blob: 238505167877fe42311b937890ce1d42dde0b943 [file] [log] [blame]
Chris Lattner6148c022001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner6148c022001-12-03 17:28:42 +00009//
Chris Lattner40bf8b42004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Reid Spencer47a53ac2006-08-18 09:01:07 +000014// This transformation makes the following changes to each loop with an
Chris Lattner40bf8b42004-04-02 20:24:31 +000015// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
20// 3. Any pointer arithmetic recurrences are raised to use array subscripts.
21//
22// If the trip count of a loop is computable, this pass also makes the following
23// changes:
24// 1. The exit condition for the loop is canonicalized to compare the
25// induction value against the exit value. This turns loops like:
26// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
27// 2. Any use outside of the loop of an expression derived from the indvar
28// is changed to compute the derived value outside of the loop, eliminating
29// the dependence on the exit value of the induction variable. If the only
30// purpose of the loop is to compute the exit value of some derived
31// expression, this transformation will make the loop dead.
32//
33// This transformation should be followed by strength reduction after all of the
34// desired loop transformations have been performed. Additionally, on targets
35// where it is profitable, the loop could be transformed to count down to zero
36// (the "do loop" optimization).
Chris Lattner6148c022001-12-03 17:28:42 +000037//
38//===----------------------------------------------------------------------===//
39
Chris Lattner0e5f4992006-12-19 21:40:18 +000040#define DEBUG_TYPE "indvars"
Chris Lattner022103b2002-05-07 20:03:00 +000041#include "llvm/Transforms/Scalar.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000042#include "llvm/BasicBlock.h"
Chris Lattner59fdaee2004-04-15 15:21:43 +000043#include "llvm/Constants.h"
Chris Lattner18b3c972003-12-22 05:02:01 +000044#include "llvm/Instructions.h"
Chris Lattner40bf8b42004-04-02 20:24:31 +000045#include "llvm/Type.h"
Nate Begeman36f891b2005-07-30 00:12:19 +000046#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswell47df12d2003-12-18 17:19:19 +000047#include "llvm/Analysis/LoopInfo.h"
Devang Patel5ee99972007-03-07 06:39:01 +000048#include "llvm/Analysis/LoopPass.h"
Chris Lattner455889a2002-02-12 22:39:50 +000049#include "llvm/Support/CFG.h"
Reid Spencer9133fe22007-02-05 23:32:05 +000050#include "llvm/Support/Compiler.h"
Chris Lattneree4f13a2007-01-07 01:14:12 +000051#include "llvm/Support/Debug.h"
Chris Lattnera4b9c782004-10-11 23:06:50 +000052#include "llvm/Support/GetElementPtrTypeIterator.h"
John Criswell47df12d2003-12-18 17:19:19 +000053#include "llvm/Transforms/Utils/Local.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000054#include "llvm/Support/CommandLine.h"
Reid Spencera54b7cb2007-01-12 07:05:14 +000055#include "llvm/ADT/SmallVector.h"
Dan Gohmanc2390b12009-02-12 22:19:27 +000056#include "llvm/ADT/SetVector.h"
Chris Lattner1a6111f2008-11-16 07:17:51 +000057#include "llvm/ADT/SmallPtrSet.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000058#include "llvm/ADT/Statistic.h"
John Criswell47df12d2003-12-18 17:19:19 +000059using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000060
Chris Lattner0e5f4992006-12-19 21:40:18 +000061STATISTIC(NumRemoved , "Number of aux indvars removed");
62STATISTIC(NumPointer , "Number of pointer indvars promoted");
63STATISTIC(NumInserted, "Number of canonical indvars added");
64STATISTIC(NumReplaced, "Number of exit values replaced");
65STATISTIC(NumLFTR , "Number of loop exit tests replaced");
Chris Lattner3324e712003-12-22 03:58:44 +000066
Chris Lattner0e5f4992006-12-19 21:40:18 +000067namespace {
Devang Patel5ee99972007-03-07 06:39:01 +000068 class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
Chris Lattner40bf8b42004-04-02 20:24:31 +000069 LoopInfo *LI;
70 ScalarEvolution *SE;
Chris Lattner15cad752003-12-23 07:47:09 +000071 bool Changed;
Chris Lattner3324e712003-12-22 03:58:44 +000072 public:
Devang Patel794fd752007-05-01 21:15:47 +000073
Nick Lewyckyecd94c82007-05-06 13:37:16 +000074 static char ID; // Pass identification, replacement for typeid
Dan Gohmanae73dc12008-09-04 17:05:41 +000075 IndVarSimplify() : LoopPass(&ID) {}
Devang Patel794fd752007-05-01 21:15:47 +000076
Devang Patel5ee99972007-03-07 06:39:01 +000077 bool runOnLoop(Loop *L, LPPassManager &LPM);
78 bool doInitialization(Loop *L, LPPassManager &LPM);
79 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Devang Patelbc533cd2007-09-10 18:08:23 +000080 AU.addRequired<ScalarEvolution>();
Devang Patel5ee99972007-03-07 06:39:01 +000081 AU.addRequiredID(LCSSAID);
82 AU.addRequiredID(LoopSimplifyID);
Devang Patel5ee99972007-03-07 06:39:01 +000083 AU.addRequired<LoopInfo>();
84 AU.addPreservedID(LoopSimplifyID);
85 AU.addPreservedID(LCSSAID);
86 AU.setPreservesCFG();
87 }
Chris Lattner15cad752003-12-23 07:47:09 +000088
Chris Lattner40bf8b42004-04-02 20:24:31 +000089 private:
Devang Patel5ee99972007-03-07 06:39:01 +000090
Chris Lattner40bf8b42004-04-02 20:24:31 +000091 void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
Chris Lattner1a6111f2008-11-16 07:17:51 +000092 SmallPtrSet<Instruction*, 16> &DeadInsts);
Dan Gohmanc2390b12009-02-12 22:19:27 +000093 void LinearFunctionTestReplace(Loop *L, SCEVHandle IterationCount, Value *IndVar,
94 BasicBlock *ExitingBlock,
95 BranchInst *BI,
96 SCEVExpander &Rewriter);
Dan Gohman5a6c4482008-08-05 22:34:21 +000097 void RewriteLoopExitValues(Loop *L, SCEV *IterationCount);
Chris Lattner40bf8b42004-04-02 20:24:31 +000098
Chris Lattner1a6111f2008-11-16 07:17:51 +000099 void DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts);
Devang Pateld22a8492008-09-09 21:41:07 +0000100
Devang Patel84e35152008-11-17 21:32:02 +0000101 void HandleFloatingPointIV(Loop *L, PHINode *PH,
102 SmallPtrSet<Instruction*, 16> &DeadInsts);
Chris Lattner3324e712003-12-22 03:58:44 +0000103 };
Chris Lattner5e761402002-09-10 05:24:05 +0000104}
Chris Lattner394437f2001-12-04 04:32:29 +0000105
Dan Gohman844731a2008-05-13 00:00:25 +0000106char IndVarSimplify::ID = 0;
107static RegisterPass<IndVarSimplify>
108X("indvars", "Canonicalize Induction Variables");
109
Daniel Dunbar394f0442008-10-22 23:32:42 +0000110Pass *llvm::createIndVarSimplifyPass() {
Chris Lattner3324e712003-12-22 03:58:44 +0000111 return new IndVarSimplify();
Chris Lattner394437f2001-12-04 04:32:29 +0000112}
113
Chris Lattner40bf8b42004-04-02 20:24:31 +0000114/// DeleteTriviallyDeadInstructions - If any of the instructions is the
115/// specified set are trivially dead, delete them and see if this makes any of
116/// their operands subsequently dead.
