blob: e2525ae84e0e5e766f170fa63d3d8a9b379290c6 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Programmer's Manual</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7</head>
8<body>
9
10<div class="doc_title">
11 LLVM Programmer's Manual
12</div>
13
14<ol>
15 <li><a href="#introduction">Introduction</a></li>
16 <li><a href="#general">General Information</a>
17 <ul>
18 <li><a href="#stl">The C++ Standard Template Library</a></li>
19<!--
20 <li>The <tt>-time-passes</tt> option</li>
21 <li>How to use the LLVM Makefile system</li>
22 <li>How to write a regression test</li>
23
24-->
25 </ul>
26 </li>
27 <li><a href="#apis">Important and useful LLVM APIs</a>
28 <ul>
29 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
30and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
31 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
32option</a>
33 <ul>
34 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
35and the <tt>-debug-only</tt> option</a> </li>
36 </ul>
37 </li>
38 <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
39option</a></li>
40<!--
41 <li>The <tt>InstVisitor</tt> template
42 <li>The general graph API
43-->
44 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
45 </ul>
46 </li>
47 <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
48 <ul>
49 <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
50 <ul>
51 <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
52 <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
53 <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
54 <li><a href="#dss_vector">&lt;vector&gt;</a></li>
55 <li><a href="#dss_deque">&lt;deque&gt;</a></li>
56 <li><a href="#dss_list">&lt;list&gt;</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +000057 <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000058 <li><a href="#dss_other">Other Sequential Container Options</a></li>
59 </ul></li>
60 <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
61 <ul>
62 <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
63 <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
64 <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
Chris Lattner77ab46d2007-09-30 00:58:59 +000065 <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000066 <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
67 <li><a href="#dss_set">&lt;set&gt;</a></li>
68 <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
69 <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
70 <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
71 </ul></li>
72 <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
73 <ul>
74 <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
75 <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
76 <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
77 <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
78 <li><a href="#dss_map">&lt;map&gt;</a></li>
79 <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
80 </ul></li>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +000081 <li><a href="#ds_bit">BitVector-like containers</a>
82 <ul>
83 <li><a href="#dss_bitvector">A dense bitvector</a></li>
84 <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
85 </ul></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 </ul>
87 </li>
88 <li><a href="#common">Helpful Hints for Common Operations</a>
89 <ul>
90 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
91 <ul>
92 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
93in a <tt>Function</tt></a> </li>
94 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
95in a <tt>BasicBlock</tt></a> </li>
96 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
97in a <tt>Function</tt></a> </li>
98 <li><a href="#iterate_convert">Turning an iterator into a
99class pointer</a> </li>
100 <li><a href="#iterate_complex">Finding call sites: a more
101complex example</a> </li>
102 <li><a href="#calls_and_invokes">Treating calls and invokes
103the same way</a> </li>
104 <li><a href="#iterate_chains">Iterating over def-use &amp;
105use-def chains</a> </li>
Chris Lattner0665e1f2008-01-03 16:56:04 +0000106 <li><a href="#iterate_preds">Iterating over predecessors &amp;
107successors of blocks</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000108 </ul>
109 </li>
110 <li><a href="#simplechanges">Making simple changes</a>
111 <ul>
112 <li><a href="#schanges_creating">Creating and inserting new
113 <tt>Instruction</tt>s</a> </li>
114 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
115 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
116with another <tt>Value</tt></a> </li>
117 <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>
118 </ul>
119 </li>
120<!--
121 <li>Working with the Control Flow Graph
122 <ul>
123 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
124 <li>
125 <li>
126 </ul>
127-->
128 </ul>
129 </li>
130
131 <li><a href="#advanced">Advanced Topics</a>
132 <ul>
133 <li><a href="#TypeResolve">LLVM Type Resolution</a>
134 <ul>
135 <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
136 <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
137 <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
138 <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
139 </ul></li>
140
Gabor Greif92e87762008-06-16 21:06:12 +0000141 <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes</a></li>
142 <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000143 </ul></li>
144
145 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
146 <ul>
147 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
148 <li><a href="#Module">The <tt>Module</tt> class</a></li>
149 <li><a href="#Value">The <tt>Value</tt> class</a>
150 <ul>
151 <li><a href="#User">The <tt>User</tt> class</a>
152 <ul>
153 <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
154 <li><a href="#Constant">The <tt>Constant</tt> class</a>
155 <ul>
156 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
157 <ul>
158 <li><a href="#Function">The <tt>Function</tt> class</a></li>
159 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
160 </ul>
161 </li>
162 </ul>
163 </li>
164 </ul>
165 </li>
166 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
167 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
168 </ul>
169 </li>
170 </ul>
171 </li>
172</ol>
173
174<div class="doc_author">
175 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
176 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
Gabor Greif92e87762008-06-16 21:06:12 +0000177 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>,
178 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a> and
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000179 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a></p>
180</div>
181
182<!-- *********************************************************************** -->
183<div class="doc_section">
184 <a name="introduction">Introduction </a>
185</div>
186<!-- *********************************************************************** -->
187
188<div class="doc_text">
189
190<p>This document is meant to highlight some of the important classes and
191interfaces available in the LLVM source-base. This manual is not
192intended to explain what LLVM is, how it works, and what LLVM code looks
193like. It assumes that you know the basics of LLVM and are interested
194in writing transformations or otherwise analyzing or manipulating the
195code.</p>
196
197<p>This document should get you oriented so that you can find your
198way in the continuously growing source code that makes up the LLVM
199infrastructure. Note that this manual is not intended to serve as a
200replacement for reading the source code, so if you think there should be
201a method in one of these classes to do something, but it's not listed,
202check the source. Links to the <a href="/doxygen/">doxygen</a> sources
203are provided to make this as easy as possible.</p>
204
205<p>The first section of this document describes general information that is
206useful to know when working in the LLVM infrastructure, and the second describes
207the Core LLVM classes. In the future this manual will be extended with
208information describing how to use extension libraries, such as dominator
209information, CFG traversal routines, and useful utilities like the <tt><a
210href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
211
212</div>
213
214<!-- *********************************************************************** -->
215<div class="doc_section">
216 <a name="general">General Information</a>
217</div>
218<!-- *********************************************************************** -->
219
220<div class="doc_text">
221
222<p>This section contains general information that is useful if you are working
223in the LLVM source-base, but that isn't specific to any particular API.</p>
224
225</div>
226
227<!-- ======================================================================= -->
228<div class="doc_subsection">
229 <a name="stl">The C++ Standard Template Library</a>
230</div>
231
232<div class="doc_text">
233
234<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
235perhaps much more than you are used to, or have seen before. Because of
236this, you might want to do a little background reading in the
237techniques used and capabilities of the library. There are many good
238pages that discuss the STL, and several books on the subject that you
239can get, so it will not be discussed in this document.</p>
240
241<p>Here are some useful links:</p>
242
243<ol>
244
245<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
246reference</a> - an excellent reference for the STL and other parts of the
247standard C++ library.</li>
248
249<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Gabor Greife39f0e72009-03-12 09:47:03 +0000250O'Reilly book in the making. It has a decent Standard Library
251Reference that rivals Dinkumware's, and is unfortunately no longer free since the
252book has been published.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000253
254<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
255Questions</a></li>
256
257<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
258Contains a useful <a
259href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
260STL</a>.</li>
261
262<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
263Page</a></li>
264
265<li><a href="http://64.78.49.204/">
266Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
267the book).</a></li>
268
269</ol>
270
271<p>You are also encouraged to take a look at the <a
272href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
273to write maintainable code more than where to put your curly braces.</p>
274
275</div>
276
277<!-- ======================================================================= -->
278<div class="doc_subsection">
279 <a name="stl">Other useful references</a>
280</div>
281
282<div class="doc_text">
283
284<ol>
285<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
286Branch and Tag Primer</a></li>
287<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
288static and shared libraries across platforms</a></li>
289</ol>
290
291</div>
292
293<!-- *********************************************************************** -->
294<div class="doc_section">
295 <a name="apis">Important and useful LLVM APIs</a>
296</div>
297<!-- *********************************************************************** -->
298
299<div class="doc_text">
300
301<p>Here we highlight some LLVM APIs that are generally useful and good to
302know about when writing transformations.</p>
303
304</div>
305
306<!-- ======================================================================= -->
307<div class="doc_subsection">
308 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
309 <tt>dyn_cast&lt;&gt;</tt> templates</a>
310</div>
311
312<div class="doc_text">
313
314<p>The LLVM source-base makes extensive use of a custom form of RTTI.
315These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
316operator, but they don't have some drawbacks (primarily stemming from
317the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
318have a v-table). Because they are used so often, you must know what they
319do and how they work. All of these templates are defined in the <a
320 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
321file (note that you very rarely have to include this file directly).</p>
322
323<dl>
324 <dt><tt>isa&lt;&gt;</tt>: </dt>
325
326 <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
327 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
328 a reference or pointer points to an instance of the specified class. This can
329 be very useful for constraint checking of various sorts (example below).</p>
330 </dd>
331
332 <dt><tt>cast&lt;&gt;</tt>: </dt>
333
334 <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
Chris Lattner1d5610a2008-06-20 05:03:17 +0000335 converts a pointer or reference from a base class to a derived class, causing
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 an assertion failure if it is not really an instance of the right type. This
337 should be used in cases where you have some information that makes you believe
338 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
339 and <tt>cast&lt;&gt;</tt> template is:</p>
340
341<div class="doc_code">
342<pre>
343static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
344 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
345 return true;
346
347 // <i>Otherwise, it must be an instruction...</i>
348 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
349}
350</pre>
351</div>
352
353 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
354 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
355 operator.</p>
356
357 </dd>
358
359 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
360
361 <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
362 It checks to see if the operand is of the specified type, and if so, returns a
363 pointer to it (this operator does not work with references). If the operand is
364 not of the correct type, a null pointer is returned. Thus, this works very
365 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
366 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
367 operator is used in an <tt>if</tt> statement or some other flow control
368 statement like this:</p>
369
370<div class="doc_code">
371<pre>
372if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
373 // <i>...</i>
374}
375</pre>
376</div>
377
378 <p>This form of the <tt>if</tt> statement effectively combines together a call
379 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
380 statement, which is very convenient.</p>
381
382 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
383 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
384 abused. In particular, you should not use big chained <tt>if/then/else</tt>
385 blocks to check for lots of different variants of classes. If you find
386 yourself wanting to do this, it is much cleaner and more efficient to use the
387 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
388
389 </dd>
390
391 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
392
393 <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
394 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
395 argument (which it then propagates). This can sometimes be useful, allowing
396 you to combine several null checks into one.</p></dd>
397
398 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
399
400 <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
401 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
402 as an argument (which it then propagates). This can sometimes be useful,
403 allowing you to combine several null checks into one.</p></dd>
404
405</dl>
406
407<p>These five templates can be used with any classes, whether they have a
408v-table or not. To add support for these templates, you simply need to add
409<tt>classof</tt> static methods to the class you are interested casting
410to. Describing this is currently outside the scope of this document, but there
411are lots of examples in the LLVM source base.</p>
412
413</div>
414
415<!-- ======================================================================= -->
416<div class="doc_subsection">
417 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
418</div>
419
420<div class="doc_text">
421
422<p>Often when working on your pass you will put a bunch of debugging printouts
423and other code into your pass. After you get it working, you want to remove
424it, but you may need it again in the future (to work out new bugs that you run
425across).</p>
426
427<p> Naturally, because of this, you don't want to delete the debug printouts,
428but you don't want them to always be noisy. A standard compromise is to comment
429them out, allowing you to enable them if you need them in the future.</p>
430
431<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
432file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
433this problem. Basically, you can put arbitrary code into the argument of the
434<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
435tool) is run with the '<tt>-debug</tt>' command line argument:</p>
436
437<div class="doc_code">
438<pre>
439DOUT &lt;&lt; "I am here!\n";
440</pre>
441</div>
442
443<p>Then you can run your pass like this:</p>
444
445<div class="doc_code">
446<pre>
447$ opt &lt; a.bc &gt; /dev/null -mypass
448<i>&lt;no output&gt;</i>
449$ opt &lt; a.bc &gt; /dev/null -mypass -debug
450I am here!
