Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1 | //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// This transformation implements the well known scalar replacement of |
| 11 | /// aggregates transformation. It tries to identify promotable elements of an |
| 12 | /// aggregate alloca, and promote them to registers. It will also try to |
| 13 | /// convert uses of an element (or set of elements) of an alloca into a vector |
| 14 | /// or bitfield-style integer scalar if appropriate. |
| 15 | /// |
| 16 | /// It works to do this with minimal slicing of the alloca so that regions |
| 17 | /// which are merely transferred in and out of external memory remain unchanged |
| 18 | /// and are not decomposed to scalar code. |
| 19 | /// |
| 20 | /// Because this also performs alloca promotion, it can be thought of as also |
| 21 | /// serving the purpose of SSA formation. The algorithm iterates on the |
| 22 | /// function until all opportunities for promotion have been realized. |
| 23 | /// |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #define DEBUG_TYPE "sroa" |
| 27 | #include "llvm/Transforms/Scalar.h" |
| 28 | #include "llvm/Constants.h" |
| 29 | #include "llvm/DIBuilder.h" |
| 30 | #include "llvm/DebugInfo.h" |
| 31 | #include "llvm/DerivedTypes.h" |
| 32 | #include "llvm/Function.h" |
| 33 | #include "llvm/GlobalVariable.h" |
| 34 | #include "llvm/IRBuilder.h" |
| 35 | #include "llvm/Instructions.h" |
| 36 | #include "llvm/IntrinsicInst.h" |
| 37 | #include "llvm/LLVMContext.h" |
| 38 | #include "llvm/Module.h" |
| 39 | #include "llvm/Operator.h" |
| 40 | #include "llvm/Pass.h" |
| 41 | #include "llvm/ADT/SetVector.h" |
| 42 | #include "llvm/ADT/SmallVector.h" |
| 43 | #include "llvm/ADT/Statistic.h" |
| 44 | #include "llvm/ADT/STLExtras.h" |
| 45 | #include "llvm/ADT/TinyPtrVector.h" |
| 46 | #include "llvm/Analysis/Dominators.h" |
| 47 | #include "llvm/Analysis/Loads.h" |
| 48 | #include "llvm/Analysis/ValueTracking.h" |
| 49 | #include "llvm/Support/CallSite.h" |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 50 | #include "llvm/Support/CommandLine.h" |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/ErrorHandling.h" |
| 53 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 54 | #include "llvm/Support/InstVisitor.h" |
| 55 | #include "llvm/Support/MathExtras.h" |
| 56 | #include "llvm/Support/ValueHandle.h" |
| 57 | #include "llvm/Support/raw_ostream.h" |
| 58 | #include "llvm/Target/TargetData.h" |
| 59 | #include "llvm/Transforms/Utils/Local.h" |
| 60 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 61 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 62 | using namespace llvm; |
| 63 | |
| 64 | STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); |
| 65 | STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); |
| 66 | STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); |
| 67 | STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); |
| 68 | STATISTIC(NumDeleted, "Number of instructions deleted"); |
| 69 | STATISTIC(NumVectorized, "Number of vectorized aggregates"); |
| 70 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 71 | /// Hidden option to force the pass to not use DomTree and mem2reg, instead |
| 72 | /// forming SSA values through the SSAUpdater infrastructure. |
| 73 | static cl::opt<bool> |
| 74 | ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); |
| 75 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 76 | namespace { |
| 77 | /// \brief Alloca partitioning representation. |
| 78 | /// |
| 79 | /// This class represents a partitioning of an alloca into slices, and |
| 80 | /// information about the nature of uses of each slice of the alloca. The goal |
| 81 | /// is that this information is sufficient to decide if and how to split the |
| 82 | /// alloca apart and replace slices with scalars. It is also intended that this |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 83 | /// structure can capture the relevant information needed both to decide about |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 84 | /// and to enact these transformations. |
| 85 | class AllocaPartitioning { |
| 86 | public: |
| 87 | /// \brief A common base class for representing a half-open byte range. |
| 88 | struct ByteRange { |
| 89 | /// \brief The beginning offset of the range. |
| 90 | uint64_t BeginOffset; |
| 91 | |
| 92 | /// \brief The ending offset, not included in the range. |
| 93 | uint64_t EndOffset; |
| 94 | |
| 95 | ByteRange() : BeginOffset(), EndOffset() {} |
| 96 | ByteRange(uint64_t BeginOffset, uint64_t EndOffset) |
| 97 | : BeginOffset(BeginOffset), EndOffset(EndOffset) {} |
| 98 | |
| 99 | /// \brief Support for ordering ranges. |
| 100 | /// |
| 101 | /// This provides an ordering over ranges such that start offsets are |
| 102 | /// always increasing, and within equal start offsets, the end offsets are |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 103 | /// decreasing. Thus the spanning range comes first in a cluster with the |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 104 | /// same start position. |
| 105 | bool operator<(const ByteRange &RHS) const { |
| 106 | if (BeginOffset < RHS.BeginOffset) return true; |
| 107 | if (BeginOffset > RHS.BeginOffset) return false; |
| 108 | if (EndOffset > RHS.EndOffset) return true; |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | /// \brief Support comparison with a single offset to allow binary searches. |
Benjamin Kramer | 2d1c2a2 | 2012-09-17 16:42:36 +0000 | [diff] [blame] | 113 | friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) { |
| 114 | return LHS.BeginOffset < RHSOffset; |
| 115 | } |
| 116 | |
| 117 | friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, |
| 118 | const ByteRange &RHS) { |
| 119 | return LHSOffset < RHS.BeginOffset; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 120 | } |
| 121 | |
| 122 | bool operator==(const ByteRange &RHS) const { |
| 123 | return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset; |
| 124 | } |
| 125 | bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); } |
| 126 | }; |
| 127 | |
| 128 | /// \brief A partition of an alloca. |
| 129 | /// |
| 130 | /// This structure represents a contiguous partition of the alloca. These are |
| 131 | /// formed by examining the uses of the alloca. During formation, they may |
| 132 | /// overlap but once an AllocaPartitioning is built, the Partitions within it |
| 133 | /// are all disjoint. |
| 134 | struct Partition : public ByteRange { |
| 135 | /// \brief Whether this partition is splittable into smaller partitions. |
| 136 | /// |
| 137 | /// We flag partitions as splittable when they are formed entirely due to |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 138 | /// accesses by trivially splittable operations such as memset and memcpy. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 139 | /// |
| 140 | /// FIXME: At some point we should consider loads and stores of FCAs to be |
| 141 | /// splittable and eagerly split them into scalar values. |
| 142 | bool IsSplittable; |
| 143 | |
| 144 | Partition() : ByteRange(), IsSplittable() {} |
| 145 | Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable) |
| 146 | : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {} |
| 147 | }; |
| 148 | |
| 149 | /// \brief A particular use of a partition of the alloca. |
| 150 | /// |
| 151 | /// This structure is used to associate uses of a partition with it. They |
| 152 | /// mark the range of bytes which are referenced by a particular instruction, |
| 153 | /// and includes a handle to the user itself and the pointer value in use. |
| 154 | /// The bounds of these uses are determined by intersecting the bounds of the |
| 155 | /// memory use itself with a particular partition. As a consequence there is |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 156 | /// intentionally overlap between various uses of the same partition. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 157 | struct PartitionUse : public ByteRange { |
| 158 | /// \brief The user of this range of the alloca. |
| 159 | AssertingVH<Instruction> User; |
| 160 | |
| 161 | /// \brief The particular pointer value derived from this alloca in use. |
| 162 | AssertingVH<Instruction> Ptr; |
| 163 | |
| 164 | PartitionUse() : ByteRange(), User(), Ptr() {} |
| 165 | PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, |
| 166 | Instruction *User, Instruction *Ptr) |
| 167 | : ByteRange(BeginOffset, EndOffset), User(User), Ptr(Ptr) {} |
| 168 | }; |
| 169 | |
| 170 | /// \brief Construct a partitioning of a particular alloca. |
| 171 | /// |
| 172 | /// Construction does most of the work for partitioning the alloca. This |
| 173 | /// performs the necessary walks of users and builds a partitioning from it. |
| 174 | AllocaPartitioning(const TargetData &TD, AllocaInst &AI); |
| 175 | |
| 176 | /// \brief Test whether a pointer to the allocation escapes our analysis. |
| 177 | /// |
| 178 | /// If this is true, the partitioning is never fully built and should be |
| 179 | /// ignored. |
| 180 | bool isEscaped() const { return PointerEscapingInstr; } |
| 181 | |
| 182 | /// \brief Support for iterating over the partitions. |
| 183 | /// @{ |
| 184 | typedef SmallVectorImpl<Partition>::iterator iterator; |
| 185 | iterator begin() { return Partitions.begin(); } |
| 186 | iterator end() { return Partitions.end(); } |
| 187 | |
| 188 | typedef SmallVectorImpl<Partition>::const_iterator const_iterator; |
| 189 | const_iterator begin() const { return Partitions.begin(); } |
| 190 | const_iterator end() const { return Partitions.end(); } |
| 191 | /// @} |
| 192 | |
| 193 | /// \brief Support for iterating over and manipulating a particular |
| 194 | /// partition's uses. |
| 195 | /// |
| 196 | /// The iteration support provided for uses is more limited, but also |
| 197 | /// includes some manipulation routines to support rewriting the uses of |
| 198 | /// partitions during SROA. |
| 199 | /// @{ |
| 200 | typedef SmallVectorImpl<PartitionUse>::iterator use_iterator; |
| 201 | use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); } |
| 202 | use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); } |
| 203 | use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); } |
| 204 | use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); } |
| 205 | void use_insert(unsigned Idx, use_iterator UI, const PartitionUse &U) { |
| 206 | Uses[Idx].insert(UI, U); |
| 207 | } |
| 208 | void use_insert(const_iterator I, use_iterator UI, const PartitionUse &U) { |
| 209 | Uses[I - begin()].insert(UI, U); |
| 210 | } |
| 211 | void use_erase(unsigned Idx, use_iterator UI) { Uses[Idx].erase(UI); } |
| 212 | void use_erase(const_iterator I, use_iterator UI) { |
| 213 | Uses[I - begin()].erase(UI); |
| 214 | } |
| 215 | |
| 216 | typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator; |
| 217 | const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); } |
| 218 | const_use_iterator use_begin(const_iterator I) const { |
| 219 | return Uses[I - begin()].begin(); |
| 220 | } |
| 221 | const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); } |
| 222 | const_use_iterator use_end(const_iterator I) const { |
| 223 | return Uses[I - begin()].end(); |
| 224 | } |
| 225 | /// @} |
| 226 | |
| 227 | /// \brief Allow iterating the dead users for this alloca. |
| 228 | /// |
| 229 | /// These are instructions which will never actually use the alloca as they |
| 230 | /// are outside the allocated range. They are safe to replace with undef and |
| 231 | /// delete. |
| 232 | /// @{ |
| 233 | typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator; |
| 234 | dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } |
| 235 | dead_user_iterator dead_user_end() const { return DeadUsers.end(); } |
| 236 | /// @} |
| 237 | |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 238 | /// \brief Allow iterating the dead expressions referring to this alloca. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 239 | /// |
| 240 | /// These are operands which have cannot actually be used to refer to the |
| 241 | /// alloca as they are outside its range and the user doesn't correct for |
| 242 | /// that. These mostly consist of PHI node inputs and the like which we just |
| 243 | /// need to replace with undef. |
| 244 | /// @{ |
| 245 | typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator; |
| 246 | dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } |
| 247 | dead_op_iterator dead_op_end() const { return DeadOperands.end(); } |
| 248 | /// @} |
| 249 | |
| 250 | /// \brief MemTransferInst auxiliary data. |
| 251 | /// This struct provides some auxiliary data about memory transfer |
| 252 | /// intrinsics such as memcpy and memmove. These intrinsics can use two |
| 253 | /// different ranges within the same alloca, and provide other challenges to |
| 254 | /// correctly represent. We stash extra data to help us untangle this |
| 255 | /// after the partitioning is complete. |
| 256 | struct MemTransferOffsets { |
| 257 | uint64_t DestBegin, DestEnd; |
| 258 | uint64_t SourceBegin, SourceEnd; |
| 259 | bool IsSplittable; |
| 260 | }; |
| 261 | MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const { |
| 262 | return MemTransferInstData.lookup(&II); |
| 263 | } |
| 264 | |
| 265 | /// \brief Map from a PHI or select operand back to a partition. |
| 266 | /// |
| 267 | /// When manipulating PHI nodes or selects, they can use more than one |
| 268 | /// partition of an alloca. We store a special mapping to allow finding the |
| 269 | /// partition referenced by each of these operands, if any. |
| 270 | iterator findPartitionForPHIOrSelectOperand(Instruction &I, Value *Op) { |
| 271 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 272 | std::pair<unsigned, unsigned> >::const_iterator MapIt |
| 273 | = PHIOrSelectOpMap.find(std::make_pair(&I, Op)); |
| 274 | if (MapIt == PHIOrSelectOpMap.end()) |
| 275 | return end(); |
| 276 | |
| 277 | return begin() + MapIt->second.first; |
| 278 | } |
| 279 | |
| 280 | /// \brief Map from a PHI or select operand back to the specific use of |
| 281 | /// a partition. |
| 282 | /// |
| 283 | /// Similar to mapping these operands back to the partitions, this maps |
| 284 | /// directly to the use structure of that partition. |
| 285 | use_iterator findPartitionUseForPHIOrSelectOperand(Instruction &I, |
| 286 | Value *Op) { |
| 287 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 288 | std::pair<unsigned, unsigned> >::const_iterator MapIt |
| 289 | = PHIOrSelectOpMap.find(std::make_pair(&I, Op)); |
| 290 | assert(MapIt != PHIOrSelectOpMap.end()); |
| 291 | return Uses[MapIt->second.first].begin() + MapIt->second.second; |
| 292 | } |
| 293 | |
| 294 | /// \brief Compute a common type among the uses of a particular partition. |
| 295 | /// |
| 296 | /// This routines walks all of the uses of a particular partition and tries |
| 297 | /// to find a common type between them. Untyped operations such as memset and |
| 298 | /// memcpy are ignored. |
| 299 | Type *getCommonType(iterator I) const; |
| 300 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 301 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 302 | void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; |
| 303 | void printUsers(raw_ostream &OS, const_iterator I, |
| 304 | StringRef Indent = " ") const; |
| 305 | void print(raw_ostream &OS) const; |
NAKAMURA Takumi | ad9f5b8 | 2012-09-14 10:06:10 +0000 | [diff] [blame] | 306 | void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; |
| 307 | void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 308 | #endif |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 309 | |
| 310 | private: |
| 311 | template <typename DerivedT, typename RetT = void> class BuilderBase; |
| 312 | class PartitionBuilder; |
| 313 | friend class AllocaPartitioning::PartitionBuilder; |
| 314 | class UseBuilder; |
| 315 | friend class AllocaPartitioning::UseBuilder; |
| 316 | |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 317 | #ifndef NDEBUG |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 318 | /// \brief Handle to alloca instruction to simplify method interfaces. |
| 319 | AllocaInst &AI; |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 320 | #endif |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 321 | |
| 322 | /// \brief The instruction responsible for this alloca having no partitioning. |
| 323 | /// |
| 324 | /// When an instruction (potentially) escapes the pointer to the alloca, we |
| 325 | /// store a pointer to that here and abort trying to partition the alloca. |
| 326 | /// This will be null if the alloca is partitioned successfully. |
| 327 | Instruction *PointerEscapingInstr; |
| 328 | |
| 329 | /// \brief The partitions of the alloca. |
| 330 | /// |
| 331 | /// We store a vector of the partitions over the alloca here. This vector is |
| 332 | /// sorted by increasing begin offset, and then by decreasing end offset. See |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 333 | /// the Partition inner class for more details. Initially (during |
| 334 | /// construction) there are overlaps, but we form a disjoint sequence of |
| 335 | /// partitions while finishing construction and a fully constructed object is |
| 336 | /// expected to always have this as a disjoint space. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 337 | SmallVector<Partition, 8> Partitions; |
| 338 | |
| 339 | /// \brief The uses of the partitions. |
| 340 | /// |
| 341 | /// This is essentially a mapping from each partition to a list of uses of |