117void IndVarSimplify::
Chris Lattner1a6111f2008-11-16 07:17:51 +0000118DeleteTriviallyDeadInstructions(SmallPtrSet<Instruction*, 16> &Insts) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000119 while (!Insts.empty()) {
120 Instruction *I = *Insts.begin();
Chris Lattner1a6111f2008-11-16 07:17:51 +0000121 Insts.erase(I);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000122 if (isInstructionTriviallyDead(I)) {
123 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
124 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
125 Insts.insert(U);
Dan Gohman5cec4db2007-06-19 14:28:31 +0000126 SE->deleteValueFromRecords(I);
Chris Lattneree4f13a2007-01-07 01:14:12 +0000127 DOUT << "INDVARS: Deleting: " << *I;
Chris Lattnera4b9c782004-10-11 23:06:50 +0000128 I->eraseFromParent();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000129 Changed = true;
130 }
131 }
132}
133
134
135/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
136/// recurrence. If so, change it into an integer recurrence, permitting
137/// analysis by the SCEV routines.
Misha Brukmanfd939082005-04-21 23:48:37 +0000138void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
Chris Lattner40bf8b42004-04-02 20:24:31 +0000139 BasicBlock *Preheader,
Chris Lattner1a6111f2008-11-16 07:17:51 +0000140 SmallPtrSet<Instruction*, 16> &DeadInsts) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000141 assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
142 unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
143 unsigned BackedgeIdx = PreheaderIdx^1;
144 if (GetElementPtrInst *GEPI =
Chris Lattnercda9ca52005-08-10 01:12:06 +0000145 dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
Chris Lattner40bf8b42004-04-02 20:24:31 +0000146 if (GEPI->getOperand(0) == PN) {
Chris Lattnercda9ca52005-08-10 01:12:06 +0000147 assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
Chris Lattneree4f13a2007-01-07 01:14:12 +0000148 DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
149
Chris Lattner40bf8b42004-04-02 20:24:31 +0000150 // Okay, we found a pointer recurrence. Transform this pointer
151 // recurrence into an integer recurrence. Compute the value that gets
152 // added to the pointer at every iteration.
153 Value *AddedVal = GEPI->getOperand(1);
154
155 // Insert a new integer PHI node into the top of the block.
Gabor Greif051a9502008-04-06 20:25:17 +0000156 PHINode *NewPhi = PHINode::Create(AddedVal->getType(),
157 PN->getName()+".rec", PN);
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000158 NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
159
Chris Lattner40bf8b42004-04-02 20:24:31 +0000160 // Create the new add instruction.
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000161 Value *NewAdd = BinaryOperator::CreateAdd(NewPhi, AddedVal,
Chris Lattnerc5c5e6a2004-06-20 05:04:01 +0000162 GEPI->getName()+".rec", GEPI);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000163 NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
Misha Brukmanfd939082005-04-21 23:48:37 +0000164
Chris Lattner40bf8b42004-04-02 20:24:31 +0000165 // Update the existing GEP to use the recurrence.
166 GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
Misha Brukmanfd939082005-04-21 23:48:37 +0000167
Chris Lattner40bf8b42004-04-02 20:24:31 +0000168 // Update the GEP to use the new recurrence we just inserted.
169 GEPI->setOperand(1, NewAdd);
170
Chris Lattnera4b9c782004-10-11 23:06:50 +0000171 // If the incoming value is a constant expr GEP, try peeling out the array
172 // 0 index if possible to make things simpler.
173 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
174 if (CE->getOpcode() == Instruction::GetElementPtr) {
175 unsigned NumOps = CE->getNumOperands();
176 assert(NumOps > 1 && "CE folding didn't work!");
177 if (CE->getOperand(NumOps-1)->isNullValue()) {
178 // Check to make sure the last index really is an array index.
Chris Lattner17300782005-11-18 18:30:47 +0000179 gep_type_iterator GTI = gep_type_begin(CE);
Chris Lattnerceda6052005-11-17 19:35:42 +0000180 for (unsigned i = 1, e = CE->getNumOperands()-1;
Chris Lattnera4b9c782004-10-11 23:06:50 +0000181 i != e; ++i, ++GTI)
182 /*empty*/;
183 if (isa<SequentialType>(*GTI)) {
184 // Pull the last index out of the constant expr GEP.