451</pre>
452</div>
453
454<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
455to not have to create "yet another" command line option for the debug output for
456your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
457so they do not cause a performance impact at all (for the same reason, they
458should also not contain side-effects!).</p>
459
460<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
461enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
462"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
463program hasn't been started yet, you can always just run it with
464<tt>-debug</tt>.</p>
465
466</div>
467
468<!-- _______________________________________________________________________ -->
469<div class="doc_subsubsection">
470 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
471 the <tt>-debug-only</tt> option</a>
472</div>
473
474<div class="doc_text">
475
476<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
477just turns on <b>too much</b> information (such as when working on the code
478generator). If you want to enable debug information with more fine-grained
479control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
480option as follows:</p>
481
482<div class="doc_code">
483<pre>
484DOUT &lt;&lt; "No debug type\n";
485#undef DEBUG_TYPE
486#define DEBUG_TYPE "foo"
487DOUT &lt;&lt; "'foo' debug type\n";
488#undef DEBUG_TYPE
489#define DEBUG_TYPE "bar"
490DOUT &lt;&lt; "'bar' debug type\n";
491#undef DEBUG_TYPE
492#define DEBUG_TYPE ""
493DOUT &lt;&lt; "No debug type (2)\n";
494</pre>
495</div>
496
497<p>Then you can run your pass like this:</p>
498
499<div class="doc_code">
500<pre>
501$ opt &lt; a.bc &gt; /dev/null -mypass
502<i>&lt;no output&gt;</i>
503$ opt &lt; a.bc &gt; /dev/null -mypass -debug
504No debug type
505'foo' debug type
506'bar' debug type
507No debug type (2)
508$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
509'foo' debug type
510$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
511'bar' debug type
512</pre>
513</div>
514
515<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
516a file, to specify the debug type for the entire module (if you do this before
517you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
518<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
519"bar", because there is no system in place to ensure that names do not
520conflict. If two different modules use the same string, they will all be turned
521on when the name is specified. This allows, for example, all debug information
522for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
523even if the source lives in multiple files.</p>
524
525</div>
526
527<!-- ======================================================================= -->
528<div class="doc_subsection">
529 <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
530 option</a>
531</div>
532
533<div class="doc_text">
534
535<p>The "<tt><a
536href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
537provides a class named <tt>Statistic</tt> that is used as a unified way to
538keep track of what the LLVM compiler is doing and how effective various
539optimizations are. It is useful to see what optimizations are contributing to
540making a particular program run faster.</p>
541
542<p>Often you may run your pass on some big program, and you're interested to see
543how many times it makes a certain transformation. Although you can do this with
544hand inspection, or some ad-hoc method, this is a real pain and not very useful
545for big programs. Using the <tt>Statistic</tt> class makes it very easy to
546keep track of this information, and the calculated information is presented in a
547uniform manner with the rest of the passes being executed.</p>
548
549<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
550it are as follows:</p>
551
552<ol>
553 <li><p>Define your statistic like this:</p>
554
555<div class="doc_code">
556<pre>
557#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname" <i>// This goes before any #includes.</i>
558STATISTIC(NumXForms, "The # of times I did stuff");
559</pre>
560</div>
561
562 <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
563 specified by the first argument. The pass name is taken from the DEBUG_TYPE
564 macro, and the description is taken from the second argument. The variable
565 defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
566
567 <li><p>Whenever you make a transformation, bump the counter:</p>
568
569<div class="doc_code">
570<pre>
571++NumXForms; // <i>I did stuff!</i>
572</pre>
573</div>
574
575 </li>
576 </ol>
577
578 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
579 statistics gathered, use the '<tt>-stats</tt>' option:</p>
580
581<div class="doc_code">
582<pre>
583$ opt -stats -mypassname &lt; program.bc &gt; /dev/null
584<i>... statistics output ...</i>
585</pre>
586</div>
587
588 <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
589suite, it gives a report that looks like this:</p>
590
591<div class="doc_code">
592<pre>
593 7646 bitcodewriter - Number of normal instructions
594 725 bitcodewriter - Number of oversized instructions
595 129996 bitcodewriter - Number of bitcode bytes written
596 2817 raise - Number of insts DCEd or constprop'd
597 3213 raise - Number of cast-of-self removed
598 5046 raise - Number of expression trees converted
599 75 raise - Number of other getelementptr's formed
600 138 raise - Number of load/store peepholes
601 42 deadtypeelim - Number of unused typenames removed from symtab
602 392 funcresolve - Number of varargs functions resolved
603 27 globaldce - Number of global variables removed
604 2 adce - Number of basic blocks removed
605 134 cee - Number of branches revectored
606 49 cee - Number of setcc instruction eliminated
607 532 gcse - Number of loads removed
608 2919 gcse - Number of instructions removed
609 86 indvars - Number of canonical indvars added
610 87 indvars - Number of aux indvars removed
611 25 instcombine - Number of dead inst eliminate
612 434 instcombine - Number of insts combined
613 248 licm - Number of load insts hoisted
614 1298 licm - Number of insts hoisted to a loop pre-header
615 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
616 75 mem2reg - Number of alloca's promoted
617 1444 cfgsimplify - Number of blocks simplified
618</pre>
619</div>
620
621<p>Obviously, with so many optimizations, having a unified framework for this
622stuff is very nice. Making your pass fit well into the framework makes it more
623maintainable and useful.</p>
624
625</div>
626
627<!-- ======================================================================= -->
628<div class="doc_subsection">
629 <a name="ViewGraph">Viewing graphs while debugging code</a>
630</div>
631
632<div class="doc_text">
633
634<p>Several of the important data structures in LLVM are graphs: for example
635CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
636LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
637<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
638DAGs</a>. In many cases, while debugging various parts of the compiler, it is
639nice to instantly visualize these graphs.</p>
640
641<p>LLVM provides several callbacks that are available in a debug build to do
642exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
643the current LLVM tool will pop up a window containing the CFG for the function
644where each basic block is a node in the graph, and each node contains the
645instructions in the block. Similarly, there also exists
646<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
647<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
648and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
649you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
650up a window. Alternatively, you can sprinkle calls to these functions in your
651code in places you want to debug.</p>
652
653<p>Getting this to work requires a small amount of configuration. On Unix
654systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
655toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
656Mac OS/X, download and install the Mac OS/X <a
657href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
658<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
659it) to your path. Once in your system and path are set up, rerun the LLVM
660configure script and rebuild LLVM to enable this functionality.</p>
661
662<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
663<i>interesting</i> nodes in large complex graphs. From gdb, if you
664<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
665next <tt>call DAG.viewGraph()</tt> would highlight the node in the
666specified color (choices of colors can be found at <a
667href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
668complex node attributes can be provided with <tt>call
669DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
670found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
671Attributes</a>.) If you want to restart and clear all the current graph
672attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
673
674</div>
675
676<!-- *********************************************************************** -->
677<div class="doc_section">
678 <a name="datastructure">Picking the Right Data Structure for a Task</a>
679</div>
680<!-- *********************************************************************** -->
681
682<div class="doc_text">
683
684<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
685 and we commonly use STL data structures. This section describes the trade-offs
686 you should consider when you pick one.</p>
687
688<p>
689The first step is a choose your own adventure: do you want a sequential
690container, a set-like container, or a map-like container? The most important
691thing when choosing a container is the algorithmic properties of how you plan to
692access the container. Based on that, you should use:</p>
693
694<ul>
695<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
696 of an value based on another value. Map-like containers also support
697 efficient queries for containment (whether a key is in the map). Map-like
698 containers generally do not support efficient reverse mapping (values to
699 keys). If you need that, use two maps. Some map-like containers also
700 support efficient iteration through the keys in sorted order. Map-like
701 containers are the most expensive sort, only use them if you need one of
702 these capabilities.</li>
703
704<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
705 stuff into a container that automatically eliminates duplicates. Some
706 set-like containers support efficient iteration through the elements in
707 sorted order. Set-like containers are more expensive than sequential
708 containers.
709</li>
710
711<li>a <a href="#ds_sequential">sequential</a> container provides
712 the most efficient way to add elements and keeps track of the order they are
713 added to the collection. They permit duplicates and support efficient
714 iteration, but do not support efficient look-up based on a key.
715</li>
716
Daniel Berlin7ea44dc2007-09-24 17:52:25 +0000717<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
718 perform set operations on sets of numeric id's, while automatically
719 eliminating duplicates. Bit containers require a maximum of 1 bit for each
720 identifier you want to store.
721</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722</ul>
723
724<p>
725Once the proper category of container is determined, you can fine tune the
726memory use, constant factors, and cache behaviors of access by intelligently
727picking a member of the category. Note that constant factors and cache behavior
728can be a big deal. If you have a vector that usually only contains a few
729elements (but could contain many), for example, it's much better to use
730<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
731. Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
732cost of adding the elements to the container. </p>
733
734</div>
735
736<!-- ======================================================================= -->
737<div class="doc_subsection">
738 <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
739</div>
740
741<div class="doc_text">
742There are a variety of sequential containers available for you, based on your
743needs. Pick the first in this section that will do what you want.
744</div>
745
746<!-- _______________________________________________________________________ -->
747<div class="doc_subsubsection">
748 <a name="dss_fixedarrays">Fixed Size Arrays</a>
749</div>
750
751<div class="doc_text">
752<p>Fixed size arrays are very simple and very fast. They are good if you know
753exactly how many elements you have, or you have a (low) upper bound on how many
754you have.</p>
755</div>
756
757<!-- _______________________________________________________________________ -->
758<div class="doc_subsubsection">
759 <a name="dss_heaparrays">Heap Allocated Arrays</a>
760</div>
761
762<div class="doc_text">
763<p>Heap allocated arrays (new[] + delete[]) are also simple. They are good if
764the number of elements is variable, if you know how many elements you will need
765before the array is allocated, and if the array is usually large (if not,
766consider a <a href="#dss_smallvector">SmallVector</a>). The cost of a heap
767allocated array is the cost of the new/delete (aka malloc/free). Also note that
768if you are allocating an array of a type with a constructor, the constructor and
769destructors will be run for every element in the array (re-sizable vectors only
770construct those elements actually used).</p>
771</div>
772
773<!-- _______________________________________________________________________ -->
774<div class="doc_subsubsection">
775 <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
776</div>
777
778<div class="doc_text">
779<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
780just like <tt>vector&lt;Type&gt;</tt>:
781it supports efficient iteration, lays out elements in memory order (so you can
782do pointer arithmetic between elements), supports efficient push_back/pop_back
783operations, supports efficient random access to its elements, etc.</p>
784
785<p>The advantage of SmallVector is that it allocates space for
786some number of elements (N) <b>in the object itself</b>. Because of this, if
787the SmallVector is dynamically smaller than N, no malloc is performed. This can
788be a big win in cases where the malloc/free call is far more expensive than the
789code that fiddles around with the elements.</p>
790
791<p>This is good for vectors that are "usually small" (e.g. the number of
792predecessors/successors of a block is usually less than 8). On the other hand,
793this makes the size of the SmallVector itself large, so you don't want to
794allocate lots of them (doing so will waste a lot of space). As such,
795SmallVectors are most useful when on the stack.</p>
796
797<p>SmallVector also provides a nice portable and efficient replacement for
798<tt>alloca</tt>.</p>
799
800</div>
801
802<!-- _______________________________________________________________________ -->
803<div class="doc_subsubsection">
804 <a name="dss_vector">&lt;vector&gt;</a>
805</div>
806
807<div class="doc_text">
808<p>
809std::vector is well loved and respected. It is useful when SmallVector isn't:
810when the size of the vector is often large (thus the small optimization will
811rarely be a benefit) or if you will be allocating many instances of the vector
812itself (which would waste space for elements that aren't in the container).
813vector is also useful when interfacing with code that expects vectors :).
814</p>
815
816<p>One worthwhile note about std::vector: avoid code like this:</p>
817
818<div class="doc_code">
819<pre>
820for ( ... ) {
821 std::vector&lt;foo&gt; V;
822 use V;
823}
824</pre>
825</div>
826
827<p>Instead, write this as:</p>
828
829<div class="doc_code">
830<pre>
831std::vector&lt;foo&gt; V;
832for ( ... ) {
833 use V;
834 V.clear();
835}
836</pre>
837</div>
838
839<p>Doing so will save (at least) one heap allocation and free per iteration of
840the loop.</p>
841
842</div>
843
844<!-- _______________________________________________________________________ -->
845<div class="doc_subsubsection">
846 <a name="dss_deque">&lt;deque&gt;</a>
847</div>
848
849<div class="doc_text">
850<p>std::deque is, in some senses, a generalized version of std::vector. Like
851std::vector, it provides constant time random access and other similar
852properties, but it also provides efficient access to the front of the list. It
853does not guarantee continuity of elements within memory.</p>
854
855<p>In exchange for this extra flexibility, std::deque has significantly higher
856constant factor costs than std::vector. If possible, use std::vector or
857something cheaper.</p>
858</div>
859
860<!-- _______________________________________________________________________ -->
861<div class="doc_subsubsection">
862 <a name="dss_list">&lt;list&gt;</a>
863</div>
864
865<div class="doc_text">
866<p>std::list is an extremely inefficient class that is rarely useful.