| 342 | /// that partition. The mapping is done with a Uses vector that has the exact |
| 343 | /// same number of entries as the partition vector. Each entry is itself |
| 344 | /// a vector of the uses. |
| 345 | SmallVector<SmallVector<PartitionUse, 2>, 8> Uses; |
| 346 | |
| 347 | /// \brief Instructions which will become dead if we rewrite the alloca. |
| 348 | /// |
| 349 | /// Note that these are not separated by partition. This is because we expect |
| 350 | /// a partitioned alloca to be completely rewritten or not rewritten at all. |
| 351 | /// If rewritten, all these instructions can simply be removed and replaced |
| 352 | /// with undef as they come from outside of the allocated space. |
| 353 | SmallVector<Instruction *, 8> DeadUsers; |
| 354 | |
| 355 | /// \brief Operands which will become dead if we rewrite the alloca. |
| 356 | /// |
| 357 | /// These are operands that in their particular use can be replaced with |
| 358 | /// undef when we rewrite the alloca. These show up in out-of-bounds inputs |
| 359 | /// to PHI nodes and the like. They aren't entirely dead (there might be |
| 360 | /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
| 361 | /// want to swap this particular input for undef to simplify the use lists of |
| 362 | /// the alloca. |
| 363 | SmallVector<Use *, 8> DeadOperands; |
| 364 | |
| 365 | /// \brief The underlying storage for auxiliary memcpy and memset info. |
| 366 | SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData; |
| 367 | |
| 368 | /// \brief A side datastructure used when building up the partitions and uses. |
| 369 | /// |
| 370 | /// This mapping is only really used during the initial building of the |
| 371 | /// partitioning so that we can retain information about PHI and select nodes |
| 372 | /// processed. |
| 373 | SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes; |
| 374 | |
| 375 | /// \brief Auxiliary information for particular PHI or select operands. |
| 376 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 377 | std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap; |
| 378 | |
| 379 | /// \brief A utility routine called from the constructor. |
| 380 | /// |
| 381 | /// This does what it says on the tin. It is the key of the alloca partition |
| 382 | /// splitting and merging. After it is called we have the desired disjoint |
| 383 | /// collection of partitions. |
| 384 | void splitAndMergePartitions(); |
| 385 | }; |
| 386 | } |
| 387 | |
| 388 | template <typename DerivedT, typename RetT> |
| 389 | class AllocaPartitioning::BuilderBase |
| 390 | : public InstVisitor<DerivedT, RetT> { |
| 391 | public: |
| 392 | BuilderBase(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
| 393 | : TD(TD), |
| 394 | AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())), |
| 395 | P(P) { |
| 396 | enqueueUsers(AI, 0); |
| 397 | } |
| 398 | |
| 399 | protected: |
| 400 | const TargetData &TD; |
| 401 | const uint64_t AllocSize; |
| 402 | AllocaPartitioning &P; |
| 403 | |
| 404 | struct OffsetUse { |
| 405 | Use *U; |
| 406 | uint64_t Offset; |
| 407 | }; |
| 408 | SmallVector<OffsetUse, 8> Queue; |
| 409 | |
| 410 | // The active offset and use while visiting. |
| 411 | Use *U; |
| 412 | uint64_t Offset; |
| 413 | |
| 414 | void enqueueUsers(Instruction &I, uint64_t UserOffset) { |
| 415 | SmallPtrSet<User *, 8> UserSet; |
| 416 | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); |
| 417 | UI != UE; ++UI) { |
| 418 | if (!UserSet.insert(*UI)) |
| 419 | continue; |
| 420 | |
| 421 | OffsetUse OU = { &UI.getUse(), UserOffset }; |
| 422 | Queue.push_back(OU); |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | bool computeConstantGEPOffset(GetElementPtrInst &GEPI, uint64_t &GEPOffset) { |
| 427 | GEPOffset = Offset; |
| 428 | for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI); |
| 429 | GTI != GTE; ++GTI) { |
| 430 | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| 431 | if (!OpC) |
| 432 | return false; |
| 433 | if (OpC->isZero()) |
| 434 | continue; |
| 435 | |
| 436 | // Handle a struct index, which adds its field offset to the pointer. |
| 437 | if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 438 | unsigned ElementIdx = OpC->getZExtValue(); |
| 439 | const StructLayout *SL = TD.getStructLayout(STy); |
| 440 | GEPOffset += SL->getElementOffset(ElementIdx); |
| 441 | continue; |
| 442 | } |
| 443 | |
| 444 | GEPOffset |
| 445 | += OpC->getZExtValue() * TD.getTypeAllocSize(GTI.getIndexedType()); |
| 446 | } |
| 447 | return true; |
| 448 | } |
| 449 | |
| 450 | Value *foldSelectInst(SelectInst &SI) { |
| 451 | // If the condition being selected on is a constant or the same value is |
| 452 | // being selected between, fold the select. Yes this does (rarely) happen |
| 453 | // early on. |
| 454 | if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) |
| 455 | return SI.getOperand(1+CI->isZero()); |
| 456 | if (SI.getOperand(1) == SI.getOperand(2)) { |
| 457 | assert(*U == SI.getOperand(1)); |
| 458 | return SI.getOperand(1); |
| 459 | } |
| 460 | return 0; |
| 461 | } |
| 462 | }; |
| 463 | |
| 464 | /// \brief Builder for the alloca partitioning. |
| 465 | /// |
| 466 | /// This class builds an alloca partitioning by recursively visiting the uses |
| 467 | /// of an alloca and splitting the partitions for each load and store at each |
| 468 | /// offset. |
| 469 | class AllocaPartitioning::PartitionBuilder |
| 470 | : public BuilderBase<PartitionBuilder, bool> { |
| 471 | friend class InstVisitor<PartitionBuilder, bool>; |
| 472 | |
| 473 | SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap; |
| 474 | |
| 475 | public: |
| 476 | PartitionBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
Chandler Carruth | 2a9bf25 | 2012-09-14 09:30:33 +0000 | [diff] [blame] | 477 | : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {} |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 478 | |
| 479 | /// \brief Run the builder over the allocation. |
| 480 | bool operator()() { |
| 481 | // Note that we have to re-evaluate size on each trip through the loop as |
| 482 | // the queue grows at the tail. |
| 483 | for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { |
| 484 | U = Queue[Idx].U; |
| 485 | Offset = Queue[Idx].Offset; |
| 486 | if (!visit(cast<Instruction>(U->getUser()))) |
| 487 | return false; |
| 488 | } |
| 489 | return true; |
| 490 | } |
| 491 | |
| 492 | private: |
| 493 | bool markAsEscaping(Instruction &I) { |
| 494 | P.PointerEscapingInstr = &I; |
| 495 | return false; |
| 496 | } |
| 497 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 498 | void insertUse(Instruction &I, uint64_t Offset, uint64_t Size, |
| 499 | bool IsSplittable = false) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 500 | uint64_t BeginOffset = Offset, EndOffset = Offset + Size; |
| 501 | |
| 502 | // Completely skip uses which start outside of the allocation. |
| 503 | if (BeginOffset >= AllocSize) { |
| 504 | DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset |
| 505 | << " which starts past the end of the " << AllocSize |
| 506 | << " byte alloca:\n" |
| 507 | << " alloca: " << P.AI << "\n" |
| 508 | << " use: " << I << "\n"); |
| 509 | return; |
| 510 | } |
| 511 | |
| 512 | // Clamp the size to the allocation. |
| 513 | if (EndOffset > AllocSize) { |
| 514 | DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset |
| 515 | << " to remain within the " << AllocSize << " byte alloca:\n" |
| 516 | << " alloca: " << P.AI << "\n" |
| 517 | << " use: " << I << "\n"); |
| 518 | EndOffset = AllocSize; |
| 519 | } |
| 520 | |
| 521 | // See if we can just add a user onto the last slot currently occupied. |
| 522 | if (!P.Partitions.empty() && |
| 523 | P.Partitions.back().BeginOffset == BeginOffset && |
| 524 | P.Partitions.back().EndOffset == EndOffset) { |
| 525 | P.Partitions.back().IsSplittable &= IsSplittable; |
| 526 | return; |
| 527 | } |
| 528 | |
| 529 | Partition New(BeginOffset, EndOffset, IsSplittable); |
| 530 | P.Partitions.push_back(New); |
| 531 | } |
| 532 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 533 | bool handleLoadOrStore(Type *Ty, Instruction &I, uint64_t Offset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 534 | uint64_t Size = TD.getTypeStoreSize(Ty); |
| 535 | |
| 536 | // If this memory access can be shown to *statically* extend outside the |
| 537 | // bounds of of the allocation, it's behavior is undefined, so simply |
| 538 | // ignore it. Note that this is more strict than the generic clamping |
| 539 | // behavior of insertUse. We also try to handle cases which might run the |
| 540 | // risk of overflow. |
| 541 | // FIXME: We should instead consider the pointer to have escaped if this |
| 542 | // function is being instrumented for addressing bugs or race conditions. |
| 543 | if (Offset >= AllocSize || Size > AllocSize || Offset + Size > AllocSize) { |
| 544 | DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte " |
| 545 | << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset |
| 546 | << " which extends past the end of the " << AllocSize |
| 547 | << " byte alloca:\n" |
| 548 | << " alloca: " << P.AI << "\n" |
| 549 | << " use: " << I << "\n"); |
| 550 | return true; |
| 551 | } |
| 552 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 553 | insertUse(I, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 554 | return true; |
| 555 | } |
| 556 | |
| 557 | bool visitBitCastInst(BitCastInst &BC) { |
| 558 | enqueueUsers(BC, Offset); |
| 559 | return true; |
| 560 | } |
| 561 | |
| 562 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 563 | uint64_t GEPOffset; |
| 564 | if (!computeConstantGEPOffset(GEPI, GEPOffset)) |
| 565 | return markAsEscaping(GEPI); |
| 566 | |
| 567 | enqueueUsers(GEPI, GEPOffset); |
| 568 | return true; |
| 569 | } |
| 570 | |
| 571 | bool visitLoadInst(LoadInst &LI) { |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 572 | assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && |
| 573 | "All simple FCA loads should have been pre-split"); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 574 | return handleLoadOrStore(LI.getType(), LI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 575 | } |
| 576 | |
| 577 | bool visitStoreInst(StoreInst &SI) { |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 578 | Value *ValOp = SI.getValueOperand(); |
| 579 | if (ValOp == *U) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 580 | return markAsEscaping(SI); |
| 581 | |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 582 | assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && |
| 583 | "All simple FCA stores should have been pre-split"); |
| 584 | return handleLoadOrStore(ValOp->getType(), SI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 585 | } |
| 586 | |
| 587 | |
| 588 | bool visitMemSetInst(MemSetInst &II) { |
Chandler Carruth | b3dd9a1 | 2012-09-14 10:26:34 +0000 | [diff] [blame] | 589 | assert(II.getRawDest() == *U && "Pointer use is not the destination?"); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 590 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 591 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 592 | insertUse(II, Offset, Size, Length); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 593 | return true; |
| 594 | } |
| 595 | |
| 596 | bool visitMemTransferInst(MemTransferInst &II) { |
| 597 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| 598 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 599 | if (!Size) |
| 600 | // Zero-length mem transfer intrinsics can be ignored entirely. |
| 601 | return true; |
| 602 | |
| 603 | MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; |
| 604 | |
| 605 | // Only intrinsics with a constant length can be split. |
| 606 | Offsets.IsSplittable = Length; |
| 607 | |
| 608 | if (*U != II.getRawDest()) { |
| 609 | assert(*U == II.getRawSource()); |
| 610 | Offsets.SourceBegin = Offset; |
| 611 | Offsets.SourceEnd = Offset + Size; |
| 612 | } else { |
| 613 | Offsets.DestBegin = Offset; |
| 614 | Offsets.DestEnd = Offset + Size; |
| 615 | } |
| 616 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 617 | insertUse(II, Offset, Size, Offsets.IsSplittable); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 618 | unsigned NewIdx = P.Partitions.size() - 1; |
| 619 | |
| 620 | SmallDenseMap<Instruction *, unsigned>::const_iterator PMI; |
| 621 | bool Inserted = false; |
| 622 | llvm::tie(PMI, Inserted) |
| 623 | = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)); |
| 624 | if (!Inserted && Offsets.IsSplittable) { |
| 625 | // We've found a memory transfer intrinsic which refers to the alloca as |
| 626 | // both a source and dest. We refuse to split these to simplify splitting |
| 627 | // logic. If possible, SROA will still split them into separate allocas |
| 628 | // and then re-analyze. |
| 629 | Offsets.IsSplittable = false; |
| 630 | P.Partitions[PMI->second].IsSplittable = false; |
| 631 | P.Partitions[NewIdx].IsSplittable = false; |
| 632 | } |
| 633 | |
| 634 | return true; |
| 635 | } |
| 636 | |
| 637 | // Disable SRoA for any intrinsics except for lifetime invariants. |
Chandler Carruth | 50754f0 | 2012-09-14 10:26:36 +0000 | [diff] [blame] | 638 | // FIXME: What about debug instrinsics? This matches old behavior, but |
| 639 | // doesn't make sense. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 640 | bool visitIntrinsicInst(IntrinsicInst &II) { |
| 641 | if (II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 642 | II.getIntrinsicID() == Intrinsic::lifetime_end) { |
| 643 | ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| 644 | uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 645 | insertUse(II, Offset, Size, true); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 646 | return true; |
| 647 | } |
| 648 | |
| 649 | return markAsEscaping(II); |
| 650 | } |
| 651 | |
| 652 | Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
| 653 | // We consider any PHI or select that results in a direct load or store of |
| 654 | // the same offset to be a viable use for partitioning purposes. These uses |
| 655 | // are considered unsplittable and the size is the maximum loaded or stored |
| 656 | // size. |
| 657 | SmallPtrSet<Instruction *, 4> Visited; |
| 658 | SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
| 659 | Visited.insert(Root); |
| 660 | Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); |
| 661 | do { |
| 662 | Instruction *I, *UsedI; |
| 663 | llvm::tie(UsedI, I) = Uses.pop_back_val(); |
| 664 | |
| 665 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| 666 | Size = std::max(Size, TD.getTypeStoreSize(LI->getType())); |
| 667 | continue; |
| 668 | } |
| 669 | if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| 670 | Value *Op = SI->getOperand(0); |
| 671 | if (Op == UsedI) |
| 672 | return SI; |
| 673 | Size = std::max(Size, TD.getTypeStoreSize(Op->getType())); |
| 674 | continue; |
| 675 | } |
| 676 | |
| 677 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| 678 | if (!GEP->hasAllZeroIndices()) |
| 679 | return GEP; |
| 680 | } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && |
| 681 | !isa<SelectInst>(I)) { |
| 682 | return I; |
| 683 | } |
| 684 | |
| 685 | for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; |
| 686 | ++UI) |
| 687 | if (Visited.insert(cast<Instruction>(*UI))) |
| 688 | Uses.push_back(std::make_pair(I, cast<Instruction>(*UI))); |
| 689 | } while (!Uses.empty()); |
| 690 | |
| 691 | return 0; |
| 692 | } |
| 693 | |
| 694 | bool visitPHINode(PHINode &PN) { |
| 695 | // See if we already have computed info on this node. |
| 696 | std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN]; |
| 697 | if (PHIInfo.first) { |
| 698 | PHIInfo.second = true; |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 699 | insertUse(PN, Offset, PHIInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 700 | return true; |
| 701 | } |
| 702 | |
| 703 | // Check for an unsafe use of the PHI node. |
| 704 | if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first)) |
| 705 | return markAsEscaping(*EscapingI); |
| 706 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 707 | insertUse(PN, Offset, PHIInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 708 | return true; |
| 709 | } |
| 710 | |
| 711 | bool visitSelectInst(SelectInst &SI) { |
| 712 | if (Value *Result = foldSelectInst(SI)) { |
| 713 | if (Result == *U) |
| 714 | // If the result of the constant fold will be the pointer, recurse |
| 715 | // through the select as if we had RAUW'ed it. |
| 716 | enqueueUsers(SI, Offset); |
| 717 | |
| 718 | return true; |
| 719 | } |
| 720 | |
| 721 | // See if we already have computed info on this node. |
| 722 | std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI]; |
| 723 | if (SelectInfo.first) { |
| 724 | SelectInfo.second = true; |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 725 | insertUse(SI, Offset, SelectInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 726 | return true; |
| 727 | } |
| 728 | |
| 729 | // Check for an unsafe use of the PHI node. |
| 730 | if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first)) |
| 731 | return markAsEscaping(*EscapingI); |
| 732 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 733 | insertUse(SI, Offset, SelectInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 734 | return true; |
| 735 | } |
| 736 | |
| 737 | /// \brief Disable SROA entirely if there are unhandled users of the alloca. |
| 738 | bool visitInstruction(Instruction &I) { return markAsEscaping(I); } |
| 739 | }; |
| 740 | |
| 741 | |
| 742 | /// \brief Use adder for the alloca partitioning. |
| 743 | /// |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 744 | /// This class adds the uses of an alloca to all of the partitions which they |