Chris Lattner55eb1c42007-01-31 04:40:53 +0000185 SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
Chris Lattnera4b9c782004-10-11 23:06:50 +0000186 Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
Chris Lattner55eb1c42007-01-31 04:40:53 +0000187 &CEIdxs[0],
188 CEIdxs.size());
David Greeneb8f74792007-09-04 15:46:09 +0000189 Value *Idx[2];
190 Idx[0] = Constant::getNullValue(Type::Int32Ty);
191 Idx[1] = NewAdd;
Gabor Greif051a9502008-04-06 20:25:17 +0000192 GetElementPtrInst *NGEPI = GetElementPtrInst::Create(
David Greeneb8f74792007-09-04 15:46:09 +0000193 NCE, Idx, Idx + 2,
Reid Spencercae57542007-03-02 00:28:52 +0000194 GEPI->getName(), GEPI);
Dan Gohman5cec4db2007-06-19 14:28:31 +0000195 SE->deleteValueFromRecords(GEPI);
Chris Lattnera4b9c782004-10-11 23:06:50 +0000196 GEPI->replaceAllUsesWith(NGEPI);
197 GEPI->eraseFromParent();
198 GEPI = NGEPI;
199 }
200 }
201 }
202
203
Chris Lattner40bf8b42004-04-02 20:24:31 +0000204 // Finally, if there are any other users of the PHI node, we must
205 // insert a new GEP instruction that uses the pre-incremented version
206 // of the induction amount.
207 if (!PN->use_empty()) {
208 BasicBlock::iterator InsertPos = PN; ++InsertPos;
209 while (isa<PHINode>(InsertPos)) ++InsertPos;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000210 Value *PreInc =
Gabor Greif051a9502008-04-06 20:25:17 +0000211 GetElementPtrInst::Create(PN->getIncomingValue(PreheaderIdx),
212 NewPhi, "", InsertPos);
Chris Lattner6934a042007-02-11 01:23:03 +0000213 PreInc->takeName(PN);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000214 PN->replaceAllUsesWith(PreInc);
215 }
216
217 // Delete the old PHI for sure, and the GEP if its otherwise unused.
218 DeadInsts.insert(PN);
219
220 ++NumPointer;
221 Changed = true;
222 }
223}
224
225/// LinearFunctionTestReplace - This method rewrites the exit condition of the
Chris Lattner59fdaee2004-04-15 15:21:43 +0000226/// loop to be a canonical != comparison against the incremented loop induction
227/// variable. This pass is able to rewrite the exit tests of any loop where the
228/// SCEV analysis can determine a loop-invariant trip count of the loop, which
229/// is actually a much broader range than just linear tests.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000230void IndVarSimplify::LinearFunctionTestReplace(Loop *L,
231 SCEVHandle IterationCount,
232 Value *IndVar,
233 BasicBlock *ExitingBlock,
234 BranchInst *BI,
235 SCEVExpander &Rewriter) {
Chris Lattnerd2440572004-04-15 20:26:22 +0000236 // If the exiting block is not the same as the backedge block, we must compare
237 // against the preincremented value, otherwise we prefer to compare against
238 // the post-incremented value.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000239 Value *CmpIndVar;
240 if (ExitingBlock == L->getLoopLatch()) {
241 // What ScalarEvolution calls the "iteration count" is actually the
242 // number of times the branch is taken. Add one to get the number
243 // of times the branch is executed. If this addition may overflow,
244 // we have to be more pessimistic and cast the induction variable
245 // before doing the add.
246 SCEVHandle Zero = SE->getIntegerSCEV(0, IterationCount->getType());
247 SCEVHandle N =
248 SE->getAddExpr(IterationCount,
249 SE->getIntegerSCEV(1, IterationCount->getType()));
250 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
251 SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
252 // No overflow. Cast the sum.
253 IterationCount = SE->getTruncateOrZeroExtend(N, IndVar->getType());
254 } else {
255 // Potential overflow. Cast before doing the add.
256 IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
257 IndVar->getType());
258 IterationCount =
259 SE->getAddExpr(IterationCount,
260 SE->getIntegerSCEV(1, IndVar->getType()));
261 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000262
Chris Lattnerd2440572004-04-15 20:26:22 +0000263 // The IterationCount expression contains the number of times that the
264 // backedge actually branches to the loop header. This is one less than the
265 // number of times the loop executes, so add one to it.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000266 CmpIndVar = L->getCanonicalInductionVariableIncrement();
Chris Lattnerd2440572004-04-15 20:26:22 +0000267 } else {
268 // We have to use the preincremented value...
Dan Gohmanc2390b12009-02-12 22:19:27 +0000269 IterationCount = SE->getTruncateOrZeroExtend(IterationCount,
270 IndVar->getType());
271 CmpIndVar = IndVar;
Chris Lattnerd2440572004-04-15 20:26:22 +0000272 }
Chris Lattner59fdaee2004-04-15 15:21:43 +0000273
Chris Lattner40bf8b42004-04-02 20:24:31 +0000274 // Expand the code for the iteration count into the preheader of the loop.
275 BasicBlock *Preheader = L->getLoopPreheader();
Dan Gohmanc2390b12009-02-12 22:19:27 +0000276 Value *ExitCnt = Rewriter.expandCodeFor(IterationCount,
277 Preheader->getTerminator());
Chris Lattner40bf8b42004-04-02 20:24:31 +0000278
Reid Spencere4d87aa2006-12-23 06:05:41 +0000279 // Insert a new icmp_ne or icmp_eq instruction before the branch.
280 ICmpInst::Predicate Opcode;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000281 if (L->contains(BI->getSuccessor(0)))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000282 Opcode = ICmpInst::ICMP_NE;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000283 else
Reid Spencere4d87aa2006-12-23 06:05:41 +0000284 Opcode = ICmpInst::ICMP_EQ;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000285
Dan Gohmanc2390b12009-02-12 22:19:27 +0000286 DOUT << "INDVARS: Rewriting loop exit condition to:\n"
287 << " LHS:" << *CmpIndVar // includes a newline
288 << " op:\t"
289 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "=") << "\n"
290 << " RHS:\t" << *IterationCount << "\n";
291
292 Value *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000293 BI->setCondition(Cond);
294 ++NumLFTR;
295 Changed = true;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000296}
297
Chris Lattner40bf8b42004-04-02 20:24:31 +0000298/// RewriteLoopExitValues - Check to see if this loop has a computable
299/// loop-invariant execution count. If so, this means that we can compute the
300/// final value of any expressions that are recurrent in the loop, and
301/// substitute the exit values from the loop into any instructions outside of
302/// the loop that use the final values of the current expressions.
