blob: 78b088a6444fcd4636d3df4fd18cba2b42980824 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop. This pass also implements the following extensions to the basic
13// algorithm:
14//
15// 1. Trivial instructions between the call and return do not prevent the
16// transformation from taking place, though currently the analysis cannot
17// support moving any really useful instructions (only dead ones).
18// 2. This pass transforms functions that are prevented from being tail
19// recursive by an associative expression to use an accumulator variable,
20// thus compiling the typical naive factorial or 'fib' implementation into
21// efficient code.
22// 3. TRE is performed if the function returns void, if the return
23// returns the result returned by the call, or if the function returns a
24// run-time constant on all exits from the function. It is possible, though
25// unlikely, that the return returns something else (like constant 0), and
26// can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27// the function return the exact same value.
28// 4. If it can prove that callees do not access theier caller stack frame,
29// they are marked as eligible for tail call elimination (by the code
30// generator).
31//
32// There are several improvements that could be made:
33//
34// 1. If the function has any alloca instructions, these instructions will be
35// moved out of the entry block of the function, causing them to be
36// evaluated each time through the tail recursion. Safely keeping allocas
37// in the entry block requires analysis to proves that the tail-called
38// function does not read or write the stack object.
39// 2. Tail recursion is only performed if the call immediately preceeds the
40// return instruction. It's possible that there could be a jump between
41// the call and the return.
42// 3. There can be intervening operations between the call and the return that
43// prevent the TRE from occurring. For example, there could be GEP's and
44// stores to memory that will not be read or written by the call. This
45// requires some substantial analysis (such as with DSA) to prove safe to
46// move ahead of the call, but doing so could allow many more TREs to be
47// performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48// 4. The algorithm we use to detect if callees access their caller stack
49// frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#define DEBUG_TYPE "tailcallelim"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Constants.h"
56#include "llvm/DerivedTypes.h"
57#include "llvm/Function.h"
58#include "llvm/Instructions.h"
59#include "llvm/Pass.h"
60#include "llvm/Support/CFG.h"
61#include "llvm/ADT/Statistic.h"
62#include "llvm/Support/Compiler.h"
63using namespace llvm;
64
65STATISTIC(NumEliminated, "Number of tail calls removed");
66STATISTIC(NumAccumAdded, "Number of accumulators introduced");
67
68namespace {
69 struct VISIBILITY_HIDDEN TailCallElim : public FunctionPass {
70 static char ID; // Pass identification, replacement for typeid
71 TailCallElim() : FunctionPass((intptr_t)&ID) {}
72
73 virtual bool runOnFunction(Function &F);
74
75 private:
76 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
77 bool &TailCallsAreMarkedTail,
78 std::vector<PHINode*> &ArgumentPHIs,
79 bool CannotTailCallElimCallsMarkedTail);
80 bool CanMoveAboveCall(Instruction *I, CallInst *CI);
81 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
82 };
83 char TailCallElim::ID = 0;
84 RegisterPass<TailCallElim> X("tailcallelim", "Tail Call Elimination");
85}
86
87// Public interface to the TailCallElimination pass
88FunctionPass *llvm::createTailCallEliminationPass() {
89 return new TailCallElim();
90}
91
92
93/// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
94/// callees of this function. We only do very simple analysis right now, this
95/// could be expanded in the future to use mod/ref information for particular
96/// call sites if desired.
97static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
98 // FIXME: do simple 'address taken' analysis.
99 return true;
100}
101
102/// FunctionContainsAllocas - Scan the specified basic block for alloca
103/// instructions. If it contains any that might be accessed by calls, return
104/// true.
105static bool CheckForEscapingAllocas(BasicBlock *BB,
106 bool &CannotTCETailMarkedCall) {
107 bool RetVal = false;
108 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
109 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
110 RetVal |= AllocaMightEscapeToCalls(AI);
111
112 // If this alloca is in the body of the function, or if it is a variable
113 // sized allocation, we cannot tail call eliminate calls marked 'tail'
114 // with this mechanism.
115 if (BB != &BB->getParent()->getEntryBlock() ||
116 !isa<ConstantInt>(AI->getArraySize()))
117 CannotTCETailMarkedCall = true;
118 }
119 return RetVal;
120}
121
122bool TailCallElim::runOnFunction(Function &F) {
123 // If this function is a varargs function, we won't be able to PHI the args
124 // right, so don't even try to convert it...