| 745 | /// use. For splittable partitions, this can end up doing essentially a linear |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 746 | /// walk of the partitions, but the number of steps remains bounded by the |
| 747 | /// total result instruction size: |
| 748 | /// - The number of partitions is a result of the number unsplittable |
| 749 | /// instructions using the alloca. |
| 750 | /// - The number of users of each partition is at worst the total number of |
| 751 | /// splittable instructions using the alloca. |
| 752 | /// Thus we will produce N * M instructions in the end, where N are the number |
| 753 | /// of unsplittable uses and M are the number of splittable. This visitor does |
| 754 | /// the exact same number of updates to the partitioning. |
| 755 | /// |
| 756 | /// In the more common case, this visitor will leverage the fact that the |
| 757 | /// partition space is pre-sorted, and do a logarithmic search for the |
| 758 | /// partition needed, making the total visit a classical ((N + M) * log(N)) |
| 759 | /// complexity operation. |
| 760 | class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> { |
| 761 | friend class InstVisitor<UseBuilder>; |
| 762 | |
| 763 | /// \brief Set to de-duplicate dead instructions found in the use walk. |
| 764 | SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
| 765 | |
| 766 | public: |
| 767 | UseBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
Chandler Carruth | 2a9bf25 | 2012-09-14 09:30:33 +0000 | [diff] [blame] | 768 | : BuilderBase<UseBuilder>(TD, AI, P) {} |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 769 | |
| 770 | /// \brief Run the builder over the allocation. |
| 771 | void operator()() { |
| 772 | // Note that we have to re-evaluate size on each trip through the loop as |
| 773 | // the queue grows at the tail. |
| 774 | for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { |
| 775 | U = Queue[Idx].U; |
| 776 | Offset = Queue[Idx].Offset; |
| 777 | this->visit(cast<Instruction>(U->getUser())); |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | private: |
| 782 | void markAsDead(Instruction &I) { |
| 783 | if (VisitedDeadInsts.insert(&I)) |
| 784 | P.DeadUsers.push_back(&I); |
| 785 | } |
| 786 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 787 | void insertUse(Instruction &User, uint64_t Offset, uint64_t Size) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 788 | uint64_t BeginOffset = Offset, EndOffset = Offset + Size; |
| 789 | |
| 790 | // If the use extends outside of the allocation, record it as a dead use |
| 791 | // for elimination later. |
| 792 | if (BeginOffset >= AllocSize || Size == 0) |
| 793 | return markAsDead(User); |
| 794 | |
| 795 | // Bound the use by the size of the allocation. |
| 796 | if (EndOffset > AllocSize) |
| 797 | EndOffset = AllocSize; |
| 798 | |
| 799 | // NB: This only works if we have zero overlapping partitions. |
| 800 | iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset); |
| 801 | if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset) |
| 802 | B = llvm::prior(B); |
| 803 | for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset; |
| 804 | ++I) { |
| 805 | PartitionUse NewUse(std::max(I->BeginOffset, BeginOffset), |
| 806 | std::min(I->EndOffset, EndOffset), |
| 807 | &User, cast<Instruction>(*U)); |
| 808 | P.Uses[I - P.begin()].push_back(NewUse); |
| 809 | if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser())) |
| 810 | P.PHIOrSelectOpMap[std::make_pair(&User, U->get())] |
| 811 | = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1); |
| 812 | } |
| 813 | } |
| 814 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 815 | void handleLoadOrStore(Type *Ty, Instruction &I, uint64_t Offset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 816 | uint64_t Size = TD.getTypeStoreSize(Ty); |
| 817 | |
| 818 | // If this memory access can be shown to *statically* extend outside the |
| 819 | // bounds of of the allocation, it's behavior is undefined, so simply |
| 820 | // ignore it. Note that this is more strict than the generic clamping |
| 821 | // behavior of insertUse. |
| 822 | if (Offset >= AllocSize || Size > AllocSize || Offset + Size > AllocSize) |
| 823 | return markAsDead(I); |
| 824 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 825 | insertUse(I, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 826 | } |
| 827 | |
| 828 | void visitBitCastInst(BitCastInst &BC) { |
| 829 | if (BC.use_empty()) |
| 830 | return markAsDead(BC); |
| 831 | |
| 832 | enqueueUsers(BC, Offset); |
| 833 | } |
| 834 | |
| 835 | void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 836 | if (GEPI.use_empty()) |
| 837 | return markAsDead(GEPI); |
| 838 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 839 | uint64_t GEPOffset; |
| 840 | if (!computeConstantGEPOffset(GEPI, GEPOffset)) |
| 841 | llvm_unreachable("Unable to compute constant offset for use"); |
| 842 | |
| 843 | enqueueUsers(GEPI, GEPOffset); |
| 844 | } |
| 845 | |
| 846 | void visitLoadInst(LoadInst &LI) { |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 847 | handleLoadOrStore(LI.getType(), LI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 848 | } |
| 849 | |
| 850 | void visitStoreInst(StoreInst &SI) { |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 851 | handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 852 | } |
| 853 | |
| 854 | void visitMemSetInst(MemSetInst &II) { |
| 855 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 856 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 857 | insertUse(II, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 858 | } |
| 859 | |
| 860 | void visitMemTransferInst(MemTransferInst &II) { |
| 861 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 862 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 863 | insertUse(II, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 864 | } |
| 865 | |
| 866 | void visitIntrinsicInst(IntrinsicInst &II) { |
| 867 | assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 868 | II.getIntrinsicID() == Intrinsic::lifetime_end); |
| 869 | |
| 870 | ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 871 | insertUse(II, Offset, |
| 872 | std::min(AllocSize - Offset, Length->getLimitedValue())); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 873 | } |
| 874 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 875 | void insertPHIOrSelect(Instruction &User, uint64_t Offset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 876 | uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first; |
| 877 | |
| 878 | // For PHI and select operands outside the alloca, we can't nuke the entire |
| 879 | // phi or select -- the other side might still be relevant, so we special |
| 880 | // case them here and use a separate structure to track the operands |
| 881 | // themselves which should be replaced with undef. |
| 882 | if (Offset >= AllocSize) { |
| 883 | P.DeadOperands.push_back(U); |
| 884 | return; |
| 885 | } |
| 886 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 887 | insertUse(User, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 888 | } |
| 889 | void visitPHINode(PHINode &PN) { |
| 890 | if (PN.use_empty()) |
| 891 | return markAsDead(PN); |
| 892 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 893 | insertPHIOrSelect(PN, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 894 | } |
| 895 | void visitSelectInst(SelectInst &SI) { |
| 896 | if (SI.use_empty()) |
| 897 | return markAsDead(SI); |
| 898 | |
| 899 | if (Value *Result = foldSelectInst(SI)) { |
| 900 | if (Result == *U) |
| 901 | // If the result of the constant fold will be the pointer, recurse |
| 902 | // through the select as if we had RAUW'ed it. |
| 903 | enqueueUsers(SI, Offset); |
| 904 | |
| 905 | return; |
| 906 | } |
| 907 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 908 | insertPHIOrSelect(SI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 909 | } |
| 910 | |
| 911 | /// \brief Unreachable, we've already visited the alloca once. |
| 912 | void visitInstruction(Instruction &I) { |
| 913 | llvm_unreachable("Unhandled instruction in use builder."); |
| 914 | } |
| 915 | }; |
| 916 | |
| 917 | void AllocaPartitioning::splitAndMergePartitions() { |
| 918 | size_t NumDeadPartitions = 0; |
| 919 | |
| 920 | // Track the range of splittable partitions that we pass when accumulating |
| 921 | // overlapping unsplittable partitions. |
| 922 | uint64_t SplitEndOffset = 0ull; |
| 923 | |
| 924 | Partition New(0ull, 0ull, false); |
| 925 | |
| 926 | for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) { |
| 927 | ++j; |
| 928 | |
| 929 | if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) { |
| 930 | assert(New.BeginOffset == New.EndOffset); |
| 931 | New = Partitions[i]; |
| 932 | } else { |
| 933 | assert(New.IsSplittable); |
| 934 | New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset); |
| 935 | } |
| 936 | assert(New.BeginOffset != New.EndOffset); |
| 937 | |
| 938 | // Scan the overlapping partitions. |
| 939 | while (j != e && New.EndOffset > Partitions[j].BeginOffset) { |
| 940 | // If the new partition we are forming is splittable, stop at the first |
| 941 | // unsplittable partition. |
| 942 | if (New.IsSplittable && !Partitions[j].IsSplittable) |
| 943 | break; |
| 944 | |
| 945 | // Grow the new partition to include any equally splittable range. 'j' is |
| 946 | // always equally splittable when New is splittable, but when New is not |
| 947 | // splittable, we may subsume some (or part of some) splitable partition |
| 948 | // without growing the new one. |
| 949 | if (New.IsSplittable == Partitions[j].IsSplittable) { |
| 950 | New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset); |
| 951 | } else { |
| 952 | assert(!New.IsSplittable); |
| 953 | assert(Partitions[j].IsSplittable); |
| 954 | SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset); |
| 955 | } |
| 956 | |
| 957 | Partitions[j].BeginOffset = Partitions[j].EndOffset = UINT64_MAX; |
| 958 | ++NumDeadPartitions; |
| 959 | ++j; |
| 960 | } |
| 961 | |
| 962 | // If the new partition is splittable, chop off the end as soon as the |
| 963 | // unsplittable subsequent partition starts and ensure we eventually cover |
| 964 | // the splittable area. |
| 965 | if (j != e && New.IsSplittable) { |
| 966 | SplitEndOffset = std::max(SplitEndOffset, New.EndOffset); |
| 967 | New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| 968 | } |
| 969 | |
| 970 | // Add the new partition if it differs from the original one and is |
| 971 | // non-empty. We can end up with an empty partition here if it was |
| 972 | // splittable but there is an unsplittable one that starts at the same |
| 973 | // offset. |
| 974 | if (New != Partitions[i]) { |
| 975 | if (New.BeginOffset != New.EndOffset) |
| 976 | Partitions.push_back(New); |
| 977 | // Mark the old one for removal. |
| 978 | Partitions[i].BeginOffset = Partitions[i].EndOffset = UINT64_MAX; |
| 979 | ++NumDeadPartitions; |
| 980 | } |
| 981 | |
| 982 | New.BeginOffset = New.EndOffset; |
| 983 | if (!New.IsSplittable) { |
| 984 | New.EndOffset = std::max(New.EndOffset, SplitEndOffset); |
| 985 | if (j != e && !Partitions[j].IsSplittable) |
| 986 | New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| 987 | New.IsSplittable = true; |
| 988 | // If there is a trailing splittable partition which won't be fused into |
| 989 | // the next splittable partition go ahead and add it onto the partitions |
| 990 | // list. |
| 991 | if (New.BeginOffset < New.EndOffset && |
| 992 | (j == e || !Partitions[j].IsSplittable || |
| 993 | New.EndOffset < Partitions[j].BeginOffset)) { |
| 994 | Partitions.push_back(New); |
| 995 | New.BeginOffset = New.EndOffset = 0ull; |
| 996 | } |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | // Re-sort the partitions now that they have been split and merged into |
| 1001 | // disjoint set of partitions. Also remove any of the dead partitions we've |
| 1002 | // replaced in the process. |
| 1003 | std::sort(Partitions.begin(), Partitions.end()); |
| 1004 | if (NumDeadPartitions) { |
| 1005 | assert(Partitions.back().BeginOffset == UINT64_MAX); |
| 1006 | assert(Partitions.back().EndOffset == UINT64_MAX); |
| 1007 | assert((ptrdiff_t)NumDeadPartitions == |
| 1008 | std::count(Partitions.begin(), Partitions.end(), Partitions.back())); |
| 1009 | } |
| 1010 | Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end()); |
| 1011 | } |
| 1012 | |
| 1013 | AllocaPartitioning::AllocaPartitioning(const TargetData &TD, AllocaInst &AI) |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 1014 | : |
| 1015 | #ifndef NDEBUG |
| 1016 | AI(AI), |
| 1017 | #endif |
| 1018 | PointerEscapingInstr(0) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1019 | PartitionBuilder PB(TD, AI, *this); |
| 1020 | if (!PB()) |
| 1021 | return; |
| 1022 | |
| 1023 | if (Partitions.size() > 1) { |
| 1024 | // Sort the uses. This arranges for the offsets to be in ascending order, |
| 1025 | // and the sizes to be in descending order. |
| 1026 | std::sort(Partitions.begin(), Partitions.end()); |
| 1027 | |
| 1028 | // Intersect splittability for all partitions with equal offsets and sizes. |
| 1029 | // Then remove all but the first so that we have a sequence of non-equal but |
| 1030 | // potentially overlapping partitions. |
| 1031 | for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E; |
| 1032 | I = J) { |
| 1033 | ++J; |
| 1034 | while (J != E && *I == *J) { |
| 1035 | I->IsSplittable &= J->IsSplittable; |
| 1036 | ++J; |
| 1037 | } |
| 1038 | } |
| 1039 | Partitions.erase(std::unique(Partitions.begin(), Partitions.end()), |
| 1040 | Partitions.end()); |
| 1041 | |
| 1042 | // Split splittable and merge unsplittable partitions into a disjoint set |
| 1043 | // of partitions over the used space of the allocation. |
| 1044 | splitAndMergePartitions(); |
| 1045 | } |
| 1046 | |
| 1047 | // Now build up the user lists for each of these disjoint partitions by |
| 1048 | // re-walking the recursive users of the alloca. |
| 1049 | Uses.resize(Partitions.size()); |
| 1050 | UseBuilder UB(TD, AI, *this); |
| 1051 | UB(); |
| 1052 | for (iterator I = Partitions.begin(), E = Partitions.end(); I != E; ++I) |
| 1053 | std::stable_sort(use_begin(I), use_end(I)); |
| 1054 | } |
| 1055 | |
| 1056 | Type *AllocaPartitioning::getCommonType(iterator I) const { |
| 1057 | Type *Ty = 0; |
| 1058 | for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 1059 | if (isa<IntrinsicInst>(*UI->User)) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1060 | continue; |
| 1061 | if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset) |
Chandler Carruth | 7c8df7a | 2012-09-18 17:49:37 +0000 | [diff] [blame] | 1062 | continue; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1063 | |
| 1064 | Type *UserTy = 0; |
| 1065 | if (LoadInst *LI = dyn_cast<LoadInst>(&*UI->User)) { |
| 1066 | UserTy = LI->getType(); |
| 1067 | } else if (StoreInst *SI = dyn_cast<StoreInst>(&*UI->User)) { |
| 1068 | UserTy = SI->getValueOperand()->getType(); |
| 1069 | } else if (SelectInst *SI = dyn_cast<SelectInst>(&*UI->User)) { |
| 1070 | if (PointerType *PtrTy = dyn_cast<PointerType>(SI->getType())) |
| 1071 | UserTy = PtrTy->getElementType(); |
| 1072 | } else if (PHINode *PN = dyn_cast<PHINode>(&*UI->User)) { |
| 1073 | if (PointerType *PtrTy = dyn_cast<PointerType>(PN->getType())) |
| 1074 | UserTy = PtrTy->getElementType(); |
| 1075 | } |
| 1076 | |
| 1077 | if (Ty && Ty != UserTy) |
| 1078 | return 0; |
| 1079 | |
| 1080 | Ty = UserTy; |
| 1081 | } |
| 1082 | return Ty; |
| 1083 | } |
| 1084 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 1085 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1086 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1087 | void AllocaPartitioning::print(raw_ostream &OS, const_iterator I, |
| 1088 | StringRef Indent) const { |
| 1089 | OS << Indent << "partition #" << (I - begin()) |
| 1090 | << " [" << I->BeginOffset << "," << I->EndOffset << ")" |
| 1091 | << (I->IsSplittable ? " (splittable)" : "") |
| 1092 | << (Uses[I - begin()].empty() ? " (zero uses)" : "") |
| 1093 | << "\n"; |
| 1094 | } |
| 1095 | |
| 1096 | void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I, |
| 1097 | StringRef Indent) const { |
| 1098 | for (const_use_iterator UI = use_begin(I), UE = use_end(I); |
| 1099 | UI != UE; ++UI) { |
| 1100 | OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") " |
| 1101 | << "used by: " << *UI->User << "\n"; |
| 1102 | if (MemTransferInst *II = dyn_cast<MemTransferInst>(&*UI->User)) { |
| 1103 | const MemTransferOffsets &MTO = MemTransferInstData.lookup(II); |
| 1104 | bool IsDest; |
| 1105 | if (!MTO.IsSplittable) |
| 1106 | IsDest = UI->BeginOffset == MTO.DestBegin; |
| 1107 | else |
| 1108 | IsDest = MTO.DestBegin != 0u; |
| 1109 | OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": " |
| 1110 | << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin) |
| 1111 | << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n"; |
| 1112 | } |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | void AllocaPartitioning::print(raw_ostream &OS) const { |
| 1117 | if (PointerEscapingInstr) { |
| 1118 | OS << "No partitioning for alloca: " << AI << "\n" |
| 1119 | << " A pointer to this alloca escaped by:\n" |
| 1120 | << " " << *PointerEscapingInstr << "\n"; |
| 1121 | return; |
| 1122 | } |
| 1123 | |
| 1124 | OS << "Partitioning of alloca: " << AI << "\n"; |
| 1125 | unsigned Num = 0; |
| 1126 | for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) { |
| 1127 | print(OS, I); |
