blob: 83be31eada626c88f568808822b5efd1bff0ad3f [file] [log] [blame]
Kostya Serebryany800e03f2011-11-16 01:35:23 +00001//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of AddressSanitizer, an address sanity checker.
11// Details of the algorithm:
12// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "asan"
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/OwningPtr.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/SmallString.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/Function.h"
25#include "llvm/InlineAsm.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/DataTypes.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/IRBuilder.h"
33#include "llvm/Support/MemoryBuffer.h"
34#include "llvm/Support/Regex.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Support/system_error.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Transforms/Instrumentation.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41#include "llvm/Transforms/Utils/ModuleUtils.h"
42#include "llvm/Type.h"
43
44#include <string>
45#include <algorithm>
46
47using namespace llvm;
48
49static const uint64_t kDefaultShadowScale = 3;
50static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
51static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
52
53static const size_t kMaxStackMallocSize = 1 << 16; // 64K
54static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
55static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
56
57static const char *kAsanModuleCtorName = "asan.module_ctor";
58static const char *kAsanReportErrorTemplate = "__asan_report_";
59static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
60static const char *kAsanInitName = "__asan_init";
61static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
62static const char *kAsanMappingScaleName = "__asan_mapping_scale";
63static const char *kAsanStackMallocName = "__asan_stack_malloc";
64static const char *kAsanStackFreeName = "__asan_stack_free";
65
66static const int kAsanStackLeftRedzoneMagic = 0xf1;
67static const int kAsanStackMidRedzoneMagic = 0xf2;
68static const int kAsanStackRightRedzoneMagic = 0xf3;
69static const int kAsanStackPartialRedzoneMagic = 0xf4;
70
71// Command-line flags.
72
73// This flag may need to be replaced with -f[no-]asan-reads.
74static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
75 cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
76static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
77 cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
78// This flag may need to be replaced with -f[no]asan-stack.
79static cl::opt<bool> ClStack("asan-stack",
80 cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
81// This flag may need to be replaced with -f[no]asan-use-after-return.
82static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
83 cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
84// This flag may need to be replaced with -f[no]asan-globals.
85static cl::opt<bool> ClGlobals("asan-globals",
86 cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
87static cl::opt<bool> ClMemIntrin("asan-memintrin",
88 cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
89// This flag may need to be replaced with -fasan-blacklist.
90static cl::opt<std::string> ClBlackListFile("asan-blacklist",
91 cl::desc("File containing the list of functions to ignore "
92 "during instrumentation"), cl::Hidden);
93static cl::opt<bool> ClUseCall("asan-use-call",
94 cl::desc("Use function call to generate a crash"), cl::Hidden,
95 cl::init(true));
96
97// These flags allow to change the shadow mapping.
98// The shadow mapping looks like
99// Shadow = (Mem >> scale) + (1 << offset_log)
100static cl::opt<int> ClMappingScale("asan-mapping-scale",
101 cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
102static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
103 cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
104
105// Optimization flags. Not user visible, used mostly for testing
106// and benchmarking the tool.
107static cl::opt<bool> ClOpt("asan-opt",
108 cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
109static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
110 cl::desc("Instrument the same temp just once"), cl::Hidden,
111 cl::init(true));
112static cl::opt<bool> ClOptGlobals("asan-opt-globals",
113 cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
114
115// Debug flags.
116static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
117 cl::init(0));
118static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
119 cl::Hidden, cl::init(0));
120static cl::opt<std::string> ClDebugFunc("asan-debug-func",
121 cl::Hidden, cl::desc("Debug func"));
122static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
123 cl::Hidden, cl::init(-1));
124static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
125 cl::Hidden, cl::init(-1));
126
127namespace {
128
129// Blacklisted functions are not instrumented.
130// The blacklist file contains one or more lines like this:
131// ---
132// fun:FunctionWildCard
133// ---
134// This is similar to the "ignore" feature of ThreadSanitizer.
135// http://code.google.com/p/data-race-test/wiki/ThreadSanitizerIgnores
136class BlackList {
137 public:
138 BlackList(const std::string &Path);
139 bool isIn(const Function &F);
140 private:
141 Regex *Functions;
142};
143
144/// AddressSanitizer: instrument the code in module to find memory bugs.