867It performs a heap allocation for every element inserted into it, thus having an
868extremely high constant factor, particularly for small data types. std::list
869also only supports bidirectional iteration, not random access iteration.</p>
870
871<p>In exchange for this high cost, std::list supports efficient access to both
872ends of the list (like std::deque, but unlike std::vector or SmallVector). In
873addition, the iterator invalidation characteristics of std::list are stronger
874than that of a vector class: inserting or removing an element into the list does
875not invalidate iterator or pointers to other elements in the list.</p>
876</div>
877
878<!-- _______________________________________________________________________ -->
879<div class="doc_subsubsection">
Gabor Greifbb17f652009-02-27 11:37:41 +0000880 <a name="dss_ilist">llvm/ADT/ilist.h</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000881</div>
882
883<div class="doc_text">
884<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list. It is
885intrusive, because it requires the element to store and provide access to the
886prev/next pointers for the list.</p>
887
Gabor Greifb6b21ec2009-02-27 12:02:19 +0000888<p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
889requires an <tt>ilist_traits</tt> implementation for the element type, but it
890provides some novel characteristics. In particular, it can efficiently store
891polymorphic objects, the traits class is informed when an element is inserted or
Gabor Greife39f0e72009-03-12 09:47:03 +0000892removed from the list, and <tt>ilist</tt>s are guaranteed to support a
893constant-time splice operation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894
Gabor Greife39f0e72009-03-12 09:47:03 +0000895<p>These properties are exactly what we want for things like
896<tt>Instruction</tt>s and basic blocks, which is why these are implemented with
897<tt>ilist</tt>s.</p>
Gabor Greifbb17f652009-02-27 11:37:41 +0000898
899Related classes of interest are explained in the following subsections:
900 <ul>
Gabor Greifa17abe12009-02-27 13:28:07 +0000901 <li><a href="#dss_ilist_traits">ilist_traits</a></li>
Gabor Greifb6b21ec2009-02-27 12:02:19 +0000902 <li><a href="#dss_iplist">iplist</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +0000903 <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
Gabor Greifd970d692009-03-12 10:30:31 +0000904 <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +0000905 </ul>
906</div>
907
908<!-- _______________________________________________________________________ -->
909<div class="doc_subsubsection">
Gabor Greifa17abe12009-02-27 13:28:07 +0000910 <a name="dss_ilist_traits">ilist_traits</a>
911</div>
912
913<div class="doc_text">
914<p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
915mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
916publicly derive from this traits class.</p>
917</div>
918
919<!-- _______________________________________________________________________ -->
920<div class="doc_subsubsection">
Gabor Greifb6b21ec2009-02-27 12:02:19 +0000921 <a name="dss_iplist">iplist</a>
922</div>
923
924<div class="doc_text">
925<p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
Gabor Greife39f0e72009-03-12 09:47:03 +0000926supports a slightly narrower interface. Notably, inserters from
927<tt>T&amp;</tt> are absent.</p>
Gabor Greifa17abe12009-02-27 13:28:07 +0000928
929<p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
930used for a wide variety of customizations.</p>
Gabor Greifb6b21ec2009-02-27 12:02:19 +0000931</div>
932
933<!-- _______________________________________________________________________ -->
934<div class="doc_subsubsection">
Gabor Greifbb17f652009-02-27 11:37:41 +0000935 <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
936</div>
937
938<div class="doc_text">
939<p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
940that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
941in the default manner.</p>
942
943<p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
Gabor Greife39f0e72009-03-12 09:47:03 +0000944<tt>T</tt>, usually <tt>T</tt> publicly derives from
945<tt>ilist_node&lt;T&gt;</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946</div>
947
948<!-- _______________________________________________________________________ -->
949<div class="doc_subsubsection">
Gabor Greifd970d692009-03-12 10:30:31 +0000950 <a name="dss_ilist_sentinel">Sentinels</a>
951</div>
952
953<div class="doc_text">
954<p><tt>ilist</tt>s have another speciality that must be considered. To be a good
955citizen in the C++ ecosystem, it needs to support the standard container
956operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
957<tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
958case of non-empty <tt>ilist</tt>s.</p>
959
960<p>The only sensible solution to this problem is to allocate a so-called
961<i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
962iterator, providing the back-link to the last element. However conforming to the
963C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
964also must not be dereferenced.</p>
965
966<p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
967how to allocate and store the sentinel. The corresponding policy is dictated
968by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
969whenever the need for a sentinel arises.</p>
970
971<p>While the default policy is sufficient in most cases, it may break down when
972<tt>T</tt> does not provide a default constructor. Also, in the case of many
973instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
974is wasted. To alleviate the situation with numerous and voluminous
975<tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
976sentinels</i>.</p>
977
978<p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
979which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
980arithmetic is used to obtain the sentinel, which is relative to the
981<tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
982extra pointer, which serves as the back-link of the sentinel. This is the only
983field in the ghostly sentinel which can be legally accessed.</p>
984</div>
985
986<!-- _______________________________________________________________________ -->
987<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000988 <a name="dss_other">Other Sequential Container options</a>
989</div>
990
991<div class="doc_text">
992<p>Other STL containers are available, such as std::string.</p>
993
994<p>There are also various STL adapter classes such as std::queue,
995std::priority_queue, std::stack, etc. These provide simplified access to an
996underlying container but don't affect the cost of the container itself.</p>
997
998</div>
999
1000
1001<!-- ======================================================================= -->
1002<div class="doc_subsection">
1003 <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1004</div>
1005
1006<div class="doc_text">
1007
1008<p>Set-like containers are useful when you need to canonicalize multiple values
1009into a single representation. There are several different choices for how to do
1010this, providing various trade-offs.</p>
1011
1012</div>
1013
1014
1015<!-- _______________________________________________________________________ -->
1016<div class="doc_subsubsection">
1017 <a name="dss_sortedvectorset">A sorted 'vector'</a>
1018</div>
1019
1020<div class="doc_text">
1021
1022<p>If you intend to insert a lot of elements, then do a lot of queries, a
1023great approach is to use a vector (or other sequential container) with
1024std::sort+std::unique to remove duplicates. This approach works really well if
1025your usage pattern has these two distinct phases (insert then query), and can be
1026coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1027</p>
1028
1029<p>
1030This combination provides the several nice properties: the result data is
1031contiguous in memory (good for cache locality), has few allocations, is easy to
1032address (iterators in the final vector are just indices or pointers), and can be
1033efficiently queried with a standard binary or radix search.</p>
1034
1035</div>
1036
1037<!-- _______________________________________________________________________ -->
1038<div class="doc_subsubsection">
1039 <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1040</div>
1041
1042<div class="doc_text">
1043
1044<p>If you have a set-like data structure that is usually small and whose elements
1045are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice. This set
1046has space for N elements in place (thus, if the set is dynamically smaller than
1047N, no malloc traffic is required) and accesses them with a simple linear search.
1048When the set grows beyond 'N' elements, it allocates a more expensive representation that
1049guarantees efficient access (for most types, it falls back to std::set, but for
1050pointers it uses something far better, <a
1051href="#dss_smallptrset">SmallPtrSet</a>).</p>
1052
1053<p>The magic of this class is that it handles small sets extremely efficiently,
1054but gracefully handles extremely large sets without loss of efficiency. The
1055drawback is that the interface is quite small: it supports insertion, queries
1056and erasing, but does not support iteration.</p>
1057
1058</div>
1059
1060<!-- _______________________________________________________________________ -->
1061<div class="doc_subsubsection">
1062 <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1063</div>
1064
1065<div class="doc_text">
1066
1067<p>SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is
1068transparently implemented with a SmallPtrSet), but also supports iterators. If
1069more than 'N' insertions are performed, a single quadratically
1070probed hash table is allocated and grows as needed, providing extremely
1071efficient access (constant time insertion/deleting/queries with low constant
1072factors) and is very stingy with malloc traffic.</p>
1073
1074<p>Note that, unlike std::set, the iterators of SmallPtrSet are invalidated
1075whenever an insertion occurs. Also, the values visited by the iterators are not
1076visited in sorted order.</p>
1077
1078</div>
1079
1080<!-- _______________________________________________________________________ -->
1081<div class="doc_subsubsection">
Chris Lattner77ab46d2007-09-30 00:58:59 +00001082 <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1083</div>
1084
1085<div class="doc_text">
1086
1087<p>
1088DenseSet is a simple quadratically probed hash table. It excels at supporting
1089small values: it uses a single allocation to hold all of the pairs that
1090are currently inserted in the set. DenseSet is a great way to unique small
1091values that are not simple pointers (use <a
1092href="#dss_smallptrset">SmallPtrSet</a> for pointers). Note that DenseSet has
1093the same requirements for the value type that <a
1094href="#dss_densemap">DenseMap</a> has.
1095</p>
1096
1097</div>
1098
1099<!-- _______________________________________________________________________ -->
1100<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001101 <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1102</div>
1103
1104<div class="doc_text">
1105
1106<p>
1107FoldingSet is an aggregate class that is really good at uniquing
1108expensive-to-create or polymorphic objects. It is a combination of a chained
1109hash table with intrusive links (uniqued objects are required to inherit from
1110FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1111its ID process.</p>
1112
1113<p>Consider a case where you want to implement a "getOrCreateFoo" method for
1114a complex object (for example, a node in the code generator). The client has a
1115description of *what* it wants to generate (it knows the opcode and all the
1116operands), but we don't want to 'new' a node, then try inserting it into a set
1117only to find out it already exists, at which point we would have to delete it
1118and return the node that already exists.
1119</p>
1120
1121<p>To support this style of client, FoldingSet perform a query with a
1122FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1123element that we want to query for. The query either returns the element
1124matching the ID or it returns an opaque ID that indicates where insertion should
1125take place. Construction of the ID usually does not require heap traffic.</p>
1126
1127<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1128in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1129Because the elements are individually allocated, pointers to the elements are
1130stable: inserting or removing elements does not invalidate any pointers to other
1131elements.
1132</p>
1133
1134</div>
1135
1136<!-- _______________________________________________________________________ -->
1137<div class="doc_subsubsection">
1138 <a name="dss_set">&lt;set&gt;</a>
1139</div>
1140
1141<div class="doc_text">
1142
1143<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1144many things but great at nothing. std::set allocates memory for each element
1145inserted (thus it is very malloc intensive) and typically stores three pointers
1146per element in the set (thus adding a large amount of per-element space
1147overhead). It offers guaranteed log(n) performance, which is not particularly
1148fast from a complexity standpoint (particularly if the elements of the set are
1149expensive to compare, like strings), and has extremely high constant factors for
1150lookup, insertion and removal.</p>
1151
1152<p>The advantages of std::set are that its iterators are stable (deleting or
1153inserting an element from the set does not affect iterators or pointers to other
1154elements) and that iteration over the set is guaranteed to be in sorted order.
1155If the elements in the set are large, then the relative overhead of the pointers
1156and malloc traffic is not a big deal, but if the elements of the set are small,
1157std::set is almost never a good choice.</p>
1158
1159</div>
1160
1161<!-- _______________________________________________________________________ -->
1162<div class="doc_subsubsection">
1163 <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1164</div>
1165
1166<div class="doc_text">
1167<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1168a set-like container along with a <a href="#ds_sequential">Sequential
1169Container</a>. The important property
1170that this provides is efficient insertion with uniquing (duplicate elements are
1171ignored) with iteration support. It implements this by inserting elements into
1172both a set-like container and the sequential container, using the set-like
1173container for uniquing and the sequential container for iteration.
1174</p>
1175
1176<p>The difference between SetVector and other sets is that the order of
1177iteration is guaranteed to match the order of insertion into the SetVector.
1178This property is really important for things like sets of pointers. Because
1179pointer values are non-deterministic (e.g. vary across runs of the program on
1180different machines), iterating over the pointers in the set will
1181not be in a well-defined order.</p>
1182
1183<p>
1184The drawback of SetVector is that it requires twice as much space as a normal
1185set and has the sum of constant factors from the set-like container and the
1186sequential container that it uses. Use it *only* if you need to iterate over
1187the elements in a deterministic order. SetVector is also expensive to delete
1188elements out of (linear time), unless you use it's "pop_back" method, which is
1189faster.
1190</p>
1191
1192<p>SetVector is an adapter class that defaults to using std::vector and std::set
1193for the underlying containers, so it is quite expensive. However,
1194<tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1195defaults to using a SmallVector and SmallSet of a specified size. If you use
1196this, and if your sets are dynamically smaller than N, you will save a lot of
1197heap traffic.</p>
1198
1199</div>
1200
1201<!-- _______________________________________________________________________ -->
1202<div class="doc_subsubsection">
1203 <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1204</div>
1205
1206<div class="doc_text">
1207
1208<p>
1209UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1210retains a unique ID for each element inserted into the set. It internally
1211contains a map and a vector, and it assigns a unique ID for each value inserted
1212into the set.</p>
1213
1214<p>UniqueVector is very expensive: its cost is the sum of the cost of
1215maintaining both the map and vector, it has high complexity, high constant
1216factors, and produces a lot of malloc traffic. It should be avoided.</p>
1217
1218</div>
1219
1220
1221<!-- _______________________________________________________________________ -->
1222<div class="doc_subsubsection">
1223 <a name="dss_otherset">Other Set-Like Container Options</a>
1224</div>
1225
1226<div class="doc_text">
1227
1228<p>
1229The STL provides several other options, such as std::multiset and the various
Chris Lattner86a63d02009-03-09 05:20:45 +00001230"hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1231never use hash_set and unordered_set because they are generally very expensive
1232(each insertion requires a malloc) and very non-portable.
1233</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001234
1235<p>std::multiset is useful if you're not interested in elimination of
1236duplicates, but has all the drawbacks of std::set. A sorted vector (where you
1237don't delete duplicate entries) or some other approach is almost always
1238better.</p>
1239
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001240</div>
1241
1242<!-- ======================================================================= -->
1243<div class="doc_subsection">
1244 <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1245</div>
1246
1247<div class="doc_text">
1248Map-like containers are useful when you want to associate data to a key. As
1249usual, there are a lot of different ways to do this. :)
1250</div>
1251
1252<!-- _______________________________________________________________________ -->
1253<div class="doc_subsubsection">
1254 <a name="dss_sortedvectormap">A sorted 'vector'</a>
1255</div>
1256
1257<div class="doc_text">
1258
1259<p>
1260If your usage pattern follows a strict insert-then-query approach, you can
1261trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1262for set-like containers</a>. The only difference is that your query function
1263(which uses std::lower_bound to get efficient log(n) lookup) should only compare
1264the key, not both the key and value. This yields the same advantages as sorted
1265vectors for sets.
1266</p>
1267</div>
1268
1269<!-- _______________________________________________________________________ -->
1270<div class="doc_subsubsection">
1271 <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1272</div>
1273
1274<div class="doc_text">
1275
1276<p>
1277Strings are commonly used as keys in maps, and they are difficult to support
1278efficiently: they are variable length, inefficient to hash and compare when
1279long, expensive to copy, etc. StringMap is a specialized container designed to
1280cope with these issues. It supports mapping an arbitrary range of bytes to an
1281arbitrary other object.</p>
1282
1283<p>The StringMap implementation uses a quadratically-probed hash table, where
1284the buckets store a pointer to the heap allocated entries (and some other
1285stuff). The entries in the map must be heap allocated because the strings are
1286variable length. The string data (key) and the element object (value) are
1287stored in the same allocation with the string data immediately after the element
1288object. This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1289to the key string for a value.</p>
1290
1291<p>The StringMap is very fast for several reasons: quadratic probing is very
1292cache efficient for lookups, the hash value of strings in buckets is not
1293recomputed when lookup up an element, StringMap rarely has to touch the
1294memory for unrelated objects when looking up a value (even when hash collisions
1295happen), hash table growth does not recompute the hash values for strings
1296already in the table, and each pair in the map is store in a single allocation
1297(the string data is stored in the same allocation as the Value of a pair).</p>
1298
1299<p>StringMap also provides query methods that take byte ranges, so it only ever
1300copies a string if a value is inserted into the table.</p>
1301</div>
1302
1303<!-- _______________________________________________________________________ -->
1304<div class="doc_subsubsection">
1305 <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1306</div>
1307
1308<div class="doc_text">
1309<p>
1310IndexedMap is a specialized container for mapping small dense integers (or
1311values that can be mapped to small dense integers) to some other type. It is
1312internally implemented as a vector with a mapping function that maps the keys to
1313the dense integer range.