| 1128 | printUsers(OS, I); |
| 1129 | } |
| 1130 | } |
| 1131 | |
| 1132 | void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); } |
| 1133 | void AllocaPartitioning::dump() const { print(dbgs()); } |
| 1134 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 1135 | #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1136 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1137 | |
| 1138 | namespace { |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1139 | /// \brief Implementation of LoadAndStorePromoter for promoting allocas. |
| 1140 | /// |
| 1141 | /// This subclass of LoadAndStorePromoter adds overrides to handle promoting |
| 1142 | /// the loads and stores of an alloca instruction, as well as updating its |
| 1143 | /// debug information. This is used when a domtree is unavailable and thus |
| 1144 | /// mem2reg in its full form can't be used to handle promotion of allocas to |
| 1145 | /// scalar values. |
| 1146 | class AllocaPromoter : public LoadAndStorePromoter { |
| 1147 | AllocaInst &AI; |
| 1148 | DIBuilder &DIB; |
| 1149 | |
| 1150 | SmallVector<DbgDeclareInst *, 4> DDIs; |
| 1151 | SmallVector<DbgValueInst *, 4> DVIs; |
| 1152 | |
| 1153 | public: |
| 1154 | AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, |
| 1155 | AllocaInst &AI, DIBuilder &DIB) |
| 1156 | : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} |
| 1157 | |
| 1158 | void run(const SmallVectorImpl<Instruction*> &Insts) { |
| 1159 | // Remember which alloca we're promoting (for isInstInList). |
| 1160 | if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { |
| 1161 | for (Value::use_iterator UI = DebugNode->use_begin(), |
| 1162 | UE = DebugNode->use_end(); |
| 1163 | UI != UE; ++UI) |
| 1164 | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) |
| 1165 | DDIs.push_back(DDI); |
| 1166 | else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI)) |
| 1167 | DVIs.push_back(DVI); |
| 1168 | } |
| 1169 | |
| 1170 | LoadAndStorePromoter::run(Insts); |
| 1171 | AI.eraseFromParent(); |
| 1172 | while (!DDIs.empty()) |
| 1173 | DDIs.pop_back_val()->eraseFromParent(); |
| 1174 | while (!DVIs.empty()) |
| 1175 | DVIs.pop_back_val()->eraseFromParent(); |
| 1176 | } |
| 1177 | |
| 1178 | virtual bool isInstInList(Instruction *I, |
| 1179 | const SmallVectorImpl<Instruction*> &Insts) const { |
| 1180 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| 1181 | return LI->getOperand(0) == &AI; |
| 1182 | return cast<StoreInst>(I)->getPointerOperand() == &AI; |
| 1183 | } |
| 1184 | |
| 1185 | virtual void updateDebugInfo(Instruction *Inst) const { |
| 1186 | for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), |
| 1187 | E = DDIs.end(); I != E; ++I) { |
| 1188 | DbgDeclareInst *DDI = *I; |
| 1189 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| 1190 | ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| 1191 | else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| 1192 | ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| 1193 | } |
| 1194 | for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), |
| 1195 | E = DVIs.end(); I != E; ++I) { |
| 1196 | DbgValueInst *DVI = *I; |
| 1197 | Value *Arg = NULL; |
| 1198 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| 1199 | // If an argument is zero extended then use argument directly. The ZExt |
| 1200 | // may be zapped by an optimization pass in future. |
| 1201 | if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) |
| 1202 | Arg = dyn_cast<Argument>(ZExt->getOperand(0)); |
| 1203 | if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) |
| 1204 | Arg = dyn_cast<Argument>(SExt->getOperand(0)); |
| 1205 | if (!Arg) |
| 1206 | Arg = SI->getOperand(0); |
| 1207 | } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { |
| 1208 | Arg = LI->getOperand(0); |
| 1209 | } else { |
| 1210 | continue; |
| 1211 | } |
| 1212 | Instruction *DbgVal = |
| 1213 | DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), |
| 1214 | Inst); |
| 1215 | DbgVal->setDebugLoc(DVI->getDebugLoc()); |
| 1216 | } |
| 1217 | } |
| 1218 | }; |
| 1219 | } // end anon namespace |
| 1220 | |
| 1221 | |
| 1222 | namespace { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1223 | /// \brief An optimization pass providing Scalar Replacement of Aggregates. |
| 1224 | /// |
| 1225 | /// This pass takes allocations which can be completely analyzed (that is, they |
| 1226 | /// don't escape) and tries to turn them into scalar SSA values. There are |
| 1227 | /// a few steps to this process. |
| 1228 | /// |
| 1229 | /// 1) It takes allocations of aggregates and analyzes the ways in which they |
| 1230 | /// are used to try to split them into smaller allocations, ideally of |
| 1231 | /// a single scalar data type. It will split up memcpy and memset accesses |
| 1232 | /// as necessary and try to isolate invidual scalar accesses. |
| 1233 | /// 2) It will transform accesses into forms which are suitable for SSA value |
| 1234 | /// promotion. This can be replacing a memset with a scalar store of an |
| 1235 | /// integer value, or it can involve speculating operations on a PHI or |
| 1236 | /// select to be a PHI or select of the results. |
| 1237 | /// 3) Finally, this will try to detect a pattern of accesses which map cleanly |
| 1238 | /// onto insert and extract operations on a vector value, and convert them to |
| 1239 | /// this form. By doing so, it will enable promotion of vector aggregates to |
| 1240 | /// SSA vector values. |
| 1241 | class SROA : public FunctionPass { |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1242 | const bool RequiresDomTree; |
| 1243 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1244 | LLVMContext *C; |
| 1245 | const TargetData *TD; |
| 1246 | DominatorTree *DT; |
| 1247 | |
| 1248 | /// \brief Worklist of alloca instructions to simplify. |
| 1249 | /// |
| 1250 | /// Each alloca in the function is added to this. Each new alloca formed gets |
| 1251 | /// added to it as well to recursively simplify unless that alloca can be |
| 1252 | /// directly promoted. Finally, each time we rewrite a use of an alloca other |
| 1253 | /// the one being actively rewritten, we add it back onto the list if not |
| 1254 | /// already present to ensure it is re-visited. |
| 1255 | SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist; |
| 1256 | |
| 1257 | /// \brief A collection of instructions to delete. |
| 1258 | /// We try to batch deletions to simplify code and make things a bit more |
| 1259 | /// efficient. |
| 1260 | SmallVector<Instruction *, 8> DeadInsts; |
| 1261 | |
| 1262 | /// \brief A set to prevent repeatedly marking an instruction split into many |
| 1263 | /// uses as dead. Only used to guard insertion into DeadInsts. |
| 1264 | SmallPtrSet<Instruction *, 4> DeadSplitInsts; |
| 1265 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1266 | /// \brief A collection of alloca instructions we can directly promote. |
| 1267 | std::vector<AllocaInst *> PromotableAllocas; |
| 1268 | |
| 1269 | public: |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1270 | SROA(bool RequiresDomTree = true) |
| 1271 | : FunctionPass(ID), RequiresDomTree(RequiresDomTree), |
| 1272 | C(0), TD(0), DT(0) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1273 | initializeSROAPass(*PassRegistry::getPassRegistry()); |
| 1274 | } |
| 1275 | bool runOnFunction(Function &F); |
| 1276 | void getAnalysisUsage(AnalysisUsage &AU) const; |
| 1277 | |
| 1278 | const char *getPassName() const { return "SROA"; } |
| 1279 | static char ID; |
| 1280 | |
| 1281 | private: |
| 1282 | friend class AllocaPartitionRewriter; |
| 1283 | friend class AllocaPartitionVectorRewriter; |
| 1284 | |
| 1285 | bool rewriteAllocaPartition(AllocaInst &AI, |
| 1286 | AllocaPartitioning &P, |
| 1287 | AllocaPartitioning::iterator PI); |
| 1288 | bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P); |
| 1289 | bool runOnAlloca(AllocaInst &AI); |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 1290 | void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas); |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1291 | bool promoteAllocas(Function &F); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1292 | }; |
| 1293 | } |
| 1294 | |
| 1295 | char SROA::ID = 0; |
| 1296 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1297 | FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { |
| 1298 | return new SROA(RequiresDomTree); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1299 | } |
| 1300 | |
| 1301 | INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| 1302 | false, false) |
| 1303 | INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| 1304 | INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| 1305 | false, false) |
| 1306 | |
| 1307 | /// \brief Accumulate the constant offsets in a GEP into a single APInt offset. |
| 1308 | /// |
| 1309 | /// If the provided GEP is all-constant, the total byte offset formed by the |
| 1310 | /// GEP is computed and Offset is set to it. If the GEP has any non-constant |
| 1311 | /// operands, the function returns false and the value of Offset is unmodified. |
| 1312 | static bool accumulateGEPOffsets(const TargetData &TD, GEPOperator &GEP, |
| 1313 | APInt &Offset) { |
| 1314 | APInt GEPOffset(Offset.getBitWidth(), 0); |
| 1315 | for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); |
| 1316 | GTI != GTE; ++GTI) { |
| 1317 | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| 1318 | if (!OpC) |
| 1319 | return false; |
| 1320 | if (OpC->isZero()) continue; |
| 1321 | |
| 1322 | // Handle a struct index, which adds its field offset to the pointer. |
| 1323 | if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 1324 | unsigned ElementIdx = OpC->getZExtValue(); |
| 1325 | const StructLayout *SL = TD.getStructLayout(STy); |
| 1326 | GEPOffset += APInt(Offset.getBitWidth(), |
| 1327 | SL->getElementOffset(ElementIdx)); |
| 1328 | continue; |
| 1329 | } |
| 1330 | |
| 1331 | APInt TypeSize(Offset.getBitWidth(), |
| 1332 | TD.getTypeAllocSize(GTI.getIndexedType())); |
| 1333 | if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) { |
| 1334 | assert((VTy->getScalarSizeInBits() % 8) == 0 && |
| 1335 | "vector element size is not a multiple of 8, cannot GEP over it"); |
| 1336 | TypeSize = VTy->getScalarSizeInBits() / 8; |
| 1337 | } |
| 1338 | |
| 1339 | GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize; |
| 1340 | } |
| 1341 | Offset = GEPOffset; |
| 1342 | return true; |
| 1343 | } |
| 1344 | |
| 1345 | /// \brief Build a GEP out of a base pointer and indices. |
| 1346 | /// |
| 1347 | /// This will return the BasePtr if that is valid, or build a new GEP |
| 1348 | /// instruction using the IRBuilder if GEP-ing is needed. |
| 1349 | static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr, |
| 1350 | SmallVectorImpl<Value *> &Indices, |
| 1351 | const Twine &Prefix) { |
| 1352 | if (Indices.empty()) |
| 1353 | return BasePtr; |
| 1354 | |
| 1355 | // A single zero index is a no-op, so check for this and avoid building a GEP |
| 1356 | // in that case. |
| 1357 | if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) |
| 1358 | return BasePtr; |
| 1359 | |
| 1360 | return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx"); |
| 1361 | } |
| 1362 | |
| 1363 | /// \brief Get a natural GEP off of the BasePtr walking through Ty toward |
| 1364 | /// TargetTy without changing the offset of the pointer. |
| 1365 | /// |
| 1366 | /// This routine assumes we've already established a properly offset GEP with |
| 1367 | /// Indices, and arrived at the Ty type. The goal is to continue to GEP with |
| 1368 | /// zero-indices down through type layers until we find one the same as |
| 1369 | /// TargetTy. If we can't find one with the same type, we at least try to use |
| 1370 | /// one with the same size. If none of that works, we just produce the GEP as |
| 1371 | /// indicated by Indices to have the correct offset. |
| 1372 | static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const TargetData &TD, |
| 1373 | Value *BasePtr, Type *Ty, Type *TargetTy, |
| 1374 | SmallVectorImpl<Value *> &Indices, |
| 1375 | const Twine &Prefix) { |
| 1376 | if (Ty == TargetTy) |
| 1377 | return buildGEP(IRB, BasePtr, Indices, Prefix); |
| 1378 | |
| 1379 | // See if we can descend into a struct and locate a field with the correct |
| 1380 | // type. |
| 1381 | unsigned NumLayers = 0; |
| 1382 | Type *ElementTy = Ty; |
| 1383 | do { |
| 1384 | if (ElementTy->isPointerTy()) |
| 1385 | break; |
| 1386 | if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) { |
| 1387 | ElementTy = SeqTy->getElementType(); |
| 1388 | Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0))); |
| 1389 | } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { |
| 1390 | ElementTy = *STy->element_begin(); |
| 1391 | Indices.push_back(IRB.getInt32(0)); |
| 1392 | } else { |
| 1393 | break; |
| 1394 | } |
| 1395 | ++NumLayers; |
| 1396 | } while (ElementTy != TargetTy); |
| 1397 | if (ElementTy != TargetTy) |
| 1398 | Indices.erase(Indices.end() - NumLayers, Indices.end()); |
| 1399 | |
| 1400 | return buildGEP(IRB, BasePtr, Indices, Prefix); |
| 1401 | } |
| 1402 | |
| 1403 | /// \brief Recursively compute indices for a natural GEP. |
| 1404 | /// |
| 1405 | /// This is the recursive step for getNaturalGEPWithOffset that walks down the |
| 1406 | /// element types adding appropriate indices for the GEP. |
| 1407 | static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const TargetData &TD, |
| 1408 | Value *Ptr, Type *Ty, APInt &Offset, |
| 1409 | Type *TargetTy, |
| 1410 | SmallVectorImpl<Value *> &Indices, |
| 1411 | const Twine &Prefix) { |
| 1412 | if (Offset == 0) |
| 1413 | return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix); |
| 1414 | |
| 1415 | // We can't recurse through pointer types. |
| 1416 | if (Ty->isPointerTy()) |
| 1417 | return 0; |
| 1418 | |
Chandler Carruth | 8ed1ed8 | 2012-09-14 10:30:40 +0000 | [diff] [blame] | 1419 | // We try to analyze GEPs over vectors here, but note that these GEPs are |
| 1420 | // extremely poorly defined currently. The long-term goal is to remove GEPing |
| 1421 | // over a vector from the IR completely. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1422 | if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { |
| 1423 | unsigned ElementSizeInBits = VecTy->getScalarSizeInBits(); |
| 1424 | if (ElementSizeInBits % 8) |
Chandler Carruth | 8ed1ed8 | 2012-09-14 10:30:40 +0000 | [diff] [blame] | 1425 | return 0; // GEPs over non-multiple of 8 size vector elements are invalid. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1426 | APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); |
| 1427 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1428 | if (NumSkippedElements.ugt(VecTy->getNumElements())) |
| 1429 | return 0; |
| 1430 | Offset -= NumSkippedElements * ElementSize; |
| 1431 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1432 | return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(), |
| 1433 | Offset, TargetTy, Indices, Prefix); |
| 1434 | } |
| 1435 | |
| 1436 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| 1437 | Type *ElementTy = ArrTy->getElementType(); |
| 1438 | APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| 1439 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1440 | if (NumSkippedElements.ugt(ArrTy->getNumElements())) |
| 1441 | return 0; |
| 1442 | |
| 1443 | Offset -= NumSkippedElements * ElementSize; |
| 1444 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1445 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1446 | Indices, Prefix); |
| 1447 | } |
| 1448 | |
| 1449 | StructType *STy = dyn_cast<StructType>(Ty); |
| 1450 | if (!STy) |
| 1451 | return 0; |
| 1452 | |
| 1453 | const StructLayout *SL = TD.getStructLayout(STy); |
| 1454 | uint64_t StructOffset = Offset.getZExtValue(); |
Chandler Carruth | ad41dcf | 2012-09-14 10:30:42 +0000 | [diff] [blame] | 1455 | if (StructOffset >= SL->getSizeInBytes()) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1456 | return 0; |
| 1457 | unsigned Index = SL->getElementContainingOffset(StructOffset); |
| 1458 | Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); |
| 1459 | Type *ElementTy = STy->getElementType(Index); |
| 1460 | if (Offset.uge(TD.getTypeAllocSize(ElementTy))) |
| 1461 | return 0; // The offset points into alignment padding. |
| 1462 | |
| 1463 | Indices.push_back(IRB.getInt32(Index)); |
| 1464 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1465 | Indices, Prefix); |
| 1466 | } |
| 1467 | |
| 1468 | /// \brief Get a natural GEP from a base pointer to a particular offset and |
| 1469 | /// resulting in a particular type. |
| 1470 | /// |
| 1471 | /// The goal is to produce a "natural" looking GEP that works with the existing |
| 1472 | /// composite types to arrive at the appropriate offset and element type for |
| 1473 | /// a pointer. TargetTy is the element type the returned GEP should point-to if |
| 1474 | /// possible. We recurse by decreasing Offset, adding the appropriate index to |
| 1475 | /// Indices, and setting Ty to the result subtype. |
| 1476 | /// |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 1477 | /// If no natural GEP can be constructed, this function returns null. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1478 | static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const TargetData &TD, |
| 1479 | Value *Ptr, APInt Offset, Type *TargetTy, |
| 1480 | SmallVectorImpl<Value *> &Indices, |
| 1481 | const Twine &Prefix) { |
| 1482 | PointerType *Ty = cast<PointerType>(Ptr->getType()); |
| 1483 | |
| 1484 | // Don't consider any GEPs through an i8* as natural unless the TargetTy is |