145struct AddressSanitizer : public ModulePass {
146 AddressSanitizer();
147 void instrumentMop(Instruction *I);
148 void instrumentAddress(Instruction *OrigIns, IRBuilder<> &IRB,
149 Value *Addr, uint32_t TypeSize, bool IsWrite);
150 Instruction *generateCrashCode(IRBuilder<> &IRB, Value *Addr,
151 bool IsWrite, uint32_t TypeSize);
152 bool instrumentMemIntrinsic(MemIntrinsic *MI);
153 void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
154 Value *Size,
155 Instruction *InsertBefore, bool IsWrite);
156 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
157 bool handleFunction(Module &M, Function &F);
158 bool poisonStackInFunction(Module &M, Function &F);
159 virtual bool runOnModule(Module &M);
160 bool insertGlobalRedzones(Module &M);
161 BranchInst *splitBlockAndInsertIfThen(Instruction *SplitBefore, Value *Cmp);
162 static char ID; // Pass identification, replacement for typeid
163
164 private:
165
166 uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
167 Type *Ty = AI->getAllocatedType();
168 uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8;
169 return SizeInBytes;
170 }
171 uint64_t getAlignedSize(uint64_t SizeInBytes) {
172 return ((SizeInBytes + RedzoneSize - 1)
173 / RedzoneSize) * RedzoneSize;
174 }
175 uint64_t getAlignedAllocaSize(AllocaInst *AI) {
176 uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
177 return getAlignedSize(SizeInBytes);
178 }
179
180 void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
181 Value *ShadowBase, bool DoPoison);
Kostya Serebryany5a3a9c92011-11-18 01:41:06 +0000182 bool LooksLikeCodeInBug11395(Instruction *I);
Kostya Serebryany800e03f2011-11-16 01:35:23 +0000183
184 Module *CurrentModule;
185 LLVMContext *C;
186 TargetData *TD;
187 uint64_t MappingOffset;
188 int MappingScale;
189 size_t RedzoneSize;
190 int LongSize;
191 Type *IntptrTy;
192 Type *IntptrPtrTy;
193 Function *AsanCtorFunction;
194 Function *AsanInitFunction;
195 Instruction *CtorInsertBefore;
196 OwningPtr<BlackList> BL;
197};
198} // namespace
199
200char AddressSanitizer::ID = 0;
201INITIALIZE_PASS(AddressSanitizer, "asan",
202 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
203 false, false)
204AddressSanitizer::AddressSanitizer() : ModulePass(ID) { }
205ModulePass *llvm::createAddressSanitizerPass() {
206 return new AddressSanitizer();
207}
208
209// Create a constant for Str so that we can pass it to the run-time lib.
210static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
211 Constant *StrConst = ConstantArray::get(M.getContext(), Str);
212 return new GlobalVariable(M, StrConst->getType(), true,
213 GlobalValue::PrivateLinkage, StrConst, "");
214}
215
216// Split the basic block and insert an if-then code.
217// Before:
218// Head
219// SplitBefore
220// Tail
221// After:
222// Head
223// if (Cmp)
224// NewBasicBlock
225// SplitBefore
226// Tail
227//
228// Returns the NewBasicBlock's terminator.
229BranchInst *AddressSanitizer::splitBlockAndInsertIfThen(
230 Instruction *SplitBefore, Value *Cmp) {
231 BasicBlock *Head = SplitBefore->getParent();
232 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
233 TerminatorInst *HeadOldTerm = Head->getTerminator();
234 BasicBlock *NewBasicBlock =
235 BasicBlock::Create(*C, "", Head->getParent());
236 BranchInst *HeadNewTerm = BranchInst::Create(/*ifTrue*/NewBasicBlock,
237 /*ifFalse*/Tail,
238 Cmp);
239 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
240
241 BranchInst *CheckTerm = BranchInst::Create(Tail, NewBasicBlock);
242 return CheckTerm;
243}
244
245Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
246 // Shadow >> scale
247 Shadow = IRB.CreateLShr(Shadow, MappingScale);
248 if (MappingOffset == 0)
249 return Shadow;
250 // (Shadow >> scale) | offset
251 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy,
252 MappingOffset));
253}
254
255void AddressSanitizer::instrumentMemIntrinsicParam(Instruction *OrigIns,
256 Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
257 // Check the first byte.
258 {
259 IRBuilder<> IRB(InsertBefore);
260 instrumentAddress(OrigIns, IRB, Addr, 8, IsWrite);
261 }
262 // Check the last byte.
263 {
264 IRBuilder<> IRB(InsertBefore);
265 Value *SizeMinusOne = IRB.CreateSub(
266 Size, ConstantInt::get(Size->getType(), 1));
267 SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false);
268 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
269 Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne);
270 instrumentAddress(OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
271 }
272}
273
274// Instrument memset/memmove/memcpy
275bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
276 Value *Dst = MI->getDest();
277 MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
278 Value *Src = MemTran ? MemTran->getSource() : NULL;
279 Value *Length = MI->getLength();
280
281 Constant *ConstLength = dyn_cast<Constant>(Length);
282 Instruction *InsertBefore = MI;
283 if (ConstLength) {
284 if (ConstLength->isNullValue()) return false;
285 } else {
286 // The size is not a constant so it could be zero -- check at run-time.