125 if (F.getFunctionType()->isVarArg()) return false;
126
127 BasicBlock *OldEntry = 0;
128 bool TailCallsAreMarkedTail = false;
129 std::vector<PHINode*> ArgumentPHIs;
130 bool MadeChange = false;
131
132 bool FunctionContainsEscapingAllocas = false;
133
134 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
135 // marked with the 'tail' attribute, because doing so would cause the stack
136 // size to increase (real TCE would deallocate variable sized allocas, TCE
137 // doesn't).
138 bool CannotTCETailMarkedCall = false;
139
140 // Loop over the function, looking for any returning blocks, and keeping track
141 // of whether this function has any non-trivially used allocas.
142 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
143 if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
144 break;
145
146 FunctionContainsEscapingAllocas |=
147 CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
148 }
149
150 /// FIXME: The code generator produces really bad code when an 'escaping
151 /// alloca' is changed from being a static alloca to being a dynamic alloca.
152 /// Until this is resolved, disable this transformation if that would ever
153 /// happen. This bug is PR962.
154 if (FunctionContainsEscapingAllocas)
155 return false;
156
157
158 // Second pass, change any tail calls to loops.
159 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
160 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
161 MadeChange |= ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
162 ArgumentPHIs,CannotTCETailMarkedCall);
163
164 // If we eliminated any tail recursions, it's possible that we inserted some
165 // silly PHI nodes which just merge an initial value (the incoming operand)
166 // with themselves. Check to see if we did and clean up our mess if so. This
167 // occurs when a function passes an argument straight through to its tail
168 // call.
169 if (!ArgumentPHIs.empty()) {
170 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
171 PHINode *PN = ArgumentPHIs[i];
172
173 // If the PHI Node is a dynamic constant, replace it with the value it is.
174 if (Value *PNV = PN->hasConstantValue()) {
175 PN->replaceAllUsesWith(PNV);
176 PN->eraseFromParent();
177 }
178 }
179 }
180
181 // Finally, if this function contains no non-escaping allocas, mark all calls
182 // in the function as eligible for tail calls (there is no stack memory for
183 // them to access).
184 if (!FunctionContainsEscapingAllocas)
185 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
186 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
187 if (CallInst *CI = dyn_cast<CallInst>(I))
188 CI->setTailCall();
189
190 return MadeChange;
191}
192
193
194/// CanMoveAboveCall - Return true if it is safe to move the specified
195/// instruction from after the call to before the call, assuming that all
196/// instructions between the call and this instruction are movable.
197///
198bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
199 // FIXME: We can move load/store/call/free instructions above the call if the
200 // call does not mod/ref the memory location being processed.
201 if (I->mayWriteToMemory() || isa<LoadInst>(I))
202 return false;
203
204 // Otherwise, if this is a side-effect free instruction, check to make sure
205 // that it does not use the return value of the call. If it doesn't use the
206 // return value of the call, it must only use things that are defined before
207 // the call, or movable instructions between the call and the instruction
208 // itself.
209 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
210 if (I->getOperand(i) == CI)
211 return false;
212 return true;
213}
214
215// isDynamicConstant - Return true if the specified value is the same when the
216// return would exit as it was when the initial iteration of the recursive
217// function was executed.
218//
219// We currently handle static constants and arguments that are not modified as
220// part of the recursion.
221//
222static bool isDynamicConstant(Value *V, CallInst *CI) {
223 if (isa<Constant>(V)) return true; // Static constants are always dyn consts
224
225 // Check to see if this is an immutable argument, if so, the value
226 // will be available to initialize the accumulator.
227 if (Argument *Arg = dyn_cast<Argument>(V)) {
228 // Figure out which argument number this is...
229 unsigned ArgNo = 0;
230 Function *F = CI->getParent()->getParent();
231 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
232 ++ArgNo;
233
234 // If we are passing this argument into call as the corresponding
235 // argument operand, then the argument is dynamically constant.
236 // Otherwise, we cannot transform this function safely.
237 if (CI->getOperand(ArgNo+1) == Arg)
238 return true;
239 }
240 // Not a constant or immutable argument, we can't safely transform.
241 return false;
242}
243
244// getCommonReturnValue - Check to see if the function containing the specified
245// return instruction and tail call consistently returns the same
246// runtime-constant value at all exit points. If so, return the returned value.
247//
248static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
249 Function *F = TheRI->getParent()->getParent();
250 Value *ReturnedValue = 0;
251
Devang Patel6ab6f172008-03-11 17:33:32 +0000252 // TODO: Handle multiple value ret instructions;
253 if (isa<StructType>(F->getReturnType()))
254 return 0;
255
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000256 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
257 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
258 if (RI != TheRI) {
259 Value *RetOp = RI->getOperand(0);
260
261 // We can only perform this transformation if the value returned is
262 // evaluatable at the start of the initial invocation of the function,
263 // instead of at the end of the evaluation.