| 1485 | // an i8. |
| 1486 | if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) |
| 1487 | return 0; |
| 1488 | |
| 1489 | Type *ElementTy = Ty->getElementType(); |
Chandler Carruth | 38f35fd | 2012-09-18 22:37:19 +0000 | [diff] [blame] | 1490 | if (!ElementTy->isSized()) |
| 1491 | return 0; // We can't GEP through an unsized element. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1492 | APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| 1493 | if (ElementSize == 0) |
| 1494 | return 0; // Zero-length arrays can't help us build a natural GEP. |
| 1495 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1496 | |
| 1497 | Offset -= NumSkippedElements * ElementSize; |
| 1498 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1499 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1500 | Indices, Prefix); |
| 1501 | } |
| 1502 | |
| 1503 | /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the |
| 1504 | /// resulting pointer has PointerTy. |
| 1505 | /// |
| 1506 | /// This tries very hard to compute a "natural" GEP which arrives at the offset |
| 1507 | /// and produces the pointer type desired. Where it cannot, it will try to use |
| 1508 | /// the natural GEP to arrive at the offset and bitcast to the type. Where that |
| 1509 | /// fails, it will try to use an existing i8* and GEP to the byte offset and |
| 1510 | /// bitcast to the type. |
| 1511 | /// |
| 1512 | /// The strategy for finding the more natural GEPs is to peel off layers of the |
| 1513 | /// pointer, walking back through bit casts and GEPs, searching for a base |
| 1514 | /// pointer from which we can compute a natural GEP with the desired |
| 1515 | /// properities. The algorithm tries to fold as many constant indices into |
| 1516 | /// a single GEP as possible, thus making each GEP more independent of the |
| 1517 | /// surrounding code. |
| 1518 | static Value *getAdjustedPtr(IRBuilder<> &IRB, const TargetData &TD, |
| 1519 | Value *Ptr, APInt Offset, Type *PointerTy, |
| 1520 | const Twine &Prefix) { |
| 1521 | // Even though we don't look through PHI nodes, we could be called on an |
| 1522 | // instruction in an unreachable block, which may be on a cycle. |
| 1523 | SmallPtrSet<Value *, 4> Visited; |
| 1524 | Visited.insert(Ptr); |
| 1525 | SmallVector<Value *, 4> Indices; |
| 1526 | |
| 1527 | // We may end up computing an offset pointer that has the wrong type. If we |
| 1528 | // never are able to compute one directly that has the correct type, we'll |
| 1529 | // fall back to it, so keep it around here. |
| 1530 | Value *OffsetPtr = 0; |
| 1531 | |
| 1532 | // Remember any i8 pointer we come across to re-use if we need to do a raw |
| 1533 | // byte offset. |
| 1534 | Value *Int8Ptr = 0; |
| 1535 | APInt Int8PtrOffset(Offset.getBitWidth(), 0); |
| 1536 | |
| 1537 | Type *TargetTy = PointerTy->getPointerElementType(); |
| 1538 | |
| 1539 | do { |
| 1540 | // First fold any existing GEPs into the offset. |
| 1541 | while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| 1542 | APInt GEPOffset(Offset.getBitWidth(), 0); |
| 1543 | if (!accumulateGEPOffsets(TD, *GEP, GEPOffset)) |
| 1544 | break; |
| 1545 | Offset += GEPOffset; |
| 1546 | Ptr = GEP->getPointerOperand(); |
| 1547 | if (!Visited.insert(Ptr)) |
| 1548 | break; |
| 1549 | } |
| 1550 | |
| 1551 | // See if we can perform a natural GEP here. |
| 1552 | Indices.clear(); |
| 1553 | if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy, |
| 1554 | Indices, Prefix)) { |
| 1555 | if (P->getType() == PointerTy) { |
| 1556 | // Zap any offset pointer that we ended up computing in previous rounds. |
| 1557 | if (OffsetPtr && OffsetPtr->use_empty()) |
| 1558 | if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) |
| 1559 | I->eraseFromParent(); |
| 1560 | return P; |
| 1561 | } |
| 1562 | if (!OffsetPtr) { |
| 1563 | OffsetPtr = P; |
| 1564 | } |
| 1565 | } |
| 1566 | |
| 1567 | // Stash this pointer if we've found an i8*. |
| 1568 | if (Ptr->getType()->isIntegerTy(8)) { |
| 1569 | Int8Ptr = Ptr; |
| 1570 | Int8PtrOffset = Offset; |
| 1571 | } |
| 1572 | |
| 1573 | // Peel off a layer of the pointer and update the offset appropriately. |
| 1574 | if (Operator::getOpcode(Ptr) == Instruction::BitCast) { |
| 1575 | Ptr = cast<Operator>(Ptr)->getOperand(0); |
| 1576 | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { |
| 1577 | if (GA->mayBeOverridden()) |
| 1578 | break; |
| 1579 | Ptr = GA->getAliasee(); |
| 1580 | } else { |
| 1581 | break; |
| 1582 | } |
| 1583 | assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); |
| 1584 | } while (Visited.insert(Ptr)); |
| 1585 | |
| 1586 | if (!OffsetPtr) { |
| 1587 | if (!Int8Ptr) { |
| 1588 | Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), |
| 1589 | Prefix + ".raw_cast"); |
| 1590 | Int8PtrOffset = Offset; |
| 1591 | } |
| 1592 | |
| 1593 | OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : |
| 1594 | IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), |
| 1595 | Prefix + ".raw_idx"); |
| 1596 | } |
| 1597 | Ptr = OffsetPtr; |
| 1598 | |
| 1599 | // On the off chance we were targeting i8*, guard the bitcast here. |
| 1600 | if (Ptr->getType() != PointerTy) |
| 1601 | Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast"); |
| 1602 | |
| 1603 | return Ptr; |
| 1604 | } |
| 1605 | |
| 1606 | /// \brief Test whether the given alloca partition can be promoted to a vector. |
| 1607 | /// |
| 1608 | /// This is a quick test to check whether we can rewrite a particular alloca |
| 1609 | /// partition (and its newly formed alloca) into a vector alloca with only |
| 1610 | /// whole-vector loads and stores such that it could be promoted to a vector |
| 1611 | /// SSA value. We only can ensure this for a limited set of operations, and we |
| 1612 | /// don't want to do the rewrites unless we are confident that the result will |
| 1613 | /// be promotable, so we have an early test here. |
| 1614 | static bool isVectorPromotionViable(const TargetData &TD, |
| 1615 | Type *AllocaTy, |
| 1616 | AllocaPartitioning &P, |
| 1617 | uint64_t PartitionBeginOffset, |
| 1618 | uint64_t PartitionEndOffset, |
| 1619 | AllocaPartitioning::const_use_iterator I, |
| 1620 | AllocaPartitioning::const_use_iterator E) { |
| 1621 | VectorType *Ty = dyn_cast<VectorType>(AllocaTy); |
| 1622 | if (!Ty) |
| 1623 | return false; |
| 1624 | |
| 1625 | uint64_t VecSize = TD.getTypeSizeInBits(Ty); |
| 1626 | uint64_t ElementSize = Ty->getScalarSizeInBits(); |
| 1627 | |
| 1628 | // While the definition of LLVM vectors is bitpacked, we don't support sizes |
| 1629 | // that aren't byte sized. |
| 1630 | if (ElementSize % 8) |
| 1631 | return false; |
| 1632 | assert((VecSize % 8) == 0 && "vector size not a multiple of element size?"); |
| 1633 | VecSize /= 8; |
| 1634 | ElementSize /= 8; |
| 1635 | |
| 1636 | for (; I != E; ++I) { |
| 1637 | uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset; |
| 1638 | uint64_t BeginIndex = BeginOffset / ElementSize; |
| 1639 | if (BeginIndex * ElementSize != BeginOffset || |
| 1640 | BeginIndex >= Ty->getNumElements()) |
| 1641 | return false; |
| 1642 | uint64_t EndOffset = I->EndOffset - PartitionBeginOffset; |
| 1643 | uint64_t EndIndex = EndOffset / ElementSize; |
| 1644 | if (EndIndex * ElementSize != EndOffset || |
| 1645 | EndIndex > Ty->getNumElements()) |
| 1646 | return false; |
| 1647 | |
| 1648 | // FIXME: We should build shuffle vector instructions to handle |
| 1649 | // non-element-sized accesses. |
| 1650 | if ((EndOffset - BeginOffset) != ElementSize && |
| 1651 | (EndOffset - BeginOffset) != VecSize) |
| 1652 | return false; |
| 1653 | |
| 1654 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&*I->User)) { |
| 1655 | if (MI->isVolatile()) |
| 1656 | return false; |
| 1657 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(&*I->User)) { |
| 1658 | const AllocaPartitioning::MemTransferOffsets &MTO |
| 1659 | = P.getMemTransferOffsets(*MTI); |
| 1660 | if (!MTO.IsSplittable) |
| 1661 | return false; |
| 1662 | } |
| 1663 | } else if (I->Ptr->getType()->getPointerElementType()->isStructTy()) { |
| 1664 | // Disable vector promotion when there are loads or stores of an FCA. |
| 1665 | return false; |
| 1666 | } else if (!isa<LoadInst>(*I->User) && !isa<StoreInst>(*I->User)) { |
| 1667 | return false; |
| 1668 | } |
| 1669 | } |
| 1670 | return true; |
| 1671 | } |
| 1672 | |
| 1673 | namespace { |
| 1674 | /// \brief Visitor to rewrite instructions using a partition of an alloca to |
| 1675 | /// use a new alloca. |
| 1676 | /// |
| 1677 | /// Also implements the rewriting to vector-based accesses when the partition |
| 1678 | /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
| 1679 | /// lives here. |
| 1680 | class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter, |
| 1681 | bool> { |
| 1682 | // Befriend the base class so it can delegate to private visit methods. |
| 1683 | friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>; |
| 1684 | |
| 1685 | const TargetData &TD; |
| 1686 | AllocaPartitioning &P; |
| 1687 | SROA &Pass; |
| 1688 | AllocaInst &OldAI, &NewAI; |
| 1689 | const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
| 1690 | |
| 1691 | // If we are rewriting an alloca partition which can be written as pure |
| 1692 | // vector operations, we stash extra information here. When VecTy is |
| 1693 | // non-null, we have some strict guarantees about the rewriten alloca: |
| 1694 | // - The new alloca is exactly the size of the vector type here. |
| 1695 | // - The accesses all either map to the entire vector or to a single |
| 1696 | // element. |
| 1697 | // - The set of accessing instructions is only one of those handled above |
| 1698 | // in isVectorPromotionViable. Generally these are the same access kinds |
| 1699 | // which are promotable via mem2reg. |
| 1700 | VectorType *VecTy; |
| 1701 | Type *ElementTy; |
| 1702 | uint64_t ElementSize; |
| 1703 | |
| 1704 | // The offset of the partition user currently being rewritten. |
| 1705 | uint64_t BeginOffset, EndOffset; |
| 1706 | Instruction *OldPtr; |
| 1707 | |
| 1708 | // The name prefix to use when rewriting instructions for this alloca. |
| 1709 | std::string NamePrefix; |
| 1710 | |
| 1711 | public: |
| 1712 | AllocaPartitionRewriter(const TargetData &TD, AllocaPartitioning &P, |
| 1713 | AllocaPartitioning::iterator PI, |
| 1714 | SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, |
| 1715 | uint64_t NewBeginOffset, uint64_t NewEndOffset) |
| 1716 | : TD(TD), P(P), Pass(Pass), |
| 1717 | OldAI(OldAI), NewAI(NewAI), |
| 1718 | NewAllocaBeginOffset(NewBeginOffset), |
| 1719 | NewAllocaEndOffset(NewEndOffset), |
| 1720 | VecTy(), ElementTy(), ElementSize(), |
| 1721 | BeginOffset(), EndOffset() { |
| 1722 | } |
| 1723 | |
| 1724 | /// \brief Visit the users of the alloca partition and rewrite them. |
| 1725 | bool visitUsers(AllocaPartitioning::const_use_iterator I, |
| 1726 | AllocaPartitioning::const_use_iterator E) { |
| 1727 | if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P, |
| 1728 | NewAllocaBeginOffset, NewAllocaEndOffset, |
| 1729 | I, E)) { |
| 1730 | ++NumVectorized; |
| 1731 | VecTy = cast<VectorType>(NewAI.getAllocatedType()); |
| 1732 | ElementTy = VecTy->getElementType(); |
| 1733 | assert((VecTy->getScalarSizeInBits() % 8) == 0 && |
| 1734 | "Only multiple-of-8 sized vector elements are viable"); |
| 1735 | ElementSize = VecTy->getScalarSizeInBits() / 8; |
| 1736 | } |
| 1737 | bool CanSROA = true; |
| 1738 | for (; I != E; ++I) { |
| 1739 | BeginOffset = I->BeginOffset; |
| 1740 | EndOffset = I->EndOffset; |
| 1741 | OldPtr = I->Ptr; |
| 1742 | NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str(); |
| 1743 | CanSROA &= visit(I->User); |
| 1744 | } |
| 1745 | if (VecTy) { |
| 1746 | assert(CanSROA); |
| 1747 | VecTy = 0; |
| 1748 | ElementTy = 0; |
| 1749 | ElementSize = 0; |
| 1750 | } |
| 1751 | return CanSROA; |
| 1752 | } |
| 1753 | |
| 1754 | private: |
| 1755 | // Every instruction which can end up as a user must have a rewrite rule. |
| 1756 | bool visitInstruction(Instruction &I) { |
| 1757 | DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); |
| 1758 | llvm_unreachable("No rewrite rule for this instruction!"); |
| 1759 | } |
| 1760 | |
| 1761 | Twine getName(const Twine &Suffix) { |
| 1762 | return NamePrefix + Suffix; |
| 1763 | } |
| 1764 | |
| 1765 | Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) { |
| 1766 | assert(BeginOffset >= NewAllocaBeginOffset); |
| 1767 | APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset); |
| 1768 | return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName("")); |
| 1769 | } |
| 1770 | |
| 1771 | ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) { |
| 1772 | assert(VecTy && "Can only call getIndex when rewriting a vector"); |
| 1773 | uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| 1774 | assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); |
| 1775 | uint32_t Index = RelOffset / ElementSize; |
| 1776 | assert(Index * ElementSize == RelOffset); |
| 1777 | return IRB.getInt32(Index); |
| 1778 | } |
| 1779 | |
| 1780 | void deleteIfTriviallyDead(Value *V) { |
| 1781 | Instruction *I = cast<Instruction>(V); |
| 1782 | if (isInstructionTriviallyDead(I)) |
| 1783 | Pass.DeadInsts.push_back(I); |
| 1784 | } |
| 1785 | |
| 1786 | Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) { |
| 1787 | if (V->getType()->isIntegerTy() && Ty->isPointerTy()) |
| 1788 | return IRB.CreateIntToPtr(V, Ty); |
| 1789 | if (V->getType()->isPointerTy() && Ty->isIntegerTy()) |
| 1790 | return IRB.CreatePtrToInt(V, Ty); |
| 1791 | |
| 1792 | return IRB.CreateBitCast(V, Ty); |
| 1793 | } |
| 1794 | |
| 1795 | bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) { |
| 1796 | Value *Result; |
| 1797 | if (LI.getType() == VecTy->getElementType() || |
| 1798 | BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { |
| 1799 | Result |
| 1800 | = IRB.CreateExtractElement(IRB.CreateLoad(&NewAI, getName(".load")), |
| 1801 | getIndex(IRB, BeginOffset), |
| 1802 | getName(".extract")); |
| 1803 | } else { |
| 1804 | Result = IRB.CreateLoad(&NewAI, getName(".load")); |
| 1805 | } |
| 1806 | if (Result->getType() != LI.getType()) |
| 1807 | Result = getValueCast(IRB, Result, LI.getType()); |
| 1808 | LI.replaceAllUsesWith(Result); |
| 1809 | Pass.DeadInsts.push_back(&LI); |
| 1810 | |
| 1811 | DEBUG(dbgs() << " to: " << *Result << "\n"); |
| 1812 | return true; |
| 1813 | } |
| 1814 | |
| 1815 | bool visitLoadInst(LoadInst &LI) { |
| 1816 | DEBUG(dbgs() << " original: " << LI << "\n"); |
| 1817 | Value *OldOp = LI.getOperand(0); |
| 1818 | assert(OldOp == OldPtr); |
| 1819 | IRBuilder<> IRB(&LI); |
| 1820 | |
| 1821 | if (VecTy) |
| 1822 | return rewriteVectorizedLoadInst(IRB, LI, OldOp); |
| 1823 | |
| 1824 | Value *NewPtr = getAdjustedAllocaPtr(IRB, |
| 1825 | LI.getPointerOperand()->getType()); |
| 1826 | LI.setOperand(0, NewPtr); |
| 1827 | DEBUG(dbgs() << " to: " << LI << "\n"); |
| 1828 | |
| 1829 | deleteIfTriviallyDead(OldOp); |
| 1830 | return NewPtr == &NewAI && !LI.isVolatile(); |
| 1831 | } |
| 1832 | |
| 1833 | bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI, |
| 1834 | Value *OldOp) { |
| 1835 | Value *V = SI.getValueOperand(); |
| 1836 | if (V->getType() == ElementTy || |
| 1837 | BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { |
| 1838 | if (V->getType() != ElementTy) |
| 1839 | V = getValueCast(IRB, V, ElementTy); |
| 1840 | V = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V, |
| 1841 | getIndex(IRB, BeginOffset), |
| 1842 | getName(".insert")); |
| 1843 | } else if (V->getType() != VecTy) { |
| 1844 | V = getValueCast(IRB, V, VecTy); |
| 1845 | } |
| 1846 | StoreInst *Store = IRB.CreateStore(V, &NewAI); |
| 1847 | Pass.DeadInsts.push_back(&SI); |
| 1848 | |
| 1849 | (void)Store; |
| 1850 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 1851 | return true; |
| 1852 | } |
| 1853 | |
| 1854 | bool visitStoreInst(StoreInst &SI) { |
| 1855 | DEBUG(dbgs() << " original: " << SI << "\n"); |
| 1856 | Value *OldOp = SI.getOperand(1); |
| 1857 | assert(OldOp == OldPtr); |
| 1858 | IRBuilder<> IRB(&SI); |
| 1859 | |
| 1860 | if (VecTy) |
| 1861 | return rewriteVectorizedStoreInst(IRB, SI, OldOp); |
| 1862 | |
| 1863 | Value *NewPtr = getAdjustedAllocaPtr(IRB, |
| 1864 | SI.getPointerOperand()->getType()); |
| 1865 | SI.setOperand(1, NewPtr); |
| 1866 | DEBUG(dbgs() << " to: " << SI << "\n"); |
| 1867 | |
| 1868 | deleteIfTriviallyDead(OldOp); |
| 1869 | return NewPtr == &NewAI && !SI.isVolatile(); |
| 1870 | } |
| 1871 | |
| 1872 | bool visitMemSetInst(MemSetInst &II) { |
| 1873 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 1874 | IRBuilder<> IRB(&II); |
| 1875 | assert(II.getRawDest() == OldPtr); |
| 1876 | |
| 1877 | // If the memset has a variable size, it cannot be split, just adjust the |
| 1878 | // pointer to the new alloca. |
| 1879 | if (!isa<Constant>(II.getLength())) { |
| 1880 | II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
| 1881 | deleteIfTriviallyDead(OldPtr); |
| 1882 | return false; |
| 1883 | } |
| 1884 | |
| 1885 | // Record this instruction for deletion. |
| 1886 | if (Pass.DeadSplitInsts.insert(&II)) |
| 1887 | Pass.DeadInsts.push_back(&II); |
| 1888 | |
| 1889 | Type *AllocaTy = NewAI.getAllocatedType(); |
| 1890 | Type *ScalarTy = AllocaTy->getScalarType(); |
| 1891 | |
| 1892 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 1893 | // a single value type, just emit a memset. |
| 1894 | if (!VecTy && (BeginOffset != NewAllocaBeginOffset || |
| 1895 | EndOffset != NewAllocaEndOffset || |
| 1896 | !AllocaTy->isSingleValueType() || |
| 1897 | !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) { |