287 IRBuilder<> IRB(InsertBefore);
288
289 Value *Cmp = IRB.CreateICmpNE(Length,
290 Constant::getNullValue(Length->getType()));
291 InsertBefore = splitBlockAndInsertIfThen(InsertBefore, Cmp);
292 }
293
294 instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
295 if (Src)
296 instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
297 return true;
298}
299
300static Value *getLDSTOperand(Instruction *I) {
301 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
302 return LI->getPointerOperand();
303 }
304 return cast<StoreInst>(*I).getPointerOperand();
305}
306
307void AddressSanitizer::instrumentMop(Instruction *I) {
308 int IsWrite = isa<StoreInst>(*I);
309 Value *Addr = getLDSTOperand(I);
310 if (ClOpt && ClOptGlobals && isa<GlobalVariable>(Addr)) {
311 // We are accessing a global scalar variable. Nothing to catch here.
312 return;
313 }
314 Type *OrigPtrTy = Addr->getType();
315 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
316
317 assert(OrigTy->isSized());
318 uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
319
320 if (TypeSize != 8 && TypeSize != 16 &&
321 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
322 // Ignore all unusual sizes.
323 return;
324 }
325
326 IRBuilder<> IRB(I);
327 instrumentAddress(I, IRB, Addr, TypeSize, IsWrite);
328}
329
330Instruction *AddressSanitizer::generateCrashCode(
331 IRBuilder<> &IRB, Value *Addr, bool IsWrite, uint32_t TypeSize) {
332
333 if (ClUseCall) {
334 // Here we use a call instead of arch-specific asm to report an error.
335 // This is almost always slower (because the codegen needs to generate
336 // prologue/epilogue for otherwise leaf functions) and generates more code.
337 // This mode could be useful if we can not use SIGILL for some reason.
338 //
339 // IsWrite and TypeSize are encoded in the function name.
340 std::string FunctionName = std::string(kAsanReportErrorTemplate) +
341 (IsWrite ? "store" : "load") + itostr(TypeSize / 8);
342 Value *ReportWarningFunc = CurrentModule->getOrInsertFunction(
343 FunctionName, IRB.getVoidTy(), IntptrTy, NULL);
344 CallInst *Call = IRB.CreateCall(ReportWarningFunc, Addr);
345 Call->setDoesNotReturn();
346 return Call;
347 }
348
349 uint32_t LogOfSizeInBytes = CountTrailingZeros_32(TypeSize / 8);
350 assert(8U * (1 << LogOfSizeInBytes) == TypeSize);
351 uint8_t TelltaleValue = IsWrite * 8 + LogOfSizeInBytes;
352 assert(TelltaleValue < 16);
353
354 // Move the failing address to %rax/%eax
355 FunctionType *Fn1Ty = FunctionType::get(
356 IRB.getVoidTy(), ArrayRef<Type*>(IntptrTy), false);
357 const char *MovStr = LongSize == 32
358 ? "mov $0, %eax" : "mov $0, %rax";
359 Value *AsmMov = InlineAsm::get(
360 Fn1Ty, StringRef(MovStr), StringRef("r"), true);
361 IRB.CreateCall(AsmMov, Addr);
362
363 // crash with ud2; could use int3, but it is less friendly to gdb.
364 // after ud2 put a 1-byte instruction that encodes the access type and size.