Dan Gohman5a6c4482008-08-05 22:34:21 +0000303void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEV *IterationCount) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000304 BasicBlock *Preheader = L->getLoopPreheader();
305
306 // Scan all of the instructions in the loop, looking at those that have
307 // extra-loop users and which are recurrences.
Chris Lattner4a7553e2004-04-23 21:29:48 +0000308 SCEVExpander Rewriter(*SE, *LI);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000309
310 // We insert the code into the preheader of the loop if the loop contains
311 // multiple exit blocks, or in the exit block if there is exactly one.
312 BasicBlock *BlockToInsertInto;
Devang Patelb7211a22007-08-21 00:31:24 +0000313 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000314 L->getUniqueExitBlocks(ExitBlocks);
Chris Lattnerf1ab4b42004-04-18 22:14:10 +0000315 if (ExitBlocks.size() == 1)
316 BlockToInsertInto = ExitBlocks[0];
Chris Lattner40bf8b42004-04-02 20:24:31 +0000317 else
318 BlockToInsertInto = Preheader;
Dan Gohman02dea8b2008-05-23 21:05:58 +0000319 BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
Chris Lattner40bf8b42004-04-02 20:24:31 +0000320
Dan Gohman5a6c4482008-08-05 22:34:21 +0000321 bool HasConstantItCount = isa<SCEVConstant>(IterationCount);
Chris Lattner20aa0982004-04-17 18:44:09 +0000322
Chris Lattner1a6111f2008-11-16 07:17:51 +0000323 SmallPtrSet<Instruction*, 16> InstructionsToDelete;
Chris Lattner9f3d7382007-03-04 03:43:23 +0000324 std::map<Instruction*, Value*> ExitValues;
Misha Brukmanfd939082005-04-21 23:48:37 +0000325
Chris Lattner9f3d7382007-03-04 03:43:23 +0000326 // Find all values that are computed inside the loop, but used outside of it.
327 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
328 // the exit blocks of the loop to find them.
329 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
330 BasicBlock *ExitBB = ExitBlocks[i];
331
332 // If there are no PHI nodes in this exit block, then no values defined
333 // inside the loop are used on this path, skip it.
334 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
335 if (!PN) continue;
336
337 unsigned NumPreds = PN->getNumIncomingValues();
338
339 // Iterate over all of the PHI nodes.
340 BasicBlock::iterator BBI = ExitBB->begin();
341 while ((PN = dyn_cast<PHINode>(BBI++))) {
Chris Lattnerc9838f22007-03-03 22:48:48 +0000342
Chris Lattner9f3d7382007-03-04 03:43:23 +0000343 // Iterate over all of the values in all the PHI nodes.
344 for (unsigned i = 0; i != NumPreds; ++i) {
345 // If the value being merged in is not integer or is not defined
346 // in the loop, skip it.
347 Value *InVal = PN->getIncomingValue(i);
348 if (!isa<Instruction>(InVal) ||
349 // SCEV only supports integer expressions for now.
350 !isa<IntegerType>(InVal->getType()))
351 continue;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000352
Chris Lattner9f3d7382007-03-04 03:43:23 +0000353 // If this pred is for a subloop, not L itself, skip it.
354 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
355 continue; // The Block is in a subloop, skip it.
356
357 // Check that InVal is defined in the loop.
358 Instruction *Inst = cast<Instruction>(InVal);
359 if (!L->contains(Inst->getParent()))
360 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000361
Chris Lattner9f3d7382007-03-04 03:43:23 +0000362 // We require that this value either have a computable evolution or that
363 // the loop have a constant iteration count. In the case where the loop
364 // has a constant iteration count, we can sometimes force evaluation of
365 // the exit value through brute force.
366 SCEVHandle SH = SE->getSCEV(Inst);
367 if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
368 continue; // Cannot get exit evolution for the loop value.
369
370 // Okay, this instruction has a user outside of the current loop
371 // and varies predictably *inside* the loop. Evaluate the value it
372 // contains when the loop exits, if possible.
373 SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
374 if (isa<SCEVCouldNotCompute>(ExitValue) ||
375 !ExitValue->isLoopInvariant(L))
376 continue;
Chris Lattner9caed542007-03-04 01:00:28 +0000377
Chris Lattner9f3d7382007-03-04 03:43:23 +0000378 Changed = true;
379 ++NumReplaced;
380
381 // See if we already computed the exit value for the instruction, if so,
382 // just reuse it.
383 Value *&ExitVal = ExitValues[Inst];
384 if (!ExitVal)
Dan Gohmand19534a2007-06-15 14:38:12 +0000385 ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
Chris Lattner9f3d7382007-03-04 03:43:23 +0000386
387 DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
388 << " LoopVal = " << *Inst << "\n";
389
390 PN->setIncomingValue(i, ExitVal);
391
392 // If this instruction is dead now, schedule it to be removed.
393 if (Inst->use_empty())
394 InstructionsToDelete.insert(Inst);
395
396 // See if this is a single-entry LCSSA PHI node. If so, we can (and
397 // have to) remove
Chris Lattner9caed542007-03-04 01:00:28 +0000398 // the PHI entirely. This is safe, because the NewVal won't be variant
399 // in the loop, so we don't need an LCSSA phi node anymore.
Chris Lattner9f3d7382007-03-04 03:43:23 +0000400 if (NumPreds == 1) {
Dan Gohman5cec4db2007-06-19 14:28:31 +0000401 SE->deleteValueFromRecords(PN);
Chris Lattner9f3d7382007-03-04 03:43:23 +0000402 PN->replaceAllUsesWith(ExitVal);
403 PN->eraseFromParent();
404 break;
Chris Lattnerc9838f22007-03-03 22:48:48 +0000405 }
406 }
Chris Lattnerc9838f22007-03-03 22:48:48 +0000407 }
408 }
409
Chris Lattner40bf8b42004-04-02 20:24:31 +0000410 DeleteTriviallyDeadInstructions(InstructionsToDelete);
411}
412
Devang Patel5ee99972007-03-07 06:39:01 +0000413bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
Chris Lattner40bf8b42004-04-02 20:24:31 +0000414
Devang Patel5ee99972007-03-07 06:39:01 +0000415 Changed = false;
Chris Lattner40bf8b42004-04-02 20:24:31 +0000416 // First step. Check to see if there are any trivial GEP pointer recurrences.