264 //
265 if (!isDynamicConstant(RetOp, CI))
266 return 0;
267
268 if (ReturnedValue && RetOp != ReturnedValue)
269 return 0; // Cannot transform if differing values are returned.
270 ReturnedValue = RetOp;
271 }
272 return ReturnedValue;
273}
274
275/// CanTransformAccumulatorRecursion - If the specified instruction can be
276/// transformed using accumulator recursion elimination, return the constant
277/// which is the start of the accumulator value. Otherwise return null.
278///
279Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
280 CallInst *CI) {
281 if (!I->isAssociative()) return 0;
282 assert(I->getNumOperands() == 2 &&
283 "Associative operations should have 2 args!");
284
285 // Exactly one operand should be the result of the call instruction...
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000286 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
287 (I->getOperand(0) != CI && I->getOperand(1) != CI))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288 return 0;
289
290 // The only user of this instruction we allow is a single return instruction.
291 if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
292 return 0;
293
294 // Ok, now we have to check all of the other return instructions in this
295 // function. If they return non-constants or differing values, then we cannot
296 // transform the function safely.
297 return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
298}
299
300bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
301 bool &TailCallsAreMarkedTail,
302 std::vector<PHINode*> &ArgumentPHIs,
303 bool CannotTailCallElimCallsMarkedTail) {
304 BasicBlock *BB = Ret->getParent();
305 Function *F = BB->getParent();
306
307 if (&BB->front() == Ret) // Make sure there is something before the ret...
308 return false;
Chris Lattner308ae142007-09-10 20:58:55 +0000309
310 // If the return is in the entry block, then making this transformation would
311 // turn infinite recursion into an infinite loop. This transformation is ok
312 // in theory, but breaks some code like:
313 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
314 // disable this xform in this case, because the code generator will lower the
315 // call to fabs into inline code.
316 if (BB == &F->getEntryBlock())
317 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318
319 // Scan backwards from the return, checking to see if there is a tail call in
320 // this block. If so, set CI to it.
321 CallInst *CI;
322 BasicBlock::iterator BBI = Ret;
323 while (1) {
324 CI = dyn_cast<CallInst>(BBI);
325 if (CI && CI->getCalledFunction() == F)
326 break;
327
328 if (BBI == BB->begin())
329 return false; // Didn't find a potential tail call.
330 --BBI;
331 }
332
333 // If this call is marked as a tail call, and if there are dynamic allocas in
334 // the function, we cannot perform this optimization.
335 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
336 return false;
337
338 // If we are introducing accumulator recursion to eliminate associative
339 // operations after the call instruction, this variable contains the initial
340 // value for the accumulator. If this value is set, we actually perform
341 // accumulator recursion elimination instead of simple tail recursion
342 // elimination.
343 Value *AccumulatorRecursionEliminationInitVal = 0;
344 Instruction *AccumulatorRecursionInstr = 0;
345
346 // Ok, we found a potential tail call. We can currently only transform the
347 // tail call if all of the instructions between the call and the return are
348 // movable to above the call itself, leaving the call next to the return.
349 // Check that this is the case now.
350 for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
351 if (!CanMoveAboveCall(BBI, CI)) {
352 // If we can't move the instruction above the call, it might be because it
353 // is an associative operation that could be tranformed using accumulator
354 // recursion elimination. Check to see if this is the case, and if so,
355 // remember the initial accumulator value for later.
356 if ((AccumulatorRecursionEliminationInitVal =
357 CanTransformAccumulatorRecursion(BBI, CI))) {
358 // Yes, this is accumulator recursion. Remember which instruction
359 // accumulates.
360 AccumulatorRecursionInstr = BBI;
361 } else {
362 return false; // Otherwise, we cannot eliminate the tail recursion!
363 }
364 }
365
366 // We can only transform call/return pairs that either ignore the return value
367 // of the call and return void, ignore the value of the call and return a
368 // constant, return the value returned by the tail call, or that are being
369 // accumulator recursion variable eliminated.
Devang Patel6ab6f172008-03-11 17:33:32 +0000370 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000371 !isa<UndefValue>(Ret->getReturnValue()) &&
372 AccumulatorRecursionEliminationInitVal == 0 &&
373 !getCommonReturnValue(Ret, CI))
374 return false;
375
376 // OK! We can transform this tail call. If this is the first one found,
377 // create the new entry block, allowing us to branch back to the old entry.
