers.push_back(New);
381 if (*BB == LatchBlock) {
382 Latches.push_back(New);
383
384 // Also, clear out the new latch's back edge so that it doesn't look
385 // like a new loop, so that it's amenable to being merged with adjacent
386 // blocks later on.
387 TerminatorInst *Term = New->getTerminator();
388 assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
389 assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
390 Term->setSuccessor(!ContinueOnTrue, NULL);
391 }
392
393 NewBlocks.push_back(New);
394 }
395
396 // Remap all instructions in the most recent iteration
397 for (unsigned i = 0; i < NewBlocks.size(); ++i)
398 for (BasicBlock::iterator I = NewBlocks[i]->begin(),
399 E = NewBlocks[i]->end(); I != E; ++I)
400 RemapInstruction(I, LastValueMap);
401 }
402
403 // The latch block exits the loop. If there are any PHI nodes in the
404 // successor blocks, update them to use the appropriate values computed as the
405 // last iteration of the loop.
406 if (Count != 1) {
407 SmallPtrSet<PHINode*, 8> Users;
408 for (Value::use_iterator UI = LatchBlock->use_begin(),
409 UE = LatchBlock->use_end(); UI != UE; ++UI)
410 if (PHINode *phi = dyn_cast<PHINode>(*UI))
411 Users.insert(phi);
412
413 BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
414 for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
415 SI != SE; ++SI) {
416 PHINode *PN = *SI;
417 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
418 // If this value was defined in the loop, take the value defined by the
419 // last iteration of the loop.
420 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
421 if (L->contains(InValI->getParent()))
422 InVal = LastValueMap[InVal];
423 }
424 PN->addIncoming(InVal, LastIterationBB);
425 }
426 }
427
428 // Now, if we're doing complete unrolling, loop over the PHI nodes in the
429 // original block, setting them to their incoming values.
430 if (CompletelyUnroll) {
431 BasicBlock *Preheader = L->getLoopPreheader();
432 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
433 PHINode *PN = OrigPHINode[i];
434 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
435 Header->getInstList().erase(PN);
436 }
437 }
438
439 // Now that all the basic blocks for the unrolled iterations are in place,
440 // set up the branches to connect them.
441 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
442 // The original branch was replicated in each unrolled iteration.
443 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
444
445 // The branch destination.
446 unsigned j = (i + 1) % e;
447 BasicBlock *Dest = Headers[j];
448 bool NeedConditional = true;
449
450 // For a complete unroll, make the last iteration end with a branch
451 // to the exit block.
452 if (CompletelyUnroll && j == 0) {
453 Dest = LoopExit;
454 NeedConditional = false;
455 }
456
457 // If we know the trip count or a multiple of it, we can safely use an
458 // unconditional branch for some iterations.
459 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
460 NeedConditional = false;
461 }
462
463 if (NeedConditional) {
464 // Update the conditional branch's successor for the following
465 // iteration.
466 Term->setSuccessor(!ContinueOnTrue, Dest);
467 } else {
468 Term->setUnconditionalDest(Dest);
469 // Merge adjacent basic blocks, if possible.
470 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest)) {
471 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
472 std::replace(Headers.begin(), Headers.end(), Dest, Fold);
473 }
474 }
475 }
476
477 // At this point, the code is well formed. We now do a quick sweep over the
478 // inserted code, doing constant propagation and dead code elimination as we
479 // go.
480 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
481 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
482 BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
483 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
484 Instruction *Inst = I++;
485
486 if (isInstructionTriviallyDead(Inst))
487 (*BB)->getInstList().erase(Inst);
488 else if (Constant *C = ConstantFoldInstruction(Inst)) {
489 Inst->replaceAllUsesWith(C);
490 (*BB)->getInstList().erase(Inst);
491 }
492 }
493
494 NumCompletelyUnrolled += CompletelyUnroll;
495 ++NumUnrolled;
496 return true;
497}