417 // If there are, change them into integer recurrences, permitting analysis by
418 // the SCEV routines.
419 //
420 BasicBlock *Header = L->getHeader();
421 BasicBlock *Preheader = L->getLoopPreheader();
Devang Patel5ee99972007-03-07 06:39:01 +0000422 SE = &LPM.getAnalysis<ScalarEvolution>();
Misha Brukmanfd939082005-04-21 23:48:37 +0000423
Chris Lattner1a6111f2008-11-16 07:17:51 +0000424 SmallPtrSet<Instruction*, 16> DeadInsts;
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000425 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
426 PHINode *PN = cast<PHINode>(I);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000427 if (isa<PointerType>(PN->getType()))
428 EliminatePointerRecurrence(PN, Preheader, DeadInsts);
Devang Patel84e35152008-11-17 21:32:02 +0000429 else
430 HandleFloatingPointIV(L, PN, DeadInsts);
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000431 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000432
433 if (!DeadInsts.empty())
434 DeleteTriviallyDeadInstructions(DeadInsts);
435
Devang Patel5ee99972007-03-07 06:39:01 +0000436 return Changed;
437}
Chris Lattner40bf8b42004-04-02 20:24:31 +0000438
Dan Gohmanc2390b12009-02-12 22:19:27 +0000439/// getEffectiveIndvarType - Determine the widest type that the
440/// induction-variable PHINode Phi is cast to.
441///
442static const Type *getEffectiveIndvarType(const PHINode *Phi) {
443 const Type *Ty = Phi->getType();
Chris Lattner3324e712003-12-22 03:58:44 +0000444
Dan Gohmanc2390b12009-02-12 22:19:27 +0000445 for (Value::use_const_iterator UI = Phi->use_begin(), UE = Phi->use_end();
446 UI != UE; ++UI) {
447 const Type *CandidateType = NULL;
448 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(UI))
449 CandidateType = ZI->getDestTy();
450 else if (const SExtInst *SI = dyn_cast<SExtInst>(UI))
451 CandidateType = SI->getDestTy();
452 if (CandidateType &&
453 CandidateType->getPrimitiveSizeInBits() >
454 Ty->getPrimitiveSizeInBits())
455 Ty = CandidateType;
456 }
457
458 return Ty;
459}
460
461/// isOrigIVAlwaysNonNegative - Analyze the original induction variable
462/// in the loop to determine whether it would ever have a negative
463/// value.
464///
465/// TODO: This duplicates a fair amount of ScalarEvolution logic.
466/// Perhaps this can be merged with ScalarEvolution::getIterationCount.
467///
468static bool isOrigIVAlwaysNonNegative(const Loop *L,
469 const Instruction *OrigCond) {
470 // Verify that the loop is sane and find the exit condition.
471 const ICmpInst *Cmp = dyn_cast<ICmpInst>(OrigCond);
472 if (!Cmp) return false;
473
474 // For now, analyze only SLT loops for signed overflow.
475 if (Cmp->getPredicate() != ICmpInst::ICMP_SLT) return false;
476
477 // Get the increment instruction. Look past SExtInsts if we will
478 // be able to prove that the original induction variable doesn't
479 // undergo signed overflow.
480 const Value *OrigIncrVal = Cmp->getOperand(0);
481 const Value *IncrVal = OrigIncrVal;
482 if (SExtInst *SI = dyn_cast<SExtInst>(Cmp->getOperand(0))) {
483 if (!isa<ConstantInt>(Cmp->getOperand(1)) ||
484 !cast<ConstantInt>(Cmp->getOperand(1))->getValue()
485 .isSignedIntN(IncrVal->getType()->getPrimitiveSizeInBits()))
486 return false;
487 IncrVal = SI->getOperand(0);
488 }
489
490 // For now, only analyze induction variables that have simple increments.
491 const BinaryOperator *IncrOp = dyn_cast<BinaryOperator>(IncrVal);
492 if (!IncrOp ||
493 IncrOp->getOpcode() != Instruction::Add ||
494 !isa<ConstantInt>(IncrOp->getOperand(1)) ||
495 !cast<ConstantInt>(IncrOp->getOperand(1))->equalsInt(1))
496 return false;
497
498 // Make sure the PHI looks like a normal IV.
499 const PHINode *PN = dyn_cast<PHINode>(IncrOp->getOperand(0));
500 if (!PN || PN->getNumIncomingValues() != 2)
501 return false;
502 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
503 unsigned BackEdge = !IncomingEdge;
504 if (!L->contains(PN->getIncomingBlock(BackEdge)) ||
505 PN->getIncomingValue(BackEdge) != IncrOp)
506 return false;
507
508 // For now, only analyze loops with a constant start value, so that
509 // we can easily determine if the start value is non-negative and
510 // not a maximum value which would wrap on the first iteration.
511 const Value *InitialVal = PN->getIncomingValue(IncomingEdge);
512 if (!isa<ConstantInt>(InitialVal) ||
513 cast<ConstantInt>(InitialVal)->getValue().isNegative() ||
514 cast<ConstantInt>(InitialVal)->getValue().isMaxSignedValue())
515 return false;
516
517 // The original induction variable will start at some non-negative
518 // non-max value, it counts up by one, and the loop iterates only
519 // while it remans less than (signed) some value in the same type.
520 // As such, it will always be non-negative.
521 return true;
522}
523
524bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Devang Patel5ee99972007-03-07 06:39:01 +0000525 LI = &getAnalysis<LoopInfo>();
526 SE = &getAnalysis<ScalarEvolution>();
527
528 Changed = false;
Dan Gohmanc2390b12009-02-12 22:19:27 +0000529 BasicBlock *Header = L->getHeader();
530 BasicBlock *ExitingBlock = L->getExitingBlock();
Chris Lattner1a6111f2008-11-16 07:17:51 +0000531 SmallPtrSet<Instruction*, 16> DeadInsts;
Dan Gohmanc2390b12009-02-12 22:19:27 +0000532
Chris Lattner9caed542007-03-04 01:00:28 +0000533 // Verify the input to the pass in already in LCSSA form.