| 1898 | Type *SizeTy = II.getLength()->getType(); |
| 1899 | Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
| 1900 | |
| 1901 | CallInst *New |
| 1902 | = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB, |
| 1903 | II.getRawDest()->getType()), |
| 1904 | II.getValue(), Size, II.getAlignment(), |
| 1905 | II.isVolatile()); |
| 1906 | (void)New; |
| 1907 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 1908 | return false; |
| 1909 | } |
| 1910 | |
| 1911 | // If we can represent this as a simple value, we have to build the actual |
| 1912 | // value to store, which requires expanding the byte present in memset to |
| 1913 | // a sensible representation for the alloca type. This is essentially |
| 1914 | // splatting the byte to a sufficiently wide integer, bitcasting to the |
| 1915 | // desired scalar type, and splatting it across any desired vector type. |
| 1916 | Value *V = II.getValue(); |
| 1917 | IntegerType *VTy = cast<IntegerType>(V->getType()); |
| 1918 | Type *IntTy = Type::getIntNTy(VTy->getContext(), |
| 1919 | TD.getTypeSizeInBits(ScalarTy)); |
| 1920 | if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth()) |
| 1921 | V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")), |
| 1922 | ConstantExpr::getUDiv( |
| 1923 | Constant::getAllOnesValue(IntTy), |
| 1924 | ConstantExpr::getZExt( |
| 1925 | Constant::getAllOnesValue(V->getType()), |
| 1926 | IntTy)), |
| 1927 | getName(".isplat")); |
| 1928 | if (V->getType() != ScalarTy) { |
| 1929 | if (ScalarTy->isPointerTy()) |
| 1930 | V = IRB.CreateIntToPtr(V, ScalarTy); |
| 1931 | else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy()) |
| 1932 | V = IRB.CreateBitCast(V, ScalarTy); |
| 1933 | else if (ScalarTy->isIntegerTy()) |
| 1934 | llvm_unreachable("Computed different integer types with equal widths"); |
| 1935 | else |
| 1936 | llvm_unreachable("Invalid scalar type"); |
| 1937 | } |
| 1938 | |
| 1939 | // If this is an element-wide memset of a vectorizable alloca, insert it. |
| 1940 | if (VecTy && (BeginOffset > NewAllocaBeginOffset || |
| 1941 | EndOffset < NewAllocaEndOffset)) { |
| 1942 | StoreInst *Store = IRB.CreateStore( |
| 1943 | IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), V, |
| 1944 | getIndex(IRB, BeginOffset), |
| 1945 | getName(".insert")), |
| 1946 | &NewAI); |
| 1947 | (void)Store; |
| 1948 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 1949 | return true; |
| 1950 | } |
| 1951 | |
| 1952 | // Splat to a vector if needed. |
| 1953 | if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) { |
| 1954 | VectorType *SplatSourceTy = VectorType::get(V->getType(), 1); |
| 1955 | V = IRB.CreateShuffleVector( |
| 1956 | IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V, |
| 1957 | IRB.getInt32(0), getName(".vsplat.insert")), |
| 1958 | UndefValue::get(SplatSourceTy), |
| 1959 | ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)), |
| 1960 | getName(".vsplat.shuffle")); |
| 1961 | assert(V->getType() == VecTy); |
| 1962 | } |
| 1963 | |
| 1964 | Value *New = IRB.CreateStore(V, &NewAI, II.isVolatile()); |
| 1965 | (void)New; |
| 1966 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 1967 | return !II.isVolatile(); |
| 1968 | } |
| 1969 | |
| 1970 | bool visitMemTransferInst(MemTransferInst &II) { |
| 1971 | // Rewriting of memory transfer instructions can be a bit tricky. We break |
| 1972 | // them into two categories: split intrinsics and unsplit intrinsics. |
| 1973 | |
| 1974 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 1975 | IRBuilder<> IRB(&II); |
| 1976 | |
| 1977 | assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); |
| 1978 | bool IsDest = II.getRawDest() == OldPtr; |
| 1979 | |
| 1980 | const AllocaPartitioning::MemTransferOffsets &MTO |
| 1981 | = P.getMemTransferOffsets(II); |
| 1982 | |
| 1983 | // For unsplit intrinsics, we simply modify the source and destination |
| 1984 | // pointers in place. This isn't just an optimization, it is a matter of |
| 1985 | // correctness. With unsplit intrinsics we may be dealing with transfers |
| 1986 | // within a single alloca before SROA ran, or with transfers that have |
| 1987 | // a variable length. We may also be dealing with memmove instead of |
| 1988 | // memcpy, and so simply updating the pointers is the necessary for us to |
| 1989 | // update both source and dest of a single call. |
| 1990 | if (!MTO.IsSplittable) { |
| 1991 | Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); |
| 1992 | if (IsDest) |
| 1993 | II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
| 1994 | else |
| 1995 | II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType())); |
| 1996 | |
| 1997 | DEBUG(dbgs() << " to: " << II << "\n"); |
| 1998 | deleteIfTriviallyDead(OldOp); |
| 1999 | return false; |
| 2000 | } |
| 2001 | // For split transfer intrinsics we have an incredibly useful assurance: |
| 2002 | // the source and destination do not reside within the same alloca, and at |
| 2003 | // least one of them does not escape. This means that we can replace |
| 2004 | // memmove with memcpy, and we don't need to worry about all manner of |
| 2005 | // downsides to splitting and transforming the operations. |
| 2006 | |
| 2007 | // Compute the relative offset within the transfer. |
| 2008 | unsigned IntPtrWidth = TD.getPointerSizeInBits(); |
| 2009 | APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin |
| 2010 | : MTO.SourceBegin)); |
| 2011 | |
| 2012 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 2013 | // a single value type, just emit a memcpy. |
| 2014 | bool EmitMemCpy |
| 2015 | = !VecTy && (BeginOffset != NewAllocaBeginOffset || |
| 2016 | EndOffset != NewAllocaEndOffset || |
| 2017 | !NewAI.getAllocatedType()->isSingleValueType()); |
| 2018 | |
| 2019 | // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
| 2020 | // size hasn't been shrunk based on analysis of the viable range, this is |
| 2021 | // a no-op. |
| 2022 | if (EmitMemCpy && &OldAI == &NewAI) { |
| 2023 | uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin; |
| 2024 | uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd; |
| 2025 | // Ensure the start lines up. |
| 2026 | assert(BeginOffset == OrigBegin); |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 2027 | (void)OrigBegin; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2028 | |
| 2029 | // Rewrite the size as needed. |
| 2030 | if (EndOffset != OrigEnd) |
| 2031 | II.setLength(ConstantInt::get(II.getLength()->getType(), |
| 2032 | EndOffset - BeginOffset)); |
| 2033 | return false; |
| 2034 | } |
| 2035 | // Record this instruction for deletion. |
| 2036 | if (Pass.DeadSplitInsts.insert(&II)) |
| 2037 | Pass.DeadInsts.push_back(&II); |
| 2038 | |
| 2039 | bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset || |
| 2040 | EndOffset < NewAllocaEndOffset); |
| 2041 | |
| 2042 | Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() |
| 2043 | : II.getRawDest()->getType(); |
| 2044 | if (!EmitMemCpy) |
| 2045 | OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo() |
| 2046 | : NewAI.getType(); |
| 2047 | |
| 2048 | // Compute the other pointer, folding as much as possible to produce |
| 2049 | // a single, simple GEP in most cases. |
| 2050 | Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
| 2051 | OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy, |
| 2052 | getName("." + OtherPtr->getName())); |
| 2053 | |
| 2054 | // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| 2055 | // alloca that should be re-examined after rewriting this instruction. |
| 2056 | if (AllocaInst *AI |
| 2057 | = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) |
| 2058 | Pass.Worklist.insert(AI); |
| 2059 | |
| 2060 | if (EmitMemCpy) { |
| 2061 | Value *OurPtr |
| 2062 | = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType() |
| 2063 | : II.getRawSource()->getType()); |
| 2064 | Type *SizeTy = II.getLength()->getType(); |
| 2065 | Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
| 2066 | |
| 2067 | CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, |
| 2068 | IsDest ? OtherPtr : OurPtr, |
| 2069 | Size, II.getAlignment(), |
| 2070 | II.isVolatile()); |
| 2071 | (void)New; |
| 2072 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 2073 | return false; |
| 2074 | } |
| 2075 | |
| 2076 | Value *SrcPtr = OtherPtr; |
| 2077 | Value *DstPtr = &NewAI; |
| 2078 | if (!IsDest) |
| 2079 | std::swap(SrcPtr, DstPtr); |
| 2080 | |
| 2081 | Value *Src; |
| 2082 | if (IsVectorElement && !IsDest) { |
| 2083 | // We have to extract rather than load. |
| 2084 | Src = IRB.CreateExtractElement(IRB.CreateLoad(SrcPtr, |
| 2085 | getName(".copyload")), |
| 2086 | getIndex(IRB, BeginOffset), |
| 2087 | getName(".copyextract")); |
| 2088 | } else { |
| 2089 | Src = IRB.CreateLoad(SrcPtr, II.isVolatile(), getName(".copyload")); |
| 2090 | } |
| 2091 | |
| 2092 | if (IsVectorElement && IsDest) { |
| 2093 | // We have to insert into a loaded copy before storing. |
| 2094 | Src = IRB.CreateInsertElement(IRB.CreateLoad(&NewAI, getName(".load")), |
| 2095 | Src, getIndex(IRB, BeginOffset), |
| 2096 | getName(".insert")); |
| 2097 | } |
| 2098 | |
| 2099 | Value *Store = IRB.CreateStore(Src, DstPtr, II.isVolatile()); |
| 2100 | (void)Store; |
| 2101 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 2102 | return !II.isVolatile(); |
| 2103 | } |
| 2104 | |
| 2105 | bool visitIntrinsicInst(IntrinsicInst &II) { |
| 2106 | assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 2107 | II.getIntrinsicID() == Intrinsic::lifetime_end); |
| 2108 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 2109 | IRBuilder<> IRB(&II); |
| 2110 | assert(II.getArgOperand(1) == OldPtr); |
| 2111 | |
| 2112 | // Record this instruction for deletion. |
| 2113 | if (Pass.DeadSplitInsts.insert(&II)) |
| 2114 | Pass.DeadInsts.push_back(&II); |
| 2115 | |
| 2116 | ConstantInt *Size |
| 2117 | = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), |
| 2118 | EndOffset - BeginOffset); |
| 2119 | Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType()); |
| 2120 | Value *New; |
| 2121 | if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
| 2122 | New = IRB.CreateLifetimeStart(Ptr, Size); |
| 2123 | else |
| 2124 | New = IRB.CreateLifetimeEnd(Ptr, Size); |
| 2125 | |
| 2126 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 2127 | return true; |
| 2128 | } |
| 2129 | |
| 2130 | /// PHI instructions that use an alloca and are subsequently loaded can be |
| 2131 | /// rewritten to load both input pointers in the pred blocks and then PHI the |
| 2132 | /// results, allowing the load of the alloca to be promoted. |
| 2133 | /// From this: |
| 2134 | /// %P2 = phi [i32* %Alloca, i32* %Other] |
| 2135 | /// %V = load i32* %P2 |
| 2136 | /// to: |
| 2137 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| 2138 | /// ... |
| 2139 | /// %V2 = load i32* %Other |
| 2140 | /// ... |
| 2141 | /// %V = phi [i32 %V1, i32 %V2] |
| 2142 | /// |
| 2143 | /// We can do this to a select if its only uses are loads and if the operand |
| 2144 | /// to the select can be loaded unconditionally. |
| 2145 | /// |
| 2146 | /// FIXME: This should be hoisted into a generic utility, likely in |
| 2147 | /// Transforms/Util/Local.h |
| 2148 | bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) { |
| 2149 | // For now, we can only do this promotion if the load is in the same block |
| 2150 | // as the PHI, and if there are no stores between the phi and load. |
| 2151 | // TODO: Allow recursive phi users. |
| 2152 | // TODO: Allow stores. |
| 2153 | BasicBlock *BB = PN.getParent(); |
| 2154 | unsigned MaxAlign = 0; |
| 2155 | for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); |
| 2156 | UI != UE; ++UI) { |
| 2157 | LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| 2158 | if (LI == 0 || !LI->isSimple()) return false; |
| 2159 | |
| 2160 | // For now we only allow loads in the same block as the PHI. This is |
| 2161 | // a common case that happens when instcombine merges two loads through |
| 2162 | // a PHI. |
| 2163 | if (LI->getParent() != BB) return false; |
| 2164 | |
| 2165 | // Ensure that there are no instructions between the PHI and the load that |
| 2166 | // could store. |
| 2167 | for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) |
| 2168 | if (BBI->mayWriteToMemory()) |
| 2169 | return false; |
| 2170 | |
| 2171 | MaxAlign = std::max(MaxAlign, LI->getAlignment()); |
| 2172 | Loads.push_back(LI); |
| 2173 | } |
| 2174 | |
| 2175 | // We can only transform this if it is safe to push the loads into the |
| 2176 | // predecessor blocks. The only thing to watch out for is that we can't put |
| 2177 | // a possibly trapping load in the predecessor if it is a critical edge. |
| 2178 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; |
| 2179 | ++Idx) { |
| 2180 | TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); |
| 2181 | Value *InVal = PN.getIncomingValue(Idx); |
| 2182 | |
| 2183 | // If the value is produced by the terminator of the predecessor (an |
| 2184 | // invoke) or it has side-effects, there is no valid place to put a load |
| 2185 | // in the predecessor. |
| 2186 | if (TI == InVal || TI->mayHaveSideEffects()) |
| 2187 | return false; |
| 2188 | |
| 2189 | // If the predecessor has a single successor, then the edge isn't |
| 2190 | // critical. |
| 2191 | if (TI->getNumSuccessors() == 1) |
| 2192 | continue; |
| 2193 | |
| 2194 | // If this pointer is always safe to load, or if we can prove that there |
| 2195 | // is already a load in the block, then we can move the load to the pred |
| 2196 | // block. |
| 2197 | if (InVal->isDereferenceablePointer() || |
| 2198 | isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD)) |
| 2199 | continue; |
| 2200 | |
| 2201 | return false; |
| 2202 | } |
| 2203 | |
| 2204 | return true; |
| 2205 | } |
| 2206 | |
| 2207 | bool visitPHINode(PHINode &PN) { |
| 2208 | DEBUG(dbgs() << " original: " << PN << "\n"); |
| 2209 | // We would like to compute a new pointer in only one place, but have it be |
| 2210 | // as local as possible to the PHI. To do that, we re-use the location of |
| 2211 | // the old pointer, which necessarily must be in the right position to |
| 2212 | // dominate the PHI. |
| 2213 | IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr)); |
| 2214 | |
| 2215 | SmallVector<LoadInst *, 4> Loads; |
| 2216 | if (!isSafePHIToSpeculate(PN, Loads)) { |
| 2217 | Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); |
| 2218 | // Replace the operands which were using the old pointer. |
| 2219 | User::op_iterator OI = PN.op_begin(), OE = PN.op_end(); |
| 2220 | for (; OI != OE; ++OI) |
| 2221 | if (*OI == OldPtr) |
| 2222 | *OI = NewPtr; |
| 2223 | |
| 2224 | DEBUG(dbgs() << " to: " << PN << "\n"); |
| 2225 | deleteIfTriviallyDead(OldPtr); |
| 2226 | return false; |
| 2227 | } |
| 2228 | assert(!Loads.empty()); |
| 2229 | |
| 2230 | Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); |
| 2231 | IRBuilder<> PHIBuilder(&PN); |
| 2232 | PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues()); |
| 2233 | NewPN->takeName(&PN); |
| 2234 | |
| 2235 | // Get the TBAA tag and alignment to use from one of the loads. It doesn't |
| 2236 | // matter which one we get and if any differ, it doesn't matter. |
| 2237 | LoadInst *SomeLoad = cast<LoadInst>(Loads.back()); |
| 2238 | MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); |
| 2239 | unsigned Align = SomeLoad->getAlignment(); |
| 2240 | Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); |
| 2241 | |
| 2242 | // Rewrite all loads of the PN to use the new PHI. |
| 2243 | do { |
| 2244 | LoadInst *LI = Loads.pop_back_val(); |
| 2245 | LI->replaceAllUsesWith(NewPN); |
| 2246 | Pass.DeadInsts.push_back(LI); |
| 2247 | } while (!Loads.empty()); |
| 2248 | |
| 2249 | // Inject loads into all of the pred blocks. |
| 2250 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| 2251 | BasicBlock *Pred = PN.getIncomingBlock(Idx); |
| 2252 | TerminatorInst *TI = Pred->getTerminator(); |
| 2253 | Value *InVal = PN.getIncomingValue(Idx); |
| 2254 | IRBuilder<> PredBuilder(TI); |
| 2255 | |
| 2256 | // Map the value to the new alloca pointer if this was the old alloca |
| 2257 | // pointer. |
| 2258 | bool ThisOperand = InVal == OldPtr; |
| 2259 | if (ThisOperand) |
| 2260 | InVal = NewPtr; |
| 2261 | |
| 2262 | LoadInst *Load |
| 2263 | = PredBuilder.CreateLoad(InVal, getName(".sroa.speculate." + |
| 2264 | Pred->getName())); |
| 2265 | ++NumLoadsSpeculated; |
| 2266 | Load->setAlignment(Align); |
| 2267 | if (TBAATag) |
| 2268 | Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| 2269 | NewPN->addIncoming(Load, Pred); |
| 2270 | |
| 2271 | if (ThisOperand) |
| 2272 | continue; |
| 2273 | Instruction *OtherPtr = dyn_cast<Instruction>(InVal); |
| 2274 | if (!OtherPtr) |
| 2275 | // No uses to rewrite. |
| 2276 | continue; |
| 2277 | |
| 2278 | // Try to lookup and rewrite any partition uses corresponding to this phi |
| 2279 | // input. |
| 2280 | AllocaPartitioning::iterator PI |
| 2281 | = P.findPartitionForPHIOrSelectOperand(PN, OtherPtr); |
| 2282 | if (PI != P.end()) { |
| 2283 | // If the other pointer is within the partitioning, replace the PHI in |
| 2284 | // its uses with the load we just speculated, or add another load for |
| 2285 | // it to rewrite if we've already replaced the PHI. |
| 2286 | AllocaPartitioning::use_iterator UI |
| 2287 | = P.findPartitionUseForPHIOrSelectOperand(PN, OtherPtr); |
| 2288 | if (isa<PHINode>(*UI->User)) |
| 2289 | UI->User = Load; |
| 2290 | else { |
| 2291 | AllocaPartitioning::PartitionUse OtherUse = *UI; |
| 2292 | OtherUse.User = Load; |
| 2293 | P.use_insert(PI, std::upper_bound(UI, P.use_end(PI), OtherUse), |