365
366 const char *TelltaleInsns[16] = {
367 "push %eax", // 0x50
368 "push %ecx", // 0x51
369 "push %edx", // 0x52
370 "push %ebx", // 0x53
371 "push %esp", // 0x54
372 "push %ebp", // 0x55
373 "push %esi", // 0x56
374 "push %edi", // 0x57
375 "pop %eax", // 0x58
376 "pop %ecx", // 0x59
377 "pop %edx", // 0x5a
378 "pop %ebx", // 0x5b
379 "pop %esp", // 0x5c
380 "pop %ebp", // 0x5d
381 "pop %esi", // 0x5e
382 "pop %edi" // 0x5f
383 };
384
385 std::string AsmStr = "ud2;";
386 AsmStr += TelltaleInsns[TelltaleValue];
387 Value *MyAsm = InlineAsm::get(FunctionType::get(Type::getVoidTy(*C), false),
388 StringRef(AsmStr), StringRef(""), true);
389 CallInst *AsmCall = IRB.CreateCall(MyAsm);
390
391 // This saves us one jump, but triggers a bug in RA (or somewhere else):
392 // while building 483.xalancbmk the compiler goes into infinite loop in
393 // llvm::SpillPlacement::iterate() / RAGreedy::growRegion
394 // AsmCall->setDoesNotReturn();
395 return AsmCall;
396}
397
398void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
399 IRBuilder<> &IRB, Value *Addr,
400 uint32_t TypeSize, bool IsWrite) {
401 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
402
403 Type *ShadowTy = IntegerType::get(
404 *C, std::max(8U, TypeSize >> MappingScale));
405 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
406 Value *ShadowPtr = memToShadow(AddrLong, IRB);
407 Value *CmpVal = Constant::getNullValue(ShadowTy);
408 Value *ShadowValue = IRB.CreateLoad(
409 IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
410
411 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
412
413 Instruction *CheckTerm = splitBlockAndInsertIfThen(
414 cast<Instruction>(Cmp)->getNextNode(), Cmp);
415 IRBuilder<> IRB2(CheckTerm);
416
417 size_t Granularity = 1 << MappingScale;
418 if (TypeSize < 8 * Granularity) {
419 // Addr & (Granularity - 1)
420 Value *Lower3Bits = IRB2.CreateAnd(
421 AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
422 // (Addr & (Granularity - 1)) + size - 1
423 Value *LastAccessedByte = IRB2.CreateAdd(
424 Lower3Bits, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
425 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
426 LastAccessedByte = IRB2.CreateIntCast(
427 LastAccessedByte, IRB.getInt8Ty(), false);
428 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
429 Value *Cmp2 = IRB2.CreateICmpSGE(LastAccessedByte, ShadowValue);
430
431 CheckTerm = splitBlockAndInsertIfThen(CheckTerm, Cmp2);
432 }
433
434 IRBuilder<> IRB1(CheckTerm);
435 Instruction *Crash = generateCrashCode(IRB1, AddrLong, IsWrite, TypeSize);
436 Crash->setDebugLoc(OrigIns->getDebugLoc());
Kostya Serebryanycc1d8562011-12-01 18:54:53 +0000437 ReplaceInstWithInst(CheckTerm, new UnreachableInst(*C));
Kostya Serebryany800e03f2011-11-16 01:35:23 +0000438}
439
440// This function replaces all global variables with new variables that have
441// trailing redzones. It also creates a function that poisons
442// redzones and inserts this function into llvm.global_ctors.
443bool AddressSanitizer::insertGlobalRedzones(Module &M) {
444 SmallVector<GlobalVariable *, 16> GlobalsToChange;
445
446 for (Module::GlobalListType::iterator G = M.getGlobalList().begin(),
447 E = M.getGlobalList().end(); G != E; ++G) {
448 Type *Ty = cast<PointerType>(G->getType())->getElementType();
449 DEBUG(dbgs() << "GLOBAL: " << *G);
450
451 if (!Ty->isSized()) continue;
452 if (!G->hasInitializer()) continue;
Kostya Serebryany7cf2a042011-11-17 23:14:59 +0000453 // Touch only those globals that will not be defined in other modules.
454 // Don't handle ODR type linkages since other modules may be built w/o asan.
Kostya Serebryany2e7fb2f2011-11-17 23:37:53 +0000455 if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
456 G->getLinkage() != GlobalVariable::PrivateLinkage &&
457 G->getLinkage() != GlobalVariable::InternalLinkage)
Kostya Serebryany800e03f2011-11-16 01:35:23 +0000458 continue;
Kostya Serebryanyd2703de2011-11-23 02:10:54 +0000459 // Two problems with thread-locals:
460 // - The address of the main thread's copy can't be computed at link-time.
461 // - Need to poison all copies, not just the main thread's one.
462 if (G->isThreadLocal())
463 continue;
Kostya Serebryany800e03f2011-11-16 01:35:23 +0000464 // For now, just ignore this Alloca if the alignment is large.
465 if (G->getAlignment() > RedzoneSize) continue;
466
467 // Ignore all the globals with the names starting with "\01L_OBJC_".
468 // Many of those are put into the .cstring section. The linker compresses
469 // that section by removing the spare \0s after the string terminator, so
470 // our redzones get broken.
471 if ((G->getName().find("\01L_OBJC_") == 0) ||
472 (G->getName().find("\01l_OBJC_") == 0)) {
473 DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
474 continue;
475 }
476
477 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
478 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
479 // them.