378 if (OldEntry == 0) {
379 OldEntry = &F->getEntryBlock();
Gabor Greifd6da1d02008-04-06 20:25:17 +0000380 BasicBlock *NewEntry = BasicBlock::Create("", F, OldEntry);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000381 NewEntry->takeName(OldEntry);
382 OldEntry->setName("tailrecurse");
Gabor Greifd6da1d02008-04-06 20:25:17 +0000383 BranchInst::Create(OldEntry, NewEntry);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384
385 // If this tail call is marked 'tail' and if there are any allocas in the
386 // entry block, move them up to the new entry block.
387 TailCallsAreMarkedTail = CI->isTailCall();
388 if (TailCallsAreMarkedTail)
389 // Move all fixed sized allocas from OldEntry to NewEntry.
390 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
391 NEBI = NewEntry->begin(); OEBI != E; )
392 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
393 if (isa<ConstantInt>(AI->getArraySize()))
394 AI->moveBefore(NEBI);
395
396 // Now that we have created a new block, which jumps to the entry
397 // block, insert a PHI node for each argument of the function.
398 // For now, we initialize each PHI to only have the real arguments
399 // which are passed in.
400 Instruction *InsertPos = OldEntry->begin();
401 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
402 I != E; ++I) {
Gabor Greifd6da1d02008-04-06 20:25:17 +0000403 PHINode *PN = PHINode::Create(I->getType(), I->getName()+".tr", InsertPos);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
405 PN->addIncoming(I, NewEntry);
406 ArgumentPHIs.push_back(PN);
407 }
408 }
409
410 // If this function has self recursive calls in the tail position where some
411 // are marked tail and some are not, only transform one flavor or another. We
412 // have to choose whether we move allocas in the entry block to the new entry
413 // block or not, so we can't make a good choice for both. NOTE: We could do
414 // slightly better here in the case that the function has no entry block
415 // allocas.
416 if (TailCallsAreMarkedTail && !CI->isTailCall())
417 return false;
418
419 // Ok, now that we know we have a pseudo-entry block WITH all of the
420 // required PHI nodes, add entries into the PHI node for the actual
421 // parameters passed into the tail-recursive call.
422 for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
423 ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
424
425 // If we are introducing an accumulator variable to eliminate the recursion,
426 // do so now. Note that we _know_ that no subsequent tail recursion
427 // eliminations will happen on this function because of the way the
428 // accumulator recursion predicate is set up.
429 //
430 if (AccumulatorRecursionEliminationInitVal) {
431 Instruction *AccRecInstr = AccumulatorRecursionInstr;
432 // Start by inserting a new PHI node for the accumulator.
Gabor Greifd6da1d02008-04-06 20:25:17 +0000433 PHINode *AccPN = PHINode::Create(AccRecInstr->getType(), "accumulator.tr",
434 OldEntry->begin());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435
436 // Loop over all of the predecessors of the tail recursion block. For the
437 // real entry into the function we seed the PHI with the initial value,
438 // computed earlier. For any other existing branches to this block (due to
439 // other tail recursions eliminated) the accumulator is not modified.
440 // Because we haven't added the branch in the current block to OldEntry yet,
441 // it will not show up as a predecessor.
442 for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
443 PI != PE; ++PI) {
444 if (*PI == &F->getEntryBlock())
445 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
446 else
447 AccPN->addIncoming(AccPN, *PI);
448 }
449
450 // Add an incoming argument for the current block, which is computed by our
451 // associative accumulator instruction.
452 AccPN->addIncoming(AccRecInstr, BB);
453
454 // Next, rewrite the accumulator recursion instruction so that it does not
455 // use the result of the call anymore, instead, use the PHI node we just
456 // inserted.
457 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
458
459 // Finally, rewrite any return instructions in the program to return the PHI
460 // node instead of the "initval" that they do currently. This loop will
461 // actually rewrite the return value we are destroying, but that's ok.
462 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
463 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
464 RI->setOperand(0, AccPN);
465 ++NumAccumAdded;
466 }
467
468 // Now that all of the PHI nodes are in place, remove the call and
469 // ret instructions, replacing them with an unconditional branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +0000470 BranchInst::Create(OldEntry, Ret);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471 BB->getInstList().erase(Ret); // Remove return.
472 BB->getInstList().erase(CI); // Remove call.
473 ++NumEliminated;
474 return true;
475}