1314</p>
1315
1316<p>
1317This is useful for cases like virtual registers in the LLVM code generator: they
1318have a dense mapping that is offset by a compile-time constant (the first
1319virtual register ID).</p>
1320
1321</div>
1322
1323<!-- _______________________________________________________________________ -->
1324<div class="doc_subsubsection">
1325 <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1326</div>
1327
1328<div class="doc_text">
1329
1330<p>
1331DenseMap is a simple quadratically probed hash table. It excels at supporting
1332small keys and values: it uses a single allocation to hold all of the pairs that
1333are currently inserted in the map. DenseMap is a great way to map pointers to
1334pointers, or map other small types to each other.
1335</p>
1336
1337<p>
1338There are several aspects of DenseMap that you should be aware of, however. The
1339iterators in a densemap are invalidated whenever an insertion occurs, unlike
1340map. Also, because DenseMap allocates space for a large number of key/value
1341pairs (it starts with 64 by default), it will waste a lot of space if your keys
1342or values are large. Finally, you must implement a partial specialization of
Chris Lattner92eea072007-09-17 18:34:04 +00001343DenseMapInfo for the key that you want, if it isn't already supported. This
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001344is required to tell DenseMap about two special marker values (which can never be
1345inserted into the map) that it needs internally.</p>
1346
1347</div>
1348
1349<!-- _______________________________________________________________________ -->
1350<div class="doc_subsubsection">
1351 <a name="dss_map">&lt;map&gt;</a>
1352</div>
1353
1354<div class="doc_text">
1355
1356<p>
1357std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1358a single allocation per pair inserted into the map, it offers log(n) lookup with
1359an extremely large constant factor, imposes a space penalty of 3 pointers per
1360pair in the map, etc.</p>
1361
1362<p>std::map is most useful when your keys or values are very large, if you need
1363to iterate over the collection in sorted order, or if you need stable iterators
1364into the map (i.e. they don't get invalidated if an insertion or deletion of
1365another element takes place).</p>
1366
1367</div>
1368
1369<!-- _______________________________________________________________________ -->
1370<div class="doc_subsubsection">
1371 <a name="dss_othermap">Other Map-Like Container Options</a>
1372</div>
1373
1374<div class="doc_text">
1375
1376<p>
1377The STL provides several other options, such as std::multimap and the various
Chris Lattner86a63d02009-03-09 05:20:45 +00001378"hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1379never use hash_set and unordered_set because they are generally very expensive
1380(each insertion requires a malloc) and very non-portable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001381
1382<p>std::multimap is useful if you want to map a key to multiple values, but has
1383all the drawbacks of std::map. A sorted vector or some other approach is almost
1384always better.</p>
1385
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001386</div>
1387
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001388<!-- ======================================================================= -->
1389<div class="doc_subsection">
1390 <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1391</div>
1392
1393<div class="doc_text">
Chris Lattner62a4eae2007-09-25 22:37:50 +00001394<p>Unlike the other containers, there are only two bit storage containers, and
1395choosing when to use each is relatively straightforward.</p>
1396
1397<p>One additional option is
1398<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1399implementation in many common compilers (e.g. commonly available versions of
1400GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1401deprecate this container and/or change it significantly somehow. In any case,
1402please don't use it.</p>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001403</div>
1404
1405<!-- _______________________________________________________________________ -->
1406<div class="doc_subsubsection">
1407 <a name="dss_bitvector">BitVector</a>
1408</div>
1409
1410<div class="doc_text">
1411<p> The BitVector container provides a fixed size set of bits for manipulation.
1412It supports individual bit setting/testing, as well as set operations. The set
1413operations take time O(size of bitvector), but operations are performed one word
1414at a time, instead of one bit at a time. This makes the BitVector very fast for
1415set operations compared to other containers. Use the BitVector when you expect
1416the number of set bits to be high (IE a dense set).
1417</p>
1418</div>
1419
1420<!-- _______________________________________________________________________ -->
1421<div class="doc_subsubsection">
1422 <a name="dss_sparsebitvector">SparseBitVector</a>
1423</div>
1424
1425<div class="doc_text">
1426<p> The SparseBitVector container is much like BitVector, with one major
1427difference: Only the bits that are set, are stored. This makes the
1428SparseBitVector much more space efficient than BitVector when the set is sparse,
1429as well as making set operations O(number of set bits) instead of O(size of
1430universe). The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1431(either forwards or reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1). As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1432</p>
1433</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001434
1435<!-- *********************************************************************** -->
1436<div class="doc_section">
1437 <a name="common">Helpful Hints for Common Operations</a>
1438</div>
1439<!-- *********************************************************************** -->
1440
1441<div class="doc_text">
1442
1443<p>This section describes how to perform some very simple transformations of
1444LLVM code. This is meant to give examples of common idioms used, showing the
1445practical side of LLVM transformations. <p> Because this is a "how-to" section,
1446you should also read about the main classes that you will be working with. The
1447<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1448and descriptions of the main classes that you should know about.</p>
1449
1450</div>
1451
1452<!-- NOTE: this section should be heavy on example code -->
1453<!-- ======================================================================= -->
1454<div class="doc_subsection">
1455 <a name="inspection">Basic Inspection and Traversal Routines</a>
1456</div>
1457
1458<div class="doc_text">
1459
1460<p>The LLVM compiler infrastructure have many different data structures that may
1461be traversed. Following the example of the C++ standard template library, the
1462techniques used to traverse these various data structures are all basically the
1463same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1464method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1465function returns an iterator pointing to one past the last valid element of the
1466sequence, and there is some <tt>XXXiterator</tt> data type that is common
1467between the two operations.</p>
1468
1469<p>Because the pattern for iteration is common across many different aspects of
1470the program representation, the standard template library algorithms may be used
1471on them, and it is easier to remember how to iterate. First we show a few common
1472examples of the data structures that need to be traversed. Other data
1473structures are traversed in very similar ways.</p>
1474
1475</div>
1476
1477<!-- _______________________________________________________________________ -->
1478<div class="doc_subsubsection">
1479 <a name="iterate_function">Iterating over the </a><a
1480 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1481 href="#Function"><tt>Function</tt></a>
1482</div>
1483
1484<div class="doc_text">
1485
1486<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1487transform in some way; in particular, you'd like to manipulate its
1488<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
1489the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1490an example that prints the name of a <tt>BasicBlock</tt> and the number of
1491<tt>Instruction</tt>s it contains:</p>
1492
1493<div class="doc_code">
1494<pre>
1495// <i>func is a pointer to a Function instance</i>
1496for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1497 // <i>Print out the name of the basic block if it has one, and then the</i>
1498 // <i>number of instructions that it contains</i>
1499 llvm::cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
1500 &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1501</pre>
1502</div>
1503
1504<p>Note that i can be used as if it were a pointer for the purposes of
1505invoking member functions of the <tt>Instruction</tt> class. This is
1506because the indirection operator is overloaded for the iterator
1507classes. In the above code, the expression <tt>i-&gt;size()</tt> is
1508exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1509
1510</div>
1511
1512<!-- _______________________________________________________________________ -->
1513<div class="doc_subsubsection">
1514 <a name="iterate_basicblock">Iterating over the </a><a
1515 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1516 href="#BasicBlock"><tt>BasicBlock</tt></a>
1517</div>
1518
1519<div class="doc_text">
1520
1521<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1522easy to iterate over the individual instructions that make up
1523<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1524a <tt>BasicBlock</tt>:</p>
1525
1526<div class="doc_code">
1527<pre>
1528// <i>blk is a pointer to a BasicBlock instance</i>
1529for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1530 // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1531 // <i>is overloaded for Instruction&amp;</i>
1532 llvm::cerr &lt;&lt; *i &lt;&lt; "\n";
1533</pre>
1534</div>
1535
1536<p>However, this isn't really the best way to print out the contents of a
1537<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
1538anything you'll care about, you could have just invoked the print routine on the
1539basic block itself: <tt>llvm::cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
1540
1541</div>
1542
1543<!-- _______________________________________________________________________ -->
1544<div class="doc_subsubsection">
1545 <a name="iterate_institer">Iterating over the </a><a
1546 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1547 href="#Function"><tt>Function</tt></a>
1548</div>
1549
1550<div class="doc_text">
1551
1552<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1553<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1554<tt>InstIterator</tt> should be used instead. You'll need to include <a
1555href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1556and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
1557small example that shows how to dump all instructions in a function to the standard error stream:<p>
1558
1559<div class="doc_code">
1560<pre>
1561#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1562
1563// <i>F is a pointer to a Function instance</i>
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001564for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1565 llvm::cerr &lt;&lt; *I &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001566</pre>
1567</div>
1568
1569<p>Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
1570work list with its initial contents. For example, if you wanted to
1571initialize a work list to contain all instructions in a <tt>Function</tt>
1572F, all you would need to do is something like:</p>
1573
1574<div class="doc_code">
1575<pre>
1576std::set&lt;Instruction*&gt; worklist;
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001577// or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1578
1579for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1580 worklist.insert(&amp;*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001581</pre>
1582</div>
1583
1584<p>The STL set <tt>worklist</tt> would now contain all instructions in the
1585<tt>Function</tt> pointed to by F.</p>
1586
1587</div>
1588
1589<!-- _______________________________________________________________________ -->
1590<div class="doc_subsubsection">
1591 <a name="iterate_convert">Turning an iterator into a class pointer (and
1592 vice-versa)</a>
1593</div>
1594
1595<div class="doc_text">
1596
1597<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1598instance when all you've got at hand is an iterator. Well, extracting
1599a reference or a pointer from an iterator is very straight-forward.
1600Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1601is a <tt>BasicBlock::const_iterator</tt>:</p>
1602
1603<div class="doc_code">
1604<pre>
1605Instruction&amp; inst = *i; // <i>Grab reference to instruction reference</i>
1606Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1607const Instruction&amp; inst = *j;
1608</pre>
1609</div>
1610
1611<p>However, the iterators you'll be working with in the LLVM framework are
1612special: they will automatically convert to a ptr-to-instance type whenever they
1613need to. Instead of dereferencing the iterator and then taking the address of
1614the result, you can simply assign the iterator to the proper pointer type and
1615you get the dereference and address-of operation as a result of the assignment
1616(behind the scenes, this is a result of overloading casting mechanisms). Thus
1617the last line of the last example,</p>
1618
1619<div class="doc_code">
1620<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001621Instruction *pinst = &amp;*i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001622</pre>
1623</div>
1624
1625<p>is semantically equivalent to</p>
1626
1627<div class="doc_code">
1628<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001629Instruction *pinst = i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001630</pre>
1631</div>
1632
1633<p>It's also possible to turn a class pointer into the corresponding iterator,
1634and this is a constant time operation (very efficient). The following code
1635snippet illustrates use of the conversion constructors provided by LLVM
1636iterators. By using these, you can explicitly grab the iterator of something
1637without actually obtaining it via iteration over some structure:</p>
1638
1639<div class="doc_code">
1640<pre>
1641void printNextInstruction(Instruction* inst) {
1642 BasicBlock::iterator it(inst);
1643 ++it; // <i>After this line, it refers to the instruction after *inst</i>
1644 if (it != inst-&gt;getParent()-&gt;end()) llvm::cerr &lt;&lt; *it &lt;&lt; "\n";
1645}
1646</pre>
1647</div>
1648
1649</div>
1650
1651<!--_______________________________________________________________________-->
1652<div class="doc_subsubsection">
1653 <a name="iterate_complex">Finding call sites: a slightly more complex
1654 example</a>
1655</div>
1656
1657<div class="doc_text">
1658
1659<p>Say that you're writing a FunctionPass and would like to count all the
1660locations in the entire module (that is, across every <tt>Function</tt>) where a
1661certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
1662learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1663much more straight-forward manner, but this example will allow us to explore how
1664you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1665is what we want to do:</p>
1666
1667<div class="doc_code">
1668<pre>
1669initialize callCounter to zero
1670for each Function f in the Module
1671 for each BasicBlock b in f
1672 for each Instruction i in b
1673 if (i is a CallInst and calls the given function)
1674 increment callCounter
1675</pre>
1676</div>
1677
1678<p>And the actual code is (remember, because we're writing a
1679<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1680override the <tt>runOnFunction</tt> method):</p>
1681
1682<div class="doc_code">
1683<pre>
1684Function* targetFunc = ...;
1685
1686class OurFunctionPass : public FunctionPass {
1687 public:
1688 OurFunctionPass(): callCounter(0) { }
1689
1690 virtual runOnFunction(Function&amp; F) {
1691 for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
Eric Christopher5fbecf72008-11-08 08:20:49 +00001692 for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001693 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1694 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1695 // <i>We know we've encountered a call instruction, so we</i>
1696 // <i>need to determine if it's a call to the</i>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001697 // <i>function pointed to by m_func or not.</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001698 if (callInst-&gt;getCalledFunction() == targetFunc)
1699 ++callCounter;
1700 }
1701 }
1702 }
1703 }
1704
1705 private:
Chris Lattner0665e1f2008-01-03 16:56:04 +00001706 unsigned callCounter;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707};
1708</pre>
1709</div>
1710
1711</div>
1712
1713<!--_______________________________________________________________________-->
1714<div class="doc_subsubsection">
1715 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
1716</div>
1717
1718<div class="doc_text">
1719
1720<p>You may have noticed that the previous example was a bit oversimplified in
1721that it did not deal with call sites generated by 'invoke' instructions. In
1722this, and in other situations, you may find that you want to treat
1723<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
1724most-specific common base class is <tt>Instruction</tt>, which includes lots of
1725less closely-related things. For these cases, LLVM provides a handy wrapper
1726class called <a
1727href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
1728It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
1729methods that provide functionality common to <tt>CallInst</tt>s and
1730<tt>InvokeInst</tt>s.</p>
1731
1732<p>This class has "value semantics": it should be passed by value, not by
1733reference and it should not be dynamically allocated or deallocated using
1734<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
1735assignable and constructable, with costs equivalents to that of a bare pointer.