| 2294 | OtherUse); |
| 2295 | } |
| 2296 | } |
| 2297 | } |
| 2298 | DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); |
| 2299 | return NewPtr == &NewAI; |
| 2300 | } |
| 2301 | |
| 2302 | /// Select instructions that use an alloca and are subsequently loaded can be |
| 2303 | /// rewritten to load both input pointers and then select between the result, |
| 2304 | /// allowing the load of the alloca to be promoted. |
| 2305 | /// From this: |
| 2306 | /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other |
| 2307 | /// %V = load i32* %P2 |
| 2308 | /// to: |
| 2309 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| 2310 | /// %V2 = load i32* %Other |
| 2311 | /// %V = select i1 %cond, i32 %V1, i32 %V2 |
| 2312 | /// |
| 2313 | /// We can do this to a select if its only uses are loads and if the operand |
| 2314 | /// to the select can be loaded unconditionally. |
| 2315 | bool isSafeSelectToSpeculate(SelectInst &SI, |
| 2316 | SmallVectorImpl<LoadInst *> &Loads) { |
| 2317 | Value *TValue = SI.getTrueValue(); |
| 2318 | Value *FValue = SI.getFalseValue(); |
| 2319 | bool TDerefable = TValue->isDereferenceablePointer(); |
| 2320 | bool FDerefable = FValue->isDereferenceablePointer(); |
| 2321 | |
| 2322 | for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); |
| 2323 | UI != UE; ++UI) { |
| 2324 | LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| 2325 | if (LI == 0 || !LI->isSimple()) return false; |
| 2326 | |
| 2327 | // Both operands to the select need to be dereferencable, either |
| 2328 | // absolutely (e.g. allocas) or at this point because we can see other |
| 2329 | // accesses to it. |
| 2330 | if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI, |
| 2331 | LI->getAlignment(), &TD)) |
| 2332 | return false; |
| 2333 | if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI, |
| 2334 | LI->getAlignment(), &TD)) |
| 2335 | return false; |
| 2336 | Loads.push_back(LI); |
| 2337 | } |
| 2338 | |
| 2339 | return true; |
| 2340 | } |
| 2341 | |
| 2342 | bool visitSelectInst(SelectInst &SI) { |
| 2343 | DEBUG(dbgs() << " original: " << SI << "\n"); |
| 2344 | IRBuilder<> IRB(&SI); |
| 2345 | |
| 2346 | // Find the operand we need to rewrite here. |
| 2347 | bool IsTrueVal = SI.getTrueValue() == OldPtr; |
| 2348 | if (IsTrueVal) |
| 2349 | assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!"); |
| 2350 | else |
| 2351 | assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!"); |
| 2352 | Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType()); |
| 2353 | |
| 2354 | // If the select isn't safe to speculate, just use simple logic to emit it. |
| 2355 | SmallVector<LoadInst *, 4> Loads; |
| 2356 | if (!isSafeSelectToSpeculate(SI, Loads)) { |
| 2357 | SI.setOperand(IsTrueVal ? 1 : 2, NewPtr); |
| 2358 | DEBUG(dbgs() << " to: " << SI << "\n"); |
| 2359 | deleteIfTriviallyDead(OldPtr); |
| 2360 | return false; |
| 2361 | } |
| 2362 | |
| 2363 | Value *OtherPtr = IsTrueVal ? SI.getFalseValue() : SI.getTrueValue(); |
| 2364 | AllocaPartitioning::iterator PI |
| 2365 | = P.findPartitionForPHIOrSelectOperand(SI, OtherPtr); |
| 2366 | AllocaPartitioning::PartitionUse OtherUse; |
| 2367 | if (PI != P.end()) { |
| 2368 | // If the other pointer is within the partitioning, remove the select |
| 2369 | // from its uses. We'll add in the new loads below. |
| 2370 | AllocaPartitioning::use_iterator UI |
| 2371 | = P.findPartitionUseForPHIOrSelectOperand(SI, OtherPtr); |
| 2372 | OtherUse = *UI; |
| 2373 | P.use_erase(PI, UI); |
| 2374 | } |
| 2375 | |
| 2376 | Value *TV = IsTrueVal ? NewPtr : SI.getTrueValue(); |
| 2377 | Value *FV = IsTrueVal ? SI.getFalseValue() : NewPtr; |
| 2378 | // Replace the loads of the select with a select of two loads. |
| 2379 | while (!Loads.empty()) { |
| 2380 | LoadInst *LI = Loads.pop_back_val(); |
| 2381 | |
| 2382 | IRB.SetInsertPoint(LI); |
| 2383 | LoadInst *TL = |
| 2384 | IRB.CreateLoad(TV, getName("." + LI->getName() + ".true")); |
| 2385 | LoadInst *FL = |
| 2386 | IRB.CreateLoad(FV, getName("." + LI->getName() + ".false")); |
| 2387 | NumLoadsSpeculated += 2; |
| 2388 | if (PI != P.end()) { |
| 2389 | LoadInst *OtherLoad = IsTrueVal ? FL : TL; |
| 2390 | assert(OtherUse.Ptr == OtherLoad->getOperand(0)); |
| 2391 | OtherUse.User = OtherLoad; |
| 2392 | P.use_insert(PI, P.use_end(PI), OtherUse); |
| 2393 | } |
| 2394 | |
| 2395 | // Transfer alignment and TBAA info if present. |
| 2396 | TL->setAlignment(LI->getAlignment()); |
| 2397 | FL->setAlignment(LI->getAlignment()); |
| 2398 | if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { |
| 2399 | TL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| 2400 | FL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| 2401 | } |
| 2402 | |
| 2403 | Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL); |
| 2404 | V->takeName(LI); |
| 2405 | DEBUG(dbgs() << " speculated to: " << *V << "\n"); |
| 2406 | LI->replaceAllUsesWith(V); |
| 2407 | Pass.DeadInsts.push_back(LI); |
| 2408 | } |
| 2409 | if (PI != P.end()) |
| 2410 | std::stable_sort(P.use_begin(PI), P.use_end(PI)); |
| 2411 | |
| 2412 | deleteIfTriviallyDead(OldPtr); |
| 2413 | return NewPtr == &NewAI; |
| 2414 | } |
| 2415 | |
| 2416 | }; |
| 2417 | } |
| 2418 | |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2419 | namespace { |
| 2420 | /// \brief Visitor to rewrite aggregate loads and stores as scalar. |
| 2421 | /// |
| 2422 | /// This pass aggressively rewrites all aggregate loads and stores on |
| 2423 | /// a particular pointer (or any pointer derived from it which we can identify) |
| 2424 | /// with scalar loads and stores. |
| 2425 | class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { |
| 2426 | // Befriend the base class so it can delegate to private visit methods. |
| 2427 | friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; |
| 2428 | |
| 2429 | const TargetData &TD; |
| 2430 | |
| 2431 | /// Queue of pointer uses to analyze and potentially rewrite. |
| 2432 | SmallVector<Use *, 8> Queue; |
| 2433 | |
| 2434 | /// Set to prevent us from cycling with phi nodes and loops. |
| 2435 | SmallPtrSet<User *, 8> Visited; |
| 2436 | |
| 2437 | /// The current pointer use being rewritten. This is used to dig up the used |
| 2438 | /// value (as opposed to the user). |
| 2439 | Use *U; |
| 2440 | |
| 2441 | public: |
| 2442 | AggLoadStoreRewriter(const TargetData &TD) : TD(TD) {} |
| 2443 | |
| 2444 | /// Rewrite loads and stores through a pointer and all pointers derived from |
| 2445 | /// it. |
| 2446 | bool rewrite(Instruction &I) { |
| 2447 | DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); |
| 2448 | enqueueUsers(I); |
| 2449 | bool Changed = false; |
| 2450 | while (!Queue.empty()) { |
| 2451 | U = Queue.pop_back_val(); |
| 2452 | Changed |= visit(cast<Instruction>(U->getUser())); |
| 2453 | } |
| 2454 | return Changed; |
| 2455 | } |
| 2456 | |
| 2457 | private: |
| 2458 | /// Enqueue all the users of the given instruction for further processing. |
| 2459 | /// This uses a set to de-duplicate users. |
| 2460 | void enqueueUsers(Instruction &I) { |
| 2461 | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; |
| 2462 | ++UI) |
| 2463 | if (Visited.insert(*UI)) |
| 2464 | Queue.push_back(&UI.getUse()); |
| 2465 | } |
| 2466 | |
| 2467 | // Conservative default is to not rewrite anything. |
| 2468 | bool visitInstruction(Instruction &I) { return false; } |
| 2469 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2470 | /// \brief Generic recursive split emission class. |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2471 | template <typename Derived> |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2472 | class OpSplitter { |
| 2473 | protected: |
| 2474 | /// The builder used to form new instructions. |
| 2475 | IRBuilder<> IRB; |
| 2476 | /// The indices which to be used with insert- or extractvalue to select the |
| 2477 | /// appropriate value within the aggregate. |
| 2478 | SmallVector<unsigned, 4> Indices; |
| 2479 | /// The indices to a GEP instruction which will move Ptr to the correct slot |
| 2480 | /// within the aggregate. |
| 2481 | SmallVector<Value *, 4> GEPIndices; |
| 2482 | /// The base pointer of the original op, used as a base for GEPing the |
| 2483 | /// split operations. |
| 2484 | Value *Ptr; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2485 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2486 | /// Initialize the splitter with an insertion point, Ptr and start with a |
| 2487 | /// single zero GEP index. |
| 2488 | OpSplitter(Instruction *InsertionPoint, Value *Ptr) |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2489 | : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2490 | |
| 2491 | public: |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2492 | /// \brief Generic recursive split emission routine. |
| 2493 | /// |
| 2494 | /// This method recursively splits an aggregate op (load or store) into |
| 2495 | /// scalar or vector ops. It splits recursively until it hits a single value |
| 2496 | /// and emits that single value operation via the template argument. |
| 2497 | /// |
| 2498 | /// The logic of this routine relies on GEPs and insertvalue and |
| 2499 | /// extractvalue all operating with the same fundamental index list, merely |
| 2500 | /// formatted differently (GEPs need actual values). |
| 2501 | /// |
| 2502 | /// \param Ty The type being split recursively into smaller ops. |
| 2503 | /// \param Agg The aggregate value being built up or stored, depending on |
| 2504 | /// whether this is splitting a load or a store respectively. |
| 2505 | void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { |
| 2506 | if (Ty->isSingleValueType()) |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2507 | return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2508 | |
| 2509 | if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| 2510 | unsigned OldSize = Indices.size(); |
| 2511 | (void)OldSize; |
| 2512 | for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; |
| 2513 | ++Idx) { |
| 2514 | assert(Indices.size() == OldSize && "Did not return to the old size"); |
| 2515 | Indices.push_back(Idx); |
| 2516 | GEPIndices.push_back(IRB.getInt32(Idx)); |
| 2517 | emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); |
| 2518 | GEPIndices.pop_back(); |
| 2519 | Indices.pop_back(); |
| 2520 | } |
| 2521 | return; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2522 | } |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2523 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2524 | if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| 2525 | unsigned OldSize = Indices.size(); |
| 2526 | (void)OldSize; |
| 2527 | for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; |
| 2528 | ++Idx) { |
| 2529 | assert(Indices.size() == OldSize && "Did not return to the old size"); |
| 2530 | Indices.push_back(Idx); |
| 2531 | GEPIndices.push_back(IRB.getInt32(Idx)); |
| 2532 | emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); |
| 2533 | GEPIndices.pop_back(); |
| 2534 | Indices.pop_back(); |
| 2535 | } |
| 2536 | return; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2537 | } |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2538 | |
| 2539 | llvm_unreachable("Only arrays and structs are aggregate loadable types"); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2540 | } |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2541 | }; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2542 | |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2543 | struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2544 | LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
Benjamin Kramer | 3b682bd | 2012-09-18 17:11:47 +0000 | [diff] [blame] | 2545 | : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2546 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2547 | /// Emit a leaf load of a single value. This is called at the leaves of the |
| 2548 | /// recursive emission to actually load values. |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2549 | void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2550 | assert(Ty->isSingleValueType()); |
| 2551 | // Load the single value and insert it using the indices. |
| 2552 | Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices, |
| 2553 | Name + ".gep"), |
| 2554 | Name + ".load"); |
| 2555 | Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); |
| 2556 | DEBUG(dbgs() << " to: " << *Load << "\n"); |
| 2557 | } |
| 2558 | }; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2559 | |
| 2560 | bool visitLoadInst(LoadInst &LI) { |
| 2561 | assert(LI.getPointerOperand() == *U); |
| 2562 | if (!LI.isSimple() || LI.getType()->isSingleValueType()) |
| 2563 | return false; |
| 2564 | |
| 2565 | // We have an aggregate being loaded, split it apart. |
| 2566 | DEBUG(dbgs() << " original: " << LI << "\n"); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2567 | LoadOpSplitter Splitter(&LI, *U); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2568 | Value *V = UndefValue::get(LI.getType()); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2569 | Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2570 | LI.replaceAllUsesWith(V); |
| 2571 | LI.eraseFromParent(); |
| 2572 | return true; |
| 2573 | } |
| 2574 | |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2575 | struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2576 | StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
Benjamin Kramer | 3b682bd | 2012-09-18 17:11:47 +0000 | [diff] [blame] | 2577 | : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2578 | |
| 2579 | /// Emit a leaf store of a single value. This is called at the leaves of the |
| 2580 | /// recursive emission to actually produce stores. |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2581 | void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2582 | assert(Ty->isSingleValueType()); |
| 2583 | // Extract the single value and store it using the indices. |
| 2584 | Value *Store = IRB.CreateStore( |
| 2585 | IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), |
| 2586 | IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); |
| 2587 | (void)Store; |
| 2588 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 2589 | } |
| 2590 | }; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2591 | |
| 2592 | bool visitStoreInst(StoreInst &SI) { |
| 2593 | if (!SI.isSimple() || SI.getPointerOperand() != *U) |
| 2594 | return false; |
| 2595 | Value *V = SI.getValueOperand(); |
| 2596 | if (V->getType()->isSingleValueType()) |
| 2597 | return false; |
| 2598 | |
| 2599 | // We have an aggregate being stored, split it apart. |
| 2600 | DEBUG(dbgs() << " original: " << SI << "\n"); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2601 | StoreOpSplitter Splitter(&SI, *U); |
| 2602 | Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2603 | SI.eraseFromParent(); |
| 2604 | return true; |
| 2605 | } |
| 2606 | |
| 2607 | bool visitBitCastInst(BitCastInst &BC) { |
| 2608 | enqueueUsers(BC); |
| 2609 | return false; |
| 2610 | } |
| 2611 | |
| 2612 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 2613 | enqueueUsers(GEPI); |
| 2614 | return false; |
| 2615 | } |
| 2616 | |
| 2617 | bool visitPHINode(PHINode &PN) { |
| 2618 | enqueueUsers(PN); |
| 2619 | return false; |
| 2620 | } |
| 2621 | |
| 2622 | bool visitSelectInst(SelectInst &SI) { |
| 2623 | enqueueUsers(SI); |
| 2624 | return false; |
| 2625 | } |
| 2626 | }; |
| 2627 | } |
| 2628 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2629 | /// \brief Try to find a partition of the aggregate type passed in for a given |
| 2630 | /// offset and size. |
| 2631 | /// |
| 2632 | /// This recurses through the aggregate type and tries to compute a subtype |
| 2633 | /// based on the offset and size. When the offset and size span a sub-section |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2634 | /// of an array, it will even compute a new array type for that sub-section, |
| 2635 | /// and the same for structs. |
| 2636 | /// |
| 2637 | /// Note that this routine is very strict and tries to find a partition of the |
| 2638 | /// type which produces the *exact* right offset and size. It is not forgiving |
| 2639 | /// when the size or offset cause either end of type-based partition to be off. |
| 2640 | /// Also, this is a best-effort routine. It is reasonable to give up and not |
| 2641 | /// return a type if necessary. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2642 | static Type *getTypePartition(const TargetData &TD, Type *Ty, |
| 2643 | uint64_t Offset, uint64_t Size) { |
| 2644 | if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size) |
| 2645 | return Ty; |
| 2646 | |
| 2647 | if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { |
| 2648 | // We can't partition pointers... |
| 2649 | if (SeqTy->isPointerTy()) |
| 2650 | return 0; |
| 2651 | |
| 2652 | Type *ElementTy = SeqTy->getElementType(); |
| 2653 | uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| 2654 | uint64_t NumSkippedElements = Offset / ElementSize; |
| 2655 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) |
| 2656 | if (NumSkippedElements >= ArrTy->getNumElements()) |
| 2657 | return 0; |
| 2658 | if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) |
| 2659 | if (NumSkippedElements >= VecTy->getNumElements()) |
| 2660 | return 0; |
| 2661 | Offset -= NumSkippedElements * ElementSize; |
| 2662 | |
| 2663 | // First check if we need to recurse. |
| 2664 | if (Offset > 0 || Size < ElementSize) { |
| 2665 | // Bail if the partition ends in a different array element. |
| 2666 | if ((Offset + Size) > ElementSize) |