480 if (G->hasSection()) {
481 StringRef Section(G->getSection());
482 if ((Section.find("__OBJC,") == 0) ||
483 (Section.find("__DATA, __objc_") == 0)) {
484 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
485 continue;
486 }
487 }
488
489 GlobalsToChange.push_back(G);
490 }
491
492 size_t n = GlobalsToChange.size();
493 if (n == 0) return false;
494
495 // A global is described by a structure
496 // size_t beg;
497 // size_t size;
498 // size_t size_with_redzone;
499 // const char *name;
500 // We initialize an array of such structures and pass it to a run-time call.
501 StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
502 IntptrTy, IntptrTy, NULL);
503 SmallVector<Constant *, 16> Initializers(n);
504
505 IRBuilder<> IRB(CtorInsertBefore);
506
507 for (size_t i = 0; i < n; i++) {
508 GlobalVariable *G = GlobalsToChange[i];
509 PointerType *PtrTy = cast<PointerType>(G->getType());
510 Type *Ty = PtrTy->getElementType();
511 uint64_t SizeInBytes = TD->getTypeStoreSizeInBits(Ty) / 8;
512 uint64_t RightRedzoneSize = RedzoneSize +
513 (RedzoneSize - (SizeInBytes % RedzoneSize));
514 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
515
516 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
517 Constant *NewInitializer = ConstantStruct::get(
518 NewTy, G->getInitializer(),
519 Constant::getNullValue(RightRedZoneTy), NULL);
520
521 GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
522
523 // Create a new global variable with enough space for a redzone.
524 GlobalVariable *NewGlobal = new GlobalVariable(
525 M, NewTy, G->isConstant(), G->getLinkage(),
526 NewInitializer, "", G, G->isThreadLocal());
527 NewGlobal->copyAttributesFrom(G);
528 NewGlobal->setAlignment(RedzoneSize);
529
530 Value *Indices2[2];
531 Indices2[0] = IRB.getInt32(0);
532 Indices2[1] = IRB.getInt32(0);
533
534 G->replaceAllUsesWith(
535 ConstantExpr::getGetElementPtr(NewGlobal, Indices2, 2));
536 NewGlobal->takeName(G);
537 G->eraseFromParent();
538
539 Initializers[i] = ConstantStruct::get(
540 GlobalStructTy,
541 ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
542 ConstantInt::get(IntptrTy, SizeInBytes),
543 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
544 ConstantExpr::getPointerCast(Name, IntptrTy),
545 NULL);
546 DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal);
547 }
548
549 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
550 GlobalVariable *AllGlobals = new GlobalVariable(
551 M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
552 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
553
554 Function *AsanRegisterGlobals = cast<Function>(M.getOrInsertFunction(
555 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
556 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
557
558 IRB.CreateCall2(AsanRegisterGlobals,
559 IRB.CreatePointerCast(AllGlobals, IntptrTy),
560 ConstantInt::get(IntptrTy, n));
561
562 DEBUG(dbgs() << M);
563 return true;
564}
565
566// virtual
567bool AddressSanitizer::runOnModule(Module &M) {
568 // Initialize the private fields. No one has accessed them before.
569 TD = getAnalysisIfAvailable<TargetData>();
570 if (!TD)
571 return false;
572 BL.reset(new BlackList(ClBlackListFile));
573
574 CurrentModule = &M;
575 C = &(M.getContext());
576 LongSize = TD->getPointerSizeInBits();
577 IntptrTy = Type::getIntNTy(*C, LongSize);
578 IntptrPtrTy = PointerType::get(IntptrTy, 0);
579
580 AsanCtorFunction = Function::Create(
581 FunctionType::get(Type::getVoidTy(*C), false),
582 GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
583 BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
584 CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB);
585
586 // call __asan_init in the module ctor.
587 IRBuilder<> IRB(CtorInsertBefore);
588 AsanInitFunction = cast<Function>(
589 M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
590 AsanInitFunction->setLinkage(Function::ExternalLinkage);
591 IRB.CreateCall(AsanInitFunction);
592
593 MappingOffset = LongSize == 32
594 ? kDefaultShadowOffset32 : kDefaultShadowOffset64;
595 if (ClMappingOffsetLog >= 0) {
596 if (ClMappingOffsetLog == 0) {
597 // special case
598 MappingOffset = 0;
599 } else {
600 MappingOffset = 1ULL << ClMappingOffsetLog;
601 }
602 }
603 MappingScale = kDefaultShadowScale;
604 if (ClMappingScale) {
605 MappingScale = ClMappingScale;
606 }
607 // Redzone used for stack and globals is at least 32 bytes.
608 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
609 RedzoneSize = std::max(32, (int)(1 << MappingScale));
610
611 bool Res = false;
612
613 if (ClGlobals)
614 Res |= insertGlobalRedzones(M);
615
616 // Tell the run-time the current values of mapping offset and scale.