1736If you look at its definition, it has only a single pointer member.</p>
1737
1738</div>
1739
1740<!--_______________________________________________________________________-->
1741<div class="doc_subsubsection">
1742 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
1743</div>
1744
1745<div class="doc_text">
1746
1747<p>Frequently, we might have an instance of the <a
1748href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
1749determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
1750<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
1751For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
1752particular function <tt>foo</tt>. Finding all of the instructions that
1753<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
1754of <tt>F</tt>:</p>
1755
1756<div class="doc_code">
1757<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001758Function *F = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001759
1760for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
1761 if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
1762 llvm::cerr &lt;&lt; "F is used in instruction:\n";
1763 llvm::cerr &lt;&lt; *Inst &lt;&lt; "\n";
1764 }
1765</pre>
1766</div>
1767
1768<p>Alternately, it's common to have an instance of the <a
1769href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
1770<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
1771<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
1772<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
1773all of the values that a particular instruction uses (that is, the operands of
1774the particular <tt>Instruction</tt>):</p>
1775
1776<div class="doc_code">
1777<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001778Instruction *pi = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001779
1780for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Chris Lattner0665e1f2008-01-03 16:56:04 +00001781 Value *v = *i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001782 // <i>...</i>
1783}
1784</pre>
1785</div>
1786
1787<!--
1788 def-use chains ("finding all users of"): Value::use_begin/use_end
1789 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
1790-->
1791
1792</div>
1793
Chris Lattner0665e1f2008-01-03 16:56:04 +00001794<!--_______________________________________________________________________-->
1795<div class="doc_subsubsection">
1796 <a name="iterate_preds">Iterating over predecessors &amp;
1797successors of blocks</a>
1798</div>
1799
1800<div class="doc_text">
1801
1802<p>Iterating over the predecessors and successors of a block is quite easy
1803with the routines defined in <tt>"llvm/Support/CFG.h"</tt>. Just use code like
1804this to iterate over all predecessors of BB:</p>
1805
1806<div class="doc_code">
1807<pre>
1808#include "llvm/Support/CFG.h"
1809BasicBlock *BB = ...;
1810
1811for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1812 BasicBlock *Pred = *PI;
1813 // <i>...</i>
1814}
1815</pre>
1816</div>
1817
1818<p>Similarly, to iterate over successors use
1819succ_iterator/succ_begin/succ_end.</p>
1820
1821</div>
1822
1823
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001824<!-- ======================================================================= -->
1825<div class="doc_subsection">
1826 <a name="simplechanges">Making simple changes</a>
1827</div>
1828
1829<div class="doc_text">
1830
1831<p>There are some primitive transformation operations present in the LLVM
1832infrastructure that are worth knowing about. When performing
1833transformations, it's fairly common to manipulate the contents of basic
1834blocks. This section describes some of the common methods for doing so
1835and gives example code.</p>
1836
1837</div>
1838
1839<!--_______________________________________________________________________-->
1840<div class="doc_subsubsection">
1841 <a name="schanges_creating">Creating and inserting new
1842 <tt>Instruction</tt>s</a>
1843</div>
1844
1845<div class="doc_text">
1846
1847<p><i>Instantiating Instructions</i></p>
1848
1849<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
1850constructor for the kind of instruction to instantiate and provide the necessary
1851parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
1852(const-ptr-to) <tt>Type</tt>. Thus:</p>
1853
1854<div class="doc_code">
1855<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00001856AllocaInst* ai = new AllocaInst(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001857</pre>
1858</div>
1859
1860<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
1861one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
1862subclass is likely to have varying default parameters which change the semantics
1863of the instruction, so refer to the <a
1864href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
1865Instruction</a> that you're interested in instantiating.</p>
1866
1867<p><i>Naming values</i></p>
1868
1869<p>It is very useful to name the values of instructions when you're able to, as
1870this facilitates the debugging of your transformations. If you end up looking
1871at generated LLVM machine code, you definitely want to have logical names
1872associated with the results of instructions! By supplying a value for the
1873<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
1874associate a logical name with the result of the instruction's execution at
1875run time. For example, say that I'm writing a transformation that dynamically
1876allocates space for an integer on the stack, and that integer is going to be
1877used as some kind of index by some other code. To accomplish this, I place an
1878<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
1879<tt>Function</tt>, and I'm intending to use it within the same
1880<tt>Function</tt>. I might do:</p>
1881
1882<div class="doc_code">
1883<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00001884AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001885</pre>
1886</div>
1887
1888<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
1889execution value, which is a pointer to an integer on the run time stack.</p>
1890
1891<p><i>Inserting instructions</i></p>
1892
1893<p>There are essentially two ways to insert an <tt>Instruction</tt>
1894into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
1895
1896<ul>
1897 <li>Insertion into an explicit instruction list
1898
1899 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
1900 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
1901 before <tt>*pi</tt>, we do the following: </p>
1902
1903<div class="doc_code">
1904<pre>
1905BasicBlock *pb = ...;
1906Instruction *pi = ...;
1907Instruction *newInst = new Instruction(...);
1908
1909pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
1910</pre>
1911</div>
1912
1913 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
1914 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
1915 classes provide constructors which take a pointer to a
1916 <tt>BasicBlock</tt> to be appended to. For example code that
1917 looked like: </p>
1918
1919<div class="doc_code">
1920<pre>
1921BasicBlock *pb = ...;
1922Instruction *newInst = new Instruction(...);
1923
1924pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
1925</pre>
1926</div>
1927
1928 <p>becomes: </p>
1929
1930<div class="doc_code">
1931<pre>
1932BasicBlock *pb = ...;
1933Instruction *newInst = new Instruction(..., pb);
1934</pre>
1935</div>
1936
1937 <p>which is much cleaner, especially if you are creating
1938 long instruction streams.</p></li>
1939
1940 <li>Insertion into an implicit instruction list
1941
1942 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
1943 are implicitly associated with an existing instruction list: the instruction
1944 list of the enclosing basic block. Thus, we could have accomplished the same
1945 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
1946 </p>
1947
1948<div class="doc_code">
1949<pre>
1950Instruction *pi = ...;
1951Instruction *newInst = new Instruction(...);
1952
1953pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
1954</pre>
1955</div>
1956
1957 <p>In fact, this sequence of steps occurs so frequently that the
1958 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
1959 constructors which take (as a default parameter) a pointer to an
1960 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
1961 precede. That is, <tt>Instruction</tt> constructors are capable of
1962 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
1963 provided instruction, immediately before that instruction. Using an
1964 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
1965 parameter, the above code becomes:</p>
1966
1967<div class="doc_code">
1968<pre>
1969Instruction* pi = ...;
1970Instruction* newInst = new Instruction(..., pi);
1971</pre>
1972</div>
1973
1974 <p>which is much cleaner, especially if you're creating a lot of
1975 instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
1976</ul>
1977
1978</div>
1979
1980<!--_______________________________________________________________________-->
1981<div class="doc_subsubsection">
1982 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
1983</div>
1984
1985<div class="doc_text">
1986
1987<p>Deleting an instruction from an existing sequence of instructions that form a
1988<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
1989you must have a pointer to the instruction that you wish to delete. Second, you
1990need to obtain the pointer to that instruction's basic block. You use the
1991pointer to the basic block to get its list of instructions and then use the
1992erase function to remove your instruction. For example:</p>
1993
1994<div class="doc_code">
1995<pre>
1996<a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner3db8f772008-02-15 22:57:17 +00001997I-&gt;eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001998</pre>
1999</div>
2000
2001</div>
2002
2003<!--_______________________________________________________________________-->
2004<div class="doc_subsubsection">
2005 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2006 <tt>Value</tt></a>
2007</div>
2008
2009<div class="doc_text">
2010
2011<p><i>Replacing individual instructions</i></p>
2012
2013<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2014permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2015and <tt>ReplaceInstWithInst</tt>.</p>
2016
2017<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
2018
2019<ul>
2020 <li><tt>ReplaceInstWithValue</tt>
2021
Nick Lewycky48d4b032008-09-15 06:31:52 +00002022 <p>This function replaces all uses of a given instruction with a value,
2023 and then removes the original instruction. The following example
2024 illustrates the replacement of the result of a particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002025 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2026 pointer to an integer.</p>
2027
2028<div class="doc_code">
2029<pre>
2030AllocaInst* instToReplace = ...;
2031BasicBlock::iterator ii(instToReplace);
2032
2033ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Daniel Dunbar8ce79622008-10-03 22:17:25 +00002034 Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002035</pre></div></li>
2036
2037 <li><tt>ReplaceInstWithInst</tt>
2038
2039 <p>This function replaces a particular instruction with another
Nick Lewycky48d4b032008-09-15 06:31:52 +00002040 instruction, inserting the new instruction into the basic block at the
2041 location where the old instruction was, and replacing any uses of the old
2042 instruction with the new instruction. The following example illustrates
2043 the replacement of one <tt>AllocaInst</tt> with another.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002044
2045<div class="doc_code">
2046<pre>
2047AllocaInst* instToReplace = ...;
2048BasicBlock::iterator ii(instToReplace);
2049
2050ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002051 new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002052</pre></div></li>
2053</ul>
2054
2055<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2056
2057<p>You can use <tt>Value::replaceAllUsesWith</tt> and
2058<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
2059doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2060and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2061information.</p>
2062
2063<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2064include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2065ReplaceInstWithValue, ReplaceInstWithInst -->
2066
2067</div>
2068
2069<!--_______________________________________________________________________-->
2070<div class="doc_subsubsection">
2071 <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2072</div>
2073
2074<div class="doc_text">
2075
2076<p>Deleting a global variable from a module is just as easy as deleting an
2077Instruction. First, you must have a pointer to the global variable that you wish
2078 to delete. You use this pointer to erase it from its parent, the module.
2079 For example:</p>
2080
2081<div class="doc_code">
2082<pre>
2083<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2084
2085GV-&gt;eraseFromParent();
2086</pre>
2087</div>
2088
2089</div>
2090
2091<!-- *********************************************************************** -->
2092<div class="doc_section">
2093 <a name="advanced">Advanced Topics</a>
2094</div>
2095<!-- *********************************************************************** -->
2096
2097<div class="doc_text">
2098<p>
2099This section describes some of the advanced or obscure API's that most clients
2100do not need to be aware of. These API's tend manage the inner workings of the
2101LLVM system, and only need to be accessed in unusual circumstances.
2102</p>
2103</div>
2104
2105<!-- ======================================================================= -->
2106<div class="doc_subsection">
2107 <a name="TypeResolve">LLVM Type Resolution</a>
2108</div>
2109
2110<div class="doc_text">
2111
2112<p>
2113The LLVM type system has a very simple goal: allow clients to compare types for
2114structural equality with a simple pointer comparison (aka a shallow compare).
2115This goal makes clients much simpler and faster, and is used throughout the LLVM
2116system.
2117</p>
2118
2119<p>
2120Unfortunately achieving this goal is not a simple matter. In particular,
2121recursive types and late resolution of opaque types makes the situation very
2122difficult to handle. Fortunately, for the most part, our implementation makes
2123most clients able to be completely unaware of the nasty internal details. The
2124primary case where clients are exposed to the inner workings of it are when
2125building a recursive type. In addition to this case, the LLVM bitcode reader,
2126assembly parser, and linker also have to be aware of the inner workings of this
2127system.
2128</p>
2129
2130<p>
2131For our purposes below, we need three concepts. First, an "Opaque Type" is
2132exactly as defined in the <a href="LangRef.html#t_opaque">language
2133reference</a>. Second an "Abstract Type" is any type which includes an
2134opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
2135Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32,
2136float }</tt>").
2137</p>
2138
2139</div>
2140
2141<!-- ______________________________________________________________________ -->
2142<div class="doc_subsubsection">
2143 <a name="BuildRecType">Basic Recursive Type Construction</a>
2144</div>
2145
2146<div class="doc_text">
2147
2148<p>
2149Because the most common question is "how do I build a recursive type with LLVM",
2150we answer it now and explain it as we go. Here we include enough to cause this
2151to be emitted to an output .ll file:
2152</p>
2153
2154<div class="doc_code">
2155<pre>
2156%mylist = type { %mylist*, i32 }
2157</pre>
2158</div>
2159
2160<p>
2161To build this, use the following LLVM APIs:
2162</p>
2163
2164<div class="doc_code">
2165<pre>
2166// <i>Create the initial outer struct</i>
2167<a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
2168std::vector&lt;const Type*&gt; Elts;
Daniel Dunbar8ce79622008-10-03 22:17:25 +00002169Elts.push_back(PointerType::getUnqual(StructTy));
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002170Elts.push_back(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002171StructType *NewSTy = StructType::get(Elts);
2172
2173// <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
2174// <i>the struct and the opaque type are actually the same.</i>
2175cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
2176
2177// <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
2178// <i>kept up-to-date</i>
2179NewSTy = cast&lt;StructType&gt;(StructTy.get());
2180
2181// <i>Add a name for the type to the module symbol table (optional)</i>
2182MyModule-&gt;addTypeName("mylist", NewSTy);
2183</pre>
2184</div>
2185
2186<p>
2187This code shows the basic approach used to build recursive types: build a
2188non-recursive type using 'opaque', then use type unification to close the cycle.
2189The type unification step is performed by the <tt><a
2190href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
2191described next. After that, we describe the <a
2192href="#PATypeHolder">PATypeHolder class</a>.