534 assert(L->isLCSSAForm());
535
Chris Lattner40bf8b42004-04-02 20:24:31 +0000536 // Check to see if this loop has a computable loop-invariant execution count.
537 // If so, this means that we can compute the final value of any expressions
538 // that are recurrent in the loop, and substitute the exit values from the
539 // loop into any instructions outside of the loop that use the final values of
540 // the current expressions.
Chris Lattner3dec1f22002-05-10 15:38:35 +0000541 //
Chris Lattner40bf8b42004-04-02 20:24:31 +0000542 SCEVHandle IterationCount = SE->getIterationCount(L);
543 if (!isa<SCEVCouldNotCompute>(IterationCount))
Dan Gohman5a6c4482008-08-05 22:34:21 +0000544 RewriteLoopExitValues(L, IterationCount);
Chris Lattner6148c022001-12-03 17:28:42 +0000545
Chris Lattner40bf8b42004-04-02 20:24:31 +0000546 // Next, analyze all of the induction variables in the loop, canonicalizing
547 // auxillary induction variables.
548 std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
549
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000550 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
551 PHINode *PN = cast<PHINode>(I);
Chris Lattner42a75512007-01-15 02:27:26 +0000552 if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
Chris Lattner40bf8b42004-04-02 20:24:31 +0000553 SCEVHandle SCEV = SE->getSCEV(PN);
Dan Gohmancd3eb9b2009-02-14 02:25:19 +0000554 // FIXME: It is an extremely bad idea to indvar substitute anything more
555 // complex than affine induction variables. Doing so will put expensive
556 // polynomial evaluations inside of the loop, and the str reduction pass
557 // currently can only reduce affine polynomials. For now just disable
558 // indvar subst on anything more complex than an affine addrec.
559 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
560 if (AR->getLoop() == L && AR->isAffine())
561 IndVars.push_back(std::make_pair(PN, SCEV));
Chris Lattner40bf8b42004-04-02 20:24:31 +0000562 }
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000563 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000564
Dan Gohmanc2390b12009-02-12 22:19:27 +0000565 // Compute the type of the largest recurrence expression, and collect
566 // the set of the types of the other recurrence expressions.
567 const Type *LargestType = 0;
568 SmallSetVector<const Type *, 4> SizesToInsert;
569 if (!isa<SCEVCouldNotCompute>(IterationCount)) {
570 LargestType = IterationCount->getType();
571 SizesToInsert.insert(IterationCount->getType());
Chris Lattnerf50af082004-04-17 18:08:33 +0000572 }
Dan Gohmanc2390b12009-02-12 22:19:27 +0000573 for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
574 const PHINode *PN = IndVars[i].first;
575 SizesToInsert.insert(PN->getType());
576 const Type *EffTy = getEffectiveIndvarType(PN);
577 SizesToInsert.insert(EffTy);
578 if (!LargestType ||
579 EffTy->getPrimitiveSizeInBits() >
580 LargestType->getPrimitiveSizeInBits())
581 LargestType = EffTy;
Chris Lattner6148c022001-12-03 17:28:42 +0000582 }
583
Chris Lattner40bf8b42004-04-02 20:24:31 +0000584 // Create a rewriter object which we'll use to transform the code with.
Chris Lattner4a7553e2004-04-23 21:29:48 +0000585 SCEVExpander Rewriter(*SE, *LI);
Chris Lattner15cad752003-12-23 07:47:09 +0000586
Chris Lattner40bf8b42004-04-02 20:24:31 +0000587 // Now that we know the largest of of the induction variables in this loop,
588 // insert a canonical induction variable of the largest size.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000589 Value *IndVar = 0;
590 if (!SizesToInsert.empty()) {
591 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
592 ++NumInserted;
593 Changed = true;
594 DOUT << "INDVARS: New CanIV: " << *IndVar;
Dan Gohmand19534a2007-06-15 14:38:12 +0000595 }
Chris Lattner15cad752003-12-23 07:47:09 +0000596
Dan Gohmanc2390b12009-02-12 22:19:27 +0000597 // If we have a trip count expression, rewrite the loop's exit condition
598 // using it. We can currently only handle loops with a single exit.
599 bool OrigIVAlwaysNonNegative = false;
600 if (!isa<SCEVCouldNotCompute>(IterationCount) && ExitingBlock)
601 // Can't rewrite non-branch yet.
602 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
603 if (Instruction *OrigCond = dyn_cast<Instruction>(BI->getCondition())) {
604 // Determine if the OrigIV will ever have a non-zero sign bit.
605 OrigIVAlwaysNonNegative = isOrigIVAlwaysNonNegative(L, OrigCond);
606
607 // We'll be replacing the original condition, so it'll be dead.
608 DeadInsts.insert(OrigCond);
609 }
610
611 LinearFunctionTestReplace(L, IterationCount, IndVar,
612 ExitingBlock, BI, Rewriter);
613 }
614
Chris Lattner40bf8b42004-04-02 20:24:31 +0000615 // Now that we have a canonical induction variable, we can rewrite any
616 // recurrences in terms of the induction variable. Start with the auxillary
617 // induction variables, and recursively rewrite any of their uses.
Dan Gohman02dea8b2008-05-23 21:05:58 +0000618 BasicBlock::iterator InsertPt = Header->getFirstNonPHI();
Chris Lattner6148c022001-12-03 17:28:42 +0000619
Chris Lattner5d461d22004-04-21 22:22:01 +0000620 // If there were induction variables of other sizes, cast the primary
621 // induction variable to the right size for them, avoiding the need for the
622 // code evaluation methods to insert induction variables of different sizes.