617 GlobalValue *asan_mapping_offset =
618 new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
619 ConstantInt::get(IntptrTy, MappingOffset),
620 kAsanMappingOffsetName);
621 GlobalValue *asan_mapping_scale =
622 new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
623 ConstantInt::get(IntptrTy, MappingScale),
624 kAsanMappingScaleName);
625 // Read these globals, otherwise they may be optimized away.
626 IRB.CreateLoad(asan_mapping_scale, true);
627 IRB.CreateLoad(asan_mapping_offset, true);
628
629
630 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
631 if (F->isDeclaration()) continue;
632 Res |= handleFunction(M, *F);
633 }
634
635 appendToGlobalCtors(M, AsanCtorFunction, 1 /*high priority*/);
636
637 return Res;
638}
639
640bool AddressSanitizer::handleFunction(Module &M, Function &F) {
641 if (BL->isIn(F)) return false;
642 if (&F == AsanCtorFunction) return false;
643
644 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
645 return false;
646 // We want to instrument every address only once per basic block
647 // (unless there are calls between uses).
648 SmallSet<Value*, 16> TempsToInstrument;
649 SmallVector<Instruction*, 16> ToInstrument;
650
651 // Fill the set of memory operations to instrument.
652 for (Function::iterator FI = F.begin(), FE = F.end();
653 FI != FE; ++FI) {
654 TempsToInstrument.clear();
655 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
656 BI != BE; ++BI) {
657 if ((isa<LoadInst>(BI) && ClInstrumentReads) ||
658 (isa<StoreInst>(BI) && ClInstrumentWrites)) {
659 Value *Addr = getLDSTOperand(BI);
660 if (ClOpt && ClOptSameTemp) {
661 if (!TempsToInstrument.insert(Addr))
662 continue; // We've seen this temp in the current BB.
663 }
664 } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
665 // ok, take it.
666 } else {
667 if (isa<CallInst>(BI)) {
668 // A call inside BB.
669 TempsToInstrument.clear();
670 }
671 continue;
672 }
673 ToInstrument.push_back(BI);
674 }
675 }
676
677 // Instrument.
678 int NumInstrumented = 0;
679 for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
680 Instruction *Inst = ToInstrument[i];
681 if (ClDebugMin < 0 || ClDebugMax < 0 ||
682 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
683 if (isa<StoreInst>(Inst) || isa<LoadInst>(Inst))
684 instrumentMop(Inst);
685 else
686 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
687 }
688 NumInstrumented++;
689 }
690
691 DEBUG(dbgs() << F);
692
693 bool ChangedStack = poisonStackInFunction(M, F);
694
695 // For each NSObject descendant having a +load method, this method is invoked
696 // by the ObjC runtime before any of the static constructors is called.
697 // Therefore we need to instrument such methods with a call to __asan_init
698 // at the beginning in order to initialize our runtime before any access to
699 // the shadow memory.
700 // We cannot just ignore these methods, because they may call other
701 // instrumented functions.
702 if (F.getName().find(" load]") != std::string::npos) {
703 IRBuilder<> IRB(F.begin()->begin());
704 IRB.CreateCall(AsanInitFunction);
705 }
706
707 return NumInstrumented > 0 || ChangedStack;
708}
709
710static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
711 if (ShadowRedzoneSize == 1) return PoisonByte;
712 if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
713 if (ShadowRedzoneSize == 4)
714 return (PoisonByte << 24) + (PoisonByte << 16) +
715 (PoisonByte << 8) + (PoisonByte);
716 assert(0 && "ShadowRedzoneSize is either 1, 2 or 4");
717 return 0;
718}
719
720static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
721 size_t Size,
722 size_t RedzoneSize,
723 size_t ShadowGranularity,
724 uint8_t Magic) {
725 for (size_t i = 0; i < RedzoneSize;
726 i+= ShadowGranularity, Shadow++) {
727 if (i + ShadowGranularity <= Size) {
728 *Shadow = 0; // fully addressable
729 } else if (i >= Size) {
730 *Shadow = Magic; // unaddressable
731 } else {
732 *Shadow = Size - i; // first Size-i bytes are addressable
733 }
734 }
735}
736
737void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
738 IRBuilder<> IRB,
739 Value *ShadowBase, bool DoPoison) {
740 size_t ShadowRZSize = RedzoneSize >> MappingScale;
741 assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
742 Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
743 Type *RZPtrTy = PointerType::get(RZTy, 0);
744
745 Value *PoisonLeft = ConstantInt::get(RZTy,
746 ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
747 Value *PoisonMid = ConstantInt::get(RZTy,
748 ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
749 Value *PoisonRight = ConstantInt::get(RZTy,
750 ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
751
752 // poison the first red zone.