2193</p>
2194
2195</div>
2196
2197<!-- ______________________________________________________________________ -->
2198<div class="doc_subsubsection">
2199 <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
2200</div>
2201
2202<div class="doc_text">
2203<p>
2204The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
2205While this method is actually a member of the DerivedType class, it is most
2206often used on OpaqueType instances. Type unification is actually a recursive
2207process. After unification, types can become structurally isomorphic to
2208existing types, and all duplicates are deleted (to preserve pointer equality).
2209</p>
2210
2211<p>
2212In the example above, the OpaqueType object is definitely deleted.
2213Additionally, if there is an "{ \2*, i32}" type already created in the system,
2214the pointer and struct type created are <b>also</b> deleted. Obviously whenever
2215a type is deleted, any "Type*" pointers in the program are invalidated. As
2216such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
2217live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
2218types can never move or be deleted). To deal with this, the <a
2219href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
2220reference to a possibly refined type, and the <a
2221href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
2222complex datastructures.
2223</p>
2224
2225</div>
2226
2227<!-- ______________________________________________________________________ -->
2228<div class="doc_subsubsection">
2229 <a name="PATypeHolder">The PATypeHolder Class</a>
2230</div>
2231
2232<div class="doc_text">
2233<p>
2234PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
2235happily goes about nuking types that become isomorphic to existing types, it
2236automatically updates all PATypeHolder objects to point to the new type. In the
2237example above, this allows the code to maintain a pointer to the resultant
2238resolved recursive type, even though the Type*'s are potentially invalidated.
2239</p>
2240
2241<p>
2242PATypeHolder is an extremely light-weight object that uses a lazy union-find
2243implementation to update pointers. For example the pointer from a Value to its
2244Type is maintained by PATypeHolder objects.
2245</p>
2246
2247</div>
2248
2249<!-- ______________________________________________________________________ -->
2250<div class="doc_subsubsection">
2251 <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2252</div>
2253
2254<div class="doc_text">
2255
2256<p>
2257Some data structures need more to perform more complex updates when types get
2258resolved. To support this, a class can derive from the AbstractTypeUser class.
2259This class
2260allows it to get callbacks when certain types are resolved. To register to get
2261callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2262methods can be called on a type. Note that these methods only work for <i>
2263 abstract</i> types. Concrete types (those that do not include any opaque
2264objects) can never be refined.
2265</p>
2266</div>
2267
2268
2269<!-- ======================================================================= -->
2270<div class="doc_subsection">
2271 <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
2272 <tt>TypeSymbolTable</tt> classes</a>
2273</div>
2274
2275<div class="doc_text">
2276<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2277ValueSymbolTable</a></tt> class provides a symbol table that the <a
2278href="#Function"><tt>Function</tt></a> and <a href="#Module">
2279<tt>Module</tt></a> classes use for naming value definitions. The symbol table
2280can provide a name for any <a href="#Value"><tt>Value</tt></a>.
2281The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
2282TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
2283names for types.</p>
2284
2285<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed
2286by most clients. It should only be used when iteration over the symbol table
2287names themselves are required, which is very special purpose. Note that not
2288all LLVM
Gabor Greif92e87762008-06-16 21:06:12 +00002289<tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002290an empty name) do not exist in the symbol table.
2291</p>
2292
2293<p>These symbol tables support iteration over the values/types in the symbol
2294table with <tt>begin/end/iterator</tt> and supports querying to see if a
2295specific name is in the symbol table (with <tt>lookup</tt>). The
2296<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2297simply call <tt>setName</tt> on a value, which will autoinsert it into the
2298appropriate symbol table. For types, use the Module::addTypeName method to
2299insert entries into the symbol table.</p>
2300
2301</div>
2302
2303
2304
Gabor Greif92e87762008-06-16 21:06:12 +00002305<!-- ======================================================================= -->
2306<div class="doc_subsection">
2307 <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2308</div>
2309
2310<div class="doc_text">
2311<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
Gabor Greif50626fc2009-01-05 16:05:32 +00002312User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
Gabor Greif92e87762008-06-16 21:06:12 +00002313towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2314Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
Gabor Greif93b462b2008-06-18 13:44:57 +00002315Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002316addition and removal.</p>
2317
Gabor Greif93b462b2008-06-18 13:44:57 +00002318<!-- ______________________________________________________________________ -->
2319<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002320 <a name="Use2User">Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002321</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002322
Gabor Greif93b462b2008-06-18 13:44:57 +00002323<div class="doc_text">
2324<p>
2325A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
Gabor Greif92e87762008-06-16 21:06:12 +00002326or refer to them out-of-line by means of a pointer. A mixed variant
Gabor Greif93b462b2008-06-18 13:44:57 +00002327(some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2328that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2329</p>
2330</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002331
Gabor Greif93b462b2008-06-18 13:44:57 +00002332<p>
2333We have 2 different layouts in the <tt>User</tt> (sub)classes:
2334<ul>
2335<li><p>Layout a)
2336The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2337object and there are a fixed number of them.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002338
Gabor Greif93b462b2008-06-18 13:44:57 +00002339<li><p>Layout b)
2340The <tt>Use</tt> object(s) are referenced by a pointer to an
2341array from the <tt>User</tt> object and there may be a variable
2342number of them.</p>
2343</ul>
2344<p>
Gabor Greife247e362008-06-25 00:10:22 +00002345As of v2.4 each layout still possesses a direct pointer to the
Gabor Greif93b462b2008-06-18 13:44:57 +00002346start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
Gabor Greif92e87762008-06-16 21:06:12 +00002347we stick to this redundancy for the sake of simplicity.
Gabor Greife247e362008-06-25 00:10:22 +00002348The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
Gabor Greif92e87762008-06-16 21:06:12 +00002349has. (Theoretically this information can also be calculated
Gabor Greif93b462b2008-06-18 13:44:57 +00002350given the scheme presented below.)</p>
2351<p>
2352Special forms of allocation operators (<tt>operator new</tt>)
Gabor Greife247e362008-06-25 00:10:22 +00002353enforce the following memory layouts:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002354
Gabor Greif93b462b2008-06-18 13:44:57 +00002355<ul>
Gabor Greife247e362008-06-25 00:10:22 +00002356<li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002357
Gabor Greif93b462b2008-06-18 13:44:57 +00002358<pre>
2359...---.---.---.---.-------...
2360 | P | P | P | P | User
2361'''---'---'---'---'-------'''
2362</pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002363
Gabor Greife247e362008-06-25 00:10:22 +00002364<li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
Gabor Greif93b462b2008-06-18 13:44:57 +00002365<pre>
2366.-------...
2367| User
2368'-------'''
2369 |
2370 v
2371 .---.---.---.---...
2372 | P | P | P | P |
2373 '---'---'---'---'''
2374</pre>
2375</ul>
2376<i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2377 is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002378
Gabor Greif93b462b2008-06-18 13:44:57 +00002379<!-- ______________________________________________________________________ -->
2380<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002381 <a name="Waymarking">The waymarking algorithm</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002382</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002383
Gabor Greif93b462b2008-06-18 13:44:57 +00002384<div class="doc_text">
2385<p>
Gabor Greife247e362008-06-25 00:10:22 +00002386Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
Gabor Greif93b462b2008-06-18 13:44:57 +00002387their <tt>User</tt> objects, there must be a fast and exact method to
2388recover it. This is accomplished by the following scheme:</p>
2389</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002390
Gabor Greife247e362008-06-25 00:10:22 +00002391A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
Gabor Greif93b462b2008-06-18 13:44:57 +00002392start of the <tt>User</tt> object:
2393<ul>
2394<li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2395<li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2396<li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2397<li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2398</ul>
2399<p>
2400Given a <tt>Use*</tt>, all we have to do is to walk till we get
2401a stop and we either have a <tt>User</tt> immediately behind or
Gabor Greif92e87762008-06-16 21:06:12 +00002402we have to walk to the next stop picking up digits
Gabor Greif93b462b2008-06-18 13:44:57 +00002403and calculating the offset:</p>
2404<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002405.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2406| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2407'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2408 |+15 |+10 |+6 |+3 |+1
2409 | | | | |__>
2410 | | | |__________>
2411 | | |______________________>
2412 | |______________________________________>
2413 |__________________________________________________________>
Gabor Greif93b462b2008-06-18 13:44:57 +00002414</pre>
2415<p>
Gabor Greif92e87762008-06-16 21:06:12 +00002416Only the significant number of bits need to be stored between the
Gabor Greif93b462b2008-06-18 13:44:57 +00002417stops, so that the <i>worst case is 20 memory accesses</i> when there are
24181000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002419
Gabor Greif93b462b2008-06-18 13:44:57 +00002420<!-- ______________________________________________________________________ -->
2421<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002422 <a name="ReferenceImpl">Reference implementation</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002423</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002424
Gabor Greif93b462b2008-06-18 13:44:57 +00002425<div class="doc_text">
2426<p>
2427The following literate Haskell fragment demonstrates the concept:</p>
2428</div>
2429
2430<div class="doc_code">
2431<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002432> import Test.QuickCheck
2433>
2434> digits :: Int -> [Char] -> [Char]
2435> digits 0 acc = '0' : acc
2436> digits 1 acc = '1' : acc
2437> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2438>
2439> dist :: Int -> [Char] -> [Char]
2440> dist 0 [] = ['S']
2441> dist 0 acc = acc
2442> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2443> dist n acc = dist (n - 1) $ dist 1 acc
2444>
2445> takeLast n ss = reverse $ take n $ reverse ss
2446>
2447> test = takeLast 40 $ dist 20 []
2448>
Gabor Greif93b462b2008-06-18 13:44:57 +00002449</pre>
2450</div>
2451<p>
2452Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2453<p>
2454The reverse algorithm computes the length of the string just by examining
2455a certain prefix:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002456
Gabor Greif93b462b2008-06-18 13:44:57 +00002457<div class="doc_code">
2458<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002459> pref :: [Char] -> Int
2460> pref "S" = 1
2461> pref ('s':'1':rest) = decode 2 1 rest
2462> pref (_:rest) = 1 + pref rest
2463>
2464> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2465> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2466> decode walk acc _ = walk + acc
2467>
Gabor Greif93b462b2008-06-18 13:44:57 +00002468</pre>
2469</div>
2470<p>
2471Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2472<p>
2473We can <i>quickCheck</i> this with following property:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002474
Gabor Greif93b462b2008-06-18 13:44:57 +00002475<div class="doc_code">
2476<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002477> testcase = dist 2000 []
2478> testcaseLength = length testcase
2479>
2480> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2481> where arr = takeLast n testcase
Gabor Greif93b462b2008-06-18 13:44:57 +00002482>
2483</pre>
2484</div>
2485<p>
2486As expected &lt;quickCheck identityProp&gt; gives:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002487
Gabor Greif93b462b2008-06-18 13:44:57 +00002488<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002489*Main> quickCheck identityProp
2490OK, passed 100 tests.
Gabor Greif93b462b2008-06-18 13:44:57 +00002491</pre>
2492<p>
2493Let's be a bit more exhaustive:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002494
Gabor Greif93b462b2008-06-18 13:44:57 +00002495<div class="doc_code">
2496<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002497>
2498> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2499>
Gabor Greif93b462b2008-06-18 13:44:57 +00002500</pre>
2501</div>
2502<p>
2503And here is the result of &lt;deepCheck identityProp&gt;:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002504
Gabor Greif93b462b2008-06-18 13:44:57 +00002505<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002506*Main> deepCheck identityProp
2507OK, passed 500 tests.
Gabor Greif92e87762008-06-16 21:06:12 +00002508</pre>
2509
Gabor Greif93b462b2008-06-18 13:44:57 +00002510<!-- ______________________________________________________________________ -->
2511<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002512 <a name="Tagging">Tagging considerations</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002513</div>
2514
2515<p>
2516To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2517never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2518new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2519tag bits.</p>
2520<p>
Gabor Greife247e362008-06-25 00:10:22 +00002521For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
2522Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
2523that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
Gabor Greif50626fc2009-01-05 16:05:32 +00002524the LSBit set. (Portability is relying on the fact that all known compilers place the
2525<tt>vptr</tt> in the first word of the instances.)</p>
Gabor Greif93b462b2008-06-18 13:44:57 +00002526
Gabor Greif92e87762008-06-16 21:06:12 +00002527</div>
2528
2529 <!-- *********************************************************************** -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002530<div class="doc_section">
2531 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2532</div>
2533<!-- *********************************************************************** -->
2534
2535<div class="doc_text">
2536<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2537<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2538
2539<p>The Core LLVM classes are the primary means of representing the program
2540being inspected or transformed. The core LLVM classes are defined in
2541header files in the <tt>include/llvm/</tt> directory, and implemented in
2542the <tt>lib/VMCore</tt> directory.</p>
2543
2544</div>
2545
2546<!-- ======================================================================= -->
2547<div class="doc_subsection">
2548 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2549</div>
2550
2551<div class="doc_text">
2552
2553 <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
2554 a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
2555 through its subclasses. Certain primitive types (<tt>VoidType</tt>,
2556 <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden
2557 subclasses. They are hidden because they offer no useful functionality beyond
2558 what the <tt>Type</tt> class offers except to distinguish themselves from
2559 other subclasses of <tt>Type</tt>.</p>
2560 <p>All other types are subclasses of <tt>DerivedType</tt>. Types can be
2561 named, but this is not a requirement. There exists exactly
2562 one instance of a given shape at any one time. This allows type equality to
2563 be performed with address equality of the Type Instance. That is, given two
2564 <tt>Type*</tt> values, the types are identical if the pointers are identical.