| 2667 | return 0; |
| 2668 | // Recurse through the element type trying to peel off offset bytes. |
| 2669 | return getTypePartition(TD, ElementTy, Offset, Size); |
| 2670 | } |
| 2671 | assert(Offset == 0); |
| 2672 | |
| 2673 | if (Size == ElementSize) |
| 2674 | return ElementTy; |
| 2675 | assert(Size > ElementSize); |
| 2676 | uint64_t NumElements = Size / ElementSize; |
| 2677 | if (NumElements * ElementSize != Size) |
| 2678 | return 0; |
| 2679 | return ArrayType::get(ElementTy, NumElements); |
| 2680 | } |
| 2681 | |
| 2682 | StructType *STy = dyn_cast<StructType>(Ty); |
| 2683 | if (!STy) |
| 2684 | return 0; |
| 2685 | |
| 2686 | const StructLayout *SL = TD.getStructLayout(STy); |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2687 | if (Offset >= SL->getSizeInBytes()) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2688 | return 0; |
| 2689 | uint64_t EndOffset = Offset + Size; |
| 2690 | if (EndOffset > SL->getSizeInBytes()) |
| 2691 | return 0; |
| 2692 | |
| 2693 | unsigned Index = SL->getElementContainingOffset(Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2694 | Offset -= SL->getElementOffset(Index); |
| 2695 | |
| 2696 | Type *ElementTy = STy->getElementType(Index); |
| 2697 | uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| 2698 | if (Offset >= ElementSize) |
| 2699 | return 0; // The offset points into alignment padding. |
| 2700 | |
| 2701 | // See if any partition must be contained by the element. |
| 2702 | if (Offset > 0 || Size < ElementSize) { |
| 2703 | if ((Offset + Size) > ElementSize) |
| 2704 | return 0; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2705 | return getTypePartition(TD, ElementTy, Offset, Size); |
| 2706 | } |
| 2707 | assert(Offset == 0); |
| 2708 | |
| 2709 | if (Size == ElementSize) |
| 2710 | return ElementTy; |
| 2711 | |
| 2712 | StructType::element_iterator EI = STy->element_begin() + Index, |
| 2713 | EE = STy->element_end(); |
| 2714 | if (EndOffset < SL->getSizeInBytes()) { |
| 2715 | unsigned EndIndex = SL->getElementContainingOffset(EndOffset); |
| 2716 | if (Index == EndIndex) |
| 2717 | return 0; // Within a single element and its padding. |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2718 | |
| 2719 | // Don't try to form "natural" types if the elements don't line up with the |
| 2720 | // expected size. |
| 2721 | // FIXME: We could potentially recurse down through the last element in the |
| 2722 | // sub-struct to find a natural end point. |
| 2723 | if (SL->getElementOffset(EndIndex) != EndOffset) |
| 2724 | return 0; |
| 2725 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2726 | assert(Index < EndIndex); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2727 | EE = STy->element_begin() + EndIndex; |
| 2728 | } |
| 2729 | |
| 2730 | // Try to build up a sub-structure. |
| 2731 | SmallVector<Type *, 4> ElementTys; |
| 2732 | do { |
| 2733 | ElementTys.push_back(*EI++); |
| 2734 | } while (EI != EE); |
| 2735 | StructType *SubTy = StructType::get(STy->getContext(), ElementTys, |
| 2736 | STy->isPacked()); |
| 2737 | const StructLayout *SubSL = TD.getStructLayout(SubTy); |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2738 | if (Size != SubSL->getSizeInBytes()) |
| 2739 | return 0; // The sub-struct doesn't have quite the size needed. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2740 | |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2741 | return SubTy; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2742 | } |
| 2743 | |
| 2744 | /// \brief Rewrite an alloca partition's users. |
| 2745 | /// |
| 2746 | /// This routine drives both of the rewriting goals of the SROA pass. It tries |
| 2747 | /// to rewrite uses of an alloca partition to be conducive for SSA value |
| 2748 | /// promotion. If the partition needs a new, more refined alloca, this will |
| 2749 | /// build that new alloca, preserving as much type information as possible, and |
| 2750 | /// rewrite the uses of the old alloca to point at the new one and have the |
| 2751 | /// appropriate new offsets. It also evaluates how successful the rewrite was |
| 2752 | /// at enabling promotion and if it was successful queues the alloca to be |
| 2753 | /// promoted. |
| 2754 | bool SROA::rewriteAllocaPartition(AllocaInst &AI, |
| 2755 | AllocaPartitioning &P, |
| 2756 | AllocaPartitioning::iterator PI) { |
| 2757 | uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset; |
| 2758 | if (P.use_begin(PI) == P.use_end(PI)) |
| 2759 | return false; // No live uses left of this partition. |
| 2760 | |
| 2761 | // Try to compute a friendly type for this partition of the alloca. This |
| 2762 | // won't always succeed, in which case we fall back to a legal integer type |
| 2763 | // or an i8 array of an appropriate size. |
| 2764 | Type *AllocaTy = 0; |
| 2765 | if (Type *PartitionTy = P.getCommonType(PI)) |
| 2766 | if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize) |
| 2767 | AllocaTy = PartitionTy; |
| 2768 | if (!AllocaTy) |
| 2769 | if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(), |
| 2770 | PI->BeginOffset, AllocaSize)) |
| 2771 | AllocaTy = PartitionTy; |
| 2772 | if ((!AllocaTy || |
| 2773 | (AllocaTy->isArrayTy() && |
| 2774 | AllocaTy->getArrayElementType()->isIntegerTy())) && |
| 2775 | TD->isLegalInteger(AllocaSize * 8)) |
| 2776 | AllocaTy = Type::getIntNTy(*C, AllocaSize * 8); |
| 2777 | if (!AllocaTy) |
| 2778 | AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize); |
Chandler Carruth | b3dd9a1 | 2012-09-14 10:26:34 +0000 | [diff] [blame] | 2779 | assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2780 | |
| 2781 | // Check for the case where we're going to rewrite to a new alloca of the |
| 2782 | // exact same type as the original, and with the same access offsets. In that |
| 2783 | // case, re-use the existing alloca, but still run through the rewriter to |
| 2784 | // performe phi and select speculation. |
| 2785 | AllocaInst *NewAI; |
| 2786 | if (AllocaTy == AI.getAllocatedType()) { |
| 2787 | assert(PI->BeginOffset == 0 && |
| 2788 | "Non-zero begin offset but same alloca type"); |
| 2789 | assert(PI == P.begin() && "Begin offset is zero on later partition"); |
| 2790 | NewAI = &AI; |
| 2791 | } else { |
| 2792 | // FIXME: The alignment here is overly conservative -- we could in many |
| 2793 | // cases get away with much weaker alignment constraints. |
| 2794 | NewAI = new AllocaInst(AllocaTy, 0, AI.getAlignment(), |
| 2795 | AI.getName() + ".sroa." + Twine(PI - P.begin()), |
| 2796 | &AI); |
| 2797 | ++NumNewAllocas; |
| 2798 | } |
| 2799 | |
| 2800 | DEBUG(dbgs() << "Rewriting alloca partition " |
| 2801 | << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: " |
| 2802 | << *NewAI << "\n"); |
| 2803 | |
| 2804 | AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI, |
| 2805 | PI->BeginOffset, PI->EndOffset); |
| 2806 | DEBUG(dbgs() << " rewriting "); |
| 2807 | DEBUG(P.print(dbgs(), PI, "")); |
| 2808 | if (Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI))) { |
| 2809 | DEBUG(dbgs() << " and queuing for promotion\n"); |
| 2810 | PromotableAllocas.push_back(NewAI); |
| 2811 | } else if (NewAI != &AI) { |
| 2812 | // If we can't promote the alloca, iterate on it to check for new |
| 2813 | // refinements exposed by splitting the current alloca. Don't iterate on an |
| 2814 | // alloca which didn't actually change and didn't get promoted. |
| 2815 | Worklist.insert(NewAI); |
| 2816 | } |
| 2817 | return true; |
| 2818 | } |
| 2819 | |
| 2820 | /// \brief Walks the partitioning of an alloca rewriting uses of each partition. |
| 2821 | bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) { |
| 2822 | bool Changed = false; |
| 2823 | for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE; |
| 2824 | ++PI) |
| 2825 | Changed |= rewriteAllocaPartition(AI, P, PI); |
| 2826 | |
| 2827 | return Changed; |
| 2828 | } |
| 2829 | |
| 2830 | /// \brief Analyze an alloca for SROA. |
| 2831 | /// |
| 2832 | /// This analyzes the alloca to ensure we can reason about it, builds |
| 2833 | /// a partitioning of the alloca, and then hands it off to be split and |
| 2834 | /// rewritten as needed. |
| 2835 | bool SROA::runOnAlloca(AllocaInst &AI) { |
| 2836 | DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); |
| 2837 | ++NumAllocasAnalyzed; |
| 2838 | |
| 2839 | // Special case dead allocas, as they're trivial. |
| 2840 | if (AI.use_empty()) { |
| 2841 | AI.eraseFromParent(); |
| 2842 | return true; |
| 2843 | } |
| 2844 | |
| 2845 | // Skip alloca forms that this analysis can't handle. |
| 2846 | if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || |
| 2847 | TD->getTypeAllocSize(AI.getAllocatedType()) == 0) |
| 2848 | return false; |
| 2849 | |
| 2850 | // First check if this is a non-aggregate type that we should simply promote. |
| 2851 | if (!AI.getAllocatedType()->isAggregateType() && isAllocaPromotable(&AI)) { |
| 2852 | DEBUG(dbgs() << " Trivially scalar type, queuing for promotion...\n"); |
| 2853 | PromotableAllocas.push_back(&AI); |
| 2854 | return false; |
| 2855 | } |
| 2856 | |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2857 | bool Changed = false; |
| 2858 | |
| 2859 | // First, split any FCA loads and stores touching this alloca to promote |
| 2860 | // better splitting and promotion opportunities. |
| 2861 | AggLoadStoreRewriter AggRewriter(*TD); |
| 2862 | Changed |= AggRewriter.rewrite(AI); |
| 2863 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2864 | // Build the partition set using a recursive instruction-visiting builder. |
| 2865 | AllocaPartitioning P(*TD, AI); |
| 2866 | DEBUG(P.print(dbgs())); |
| 2867 | if (P.isEscaped()) |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2868 | return Changed; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2869 | |
| 2870 | // No partitions to split. Leave the dead alloca for a later pass to clean up. |
| 2871 | if (P.begin() == P.end()) |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2872 | return Changed; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2873 | |
| 2874 | // Delete all the dead users of this alloca before splitting and rewriting it. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2875 | for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(), |
| 2876 | DE = P.dead_user_end(); |
| 2877 | DI != DE; ++DI) { |
| 2878 | Changed = true; |
| 2879 | (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); |
| 2880 | DeadInsts.push_back(*DI); |
| 2881 | } |
| 2882 | for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(), |
| 2883 | DE = P.dead_op_end(); |
| 2884 | DO != DE; ++DO) { |
| 2885 | Value *OldV = **DO; |
| 2886 | // Clobber the use with an undef value. |
| 2887 | **DO = UndefValue::get(OldV->getType()); |
| 2888 | if (Instruction *OldI = dyn_cast<Instruction>(OldV)) |
| 2889 | if (isInstructionTriviallyDead(OldI)) { |
| 2890 | Changed = true; |
| 2891 | DeadInsts.push_back(OldI); |
| 2892 | } |
| 2893 | } |
| 2894 | |
| 2895 | return splitAlloca(AI, P) || Changed; |
| 2896 | } |
| 2897 | |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 2898 | /// \brief Delete the dead instructions accumulated in this run. |
| 2899 | /// |
| 2900 | /// Recursively deletes the dead instructions we've accumulated. This is done |
| 2901 | /// at the very end to maximize locality of the recursive delete and to |
| 2902 | /// minimize the problems of invalidated instruction pointers as such pointers |
| 2903 | /// are used heavily in the intermediate stages of the algorithm. |
| 2904 | /// |
| 2905 | /// We also record the alloca instructions deleted here so that they aren't |
| 2906 | /// subsequently handed to mem2reg to promote. |
| 2907 | void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2908 | DeadSplitInsts.clear(); |
| 2909 | while (!DeadInsts.empty()) { |
| 2910 | Instruction *I = DeadInsts.pop_back_val(); |
| 2911 | DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); |
| 2912 | |
| 2913 | for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) |
| 2914 | if (Instruction *U = dyn_cast<Instruction>(*OI)) { |
| 2915 | // Zero out the operand and see if it becomes trivially dead. |
| 2916 | *OI = 0; |
| 2917 | if (isInstructionTriviallyDead(U)) |
| 2918 | DeadInsts.push_back(U); |
| 2919 | } |
| 2920 | |
| 2921 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| 2922 | DeletedAllocas.insert(AI); |
| 2923 | |
| 2924 | ++NumDeleted; |
| 2925 | I->eraseFromParent(); |
| 2926 | } |
| 2927 | } |
| 2928 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 2929 | /// \brief Promote the allocas, using the best available technique. |
| 2930 | /// |
| 2931 | /// This attempts to promote whatever allocas have been identified as viable in |
| 2932 | /// the PromotableAllocas list. If that list is empty, there is nothing to do. |
| 2933 | /// If there is a domtree available, we attempt to promote using the full power |
| 2934 | /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is |
| 2935 | /// based on the SSAUpdater utilities. This function returns whether any |
| 2936 | /// promotion occured. |
| 2937 | bool SROA::promoteAllocas(Function &F) { |
| 2938 | if (PromotableAllocas.empty()) |
| 2939 | return false; |
| 2940 | |
| 2941 | NumPromoted += PromotableAllocas.size(); |
| 2942 | |
| 2943 | if (DT && !ForceSSAUpdater) { |
| 2944 | DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); |
| 2945 | PromoteMemToReg(PromotableAllocas, *DT); |
| 2946 | PromotableAllocas.clear(); |
| 2947 | return true; |
| 2948 | } |
| 2949 | |
| 2950 | DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); |
| 2951 | SSAUpdater SSA; |
| 2952 | DIBuilder DIB(*F.getParent()); |
| 2953 | SmallVector<Instruction*, 64> Insts; |
| 2954 | |
| 2955 | for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { |
| 2956 | AllocaInst *AI = PromotableAllocas[Idx]; |
| 2957 | for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); |
| 2958 | UI != UE;) { |
| 2959 | Instruction *I = cast<Instruction>(*UI++); |
| 2960 | // FIXME: Currently the SSAUpdater infrastructure doesn't reason about |
| 2961 | // lifetime intrinsics and so we strip them (and the bitcasts+GEPs |
| 2962 | // leading to them) here. Eventually it should use them to optimize the |
| 2963 | // scalar values produced. |
| 2964 | if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { |
| 2965 | assert(onlyUsedByLifetimeMarkers(I) && |
| 2966 | "Found a bitcast used outside of a lifetime marker."); |
| 2967 | while (!I->use_empty()) |
| 2968 | cast<Instruction>(*I->use_begin())->eraseFromParent(); |
| 2969 | I->eraseFromParent(); |
| 2970 | continue; |
| 2971 | } |
| 2972 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 2973 | assert(II->getIntrinsicID() == Intrinsic::lifetime_start || |
| 2974 | II->getIntrinsicID() == Intrinsic::lifetime_end); |
| 2975 | II->eraseFromParent(); |
| 2976 | continue; |
| 2977 | } |
| 2978 | |
| 2979 | Insts.push_back(I); |
| 2980 | } |
| 2981 | AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); |
| 2982 | Insts.clear(); |
| 2983 | } |
| 2984 | |
| 2985 | PromotableAllocas.clear(); |
| 2986 | return true; |
| 2987 | } |
| 2988 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2989 | namespace { |
| 2990 | /// \brief A predicate to test whether an alloca belongs to a set. |
| 2991 | class IsAllocaInSet { |
| 2992 | typedef SmallPtrSet<AllocaInst *, 4> SetType; |
| 2993 | const SetType &Set; |
| 2994 | |
| 2995 | public: |
| 2996 | IsAllocaInSet(const SetType &Set) : Set(Set) {} |
| 2997 | bool operator()(AllocaInst *AI) { return Set.count(AI); } |
| 2998 | }; |
| 2999 | } |
| 3000 | |
| 3001 | bool SROA::runOnFunction(Function &F) { |
| 3002 | DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); |
| 3003 | C = &F.getContext(); |
| 3004 | TD = getAnalysisIfAvailable<TargetData>(); |
| 3005 | if (!TD) { |
| 3006 | DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); |
| 3007 | return false; |
| 3008 | } |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 3009 | DT = getAnalysisIfAvailable<DominatorTree>(); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3010 | |
| 3011 | BasicBlock &EntryBB = F.getEntryBlock(); |
| 3012 | for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); |
| 3013 | I != E; ++I) |
| 3014 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| 3015 | Worklist.insert(AI); |
| 3016 | |
| 3017 | bool Changed = false; |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 3018 | // A set of deleted alloca instruction pointers which should be removed from |
| 3019 | // the list of promotable allocas. |
| 3020 | SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
| 3021 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3022 | while (!Worklist.empty()) { |
| 3023 | Changed |= runOnAlloca(*Worklist.pop_back_val()); |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 3024 | deleteDeadInstructions(DeletedAllocas); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3025 | if (!DeletedAllocas.empty()) { |
| 3026 | PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), |
| 3027 | PromotableAllocas.end(), |
| 3028 | IsAllocaInSet(DeletedAllocas)), |
| 3029 | PromotableAllocas.end()); |
| 3030 | DeletedAllocas.clear(); |
| 3031 | } |
| 3032 | } |
| 3033 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 3034 | Changed |= promoteAllocas(F); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3035 | |
| 3036 | return Changed; |
| 3037 | } |
| 3038 | |
| 3039 | void SROA::getAnalysisUsage(AnalysisUsage &AU) const { |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 3040 | if (RequiresDomTree) |
| 3041 | AU.addRequired<DominatorTree>(); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3042 | AU.setPreservesCFG(); |
| 3043 | } |