753 IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
754
755 // poison all other red zones.
756 uint64_t Pos = RedzoneSize;
757 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
758 AllocaInst *AI = AllocaVec[i];
759 uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
760 uint64_t AlignedSize = getAlignedAllocaSize(AI);
761 assert(AlignedSize - SizeInBytes < RedzoneSize);
762 Value *Ptr = NULL;
763
764 Pos += AlignedSize;
765
766 assert(ShadowBase->getType() == IntptrTy);
767 if (SizeInBytes < AlignedSize) {
768 // Poison the partial redzone at right
769 Ptr = IRB.CreateAdd(
770 ShadowBase, ConstantInt::get(IntptrTy,
771 (Pos >> MappingScale) - ShadowRZSize));
772 size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes);
773 uint32_t Poison = 0;
774 if (DoPoison) {
775 PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
776 RedzoneSize,
777 1ULL << MappingScale,
778 kAsanStackPartialRedzoneMagic);
779 }
780 Value *PartialPoison = ConstantInt::get(RZTy, Poison);
781 IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
782 }
783
784 // Poison the full redzone at right.
785 Ptr = IRB.CreateAdd(ShadowBase,
786 ConstantInt::get(IntptrTy, Pos >> MappingScale));
787 Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
788 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
789
790 Pos += RedzoneSize;
791 }
792}
793
Kostya Serebryany5a3a9c92011-11-18 01:41:06 +0000794// Workaround for bug 11395: we don't want to instrument stack in functions
795// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
Kostya Serebryanyd2703de2011-11-23 02:10:54 +0000796// FIXME: remove once the bug 11395 is fixed.
Kostya Serebryany5a3a9c92011-11-18 01:41:06 +0000797bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
798 if (LongSize != 32) return false;
799 CallInst *CI = dyn_cast<CallInst>(I);
800 if (!CI || !CI->isInlineAsm()) return false;
801 if (CI->getNumArgOperands() <= 5) return false;
802 // We have inline assembly with quite a few arguments.
803 return true;
804}
805
Kostya Serebryany800e03f2011-11-16 01:35:23 +0000806// Find all static Alloca instructions and put
807// poisoned red zones around all of them.
808// Then unpoison everything back before the function returns.
809//
810// Stack poisoning does not play well with exception handling.
811// When an exception is thrown, we essentially bypass the code
812// that unpoisones the stack. This is why the run-time library has
813// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
814// stack in the interceptor. This however does not work inside the
815// actual function which catches the exception. Most likely because the
816// compiler hoists the load of the shadow value somewhere too high.
817// This causes asan to report a non-existing bug on 453.povray.
818// It sounds like an LLVM bug.
819bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
820 if (!ClStack) return false;
821 SmallVector<AllocaInst*, 16> AllocaVec;
822 SmallVector<Instruction*, 8> RetVec;
823 uint64_t TotalSize = 0;
824
825 // Filter out Alloca instructions we want (and can) handle.
826 // Collect Ret instructions.
827 for (Function::iterator FI = F.begin(), FE = F.end();
828 FI != FE; ++FI) {
829 BasicBlock &BB = *FI;
830 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
831 BI != BE; ++BI) {
Kostya Serebryany5a3a9c92011-11-18 01:41:06 +0000832 if (LooksLikeCodeInBug11395(BI)) return false;
Kostya Serebryany800e03f2011-11-16 01:35:23 +0000833 if (isa<ReturnInst>(BI)) {
834 RetVec.push_back(BI);
835 continue;
836 }
837
838 AllocaInst *AI = dyn_cast<AllocaInst>(BI);
839 if (!AI) continue;
840 if (AI->isArrayAllocation()) continue;
841 if (!AI->isStaticAlloca()) continue;
842 if (!AI->getAllocatedType()->isSized()) continue;
843 if (AI->getAlignment() > RedzoneSize) continue;
844 AllocaVec.push_back(AI);
845 uint64_t AlignedSize = getAlignedAllocaSize(AI);
846 TotalSize += AlignedSize;
847 }
848 }
849
850 if (AllocaVec.empty()) return false;
851
852 uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize;
853
854 bool DoStackMalloc = ClUseAfterReturn
855 && LocalStackSize <= kMaxStackMallocSize;
856
857 Instruction *InsBefore = AllocaVec[0];
858 IRBuilder<> IRB(InsBefore);
859
860
861 Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
862 AllocaInst *MyAlloca =
863 new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
864 MyAlloca->setAlignment(RedzoneSize);
865 assert(MyAlloca->isStaticAlloca());
866 Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
867 Value *LocalStackBase = OrigStackBase;
868
869 if (DoStackMalloc) {
870 Value *AsanStackMallocFunc = M.getOrInsertFunction(
871 kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL);
872 LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
873 ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
874 }
875
876 // This string will be parsed by the run-time (DescribeStackAddress).