2565 </p>
2566</div>
2567
2568<!-- _______________________________________________________________________ -->
2569<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002570 <a name="m_Type">Important Public Methods</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002571</div>
2572
2573<div class="doc_text">
2574
2575<ul>
2576 <li><tt>bool isInteger() const</tt>: Returns true for any integer type.</li>
2577
2578 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2579 floating point types.</li>
2580
2581 <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
2582 an OpaqueType anywhere in its definition).</li>
2583
2584 <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
2585 that don't have a size are abstract types, labels and void.</li>
2586
2587</ul>
2588</div>
2589
2590<!-- _______________________________________________________________________ -->
2591<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002592 <a name="derivedtypes">Important Derived Types</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002593</div>
2594<div class="doc_text">
2595<dl>
2596 <dt><tt>IntegerType</tt></dt>
2597 <dd>Subclass of DerivedType that represents integer types of any bit width.
2598 Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and
2599 <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
2600 <ul>
2601 <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
2602 type of a specific bit width.</li>
2603 <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
2604 type.</li>
2605 </ul>
2606 </dd>
2607 <dt><tt>SequentialType</tt></dt>
2608 <dd>This is subclassed by ArrayType and PointerType
2609 <ul>
2610 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
2611 of the elements in the sequential type. </li>
2612 </ul>
2613 </dd>
2614 <dt><tt>ArrayType</tt></dt>
2615 <dd>This is a subclass of SequentialType and defines the interface for array
2616 types.
2617 <ul>
2618 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
2619 elements in the array. </li>
2620 </ul>
2621 </dd>
2622 <dt><tt>PointerType</tt></dt>
2623 <dd>Subclass of SequentialType for pointer types.</dd>
2624 <dt><tt>VectorType</tt></dt>
2625 <dd>Subclass of SequentialType for vector types. A
2626 vector type is similar to an ArrayType but is distinguished because it is
2627 a first class type wherease ArrayType is not. Vector types are used for
2628 vector operations and are usually small vectors of of an integer or floating
2629 point type.</dd>
2630 <dt><tt>StructType</tt></dt>
2631 <dd>Subclass of DerivedTypes for struct types.</dd>
2632 <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
2633 <dd>Subclass of DerivedTypes for function types.
2634 <ul>
2635 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
2636 function</li>
2637 <li><tt> const Type * getReturnType() const</tt>: Returns the
2638 return type of the function.</li>
2639 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
2640 the type of the ith parameter.</li>
2641 <li><tt> const unsigned getNumParams() const</tt>: Returns the
2642 number of formal parameters.</li>
2643 </ul>
2644 </dd>
2645 <dt><tt>OpaqueType</tt></dt>
2646 <dd>Sublcass of DerivedType for abstract types. This class
2647 defines no content and is used as a placeholder for some other type. Note
2648 that OpaqueType is used (temporarily) during type resolution for forward
2649 references of types. Once the referenced type is resolved, the OpaqueType
2650 is replaced with the actual type. OpaqueType can also be used for data
2651 abstraction. At link time opaque types can be resolved to actual types
2652 of the same name.</dd>
2653</dl>
2654</div>
2655
2656
2657
2658<!-- ======================================================================= -->
2659<div class="doc_subsection">
2660 <a name="Module">The <tt>Module</tt> class</a>
2661</div>
2662
2663<div class="doc_text">
2664
2665<p><tt>#include "<a
2666href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
2667<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
2668
2669<p>The <tt>Module</tt> class represents the top level structure present in LLVM
2670programs. An LLVM module is effectively either a translation unit of the
2671original program or a combination of several translation units merged by the
2672linker. The <tt>Module</tt> class keeps track of a list of <a
2673href="#Function"><tt>Function</tt></a>s, a list of <a
2674href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
2675href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
2676helpful member functions that try to make common operations easy.</p>
2677
2678</div>
2679
2680<!-- _______________________________________________________________________ -->
2681<div class="doc_subsubsection">
2682 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
2683</div>
2684
2685<div class="doc_text">
2686
2687<ul>
2688 <li><tt>Module::Module(std::string name = "")</tt></li>
2689</ul>
2690
2691<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
2692provide a name for it (probably based on the name of the translation unit).</p>
2693
2694<ul>
2695 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
2696 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
2697
2698 <tt>begin()</tt>, <tt>end()</tt>
2699 <tt>size()</tt>, <tt>empty()</tt>
2700
2701 <p>These are forwarding methods that make it easy to access the contents of
2702 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
2703 list.</p></li>
2704
2705 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
2706
2707 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
2708 necessary to use when you need to update the list or perform a complex
2709 action that doesn't have a forwarding method.</p>
2710
2711 <p><!-- Global Variable --></p></li>
2712</ul>
2713
2714<hr>
2715
2716<ul>
2717 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
2718
2719 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
2720
2721 <tt>global_begin()</tt>, <tt>global_end()</tt>
2722 <tt>global_size()</tt>, <tt>global_empty()</tt>
2723
2724 <p> These are forwarding methods that make it easy to access the contents of
2725 a <tt>Module</tt> object's <a
2726 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
2727
2728 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
2729
2730 <p>Returns the list of <a
2731 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
2732 use when you need to update the list or perform a complex action that
2733 doesn't have a forwarding method.</p>
2734
2735 <p><!-- Symbol table stuff --> </p></li>
2736</ul>
2737
2738<hr>
2739
2740<ul>
2741 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
2742
2743 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2744 for this <tt>Module</tt>.</p>
2745
2746 <p><!-- Convenience methods --></p></li>
2747</ul>
2748
2749<hr>
2750
2751<ul>
2752 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
2753 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
2754
2755 <p>Look up the specified function in the <tt>Module</tt> <a
2756 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
2757 <tt>null</tt>.</p></li>
2758
2759 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
2760 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
2761
2762 <p>Look up the specified function in the <tt>Module</tt> <a
2763 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
2764 external declaration for the function and return it.</p></li>
2765
2766 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
2767
2768 <p>If there is at least one entry in the <a
2769 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
2770 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
2771 string.</p></li>
2772
2773 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
2774 href="#Type">Type</a> *Ty)</tt>
2775
2776 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
2777 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
2778 name, true is returned and the <a
2779 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
2780</ul>
2781
2782</div>
2783
2784
2785<!-- ======================================================================= -->
2786<div class="doc_subsection">
2787 <a name="Value">The <tt>Value</tt> class</a>
2788</div>
2789
2790<div class="doc_text">
2791
2792<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
2793<br>
2794doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
2795
2796<p>The <tt>Value</tt> class is the most important class in the LLVM Source
2797base. It represents a typed value that may be used (among other things) as an
2798operand to an instruction. There are many different types of <tt>Value</tt>s,
2799such as <a href="#Constant"><tt>Constant</tt></a>s,<a
2800href="#Argument"><tt>Argument</tt></a>s. Even <a
2801href="#Instruction"><tt>Instruction</tt></a>s and <a
2802href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
2803
2804<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
2805for a program. For example, an incoming argument to a function (represented
2806with an instance of the <a href="#Argument">Argument</a> class) is "used" by
2807every instruction in the function that references the argument. To keep track
2808of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
2809href="#User"><tt>User</tt></a>s that is using it (the <a
2810href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
2811graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
2812def-use information in the program, and is accessible through the <tt>use_</tt>*
2813methods, shown below.</p>
2814
2815<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
2816and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
2817method. In addition, all LLVM values can be named. The "name" of the
2818<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
2819
2820<div class="doc_code">
2821<pre>
2822%<b>foo</b> = add i32 1, 2
2823</pre>
2824</div>
2825
2826<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
2827that the name of any value may be missing (an empty string), so names should
2828<b>ONLY</b> be used for debugging (making the source code easier to read,
2829debugging printouts), they should not be used to keep track of values or map
2830between them. For this purpose, use a <tt>std::map</tt> of pointers to the
2831<tt>Value</tt> itself instead.</p>
2832
2833<p>One important aspect of LLVM is that there is no distinction between an SSA
2834variable and the operation that produces it. Because of this, any reference to
2835the value produced by an instruction (or the value available as an incoming
2836argument, for example) is represented as a direct pointer to the instance of
2837the class that
2838represents this value. Although this may take some getting used to, it
2839simplifies the representation and makes it easier to manipulate.</p>
2840
2841</div>
2842
2843<!-- _______________________________________________________________________ -->
2844<div class="doc_subsubsection">
2845 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
2846</div>
2847
2848<div class="doc_text">
2849
2850<ul>
2851 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
2852use-list<br>
2853 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
2854the use-list<br>
2855 <tt>unsigned use_size()</tt> - Returns the number of users of the
2856value.<br>
2857 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
2858 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
2859the use-list.<br>
2860 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
2861use-list.<br>
2862 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
2863element in the list.
2864 <p> These methods are the interface to access the def-use
2865information in LLVM. As with all other iterators in LLVM, the naming
2866conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
2867 </li>
2868 <li><tt><a href="#Type">Type</a> *getType() const</tt>
2869 <p>This method returns the Type of the Value.</p>
2870 </li>
2871 <li><tt>bool hasName() const</tt><br>
2872 <tt>std::string getName() const</tt><br>
2873 <tt>void setName(const std::string &amp;Name)</tt>
2874 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
2875be aware of the <a href="#nameWarning">precaution above</a>.</p>
2876 </li>
2877 <li><tt>void replaceAllUsesWith(Value *V)</tt>
2878
2879 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
2880 href="#User"><tt>User</tt>s</a> of the current value to refer to
2881 "<tt>V</tt>" instead. For example, if you detect that an instruction always
2882 produces a constant value (for example through constant folding), you can
2883 replace all uses of the instruction with the constant like this:</p>
2884
2885<div class="doc_code">
2886<pre>
2887Inst-&gt;replaceAllUsesWith(ConstVal);
2888</pre>
2889</div>
2890
2891</ul>
2892
2893</div>
2894
2895<!-- ======================================================================= -->
2896<div class="doc_subsection">
2897 <a name="User">The <tt>User</tt> class</a>
2898</div>
2899
2900<div class="doc_text">
2901
2902<p>
2903<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
2904doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
2905Superclass: <a href="#Value"><tt>Value</tt></a></p>
2906
2907<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
2908refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
2909that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
2910referring to. The <tt>User</tt> class itself is a subclass of
2911<tt>Value</tt>.</p>
2912
2913<p>The operands of a <tt>User</tt> point directly to the LLVM <a
2914href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
2915Single Assignment (SSA) form, there can only be one definition referred to,
2916allowing this direct connection. This connection provides the use-def
2917information in LLVM.</p>
2918
2919</div>
2920
2921<!-- _______________________________________________________________________ -->
2922<div class="doc_subsubsection">
2923 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
2924</div>
2925
2926<div class="doc_text">
2927
2928<p>The <tt>User</tt> class exposes the operand list in two ways: through
2929an index access interface and through an iterator based interface.</p>
2930
2931<ul>
2932 <li><tt>Value *getOperand(unsigned i)</tt><br>
2933 <tt>unsigned getNumOperands()</tt>
2934 <p> These two methods expose the operands of the <tt>User</tt> in a
2935convenient form for direct access.</p></li>
2936
2937 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
2938list<br>
2939 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
2940the operand list.<br>
2941 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
2942operand list.
2943 <p> Together, these methods make up the iterator based interface to
2944the operands of a <tt>User</tt>.</p></li>
2945</ul>
2946
2947</div>
2948
2949<!-- ======================================================================= -->
2950<div class="doc_subsection">
2951 <a name="Instruction">The <tt>Instruction</tt> class</a>
2952</div>
2953
2954<div class="doc_text">
2955
2956<p><tt>#include "</tt><tt><a
2957href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
2958doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
2959Superclasses: <a href="#User"><tt>User</tt></a>, <a
2960href="#Value"><tt>Value</tt></a></p>
2961
2962<p>The <tt>Instruction</tt> class is the common base class for all LLVM
2963instructions. It provides only a few methods, but is a very commonly used
2964class. The primary data tracked by the <tt>Instruction</tt> class itself is the
2965opcode (instruction type) and the parent <a
2966href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
2967into. To represent a specific type of instruction, one of many subclasses of
2968<tt>Instruction</tt> are used.</p>
2969
2970<p> Because the <tt>Instruction</tt> class subclasses the <a
2971href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
2972way as for other <a href="#User"><tt>User</tt></a>s (with the
2973<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
2974<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
2975the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
2976file contains some meta-data about the various different types of instructions
2977in LLVM. It describes the enum values that are used as opcodes (for example
2978<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
2979concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
2980example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
2981href="#CmpInst">CmpInst</a></tt>). Unfortunately, the use of macros in
2982this file confuses doxygen, so these enum values don't show up correctly in the
2983<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
2984
2985</div>
2986
2987<!-- _______________________________________________________________________ -->
2988<div class="doc_subsubsection">
2989 <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
2990 class</a>
2991</div>
2992<div class="doc_text">
2993 <ul>
2994 <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
2995 <p>This subclasses represents all two operand instructions whose operands
2996 must be the same type, except for the comparison instructions.</p></li>
2997 <li><tt><a name="CastInst">CastInst</a></tt>
2998 <p>This subclass is the parent of the 12 casting instructions. It provides
2999 common operations on cast instructions.</p>
3000 <li><tt><a name="CmpInst">CmpInst</a></tt>
3001 <p>This subclass respresents the two comparison instructions,
3002 <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3003 <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3004 <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3005 <p>This subclass is the parent of all terminator instructions (those which
3006 can terminate a block).</p>
3007 </ul>
3008 </div>
3009
3010<!-- _______________________________________________________________________ -->
3011<div class="doc_subsubsection">
3012 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
3013 class</a>
3014</div>
3015
3016<div class="doc_text">
3017
3018<ul>
3019 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3020 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3021this <tt>Instruction</tt> is embedded into.</p></li>
3022 <li><tt>bool mayWriteToMemory()</tt>
3023 <p>Returns true if the instruction writes to memory, i.e. it is a
3024 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3025 <li><tt>unsigned getOpcode()</tt>
3026 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3027 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3028 <p>Returns another instance of the specified instruction, identical
3029in all ways to the original except that the instruction has no parent
3030(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3031and it has no name</p></li>
3032</ul>
3033
3034</div>
3035
3036<!-- ======================================================================= -->
3037<div class="doc_subsection">
3038 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3039</div>
3040
3041<div class="doc_text">
3042
3043<p>Constant represents a base class for different types of constants. It
3044is subclassed by ConstantInt, ConstantArray, etc. for representing
3045the various types of Constants. <a href="#GlobalValue">GlobalValue</a> is also
3046a subclass, which represents the address of a global variable or function.