Dan Gohmanc2390b12009-02-12 22:19:27 +0000623 for (unsigned i = 0, e = SizesToInsert.size(); i != e; ++i) {
624 const Type *Ty = SizesToInsert[i];
625 if (Ty != LargestType) {
626 Instruction *New = new TruncInst(IndVar, Ty, "indvar", InsertPt);
627 Rewriter.addInsertedValue(New, SE->getSCEV(New));
628 DOUT << "INDVARS: Made trunc IV for type " << *Ty << ": "
629 << *New << "\n";
Reid Spencera54b7cb2007-01-12 07:05:14 +0000630 }
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000631 }
632
Chris Lattneree4f13a2007-01-07 01:14:12 +0000633 // Rewrite all induction variables in terms of the canonical induction
634 // variable.
Chris Lattner40bf8b42004-04-02 20:24:31 +0000635 while (!IndVars.empty()) {
636 PHINode *PN = IndVars.back().first;
Dan Gohmand19534a2007-06-15 14:38:12 +0000637 Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt);
Chris Lattneree4f13a2007-01-07 01:14:12 +0000638 DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
639 << " into = " << *NewVal << "\n";
Chris Lattner6934a042007-02-11 01:23:03 +0000640 NewVal->takeName(PN);
Chris Lattner5d461d22004-04-21 22:22:01 +0000641
Dan Gohmanc2390b12009-02-12 22:19:27 +0000642 /// If the new canonical induction variable is wider than the original,
643 /// and the original has uses that are casts to wider types, see if the
644 /// truncate and extend can be omitted.
645 if (isa<TruncInst>(NewVal))
646 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
647 UI != UE; ++UI)
648 if (isa<ZExtInst>(UI) ||
649 (isa<SExtInst>(UI) && OrigIVAlwaysNonNegative)) {
650 Value *TruncIndVar = IndVar;
651 if (TruncIndVar->getType() != UI->getType())
652 TruncIndVar = new TruncInst(IndVar, UI->getType(), "truncindvar",
653 InsertPt);
654 UI->replaceAllUsesWith(TruncIndVar);
655 if (Instruction *DeadUse = dyn_cast<Instruction>(*UI))
656 DeadInsts.insert(DeadUse);
657 }
658
Chris Lattner40bf8b42004-04-02 20:24:31 +0000659 // Replace the old PHI Node with the inserted computation.
Chris Lattnerfcb81f52004-04-22 14:59:40 +0000660 PN->replaceAllUsesWith(NewVal);
Chris Lattner40bf8b42004-04-02 20:24:31 +0000661 DeadInsts.insert(PN);
662 IndVars.pop_back();
663 ++NumRemoved;
Chris Lattner4753bf22001-12-05 19:41:33 +0000664 Changed = true;
Chris Lattner394437f2001-12-04 04:32:29 +0000665 }
666
Chris Lattnerb4782d12004-04-22 15:12:36 +0000667#if 0
Chris Lattner1363e852004-04-21 23:36:08 +0000668 // Now replace all derived expressions in the loop body with simpler
669 // expressions.
Dan Gohman9b787632008-06-22 20:18:58 +0000670 for (LoopInfo::block_iterator I = L->block_begin(), E = L->block_end();
671 I != E; ++I) {
672 BasicBlock *BB = *I;
673 if (LI->getLoopFor(BB) == L) { // Not in a subloop...
Chris Lattner40bf8b42004-04-02 20:24:31 +0000674 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Chris Lattner42a75512007-01-15 02:27:26 +0000675 if (I->getType()->isInteger() && // Is an integer instruction
Chris Lattner1363e852004-04-21 23:36:08 +0000676 !I->use_empty() &&
Chris Lattner40bf8b42004-04-02 20:24:31 +0000677 !Rewriter.isInsertedInstruction(I)) {
678 SCEVHandle SH = SE->getSCEV(I);
Chris Lattner4a7553e2004-04-23 21:29:48 +0000679 Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
Chris Lattner1363e852004-04-21 23:36:08 +0000680 if (V != I) {
Chris Lattner6934a042007-02-11 01:23:03 +0000681 if (isa<Instruction>(V))
682 V->takeName(I);
Chris Lattner1363e852004-04-21 23:36:08 +0000683 I->replaceAllUsesWith(V);
684 DeadInsts.insert(I);
685 ++NumRemoved;
686 Changed = true;
Misha Brukmanfd939082005-04-21 23:48:37 +0000687 }
Chris Lattner40bf8b42004-04-02 20:24:31 +0000688 }
Chris Lattner394437f2001-12-04 04:32:29 +0000689 }
Dan Gohman9b787632008-06-22 20:18:58 +0000690 }
Chris Lattnerb4782d12004-04-22 15:12:36 +0000691#endif
Chris Lattner1363e852004-04-21 23:36:08 +0000692
Chris Lattner1363e852004-04-21 23:36:08 +0000693 DeleteTriviallyDeadInstructions(DeadInsts);
Chris Lattner9caed542007-03-04 01:00:28 +0000694 assert(L->isLCSSAForm());
Devang Patel5ee99972007-03-07 06:39:01 +0000695 return Changed;
Chris Lattner6148c022001-12-03 17:28:42 +0000696}
Devang Pateld22a8492008-09-09 21:41:07 +0000697
Devang Patel13877bf2008-11-18 00:40:02 +0000698/// Return true if it is OK to use SIToFPInst for an inducation variable
699/// with given inital and exit values.
700static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
701 uint64_t intIV, uint64_t intEV) {
702
703 if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
704 return true;
705
706 // If the iteration range can be handled by SIToFPInst then use it.
707 APInt Max = APInt::getSignedMaxValue(32);
Bill Wendling9bef7062008-11-18 10:57:27 +0000708 if (Max.getZExtValue() > static_cast<uint64_t>(abs(intEV - intIV)))
Devang Patel13877bf2008-11-18 00:40:02 +0000709 return true;
710
711 return false;
712}
713
714/// convertToInt - Convert APF to an integer, if possible.
Devang Patelcd402332008-11-17 23:27:13 +0000715static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
716
717 bool isExact = false;
Evan Cheng794a7db2008-11-26 01:11:57 +0000718 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
719 return false;
Devang Patelcd402332008-11-17 23:27:13 +0000720 if (APF.convertToInteger(intVal, 32, APF.isNegative(),
721 APFloat::rmTowardZero, &isExact)
722 != APFloat::opOK)
723 return false;
724 if (!isExact)
725 return false;
726 return true;
727
728}
729
Devang Patel58d43d42008-11-03 18:32:19 +0000730/// HandleFloatingPointIV - If the loop has floating induction variable
731/// then insert corresponding integer induction variable if possible.