877 SmallString<2048> StackDescriptionStorage;
878 raw_svector_ostream StackDescription(StackDescriptionStorage);
879 StackDescription << F.getName() << " " << AllocaVec.size() << " ";
880
881 uint64_t Pos = RedzoneSize;
882 // Replace Alloca instructions with base+offset.
883 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
884 AllocaInst *AI = AllocaVec[i];
885 uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
886 StringRef Name = AI->getName();
887 StackDescription << Pos << " " << SizeInBytes << " "
888 << Name.size() << " " << Name << " ";
889 uint64_t AlignedSize = getAlignedAllocaSize(AI);
890 assert((AlignedSize % RedzoneSize) == 0);
891 AI->replaceAllUsesWith(
892 IRB.CreateIntToPtr(
893 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
894 AI->getType()));
895 Pos += AlignedSize + RedzoneSize;
896 }
897 assert(Pos == LocalStackSize);
898
899 // Write the Magic value and the frame description constant to the redzone.
900 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
901 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
902 BasePlus0);
903 Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
904 ConstantInt::get(IntptrTy, LongSize/8));
905 BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
906 Value *Description = IRB.CreatePointerCast(
907 createPrivateGlobalForString(M, StackDescription.str()),
908 IntptrTy);
909 IRB.CreateStore(Description, BasePlus1);
910
911 // Poison the stack redzones at the entry.
912 Value *ShadowBase = memToShadow(LocalStackBase, IRB);
913 PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);
914
915 Value *AsanStackFreeFunc = NULL;
916 if (DoStackMalloc) {
917 AsanStackFreeFunc = M.getOrInsertFunction(
918 kAsanStackFreeName, IRB.getVoidTy(),
919 IntptrTy, IntptrTy, IntptrTy, NULL);
920 }
921
922 // Unpoison the stack before all ret instructions.
923 for (size_t i = 0, n = RetVec.size(); i < n; i++) {
924 Instruction *Ret = RetVec[i];
925 IRBuilder<> IRBRet(Ret);
926
927 // Mark the current frame as retired.
928 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
929 BasePlus0);
930 // Unpoison the stack.
931 PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);
932
933 if (DoStackMalloc) {
934 IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
935 ConstantInt::get(IntptrTy, LocalStackSize),
936 OrigStackBase);
937 }
938 }
939
940 if (ClDebugStack) {
941 DEBUG(dbgs() << F);
942 }
943
944 return true;
945}
946
947BlackList::BlackList(const std::string &Path) {
948 Functions = NULL;
949 const char *kFunPrefix = "fun:";
950 if (!ClBlackListFile.size()) return;
951 std::string Fun;
952
953 OwningPtr<MemoryBuffer> File;
954 if (error_code EC = MemoryBuffer::getFile(ClBlackListFile.c_str(), File)) {
Kostya Serebryanycc1d8562011-12-01 18:54:53 +0000955 report_fatal_error("Can't open blacklist file " + ClBlackListFile + ": " +
956 EC.message());
Kostya Serebryany800e03f2011-11-16 01:35:23 +0000957 }
958 MemoryBuffer *Buff = File.take();
959 const char *Data = Buff->getBufferStart();
960 size_t DataLen = Buff->getBufferSize();
961 SmallVector<StringRef, 16> Lines;
962 SplitString(StringRef(Data, DataLen), Lines, "\n\r");
963 for (size_t i = 0, numLines = Lines.size(); i < numLines; i++) {
964 if (Lines[i].startswith(kFunPrefix)) {
965 std::string ThisFunc = Lines[i].substr(strlen(kFunPrefix));
966 if (Fun.size()) {
967 Fun += "|";
968 }
969 // add ThisFunc replacing * with .*
970 for (size_t j = 0, n = ThisFunc.size(); j < n; j++) {
971 if (ThisFunc[j] == '*')
972 Fun += '.';
973 Fun += ThisFunc[j];
974 }
975 }
976 }
977 if (Fun.size()) {
978 Functions = new Regex(Fun);
979 }
980}
981
982bool BlackList::isIn(const Function &F) {
983 if (Functions) {
984 bool Res = Functions->match(F.getName());
985 return Res;
986 }
987 return false;
988}