3047</p>
3048
3049</div>
3050
3051<!-- _______________________________________________________________________ -->
3052<div class="doc_subsubsection">Important Subclasses of Constant </div>
3053<div class="doc_text">
3054<ul>
3055 <li>ConstantInt : This subclass of Constant represents an integer constant of
3056 any width.
3057 <ul>
3058 <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3059 value of this constant, an APInt value.</li>
3060 <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3061 value to an int64_t via sign extension. If the value (not the bit width)
3062 of the APInt is too large to fit in an int64_t, an assertion will result.
3063 For this reason, use of this method is discouraged.</li>
3064 <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3065 value to a uint64_t via zero extension. IF the value (not the bit width)
3066 of the APInt is too large to fit in a uint64_t, an assertion will result.
3067 For this reason, use of this method is discouraged.</li>
3068 <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3069 ConstantInt object that represents the value provided by <tt>Val</tt>.
3070 The type is implied as the IntegerType that corresponds to the bit width
3071 of <tt>Val</tt>.</li>
3072 <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>:
3073 Returns the ConstantInt object that represents the value provided by
3074 <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3075 </ul>
3076 </li>
3077 <li>ConstantFP : This class represents a floating point constant.
3078 <ul>
3079 <li><tt>double getValue() const</tt>: Returns the underlying value of
3080 this constant. </li>
3081 </ul>
3082 </li>
3083 <li>ConstantArray : This represents a constant array.
3084 <ul>
3085 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3086 a vector of component constants that makeup this array. </li>
3087 </ul>
3088 </li>
3089 <li>ConstantStruct : This represents a constant struct.
3090 <ul>
3091 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3092 a vector of component constants that makeup this array. </li>
3093 </ul>
3094 </li>
3095 <li>GlobalValue : This represents either a global variable or a function. In
3096 either case, the value is a constant fixed address (after linking).
3097 </li>
3098</ul>
3099</div>
3100
3101
3102<!-- ======================================================================= -->
3103<div class="doc_subsection">
3104 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3105</div>
3106
3107<div class="doc_text">
3108
3109<p><tt>#include "<a
3110href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3111doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3112Class</a><br>
3113Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
3114<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3115
3116<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3117href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3118visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3119Because they are visible at global scope, they are also subject to linking with
3120other globals defined in different translation units. To control the linking
3121process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3122<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3123defined by the <tt>LinkageTypes</tt> enumeration.</p>
3124
3125<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3126<tt>static</tt> in C), it is not visible to code outside the current translation
3127unit, and does not participate in linking. If it has external linkage, it is
3128visible to external code, and does participate in linking. In addition to
3129linkage information, <tt>GlobalValue</tt>s keep track of which <a
3130href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3131
3132<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3133by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3134global is always a pointer to its contents. It is important to remember this
3135when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3136be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3137subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3138i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3139the address of the first element of this array and the value of the
3140<tt>GlobalVariable</tt> are the same, they have different types. The
3141<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3142is <tt>i32.</tt> Because of this, accessing a global value requires you to
3143dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3144can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3145Language Reference Manual</a>.</p>
3146
3147</div>
3148
3149<!-- _______________________________________________________________________ -->
3150<div class="doc_subsubsection">
3151 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
3152 class</a>
3153</div>
3154
3155<div class="doc_text">
3156
3157<ul>
3158 <li><tt>bool hasInternalLinkage() const</tt><br>
3159 <tt>bool hasExternalLinkage() const</tt><br>
3160 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3161 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3162 <p> </p>
3163 </li>
3164 <li><tt><a href="#Module">Module</a> *getParent()</tt>
3165 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3166GlobalValue is currently embedded into.</p></li>
3167</ul>
3168
3169</div>
3170
3171<!-- ======================================================================= -->
3172<div class="doc_subsection">
3173 <a name="Function">The <tt>Function</tt> class</a>
3174</div>
3175
3176<div class="doc_text">
3177
3178<p><tt>#include "<a
3179href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3180info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3181Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3182<a href="#Constant"><tt>Constant</tt></a>,
3183<a href="#User"><tt>User</tt></a>,
3184<a href="#Value"><tt>Value</tt></a></p>
3185
3186<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
3187actually one of the more complex classes in the LLVM heirarchy because it must
3188keep track of a large amount of data. The <tt>Function</tt> class keeps track
3189of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
3190<a href="#Argument"><tt>Argument</tt></a>s, and a
3191<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3192
3193<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3194commonly used part of <tt>Function</tt> objects. The list imposes an implicit
3195ordering of the blocks in the function, which indicate how the code will be
3196layed out by the backend. Additionally, the first <a
3197href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3198<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
3199block. There are no implicit exit nodes, and in fact there may be multiple exit
3200nodes from a single <tt>Function</tt>. If the <a
3201href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3202the <tt>Function</tt> is actually a function declaration: the actual body of the
3203function hasn't been linked in yet.</p>
3204
3205<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3206<tt>Function</tt> class also keeps track of the list of formal <a
3207href="#Argument"><tt>Argument</tt></a>s that the function receives. This
3208container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3209nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3210the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3211
3212<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3213LLVM feature that is only used when you have to look up a value by name. Aside
3214from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3215internally to make sure that there are not conflicts between the names of <a
3216href="#Instruction"><tt>Instruction</tt></a>s, <a
3217href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3218href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3219
3220<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3221and therefore also a <a href="#Constant">Constant</a>. The value of the function
3222is its address (after linking) which is guaranteed to be constant.</p>
3223</div>
3224
3225<!-- _______________________________________________________________________ -->
3226<div class="doc_subsubsection">
3227 <a name="m_Function">Important Public Members of the <tt>Function</tt>
3228 class</a>
3229</div>
3230
3231<div class="doc_text">
3232
3233<ul>
3234 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3235 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3236
3237 <p>Constructor used when you need to create new <tt>Function</tt>s to add
3238 the the program. The constructor must specify the type of the function to
3239 create and what type of linkage the function should have. The <a
3240 href="#FunctionType"><tt>FunctionType</tt></a> argument
3241 specifies the formal arguments and return value for the function. The same
3242 <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3243 create multiple functions. The <tt>Parent</tt> argument specifies the Module
3244 in which the function is defined. If this argument is provided, the function
3245 will automatically be inserted into that module's list of
3246 functions.</p></li>
3247
Chris Lattner5e709572008-11-25 18:34:50 +00003248 <li><tt>bool isDeclaration()</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003249
3250 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
3251 function is "external", it does not have a body, and thus must be resolved
3252 by linking with a function defined in a different translation unit.</p></li>
3253
3254 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3255 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3256
3257 <tt>begin()</tt>, <tt>end()</tt>
3258 <tt>size()</tt>, <tt>empty()</tt>
3259
3260 <p>These are forwarding methods that make it easy to access the contents of
3261 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3262 list.</p></li>
3263
3264 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3265
3266 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
3267 is necessary to use when you need to update the list or perform a complex
3268 action that doesn't have a forwarding method.</p></li>
3269
3270 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3271iterator<br>
3272 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3273
3274 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3275 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3276
3277 <p>These are forwarding methods that make it easy to access the contents of
3278 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3279 list.</p></li>
3280
3281 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3282
3283 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
3284 necessary to use when you need to update the list or perform a complex
3285 action that doesn't have a forwarding method.</p></li>
3286
3287 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3288
3289 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3290 function. Because the entry block for the function is always the first
3291 block, this returns the first block of the <tt>Function</tt>.</p></li>
3292
3293 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3294 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3295
3296 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3297 <tt>Function</tt> and returns the return type of the function, or the <a
3298 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3299 function.</p></li>
3300
3301 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3302
3303 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3304 for this <tt>Function</tt>.</p></li>
3305</ul>
3306
3307</div>
3308
3309<!-- ======================================================================= -->
3310<div class="doc_subsection">
3311 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3312</div>
3313
3314<div class="doc_text">
3315
3316<p><tt>#include "<a
3317href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3318<br>
3319doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3320 Class</a><br>
3321Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3322<a href="#Constant"><tt>Constant</tt></a>,
3323<a href="#User"><tt>User</tt></a>,
3324<a href="#Value"><tt>Value</tt></a></p>
3325
3326<p>Global variables are represented with the (suprise suprise)
3327<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3328subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3329always referenced by their address (global values must live in memory, so their
3330"name" refers to their constant address). See
3331<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global
3332variables may have an initial value (which must be a
3333<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
3334they may be marked as "constant" themselves (indicating that their contents
3335never change at runtime).</p>
3336</div>
3337
3338<!-- _______________________________________________________________________ -->
3339<div class="doc_subsubsection">
3340 <a name="m_GlobalVariable">Important Public Members of the
3341 <tt>GlobalVariable</tt> class</a>
3342</div>
3343
3344<div class="doc_text">
3345
3346<ul>
3347 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3348 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3349 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3350
3351 <p>Create a new global variable of the specified type. If
3352 <tt>isConstant</tt> is true then the global variable will be marked as
3353 unchanging for the program. The Linkage parameter specifies the type of
Duncan Sands19d161f2009-03-07 15:45:40 +00003354 linkage (internal, external, weak, linkonce, appending) for the variable.
3355 If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3356 LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3357 global variable will have internal linkage. AppendingLinkage concatenates
3358 together all instances (in different translation units) of the variable
3359 into a single variable but is only applicable to arrays. &nbsp;See
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003360 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3361 further details on linkage types. Optionally an initializer, a name, and the
3362 module to put the variable into may be specified for the global variable as
3363 well.</p></li>
3364
3365 <li><tt>bool isConstant() const</tt>
3366
3367 <p>Returns true if this is a global variable that is known not to
3368 be modified at runtime.</p></li>
3369
3370 <li><tt>bool hasInitializer()</tt>
3371
3372 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3373
3374 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3375
3376 <p>Returns the intial value for a <tt>GlobalVariable</tt>. It is not legal
3377 to call this method if there is no initializer.</p></li>
3378</ul>
3379
3380</div>
3381
3382
3383<!-- ======================================================================= -->
3384<div class="doc_subsection">
3385 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3386</div>
3387
3388<div class="doc_text">
3389
3390<p><tt>#include "<a
3391href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
3392doxygen info: <a href="/doxygen/structllvm_1_1BasicBlock.html">BasicBlock
3393Class</a><br>
3394Superclass: <a href="#Value"><tt>Value</tt></a></p>
3395
3396<p>This class represents a single entry multiple exit section of the code,
3397commonly known as a basic block by the compiler community. The
3398<tt>BasicBlock</tt> class maintains a list of <a
3399href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3400Matching the language definition, the last element of this list of instructions
3401is always a terminator instruction (a subclass of the <a
3402href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3403
3404<p>In addition to tracking the list of instructions that make up the block, the
3405<tt>BasicBlock</tt> class also keeps track of the <a
3406href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3407
3408<p>Note that <tt>BasicBlock</tt>s themselves are <a
3409href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3410like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3411<tt>label</tt>.</p>
3412
3413</div>
3414
3415<!-- _______________________________________________________________________ -->
3416<div class="doc_subsubsection">
3417 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
3418 class</a>
3419</div>
3420
3421<div class="doc_text">
3422<ul>
3423
3424<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3425 href="#Function">Function</a> *Parent = 0)</tt>
3426
3427<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3428insertion into a function. The constructor optionally takes a name for the new
3429block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
3430the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3431automatically inserted at the end of the specified <a
3432href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3433manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3434
3435<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3436<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3437<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3438<tt>size()</tt>, <tt>empty()</tt>
3439STL-style functions for accessing the instruction list.
3440
3441<p>These methods and typedefs are forwarding functions that have the same
3442semantics as the standard library methods of the same names. These methods
3443expose the underlying instruction list of a basic block in a way that is easy to
3444manipulate. To get the full complement of container operations (including
3445operations to update the list), you must use the <tt>getInstList()</tt>
3446method.</p></li>
3447
3448<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3449
3450<p>This method is used to get access to the underlying container that actually
3451holds the Instructions. This method must be used when there isn't a forwarding
3452function in the <tt>BasicBlock</tt> class for the operation that you would like
3453to perform. Because there are no forwarding functions for "updating"
3454operations, you need to use this if you want to update the contents of a
3455<tt>BasicBlock</tt>.</p></li>
3456
3457<li><tt><a href="#Function">Function</a> *getParent()</tt>
3458
3459<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3460embedded into, or a null pointer if it is homeless.</p></li>
3461
3462<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3463
3464<p> Returns a pointer to the terminator instruction that appears at the end of
3465the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
3466instruction in the block is not a terminator, then a null pointer is
3467returned.</p></li>
3468
3469</ul>
3470
3471</div>
3472
3473
3474<!-- ======================================================================= -->
3475<div class="doc_subsection">
3476 <a name="Argument">The <tt>Argument</tt> class</a>
3477</div>
3478
3479<div class="doc_text">
3480
3481<p>This subclass of Value defines the interface for incoming formal
3482arguments to a function. A Function maintains a list of its formal
3483arguments. An argument has a pointer to the parent Function.</p>
3484
3485</div>
3486
3487<!-- *********************************************************************** -->
3488<hr>
3489<address>
3490 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00003491 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003492 <a href="http://validator.w3.org/check/referer"><img
Gabor Greif7dabe382008-06-18 14:05:31 +00003493 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003494
3495 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3496 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3497 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
3498 Last modified: $Date$
3499</address>
3500
3501</body>
3502</html>