Devang Patel84e35152008-11-17 21:32:02 +0000732/// For example,
733/// for(double i = 0; i < 10000; ++i)
734/// bar(i)
735/// is converted into
736/// for(int i = 0; i < 10000; ++i)
737/// bar((double)i);
738///
739void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH,
740 SmallPtrSet<Instruction*, 16> &DeadInsts) {
Devang Patel58d43d42008-11-03 18:32:19 +0000741
Devang Patel84e35152008-11-17 21:32:02 +0000742 unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
743 unsigned BackEdge = IncomingEdge^1;
744
745 // Check incoming value.
Devang Patelcd402332008-11-17 23:27:13 +0000746 ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
747 if (!InitValue) return;
748 uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
749 if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
750 return;
751
752 // Check IV increment. Reject this PH if increement operation is not
753 // an add or increment value can not be represented by an integer.
Devang Patel84e35152008-11-17 21:32:02 +0000754 BinaryOperator *Incr =
755 dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
756 if (!Incr) return;
757 if (Incr->getOpcode() != Instruction::Add) return;
758 ConstantFP *IncrValue = NULL;
759 unsigned IncrVIndex = 1;
760 if (Incr->getOperand(1) == PH)
761 IncrVIndex = 0;
762 IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
763 if (!IncrValue) return;
Devang Patelcd402332008-11-17 23:27:13 +0000764 uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
765 if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
766 return;
Devang Patel84e35152008-11-17 21:32:02 +0000767
Devang Patelcd402332008-11-17 23:27:13 +0000768 // Check Incr uses. One user is PH and the other users is exit condition used
769 // by the conditional terminator.
Devang Patel84e35152008-11-17 21:32:02 +0000770 Value::use_iterator IncrUse = Incr->use_begin();
771 Instruction *U1 = cast<Instruction>(IncrUse++);
772 if (IncrUse == Incr->use_end()) return;
773 Instruction *U2 = cast<Instruction>(IncrUse++);
774 if (IncrUse != Incr->use_end()) return;
775
776 // Find exit condition.
777 FCmpInst *EC = dyn_cast<FCmpInst>(U1);
778 if (!EC)
779 EC = dyn_cast<FCmpInst>(U2);
780 if (!EC) return;
781
782 if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
783 if (!BI->isConditional()) return;
784 if (BI->getCondition() != EC) return;
Devang Patel58d43d42008-11-03 18:32:19 +0000785 }
Devang Patel58d43d42008-11-03 18:32:19 +0000786
Devang Patelcd402332008-11-17 23:27:13 +0000787 // Find exit value. If exit value can not be represented as an interger then
788 // do not handle this floating point PH.
Devang Patel84e35152008-11-17 21:32:02 +0000789 ConstantFP *EV = NULL;
790 unsigned EVIndex = 1;
791 if (EC->getOperand(1) == Incr)
792 EVIndex = 0;
793 EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
794 if (!EV) return;
Devang Patel84e35152008-11-17 21:32:02 +0000795 uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
Devang Patelcd402332008-11-17 23:27:13 +0000796 if (!convertToInt(EV->getValueAPF(), &intEV))
Devang Patel84e35152008-11-17 21:32:02 +0000797 return;
Devang Patel84e35152008-11-17 21:32:02 +0000798
799 // Find new predicate for integer comparison.
800 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
801 switch (EC->getPredicate()) {
802 case CmpInst::FCMP_OEQ:
803 case CmpInst::FCMP_UEQ:
804 NewPred = CmpInst::ICMP_EQ;
805 break;
806 case CmpInst::FCMP_OGT:
807 case CmpInst::FCMP_UGT:
808 NewPred = CmpInst::ICMP_UGT;
809 break;
810 case CmpInst::FCMP_OGE:
811 case CmpInst::FCMP_UGE:
812 NewPred = CmpInst::ICMP_UGE;
813 break;
814 case CmpInst::FCMP_OLT:
815 case CmpInst::FCMP_ULT:
816 NewPred = CmpInst::ICMP_ULT;
817 break;
818 case CmpInst::FCMP_OLE:
819 case CmpInst::FCMP_ULE:
820 NewPred = CmpInst::ICMP_ULE;
821 break;
822 default:
823 break;
Devang Patel58d43d42008-11-03 18:32:19 +0000824 }
Devang Patel84e35152008-11-17 21:32:02 +0000825 if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
826
827 // Insert new integer induction variable.
828 PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
829 PH->getName()+".int", PH);
Devang Patelcd402332008-11-17 23:27:13 +0000830 NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
Devang Patel84e35152008-11-17 21:32:02 +0000831 PH->getIncomingBlock(IncomingEdge));
832
833 Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
Devang Patelcd402332008-11-17 23:27:13 +0000834 ConstantInt::get(Type::Int32Ty,
835 newIncrValue),
Devang Patel84e35152008-11-17 21:32:02 +0000836 Incr->getName()+".int", Incr);
837 NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
838
839 ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
840 Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(BackEdge) : NewEV);
841 Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(BackEdge));
842 ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
843 EC->getParent()->getTerminator());
844
845 // Delete old, floating point, exit comparision instruction.
846 EC->replaceAllUsesWith(NewEC);
847 DeadInsts.insert(EC);
848
849 // Delete old, floating point, increment instruction.
850 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
851 DeadInsts.insert(Incr);
852
Devang Patel13877bf2008-11-18 00:40:02 +0000853 // Replace floating induction variable. Give SIToFPInst preference over
854 // UIToFPInst because it is faster on platforms that are widely used.
855 if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
Devang Patelcd402332008-11-17 23:27:13 +0000856 SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
857 PH->getParent()->getFirstNonPHI());
858 PH->replaceAllUsesWith(Conv);
859 } else {
860 UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
861 PH->getParent()->getFirstNonPHI());
862 PH->replaceAllUsesWith(Conv);
863 }
Devang Patel84e35152008-11-17 21:32:02 +0000864 DeadInsts.insert(PH);
Devang Patel58d43d42008-11-03 18:32:19 +0000865}
866